EP3442687A1 - Particle filter having scr-active coating - Google Patents

Particle filter having scr-active coating

Info

Publication number
EP3442687A1
EP3442687A1 EP17717420.8A EP17717420A EP3442687A1 EP 3442687 A1 EP3442687 A1 EP 3442687A1 EP 17717420 A EP17717420 A EP 17717420A EP 3442687 A1 EP3442687 A1 EP 3442687A1
Authority
EP
European Patent Office
Prior art keywords
catalytically active
scr
particulate filter
filter
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17717420.8A
Other languages
German (de)
French (fr)
Inventor
Frank Welsch
Stephan Eckhoff
Michael Seyler
Anke Schuler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of EP3442687A1 publication Critical patent/EP3442687A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Definitions

  • the present invention relates to a particulate filter with SCR active
  • Exhaust gases from motor vehicles with a predominantly lean-burn internal combustion engine contain, in addition to particulate emissions, in particular the primary emissions carbon monoxide CO, hydrocarbons HC and
  • Nitrogen oxides NOx Due to the relatively high oxygen content of up to 15% by volume, carbon monoxide and hydrocarbons can be rendered relatively harmless by oxidation. The reduction of nitrogen oxides to nitrogen, however, is much more difficult.
  • the presence of oxygen is the selective catalytic reduction (SCR process) by means of ammonia on a suitable catalyst.
  • SCR process selective catalytic reduction
  • the nitrogen oxides to be removed from the exhaust gas are reacted with ammonia to nitrogen and water.
  • ammonia used as reducing agent can be prepared by metering in an ammonia precursor compound, such as, for example, urea,
  • Ammonium carbamate or ammonium formate are made available in the exhaust line and subsequent hydrolysis. Particles can be removed very effectively with the help of particle filters from the exhaust gas. Wall flow filters made of ceramic materials have proven particularly useful. These are from a variety of parallel
  • the channels Built up channels formed by porous walls.
  • the channels are mutually gastight at one of the two ends of the filter
  • first channels are formed, which are open at the first side of the filter and closed on the second side of the filter
  • second channels which are closed on the first side of the filter and open on the second side of the filter.
  • first Inlet exhaust gas can only leave the filter through the second channels, and must flow through the porous walls between the first and second channels for this purpose. As the exhaust passes through the wall, the particles are retained.
  • JPHOl-151706 and WO2005 / 016497 propose coating a wall-flow filter with an SCR catalyst in such a way that the latter penetrates the porous walls (so-called in-wall coating).
  • Particulate filters must be regenerated at certain intervals, ie the accumulated soot particles must be burned off to keep exhaust back pressure within an acceptable range.
  • temperature peaks of up to 1000 ° C. or more can be achieved in the filter during soot regeneration if the soot burn-off proceeds uncontrollably, as may occur in certain driving situations of the vehicle.
  • Diesel particulate filter can be arranged.
  • the present invention relates to a particulate filter comprising a wall-flow filter and two different SCR-catalytically active materials A and B,
  • the wall-flow filter comprises channels of length L extending in parallel between first and second ends of the wall-flow filter, which are alternately gas-tight at either the first or second end and which are separated by porous walls, the SCR catalytically active material A.
  • the SCR catalytically active material B comprises a zeolite of the Levyne type containing ion-exchanged iron and / or copper, wherein
  • the SCR catalytically active materials A and B are in the form of two material zones A and B, with material zone A extending from the first end of the wall flow filter over at least part of the length L and material zone B extending from the second end of the wall
  • Wall flow filter extends over at least part of the length L, or where
  • the wall flow filter is formed from the SCR catalytically active material A and a matrix component and the SCR catalytically active material B extends in the form of a material zone B over at least part of the length L of the wall flow filter,
  • the wall flow filter is formed from the SCR catalytically active material B and a matrix component and the SCR catalytically active material A extends in the form of a material zone A over at least part of the length L of the wall flow filter.
  • the chalcazite-type zeolite has an SAR (silica to alumina) ratio of 6 to 40, preferably 12 to 40, and more preferably 25 to 40.
  • the Levyne-type zeolite has a SAR value greater than 15, preferably greater than 30, for example from 30 to 50.
  • Candidate zeolites of the chabazite structure type are, for example, the products known under the names chabazite and SSZ-13.
  • Candidate zeolites of the Levyne structure type are, for example, Nu-3, ZK-20 and LZ-132.
  • zeolite includes not only aluminosilicates, but also silicoaluminophosphates and Aluminophosphates, sometimes referred to as zeolite-like compounds. Examples are in particular SAPO-34 and AIPO-34 (structure type CHA) and SAPO-35 and AIPO-35 (structure type LEV). In embodiments of the present invention, both the chabazite-type zeolite and the Levyne-type zeolite contain ion-exchanged copper.
  • the quantities of copper in the zeolite of the chabazite structure type and in the zeolite of the Levyne structure type independently of one another are in particular from 0.2 to 6% by weight, preferably from 1 to 5% by weight, calculated as CuO and based on the total weight of the zeolite exchanged.
  • the atomic ratio of copper exchanged in the zeolite to framework aluminum in the zeolite, hereinafter referred to as the Cu / Al ratio, is particularly 0.25 to 0.6 for the zeolite of the chabazite type and the zeolite of the Levyne type.
  • Cu / Al values 0.35-0.5, which corresponds to a theoretical Cu exchange degree of 70-100%.
  • the amounts of iron in the chabazite-type zeolite and in the Levyne-type zeolite independently of one another are in particular from 0.5 to 10% by weight, preferably from 1 to 5% by weight, calculated as Fe 2 03 and based on the total weight of the exchanged zeolite.
  • the atomic ratio of iron exchanged in the zeolite to framework aluminum in the zeolite, hereinafter referred to as the Fe / Al ratio is in particular 0.25 to 3 for the zeolite of the chabazite structure type and for the zeolite of the Levyne structure type.
  • the material zone A includes, for example, except the exchanged with copper or iron zeolites of chabazite structure type no catalytically active components. However, it may optionally contain auxiliaries, such as binders. Suitable binders are, for example
  • material zone A consists of copper-iron exchanged chabazite-type zeolites, as well as binder. Alumina is preferred as the binder.
  • the material zone B includes, for example, except the exchanged with copper or iron zeolites of the Levyne structure type no catalytically active components. However, it may optionally contain auxiliaries, such as binders. Suitable binders are, for example
  • material zone A consists of Levyne-type zeolites exchanged with copper or iron and binder.
  • Alumina is preferred as the binder.
  • 20 to 80% by weight of the catalytically active material accounts for material zone B, preferably 40 to 80% by weight, particularly preferably 50 to 70% by weight.
  • this comprises a wall-flow filter and SCR-catalytically active material, wherein the wall-flow filter comprises channels of length L which extend in parallel between a first and a second end of the wall-flow filter, alternately on either the first or the second second end are sealed gas-tight and which are separated by porous walls, wherein
  • the SCR catalytically active material in the form of at least two
  • Material zones A and B which are different from each other, is present, wherein Material zone A extends from the first end of the wall-flow filter at least over a part of the length L and
  • Material zone B starting from the second end of the wall-flow filter, extends over at least part of the length L,
  • Material zone A is a zeolite of chabazite structure type
  • Material zone B is a zeolite of the Levyne structure type
  • the exhaust gas preferably flows into the catalyst at the first end of the catalyst substrate and out of the catalyst at the second end of the catalyst substrate.
  • the material zones A and B may be arranged in different ways on the particulate filter.
  • material zone A extends over the entire length of the particulate filter according to the invention.
  • material zone B extends from the second end of the particulate filter over 10 to 80% of the length L of the particulate filter.
  • material zone B is preferably arranged on material zone A.
  • material zone A extends from the first end of the particulate filter over 20 to 90% of the length L of the particulate filter while material zone B extends from the second end of the particulate filter over 10 to 70% of the length L of the particulate filter. If the material zones A and B overlap in this embodiment, material zone B is preferably arranged on material zone A.
  • material zone A extends starting from the first end of the particulate filter over 20 to 90% of the length L of the particulate filter, while material zone B extends over the entire length L of the particulate filter.
  • material zone A is preferably arranged on material zone B.
  • Wall-flow filters which can be used in accordance with the present invention are known and available on the market. They consist for example of silicon carbide, aluminum titanate or cordierite.
  • the pores of the wall-flow filter are so-called open pores, that is to say they have a connection to the channels which are formed by the porous walls of the wall-flow filter. Furthermore, the pores are usually interconnected. This allows, on the one hand, the slight coating of the inner pore surfaces and, on the other hand, an easy passage of the exhaust gas through the porous walls of the wall-flow filter.
  • the production of the particulate filter according to the invention can be carried out by methods familiar to the person skilled in the art, for example by the customary dip coating methods or pump and suction coating methods with subsequent thermal aftertreatment (calcination). It is known to the person skilled in the art that the average pore size of the wall-flow filter and the mean particle size of the SCR-catalytically active materials can be coordinated so that the material zones A and / or B lie on the porous walls which form the channels of the wall-flow filter -Wand coating).
  • the average particle size of the SCR catalytically active materials is preferably matched to one another such that both the material zone A and the material zone B are located in the porous walls that form the channels of the wall-flow filter, ie a coating of the inner pore surfaces takes place ( in-wall coating).
  • the middle one must be matched to one another such that both the material zone A and the material zone B are located in the porous walls that form the channels of the wall-flow filter, ie a coating of the inner pore surfaces takes place ( in-wall coating).
  • the middle one must be matched to one another such that both the material zone A and the material zone B are located in the porous walls that form the channels of the wall-flow filter, ie a coating of the inner pore surfaces takes place ( in-wall coating).
  • the present invention also includes embodiments in which one of the material zones A and B in-wall and the other is coated on-wall.
  • the present invention also relates to embodiments in which the wall flow filter is formed from an inert matrix component and the SCR catalytically active material A or B and the other SCR catalytically active material, ie material B or A, in the form of a
  • Wallflow filter extends.
  • Wand let Lett filter which not only consist of inert material such as cordierite, but also contain a catalytically active material, are known in the art.
  • a mixture of, for example, 10 to 95% by weight of inert matrix component and 5 to 90% by weight of catalytically active material is extruded by methods known per se.
  • matrix components it is also possible to use all other inert materials which are otherwise used for the production of wall-flow filters. These are, for example, silicates, oxides, nitrides or carbides, with particular preference being given to magnesium-aluminum silicates.
  • extruded wall-flow filters comprising SCR-catalytically active material A or B, as well as inert wall-flow filters, can also be used according to conventional methods
  • a wall-flow filter comprising SCR catalytically active material B can be coated over its entire length or a part thereof with a washcoat containing the SCR-catalytically active
  • Material A contains.
  • a wall-flow filter comprising SCR-catalytically active material A can be coated over its entire length or a part thereof with a washcoat containing the SCR-catalytically active
  • Material B contains.
  • the particle filter according to the invention with SCR-active coating can be operated with advantage for the purification of exhaust gas from lean
  • Internal combustion engines in particular of diesel engines, are used. They are to be arranged in the exhaust gas stream in such a way that the SCR catalytic material A comes into contact with the exhaust gas to be cleaned upstream of the SCR catalytic material B. In the exhaust gas contained nitrogen oxides are thereby converted into the harmless compounds nitrogen and water.
  • the present invention accordingly also relates to a method for
  • the reducing agent used in the process according to the invention is preferably ammonia.
  • the required ammonia can be formed, for example, in the exhaust system upstream of the particle filter according to the invention, for example by means of a lean NOx trap (LNT) on the upstream side. This process is known as "passive SCR.”
  • LNT lean NOx trap
  • ammonia can also be carried in the form of aqueous urea solution, which can be supplied as required via an injector on the inflow side
  • Particulate filter according to the invention is metered.
  • the present invention thus also relates to a system for purifying exhaust gas from lean-burn internal combustion engines, which is characterized in that it comprises an inventive particle filter with SCR active coating, and an injector for aqueous urea solution, wherein the injector before the first end of Wall flow filter is located.
  • the inventive system for purifying exhaust gas of lean-burn internal combustion engines it thus comprises in the flow direction of the exhaust gas, an oxidation catalyst, an injector for aqueous urea solution and a novel
  • Particulate filter with SCR-active coating with the injector located in front of the first end of the wall-flow filter.
  • platinum on a support material is used as the oxidation catalyst.
  • Suitable carrier material for the platinum are all those skilled in the art for this purpose materials into consideration. They have a BET surface area of from 30 to 250 m 2 / g, preferably from 100 to 200 m 2 / g (determined to DIN 66132) and are in particular aluminum oxide, silicon oxide,
  • a conventional cordierite wall-flow filter was made from one end to 50% of its length by means of a conventional

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

The invention relates to a particle filter, which comprises a wall flow filter and two SCR-catalytically active materials A and B which are different from each other, wherein the SCR-catalytically active material A contains a zeolite of the chabazite structure type, which contains ion-exchanged iron and/or copper, and the SCR-catalytically active material B contains a zeolite of the levyne structure type, which contains ion-exchanged iron and/or copper, wherein (i) the SCR-catalytically active materials A and B are in the form of two material zones A and B, wherein material zone A extends from the first end of the wall flow filter at least over part of the length L and material zone B extends from the second end of the wall flow filter at least over part of the length L, or wherein (ii) the wall flow filter is formed by the SCR-catalytically active material A or B and a matrix component and the SCR-catalytically active material B or A extends at least over part of the length L of the wall flow filter in the form of a material zone B or A.

Description

Partikelfilter mit SCR-aktiver Beschichtung  Particulate filter with SCR active coating
Die vorliegende Erfindung betrifft ein Partikelfilter mit SCR-aktiver The present invention relates to a particulate filter with SCR active
Beschichtung zur gleichzeitigen Verminderung von Partikeln und Stickoxiden im Abgas von Verbrennungsmotoren. Coating for the simultaneous reduction of particles and nitrogen oxides in the exhaust gas of internal combustion engines.
Abgase von Kraftfahrzeugen mit einem überwiegend mager betriebenen Verbrennungsmotor enthalten neben Partikelemissionen insbesondere die Primäremissionen Kohlenmonoxid CO, Kohlenwasserstoffe HC und Exhaust gases from motor vehicles with a predominantly lean-burn internal combustion engine contain, in addition to particulate emissions, in particular the primary emissions carbon monoxide CO, hydrocarbons HC and
Stickoxide NOx. Aufgrund des relativ hohen Sauerstoffgehaltes von bis zu 15 Vol.-% können Kohlenmonoxid und Kohlenwasserstoffe durch Oxidation relativ leicht unschädlich gemacht werden. Die Reduktion der Stickoxide zu Stickstoff gestaltet sich jedoch wesentlich schwieriger. Ein bekanntes Verfahren zur Entfernung von Stickoxiden aus Abgasen inNitrogen oxides NOx. Due to the relatively high oxygen content of up to 15% by volume, carbon monoxide and hydrocarbons can be rendered relatively harmless by oxidation. The reduction of nitrogen oxides to nitrogen, however, is much more difficult. A known method for removing nitrogen oxides from exhaust gases in
Gegenwart von Sauerstoff ist die selektive katalytische Reduktion (SCR-Ver- fahren) mittels Ammoniak an einem geeigneten Katalysator. Bei diesem Verfahren werden die aus dem Abgas zu entfernenden Stickoxide mit Ammoniak zu Stickstoff und Wasser umgesetzt. The presence of oxygen is the selective catalytic reduction (SCR process) by means of ammonia on a suitable catalyst. In this method, the nitrogen oxides to be removed from the exhaust gas are reacted with ammonia to nitrogen and water.
Das als Reduktionsmittel verwendete Ammoniak kann durch Eindosierung einer Ammoniakvorläuferverbindung, wie beispielsweise Harnstoff, The ammonia used as reducing agent can be prepared by metering in an ammonia precursor compound, such as, for example, urea,
Ammoniumcarbamat oder Ammoniumformiat, in den Abgasstrang und anschließende Hydrolyse verfügbar gemacht werden. Partikel können sehr effektiv mit Hilfe von Partikelfiltern aus dem Abgas entfernt werden. Besonders bewährt haben sich Wandflussfilter aus keramischen Materialien. Diese sind aus einer Vielzahl von parallelen Ammonium carbamate or ammonium formate, are made available in the exhaust line and subsequent hydrolysis. Particles can be removed very effectively with the help of particle filters from the exhaust gas. Wall flow filters made of ceramic materials have proven particularly useful. These are from a variety of parallel
Kanälen aufgebaut, die durch poröse Wände gebildet werden. Die Kanäle sind wechselseitig an einem der beiden Enden des Filters gasdicht Built up channels formed by porous walls. The channels are mutually gastight at one of the two ends of the filter
verschlossen, so dass erste Kanäle gebildet werden, die an der ersten Seite des Filters offen und auf der zweiten Seite des Filters verschlossen sind, sowie zweite Kanäle, die an der ersten Seite des Filters verschlossen und auf der zweiten Seite des Filters offen sind. Das beispielsweise in die ersten Kanäle einströmende Abgas kann den Filter nur über die zweiten Kanäle wieder verlassen, und muss zu diesem Zweck durch die porösen Wände zwischen den ersten und zweiten Kanälen durchfließen. Beim Durchtritt des Abgases durch die Wand werden die Partikel zurückgehalten. closed so that first channels are formed, which are open at the first side of the filter and closed on the second side of the filter, and second channels, which are closed on the first side of the filter and open on the second side of the filter. For example, in the first Inlet exhaust gas can only leave the filter through the second channels, and must flow through the porous walls between the first and second channels for this purpose. As the exhaust passes through the wall, the particles are retained.
Es ist auch bereits bekannt, Wandflussfilter mit SCR-aktivem Material zu beschichten und so Partikel und Stickoxide gleichzeitig aus dem Abgas zu entfernen. Solche Produkte werden üblicherweise als SDPF bezeichnet. Sofern die erforderliche Menge an SCR-aktivem Material auf die porösen Wände zwischen den Kanälen aufgebracht wird (sogenannte auf-Wand- Beschichtung), kann dies allerdings zu einer inakzeptablen Erhöhung des Gegendrucks des Filters führen. It is also already known to coat wall-flow filters with SCR-active material and at the same time to remove particles and nitrogen oxides from the exhaust gas. Such products are commonly referred to as SDPF. However, if the required amount of SCR active material is applied to the porous walls between the channels (so-called on-wall coating), this may result in an unacceptable increase in the back pressure of the filter.
Vor diesem Hintergrund schlagen beispielsweise die JPHOl-151706 und die WO2005/016497 vor, einen Wandflussfilter dergestalt mit einem SCR- Katalysator zu beschichten, dass letzterer die porösen Wände durchdringt (sogenannte in-Wand-Beschichtung).  Against this background, for example, JPHOl-151706 and WO2005 / 016497 propose coating a wall-flow filter with an SCR catalyst in such a way that the latter penetrates the porous walls (so-called in-wall coating).
Es ist auch schon vorgeschlagen worden, siehe US 2011/274601, einen ersten SCR-Katalysator in die poröse Wand einzubringen, d .h. die inneren Oberflächen der Poren zu beschichten und einen zweiten SCR-Katalysator auf der Oberfläche der porösen Wand zu platzieren. Dabei ist die mittlere Partikelgröße des ersten SCR-Katalysators kleiner als die des zweiten SCR- Katalysators. Des Weiteren ist in WO2013/014467 AI vorgeschlagen worden, auf einem Partikelfilter zwei oder mehr SCR-aktive Zonen hintereinander anzuordnen. Dabei können die Zonen gleiches SCR-aktives Material in unterschiedlichen Konzentrationen oder verschiedene SCR-aktive Materialien enthalten. In jedem Fall wird das thermisch stabilere SCR-aktive Material bevorzugt am Filtereingang angeordnet. It has also been proposed, see US 2011/274601, to introduce a first SCR catalyst into the porous wall, i. E. coat the inner surfaces of the pores and place a second SCR catalyst on the surface of the porous wall. The average particle size of the first SCR catalyst is smaller than that of the second SCR catalyst. Furthermore, it has been proposed in WO2013 / 014467 Al to arrange two or more SCR-active zones in succession on a particle filter. The zones may contain the same SCR-active material in different concentrations or different SCR-active materials. In any case, the more thermally stable SCR active material is preferably placed at the filter inlet.
Partikelfilter müssen in bestimmten zeitlichen Abständen regeneriert werden, das heißt die angesammelten Rußpartikel müssen abgebrannt werden, um den Abgasgegendruck in einem akzeptablen Bereich zu halten. Zur Filterregeneration und der Initiierung des Rußabbrandes werden Particulate filters must be regenerated at certain intervals, ie the accumulated soot particles must be burned off to keep exhaust back pressure within an acceptable range. For filter regeneration and the initiation of Rußabbrandes be
Abgastemperaturen von ca. 600°C benötigt. Bei dem Abbrand können sehr hohe Temperaturen auftreten, die bei > 800 °C liegen können. Es ist bekannt, dass in dem Bereich, in dem das Abgas aus dem Filter austritt höhere Temperaturen erreicht werden können, als in dem Bereich, in dem das Abgas in den Filter eintritt. Exhaust gas temperatures of about 600 ° C needed. Burning can cause very high temperatures, which can be> 800 ° C. It is known that higher temperatures can be achieved in the region in which the exhaust gas exits from the filter than in the region in which the exhaust gas enters the filter.
Im Falle von Partikelfiltern, die mit SCR-Katalysatoren versehen sind, müssen letztere den hohen thermischen Belastungen während der  In the case of particulate filters, which are provided with SCR catalysts, the latter must be able to withstand the high thermal loads during the
Filterregeneration ohne gravierenden Aktivitätsverlust standhalten. In dieser Hinsicht besteht aber noch erheblicher Verbesserungsbedarf. Derzeit sind SCR-Katalysatorbeschichtungen auf Filtern erhältlich, die Withstand filter regeneration without serious loss of activity. However, there is still a considerable need for improvement in this regard. Currently, SCR catalyst coatings are available on filters that
Maximaltemperaturen von 800 - 850°C standhalten können. In Maximum temperatures of 800 - 850 ° C can withstand. In
Ausnahmefällen können im Filter bei der Rußregeneration jedoch auch Temperaturspitzen bis zu 1000°C oder mehr erreicht werden, wenn der Rußabbrand unkontrolliert abläuft, wozu es in bestimmten Fahrsituationen des Fahrzeuges kommen kann. In exceptional cases, however, temperature peaks of up to 1000 ° C. or more can be achieved in the filter during soot regeneration if the soot burn-off proceeds uncontrollably, as may occur in certain driving situations of the vehicle.
Es wurde nun überraschend gefunden, dass temperaturstabilere, mit einer SCR-Funktion versehene Dieselpartikelfilter erhalten werden, wenn verschiedene Zeolith-Strukturtypen, nämlich solche vom Chabazit-(CHA) und vom Levyne-Strukturtyp (LEV) in bestimmter weise auf dem It has now surprisingly been found that more temperature stable, provided with an SCR function diesel particulate filter are obtained when different zeolite structure types, namely those of the chabazite (CHA) and the Levyne structure type (LEV) in a certain way on the
Dieselpartikelfilter angeordnet werden. Die vorliegende Erfindung betrifft ein Partikelfilter, das einen Wandflussfilter und zwei voneinander verschiedene SCR-katalytisch aktive Materialien A und B umfasst, Diesel particulate filter can be arranged. The present invention relates to a particulate filter comprising a wall-flow filter and two different SCR-catalytically active materials A and B,
wobei das Wandflussfilter Kanäle der Länge L umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken, die abwechselnd entweder am ersten oder am zweiten Ende gasdicht verschlossen sind und die durch poröse Wände getrennt sind, das SCR-katalytisch aktive Material A einen Zeolithen vom Chabazit- Strukturtyp, der ionenausgetauschtes Eisen und/oder Kupfer enthält, und das SCR-katalytisch aktive Material B einen Zeolithen vom Levyne- Strukturtyp der ionenausgetauschtes Eisen und/oder Kupfer enthält, umfasst, wobei wherein the wall-flow filter comprises channels of length L extending in parallel between first and second ends of the wall-flow filter, which are alternately gas-tight at either the first or second end and which are separated by porous walls, the SCR catalytically active material A. a chalazite-type zeolite containing ion-exchanged iron and / or copper, and the SCR catalytically active material B comprises a zeolite of the Levyne type containing ion-exchanged iron and / or copper, wherein
(i) die SCR-katalytisch aktiven Materialien A und B in Form von zwei Materialzonen A und B vorliegen, wobei sich Materialzone A ausgehend vom ersten Ende des Wandflussfilters mindestens über einen Teil der Länge L erstreckt und sich Materialzone B ausgehend vom zweiten Ende des  (i) the SCR catalytically active materials A and B are in the form of two material zones A and B, with material zone A extending from the first end of the wall flow filter over at least part of the length L and material zone B extending from the second end of the wall
Wandflussfilters mindestens über einen Teil der Länge L erstreckt, oder wobei Wall flow filter extends over at least part of the length L, or where
(ii) das Wandflussfilter aus dem SCR-katalytisch aktiven Material A und einer Matrixkomponente gebildet ist und sich das SCR-katalytisch aktive Material B in Form einer Materialzone B mindestens über einen Teil der Länge L des Wandflussfilters erstreckt, (ii) the wall flow filter is formed from the SCR catalytically active material A and a matrix component and the SCR catalytically active material B extends in the form of a material zone B over at least part of the length L of the wall flow filter,
oder wobei or where
(iii) das Wandflussfilter aus dem SCR-katalytisch aktiven Material B und einer Matrixkomponente gebildet ist und sich das SCR-katalytisch aktive Material A in Form einer Materialzone A mindestens über einen Teil der Länge L des Wandflussfilters erstreckt. In Ausführungsformen der vorliegenden Erfindung weist der Zeolith vom Chabazit-Strukturtyp einen SAR-Wert (Verhältnis von Siliziumdioxid zu Aluminiumoxid) von 6 bis 40, bevorzugt 12 bis 40 und besonders bevorzugt 25 bis 40 auf. (iii) the wall flow filter is formed from the SCR catalytically active material B and a matrix component and the SCR catalytically active material A extends in the form of a material zone A over at least part of the length L of the wall flow filter. In embodiments of the present invention, the chalcazite-type zeolite has an SAR (silica to alumina) ratio of 6 to 40, preferably 12 to 40, and more preferably 25 to 40.
In Ausführungsformen der vorliegenden Erfindung weist der Zeolith vom Levyne-Strukturtyp einen SAR-Wert größer 15, bevorzugt größer 30, beispielsweise von 30 bis 50 auf.  In embodiments of the present invention, the Levyne-type zeolite has a SAR value greater than 15, preferably greater than 30, for example from 30 to 50.
In Frage kommende Zeolithe vom Chabazit-Strukturtyp sind beispielsweise die unter den Namen Chabazit und SSZ-13 bekannten Produkte. In Frage kommende Zeolithe vom Levyne-Strukturtyp sind beispielsweise Nu-3, ZK- 20 und LZ-132. Candidate zeolites of the chabazite structure type are, for example, the products known under the names chabazite and SSZ-13. Candidate zeolites of the Levyne structure type are, for example, Nu-3, ZK-20 and LZ-132.
Im Rahmen der vorliegenden Erfindung fallen unter den Begriff Zeolith nicht nur Aluminosilikate, sondern auch Silicoaluminophosphate und Aluminophosphate, die gelegentlich auch als Zeolith-ähnliche Verbindungen bezeichnet werden. Beispiele sind insbesondere SAPO-34 und AIPO-34 (Strukturtyp CHA) und SAPO-35 und AIPO-35 (Strukturtyp LEV). In Ausführungsformen der vorliegenden Erfindung enthält sowohl der Zeolith vom Chabazit-Strukturtyp, als auch der Zeolith vom Levyne- Strukturtyp ionenausgetauschtes Kupfer. In the context of the present invention, the term zeolite includes not only aluminosilicates, but also silicoaluminophosphates and Aluminophosphates, sometimes referred to as zeolite-like compounds. Examples are in particular SAPO-34 and AIPO-34 (structure type CHA) and SAPO-35 and AIPO-35 (structure type LEV). In embodiments of the present invention, both the chabazite-type zeolite and the Levyne-type zeolite contain ion-exchanged copper.
Die Kupfermengen betragen beim Zeolithen vom Chabazit-Strukturtyp und beim Zeolithen vom Levyne-Strukturtyp unabhängig voneinander insbesondere 0,2 bis 6 Gew.-%, bevorzugt 1 bis 5 Gew.-%, berechnet als CuO und bezogen auf das Gesamtgewicht des ausgetauschten Zeolithen. Das Atomverhältnis von im Zeolithen eingetauschtem Kupfer zu Gerüst- Aluminium im Zeolithen, nachfolgend als Cu/Al-Verhältnis bezeichnet, liegt beim Zeolithen vom Chabazit-Strukturtyp und beim Zeolithen vom Levyne- Strukturtyp unabhängig voneinander insbesondere bei 0,25 bis 0,6.  The quantities of copper in the zeolite of the chabazite structure type and in the zeolite of the Levyne structure type independently of one another are in particular from 0.2 to 6% by weight, preferably from 1 to 5% by weight, calculated as CuO and based on the total weight of the zeolite exchanged. The atomic ratio of copper exchanged in the zeolite to framework aluminum in the zeolite, hereinafter referred to as the Cu / Al ratio, is particularly 0.25 to 0.6 for the zeolite of the chabazite type and the zeolite of the Levyne type.
Dies entspricht einem theoretischen Austauschgrad des Kupfers mit dem Zeolithen von 50% bis 120%, ausgehend von einem vollständigen  This corresponds to a theoretical degree of exchange of the copper with the zeolite of 50% to 120%, starting from a complete one
Ladungsausgleich im Zeolithen durch zweiwertige Cu-Ionen bei einem Eintauschgrad von 100%. Besonders bevorzugt sind Cu/Al-Werte von 0,35- 0,5, was einem theoretischen Cu-Austauschgrad von 70-100% entspricht. Charge compensation in the zeolite by divalent Cu ions at a degree of exchange of 100%. Particularly preferred are Cu / Al values of 0.35-0.5, which corresponds to a theoretical Cu exchange degree of 70-100%.
Sofern die verwendeten Zeolithe ionenausgetauschtes Eisen enthalten, so betragen die Eisenmengen beim Zeolithen vom Chabazit-Strukturtyp und beim Zeolithen vom Levyne-Strukturtyp unabhängig voneinander insbesondere 0,5 bis 10 Gew.-%, bevorzugt 1 bis 5 Gew.-%, berechnet als Fe203 und bezogen auf das Gesamtgewicht des ausgetauschten Zeolithen. Das Atomverhältnis von im Zeolithen eingetauschtem Eisen zu Gerüst- Aluminium im Zeolithen, im Folgenden als Fe/Al-Verhältnis bezeichnet, liegt beim Zeolithen vom Chabazit-Strukturtyp und beim Zeolithen vom Levyne- Strukturtyp unabhängig voneinander insbesondere bei 0,25 bis 3. If the zeolites used contain ion-exchanged iron, the amounts of iron in the chabazite-type zeolite and in the Levyne-type zeolite independently of one another are in particular from 0.5 to 10% by weight, preferably from 1 to 5% by weight, calculated as Fe 2 03 and based on the total weight of the exchanged zeolite. The atomic ratio of iron exchanged in the zeolite to framework aluminum in the zeolite, hereinafter referred to as the Fe / Al ratio, is in particular 0.25 to 3 for the zeolite of the chabazite structure type and for the zeolite of the Levyne structure type.
Besonders bevorzugt sind Fe/Al-Werte von 0,4 bis 1,5. Die Materialzone A umfasst beispielsweise außer den mit Kupfer bzw. Eisen ausgetauschten Zeolithen vom Chabazit-Strukturtyp keine katalytisch aktiven Komponenten. Sie kann aber gegebenenfalls Hilfsstoffe, wie zum Beispiel Binder enthalten. Geeignete Binder sind zum Beispiel Particularly preferred are Fe / Al values of 0.4 to 1.5. The material zone A includes, for example, except the exchanged with copper or iron zeolites of chabazite structure type no catalytically active components. However, it may optionally contain auxiliaries, such as binders. Suitable binders are, for example
Aluminiumoxid, Titanoxid und Zirkoniumoxid, wobei Aluminiumoxid bevorzugt ist. In Ausführungsformen der vorliegenden Erfindung besteht Materialzone A aus mit Kupfer bzw. Eisen ausgetauschten Zeolithen vom Chabazit-Strukturtyp, sowie aus Binder. Als Binder ist Aluminiumoxid bevorzugt. Alumina, titania and zirconia, with alumina being preferred. In embodiments of the present invention, material zone A consists of copper-iron exchanged chabazite-type zeolites, as well as binder. Alumina is preferred as the binder.
Auch die Materialzone B umfasst beispielsweise außer den mit Kupfer bzw. Eisen ausgetauschten Zeolithen vom Levyne-Strukturtyp keine katalytisch aktiven Komponenten. Sie kann aber gegebenenfalls Hilfsstoffe, wie zum Beispiel Binder enthalten. Geeignete Binder sind zum Beispiel Also, the material zone B includes, for example, except the exchanged with copper or iron zeolites of the Levyne structure type no catalytically active components. However, it may optionally contain auxiliaries, such as binders. Suitable binders are, for example
Aluminiumoxid, Titanoxid und Zirkoniumoxid . In Ausführungsformen der vorliegenden Erfindung besteht Materialzone A aus mit Kupfer bzw. Eisen ausgetauschten Zeolithen vom Levyne-Strukturtyp, sowie aus Binder. Als Binder ist Aluminiumoxid bevorzugt. In Ausführungsformen der vorliegenden Erfindung entfallen 20 bis 80 Gew.- % des katalytisch aktiven Materials auf Materialzone B, bevorzugt 40 bis 80 Gew.-%, besonders bevorzugt 50 bis 70 Gew.-%. Alumina, titania and zirconia. In embodiments of the present invention, material zone A consists of Levyne-type zeolites exchanged with copper or iron and binder. Alumina is preferred as the binder. In embodiments of the present invention, 20 to 80% by weight of the catalytically active material accounts for material zone B, preferably 40 to 80% by weight, particularly preferably 50 to 70% by weight.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Partikel- filters umfasst dieses ein Wandflussfilter und SCR-katalytisch aktives Material, wobei das Wandflussfilter Kanäle der Länge L umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken, die abwechselnd entweder am ersten oder am zweiten Ende gasdicht verschlossen sind und die durch poröse Wände getrennt sind, wobei In a preferred embodiment of the particulate filter according to the invention, this comprises a wall-flow filter and SCR-catalytically active material, wherein the wall-flow filter comprises channels of length L which extend in parallel between a first and a second end of the wall-flow filter, alternately on either the first or the second second end are sealed gas-tight and which are separated by porous walls, wherein
das SCR-katalytisch aktive Material in Form von mindestens zwei the SCR catalytically active material in the form of at least two
Materialzonen A und B, die voneinander verschieden sind, vorliegt, wobei sich Materialzone A ausgehend vom ersten Ende des Wandflussfilters mindestens über einen Teil der Länge L erstreckt und Material zones A and B, which are different from each other, is present, wherein Material zone A extends from the first end of the wall-flow filter at least over a part of the length L and
sich Materialzone B ausgehend vom zweiten Ende des Wandflussfilters mindestens über einen Teil der Länge L erstreckt, Material zone B, starting from the second end of the wall-flow filter, extends over at least part of the length L,
dadurch gekennzeichnet, dass characterized in that
Materialzone A einen Zeolithen vom Chabazit-Strukturtyp, der  Material zone A is a zeolite of chabazite structure type, the
ionenausgetauschtes Eisen und/oder Kupfer enthält, und ion-exchanged iron and / or copper, and
Materialzone B einen Zeolithen vom Levyne-Strukturtyp der Material zone B is a zeolite of the Levyne structure type
ionenausgetauschtes Eisen und/oder Kupfer enthält, contains ion-exchanged iron and / or copper,
umfasst. includes.
In dieser Ausführungsform fließt das Abgas bevorzugt am ersten Ende des Katalysatorsubstrates in den Katalysator ein und am zweiten Ende des Katalysatorsubstrates aus dem Katalysator aus. In this embodiment, the exhaust gas preferably flows into the catalyst at the first end of the catalyst substrate and out of the catalyst at the second end of the catalyst substrate.
Des Weiteren können in dieser Ausführungsform die Materialzonen A und B in verschiedener Weise auf dem Partikelfilter angeordnet sein. Furthermore, in this embodiment, the material zones A and B may be arranged in different ways on the particulate filter.
In einer Ausführungsform des erfindungsgemäßen Partikelfilters erstreckt sich beispielsweise Materialzone A über die gesamte Länge des In one embodiment of the particulate filter according to the invention, for example, material zone A extends over the entire length of the
Partikelfilters, während sich Materialzone B ausgehend vom zweiten Ende des Partikelfilters über 10 bis 80% der Länge L des Partikelfilters erstreckt. In diesem Fall ist Materialzone B bevorzugt auf Materialzone A angeordnet. Particulate filter, while the material zone B extends from the second end of the particulate filter over 10 to 80% of the length L of the particulate filter. In this case, material zone B is preferably arranged on material zone A.
In einer anderen Ausführungsform des erfindungsgemäßen Partikelfilters erstreckt sich Materialzone A ausgehend vom ersten Ende des Partikelfilters über 20 bis 90% der Länge L des Partikelfilters, während sich Materialzone B ausgehend vom zweiten Ende des Partikelfilters über 10 bis 70% der Länge L des Partikelfilters erstreckt. Sofern sich bei dieser Ausführungsform die Materialzonen A und B überschneiden, ist bevorzugt Materialzone B auf Materialzone A angeordnet. In another embodiment of the particulate filter according to the invention, material zone A extends from the first end of the particulate filter over 20 to 90% of the length L of the particulate filter while material zone B extends from the second end of the particulate filter over 10 to 70% of the length L of the particulate filter. If the material zones A and B overlap in this embodiment, material zone B is preferably arranged on material zone A.
In einer weiteren Ausführungsform des erfindungsgemäßen Partikelfilters erstreckt sich Materialzone A ausgehend vom ersten Ende des Partikelfilters über 20 bis 90% der Länge L des Partikelfilters, während sich Materialzone B über die gesamte Länge L des Partikelfilters erstreckt. In diesem Fall ist Materialzone A bevorzugt auf Materialzone B angeordnet. Wandflussfilter, die gemäß vorliegender Erfindung verwendet werden können, sind bekannt und am Markt erhältlich. Sie bestehen beispielsweise aus Silicium-Carbid, Aluminium-Titanat oder Cordierit. In a further embodiment of the particulate filter according to the invention, material zone A extends starting from the first end of the particulate filter over 20 to 90% of the length L of the particulate filter, while material zone B extends over the entire length L of the particulate filter. In this case, material zone A is preferably arranged on material zone B. Wall-flow filters which can be used in accordance with the present invention are known and available on the market. They consist for example of silicon carbide, aluminum titanate or cordierite.
Sie weisen in unbeschichtetem Zustand beispielsweise Porositäten von 30 bis 80, insbesondere 50 bis 75% auf. Ihre durchschnittliche Porengröße beträgt in unbeschichtetem Zustand beispielsweise 5 bis 30 Mikrometer. In der Regel sind die Poren des Wandflussfilters sogenannte offene Poren, das heißt sie haben eine Verbindung zu den Kanälen, die von den porösen Wänden des Wandflussfilters gebildet werden. Des Weiteren sind die Poren in der Regel untereinander verbunden. Dies ermöglicht einerseits die leichte Beschichtung der inneren Porenoberflächen und andererseits eine leichte Passage des Abgases durch die porösen Wände des Wandflussfilters. In the uncoated state, for example, they have porosities of 30 to 80, in particular 50 to 75%. Their average pore size when uncoated, for example, 5 to 30 microns. As a rule, the pores of the wall-flow filter are so-called open pores, that is to say they have a connection to the channels which are formed by the porous walls of the wall-flow filter. Furthermore, the pores are usually interconnected. This allows, on the one hand, the slight coating of the inner pore surfaces and, on the other hand, an easy passage of the exhaust gas through the porous walls of the wall-flow filter.
Die Herstellung des erfindungsgemäßen Partikelfilters kann nach dem Fachmann geläufigen Methoden erfolgen, so etwa nach den üblichen Tauchbeschichtungsverfahren bzw. Pump- und Saug-Beschichtungs- verfahren mit sich anschließender thermischer Nachbehandlung (Kalzi- nation). Dem Fachmann ist bekannt, dass die durchschnittliche Porengröße des Wandflussfilters und die mittlere Teilchengröße der SCR-katalytisch aktiven Materialien so aufeinander abgestimmt werden können, dass die Materialzonen A und/oder B auf den porösen Wänden, die die Kanäle des Wandflussfilters bilden, liegen (auf-Wand-Beschichtung). Bevorzugt werden aber mittlere Teilchengröße der SCR-katalytisch aktiven Materialien so aufeinander abgestimmt, dass sich sowohl die Materialzone A, als auch die Materialzone B in den porösen Wänden, die die Kanäle des Wandflussfilters bilden, befinden, dass also eine Beschichtung der inneren Porenoberflächen erfolgt (in-Wand-Beschichtung). In diesem Fall muss die mittlere The production of the particulate filter according to the invention can be carried out by methods familiar to the person skilled in the art, for example by the customary dip coating methods or pump and suction coating methods with subsequent thermal aftertreatment (calcination). It is known to the person skilled in the art that the average pore size of the wall-flow filter and the mean particle size of the SCR-catalytically active materials can be coordinated so that the material zones A and / or B lie on the porous walls which form the channels of the wall-flow filter -Wand coating). However, the average particle size of the SCR catalytically active materials is preferably matched to one another such that both the material zone A and the material zone B are located in the porous walls that form the channels of the wall-flow filter, ie a coating of the inner pore surfaces takes place ( in-wall coating). In this case, the middle one must
Teilchengröße der SCR-katalytisch aktiven Materialien klein genug sein, um in die Poren des Wandflussfilters einzudringen. Die vorliegende Erfindung umfasst aber auch Ausführungsformen, bei denen eine der Materialzonen A und B in-Wand und die andere auf-Wand beschichtet ist. Die vorliegende Erfindung betrifft auch Ausführungsformen, in denen das Wandflussfilter aus einer inerten Matrixkomponente und dem SCR- katalytisch aktiven Material A bzw. B gebildet ist und sich das andere SCR- katalytisch aktive Material, d.h. Material B bzw. A, in Form einer Particle size of the SCR catalytically active materials be small enough to penetrate into the pores of the wall flow filter. However, the present invention also includes embodiments in which one of the material zones A and B in-wall and the other is coated on-wall. The present invention also relates to embodiments in which the wall flow filter is formed from an inert matrix component and the SCR catalytically active material A or B and the other SCR catalytically active material, ie material B or A, in the form of a
Materialzone B bzw. A mindestens über einen Teil der Länge L des Material zone B or A at least over a part of the length L of
Wandflussfilters erstreckt. Wallflow filter extends.
Wandflussfilter, die nicht nur aus inertem Material, wie beispielsweise Cordierit bestehen, sondern die daneben auch ein katalytisch aktives Material enthalten, sind dem Fachmann bekannt. Zu ihrer Herstellung wird eine Mischung aus beispielsweise 10 bis 95 Gew.-% inerter Matrix- komponente und 5 bis 90 Gew.-% katalytisch aktiven Materials nach an sich bekannten Verfahren extrudiert. Als Matrixkomponenten können dabei alle auch sonst zur Herstellung von Wandflussfiltern verwendeten inerten Materialien verwendet werden. Es handelt sich dabei beispielsweise um Silikate, Oxide, Nitride oder Carbide, wobei insbesondere Magnesium- Aluminium-Silikate bevorzugt sind .  Wandflussfilter which not only consist of inert material such as cordierite, but also contain a catalytically active material, are known in the art. For their preparation, a mixture of, for example, 10 to 95% by weight of inert matrix component and 5 to 90% by weight of catalytically active material is extruded by methods known per se. As matrix components, it is also possible to use all other inert materials which are otherwise used for the production of wall-flow filters. These are, for example, silicates, oxides, nitrides or carbides, with particular preference being given to magnesium-aluminum silicates.
Die extrudierten Wandflussfilter, die SCR-katalytisch aktives Material A oder B umfassen, können wie inerte Wandflussfilter auch nach üblichen  The extruded wall-flow filters comprising SCR-catalytically active material A or B, as well as inert wall-flow filters, can also be used according to conventional methods
Verfahren beschichtet werden. Process are coated.
So kann zum Beispiel ein Wandflussfilter, das SCR-katalytisch aktives Material B umfasst, über seine ganze Länge oder einem Teil davon mit einem Washcoat beschichtet werden, der das SCR-katalytisch aktive  For example, a wall-flow filter comprising SCR catalytically active material B can be coated over its entire length or a part thereof with a washcoat containing the SCR-catalytically active
Material A enthält. Material A contains.
Ebenso kann zum Beispiel ein Wandflussfilter, das SCR-katalytisch aktives Material A umfasst, über seine ganze Länge oder einem Teil davon mit einem Washcoat beschichtet werden, der das SCR-katalytisch aktive  Likewise, for example, a wall-flow filter comprising SCR-catalytically active material A can be coated over its entire length or a part thereof with a washcoat containing the SCR-catalytically active
Material B enthält. Die erfindungsgemäßen Partikelfilter mit SCR-aktiver Beschichtung können mit Vorteil zur Reinigung von Abgas von mager betriebenen Material B contains. The particle filter according to the invention with SCR-active coating can be operated with advantage for the purification of exhaust gas from lean
Verbrennungsmotoren, insbesondere von Dieselmotoren, verwendet werden. Sie sind dabei so im Abgasstrom anzuordnen, dass das SCR- katalytisch aktive Material A vor dem SCR-katalytisch aktiven Material B mit dem zu reinigenden Abgas in Kontakt tritt. Im Abgas enthaltene Stickoxide werden dabei in die unschädlichen Verbindungen Stickstoff und Wasser umgesetzt. Internal combustion engines, in particular of diesel engines, are used. They are to be arranged in the exhaust gas stream in such a way that the SCR catalytic material A comes into contact with the exhaust gas to be cleaned upstream of the SCR catalytic material B. In the exhaust gas contained nitrogen oxides are thereby converted into the harmless compounds nitrogen and water.
Die vorliegende Erfindung betrifft demnach auch ein Verfahren zur  The present invention accordingly also relates to a method for
Reinigung von Abgas von mager betriebenen Verbrennungsmotoren, das dadurch gekennzeichnet ist, dass das Abgas über ein erfindungsgemäßes Partikelfilter geleitet wird, wobei das SCR-katalytisch aktive Material A vor dem SCR-katalytisch aktiven Material B mit dem zu reinigenden Abgas in Kontakt tritt. Purification of exhaust gas from lean-burn internal combustion engines, which is characterized in that the exhaust gas is passed through a particulate filter according to the invention, wherein the SCR catalytically active material A before the SCR catalytically active material B comes into contact with the exhaust gas to be cleaned.
Als Reduktionsmittel wird bei dem erfindungsgemäßen Verfahren bevorzugt Ammoniak verwendet. Der benötigte Ammoniak kann beispielsweise im Abgassystem anströmseitig zum erfindungsgemäßen Partikelfilter etwa mittels eines anströmseitigen Stickoxidspeicherkatalysators („lean NOx trap - LNT)gebildet werden. Dieses Verfahren ist als„passive SCR" bekannt. Ammoniak kann aber auch in Form wässriger Harnstofflösung mitgeführt werden, die bedarfsgerecht über einen Injektor anströmseitig zum The reducing agent used in the process according to the invention is preferably ammonia. The required ammonia can be formed, for example, in the exhaust system upstream of the particle filter according to the invention, for example by means of a lean NOx trap (LNT) on the upstream side. This process is known as "passive SCR." However, ammonia can also be carried in the form of aqueous urea solution, which can be supplied as required via an injector on the inflow side
erfindungsgemäßen Partikelfilter eindosiert wird . Die vorliegende Erfindung betrifft somit auch ein System zur Reinigung von Abgas von mager betriebenen Verbrennungsmotoren, das dadurch gekennzeichnet ist, dass es einen erfindungsgemäßen Partikelfilter mit SCR- aktiver Beschichtung, sowie einen Injektor für wässrige Harnstofflösung umfasst, wobei sich der Injektor vor dem ersten Ende des Wandflussfilters befindet. Particulate filter according to the invention is metered. The present invention thus also relates to a system for purifying exhaust gas from lean-burn internal combustion engines, which is characterized in that it comprises an inventive particle filter with SCR active coating, and an injector for aqueous urea solution, wherein the injector before the first end of Wall flow filter is located.
Beispielsweise aus SAE-2001-01-3625 ist bekannt, dass die SCR-Reaktion mit Ammoniak schneller verläuft, wenn die Stickoxide in einer 1 : 1 Mischung aus Stickstoffmonoxid und Stickstoffdioxid vorliegen oder jedenfalls diesem Verhältnis nahekommen. Da das Abgas von mager betriebenen For example, from SAE-2001-01-3625, it is known that the SCR reaction with ammonia is faster when the nitrogen oxides are in a 1: 1 mixture Nitric oxide and nitrogen dioxide are present or at least come close to this ratio. Because the exhaust gas is operated by lean
Verbrennungsmotoren in der Regel einen Überschuss von Stickstoffmonoxid gegenüber Stickstoffdioxid aufweist, schlägt das Dokument vor, den Anteil an Stickstoffdioxid mit Hilfe eines Oxidationskatalysators zu erhöhen, der anströmseitig zum SCR-Katalysator angeordnet ist. Internal combustion engines usually has an excess of nitrogen monoxide over nitrogen dioxide, the document proposes to increase the proportion of nitrogen dioxide with the aid of an oxidation catalyst, which is arranged upstream of the SCR catalyst.
In einer Ausführungsform des erfindungsgemäßen Systems zur Reinigung von Abgas von mager betriebenen Verbrennungsmotoren umfasst es somit in Strömungsrichtung des Abgases einen Oxidationskatalysator, einen Injektor für wässrige Harnstofflösung und einen erfindungsgemäßen In one embodiment of the inventive system for purifying exhaust gas of lean-burn internal combustion engines, it thus comprises in the flow direction of the exhaust gas, an oxidation catalyst, an injector for aqueous urea solution and a novel
Partikelfilter mit SCR-aktiver Beschichtung, wobei sich der Injektor vor dem ersten Ende des Wandflussfilters befindet. In Ausführungsformen der vorliegenden Erfindung wird als Oxidationskatalysator Platin auf einem Trägermaterial verwendet. Particulate filter with SCR-active coating, with the injector located in front of the first end of the wall-flow filter. In embodiments of the present invention, platinum on a support material is used as the oxidation catalyst.
Als Trägermaterial für das Platin kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Sie weisen eine BET-Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g auf (bestimmt nach DIN 66132) und sind insbesondere Aluminiumoxid, Siliziumoxid, Suitable carrier material for the platinum are all those skilled in the art for this purpose materials into consideration. They have a BET surface area of from 30 to 250 m 2 / g, preferably from 100 to 200 m 2 / g (determined to DIN 66132) and are in particular aluminum oxide, silicon oxide,
Magnesiumoxid, Titanoxid, Zirkonoxid, Ceroxid sowie Mischungen oder Mischoxide aus mindestens zwei dieser Oxide.  Magnesium oxide, titanium oxide, zirconium oxide, cerium oxide and mixtures or mixed oxides of at least two of these oxides.
Bevorzugt sind Aluminiumoxid und Aluminium/Silizium-Mischoxide. Sofern Aluminiumoxid verwendet wird, so ist es besonders bevorzugt stabilisiert, beispielsweise mit Lanthanoxid.  Preference is given to aluminum oxide and aluminum / silicon mixed oxides. If alumina is used, it is particularly preferably stabilized, for example with lanthanum oxide.
Beispiel 1 example 1
a) Ein konventionelles Wandflussfilter aus Cordierit wurde ausgehend von einem Ende auf 50% seiner Länge mittels eines konventionellen a) A conventional cordierite wall-flow filter was made from one end to 50% of its length by means of a conventional
Tauchverfahrens mit einem Washcoat beschichtet, der einen mit 4,0 Gew.- % Cu ausgetauschten Aluminosilikat-Zeolithen vom Chabazit-Strukturtyp enthielt. Der SAR-Wert des Zeolithen betrug 30. Anschließend wurde das Filter bei 120°C getrocknet. b) Das in Schritt a) erhaltene Wandflussfilter wurde in einem zweiten Schritt ausgehend von seinem anderen Ende auf ebenfalls 50% seiner Länge mittels eines konventionellen Tauchverfahrens mit einem Washcoat beschichtet, der einen mit 3,5 Gew.-% Cu ausgetauschten Aluminosilikat- Zeolithen vom Levyne-Strukturtyp enthielt. Der SAR-Wert des Zeolithen betrug 31. Anschließend wurde getrocknet und für 2 Stunden bei 500°C kalziniert. c) Das so erhaltene Wandflussfilter zeigt in einem dynamischen SCR-Test an einer Modellgasanlage, wobei das Modellgas zuerst mit dem Cu-Chabaziten und dann mit dem Cu-Levyne in Berührung kommt, einen sehr guten NOx- Umsatz und zwar in einem Bereich von 250 bis über 550°C. Dipping method with a washcoat containing a 4.0 wt% Cu exchanged aluminosilicate zeolites of chabazite structure type. The SAR value of the zeolite was 30. Subsequently, the filter was dried at 120 ° C. b) The wall-flow filter obtained in step a) was coated in a second step from its other end to also 50% of its length by means of a conventional dipping process with a washcoat containing a 3.5 wt .-% Cu exchanged aluminosilicate zeolites from Levyne structure type contained. The SAR value of the zeolite was 31. Then, it was dried and calcined at 500 ° C. for 2 hours. c) In a dynamic SCR test on a model gas plant, the model gas first coming into contact with the Cu chabazite and then with the Cu levyne, the wall flow filter thus obtained shows a very good NOx conversion, namely in a range of 250 to over 550 ° C.

Claims

Patentansprüche claims
1. Partikelfilter, das einen Wandflussfilter und zwei voneinander 1. Particulate filter, which has a wall flow filter and two from each other
verschiedene SCR-katalytisch aktive Materialien A und B umfasst, wobei das Wandflussfilter Kanäle der Länge L umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken, die abwechselnd entweder am ersten oder am zweiten Ende gasdicht verschlossen sind und die durch poröse Wände getrennt sind, das SCR-katalytisch aktive Material A einen Zeolithen vom Chabazit- Strukturtyp, der ionenausgetauschtes Eisen und/oder Kupfer enthält, und das SCR-katalytisch aktive Material B einen Zeolithen vom Levyne- Strukturtyp der ionenausgetauschtes Eisen und/oder Kupfer enthält, umfasst, wobei various SCR catalytically active materials A and B, wherein the wall flow filter comprises channels of length L which extend in parallel between a first and a second end of the wall flow filter, which are sealed gas-tight alternately either at the first or at the second end and by porous Walls are separated, the SCR catalytically active material A contains a chalazite-type zeolite containing ion-exchanged iron and / or copper, and the SCR-catalytically active material B contains a Levyne-type zeolite containing ion-exchanged iron and / or copper, includes, where
(i) die SCR-katalytisch aktiven Materialien A und B in Form von zwei Materialzonen A und B vorliegen, wobei sich Materialzone A ausgehend vom ersten Ende des Wandflussfilters mindestens über einen Teil der Länge L erstreckt und sich Materialzone B ausgehend vom zweiten Ende des Wandflussfilters mindestens über einen Teil der Länge L erstreckt, oder wobei  (i) the SCR catalytically active materials A and B are in the form of two material zones A and B, with material zone A extending from the first end of the wall flow filter over at least part of the length L and material zone B extending from the second end of the wall flow filter extends over at least part of the length L, or where
(ii) das Wandflussfilter aus dem SCR-katalytisch aktiven Material A und einer Matrixkomponente gebildet ist und sich das SCR-katalytisch aktive Material B in Form einer Materialzone B mindestens über einen Teil der Länge L des Wandflussfilters erstreckt, (ii) the wall flow filter is formed from the SCR catalytically active material A and a matrix component and the SCR catalytically active material B extends in the form of a material zone B over at least part of the length L of the wall flow filter,
oder wobei or where
(iii) das Wandflussfilter aus dem SCR-katalytisch aktiven Material B und einer Matrixkomponente gebildet ist und sich das SCR-katalytisch aktive Material A in Form einer Materialzone A mindestens über einen Teil der Länge L des Wandflussfilters erstreckt. (iii) the wall flow filter is formed from the SCR catalytically active material B and a matrix component and the SCR catalytically active material A extends in the form of a material zone A over at least part of the length L of the wall flow filter.
2. Partikelfilter gemäß Anspruch 1, dadurch gekennzeichnet, dass der Zeolith vom Chabazit-Strukturtyp einen SAR-Wert von 6 bis 40 aufweist. 2. Particle filter according to claim 1, characterized in that the zeolite of chabazite structure type has a SAR value of 6 to 40.
3. Partikelfilter gemäß Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass der Zeolith vom Levyne-Strukturtyp einen SAR-Wert größer 15 aufweist. 3. Particle filter according to claim 1 and / or 2, characterized in that the zeolite of the Levyne structure type has a SAR value greater than 15.
4. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sowohl der Zeolith vom Chabazit-Strukturtyp, als auch der Zeolith vom Levyne-Strukturtyp ionenausgetauschtes Kupfer enthalten. Particulate filter according to one or more of claims 1 to 3, characterized in that both the chalazite-type zeolite and the Levyne-type zeolite contain ion-exchanged copper.
5. Partikelfilter gemäß Anspruch 4, dadurch gekennzeichnet, dass das5. Particulate filter according to claim 4, characterized in that the
Kupfer beim Zeolithen vom Chabazit-Strukturtyp und beim Zeolithen vom Levyne-Strukturtyp unabhängig voneinander jeweils in Mengen von 0,2 bis 6 Gew.-%, berechnet als CuO und bezogen auf das Gesamtgewicht des ausgetauschten Zeolithen, vorliegt. Copper in the zeolite chabazite structure type and in the zeolite of the Levyne structure type independently in each case in amounts of 0.2 to 6 wt .-%, calculated as CuO and based on the total weight of the exchanged zeolite is present.
6. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Atomverhältnis von Kupfer zu Aluminium beim Zeolithen vom Chabazit-Strukturtyp und beim Zeolithen vom Levyne- Strukturtyp unabhängig voneinander bei 0,25 bis 0,6 liegt. Particulate filter according to one or more of claims 1 to 5, characterized in that the atomic ratio of copper to aluminum in the chabazite-type zeolite and in the Levyne-type zeolite is independently 0.25 to 0.6.
7. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass 20 bis 80 Gew.-% des katalytisch aktiven Materials auf Materialzone B entfallen. 7. Particle filter according to one or more of claims 1 to 6, characterized in that 20 to 80 wt .-% of the catalytically active material account for material zone B.
8. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Materialzone A sich über die gesamte Länge des Partikelfilters und Materialzone B sich ausgehend vom zweiten Ende des Partikelfilters über 10 bis 80% der Länge L des Partikelfilters erstreckt. 8. Particle filter according to one or more of claims 1 to 7, characterized in that material zone A extends over the entire length of the particulate filter and material zone B, starting from the second end of the particulate filter over 10 to 80% of the length L of the particulate filter.
9. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Materialzone A sich ausgehend vom ersten Ende des Partikelfilters über 20 bis 90 % der Länge L des Partikelfilters und Materialzone B sich ausgehend vom zweiten Ende des Partikelfilters über 10 bis 70% der Länge L des Partikelfilters erstreckt. 9. Particle filter according to one or more of claims 1 to 7, characterized in that material zone A, starting from the first end of the particulate filter over 20 to 90% of the length L of the particulate filter and Material zone B extends from the second end of the particulate filter over 10 to 70% of the length L of the particulate filter.
10. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Materialzone A sich ausgehend vom ersten Ende des Partikelfilters über 20 bis 90 % der Länge L des Partikelfilters und Materialzone B sich über die gesamte Länge L des Partikelfilters erstreckt. 10. Particle filter according to one or more of claims 1 to 7, characterized in that material zone A extending from the first end of the particulate filter over 20 to 90% of the length L of the particulate filter and material zone B extends over the entire length L of the particulate filter.
11. Verfahren zur Reinigung von Abgas von mager betriebenen 11. A process for purifying exhaust gas from lean operated
Verbrennungsmotoren, dadurch gekennzeichnet, dass das Abgas über ein Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 10 geleitet wird, wobei das SCR-katalytisch aktive Material A vor dem SCR-katalytisch aktiven Material B mit dem zu reinigenden Abgas in Kontakt tritt. Internal combustion engines, characterized in that the exhaust gas is passed through a particulate filter according to one or more of claims 1 to 10, wherein the SCR catalytically active material A before the SCR catalytically active material B comes into contact with the exhaust gas to be cleaned.
12. System zur Reinigung von Abgas von mager betriebenen 12. System for purifying exhaust gas from lean operated
Verbrennungsmotoren, dadurch gekennzeichnet, dass es einen Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 10, sowie einen Injektor für wässrige Harnstofflösung umfasst, wobei sich der Injektor vor dem ersten Ende des Wandflussfilters befindet.  Internal combustion engine, characterized in that it comprises a particulate filter according to one or more of claims 1 to 10, as well as an aqueous urea solution injector, wherein the injector is located in front of the first end of the wall flow filter.
13. System gemäß Anspruch 12, dadurch gekennzeichnet, dass es in Strömungsrichtung des Abgases einen Oxidationskatalysator, einen Injektor für wässrige Harnstofflösung und einen Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 10 aufweist, wobei sich der Injektor vor dem ersten Ende des Wandflussfilters befindet. 13. The system according to claim 12, characterized in that it comprises in the flow direction of the exhaust gas, an oxidation catalyst, an injector for aqueous urea solution and a particulate filter according to one or more of claims 1 to 10, wherein the injector is located in front of the first end of the wall flow filter.
14. System gemäß Anspruch 13, dadurch gekennzeichnet, dass als 14. System according to claim 13, characterized in that as
Oxidationskatalysator Platin auf einem Trägermaterial verwendet wird . Oxidation catalyst platinum is used on a carrier material.
EP17717420.8A 2016-04-13 2017-04-13 Particle filter having scr-active coating Withdrawn EP3442687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16165079 2016-04-13
PCT/EP2017/058901 WO2017178576A1 (en) 2016-04-13 2017-04-13 Particle filter having scr-active coating

Publications (1)

Publication Number Publication Date
EP3442687A1 true EP3442687A1 (en) 2019-02-20

Family

ID=55759484

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17717420.8A Withdrawn EP3442687A1 (en) 2016-04-13 2017-04-13 Particle filter having scr-active coating

Country Status (6)

Country Link
US (1) US20190060885A1 (en)
EP (1) EP3442687A1 (en)
JP (1) JP6899834B2 (en)
KR (1) KR20180129946A (en)
CN (1) CN108697980A (en)
WO (1) WO2017178576A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210138441A1 (en) 2018-05-14 2021-05-13 Umicore Ag & Co. Kg Stable CHA Zeolites
JP7487113B2 (en) 2018-05-14 2024-05-20 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Stable small pore zeolite
EP3841064A1 (en) 2018-08-24 2021-06-30 UMICORE AG & Co. KG Method for the preparation of a molecular sieve of the cha-type
WO2020089275A1 (en) 2018-10-30 2020-05-07 Basf Se Selective catalytic reduction catalyst on a filter substrate
DE102018127955A1 (en) * 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
WO2020212397A2 (en) * 2019-04-15 2020-10-22 Basf Corporation A selective catalytic reduction catalyst on a filter
JP6623393B2 (en) * 2019-06-17 2019-12-25 株式会社環境資源開発コンサルタント Mooring anchor device
EP3912962A1 (en) 2020-05-18 2021-11-24 UMICORE AG & Co. KG Copper-loaded zeolites with high activity for nh3-scr
US20240075466A1 (en) 2021-04-09 2024-03-07 Umicore Ag & Co. Kg One-Pot Synthesis of Transition Metal-Promoted Chabazites
DE102022130469A1 (en) 2022-11-17 2024-05-23 Umicore Ag & Co. Kg Method and device for producing a substrate for an exhaust gas aftertreatment device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151706A (en) 1987-12-08 1989-06-14 Toyota Central Res & Dev Lab Inc Catalyst and filter for removing combustible fine particles and nitrogen oxide
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
EP2517777A3 (en) * 2007-04-26 2013-01-09 Johnson Matthey Public Limited Company Transition metal/cha-zeolite scr catalyst
US8365517B2 (en) * 2009-06-11 2013-02-05 GM Global Technology Operations LLC Apparatus and method for regenerating an exhaust filter
BR112012028302A2 (en) 2010-05-05 2016-11-01 Basf Corp "Catalytic article, methods for making a catalyzed soot filter and for treating a diesel engine exhaust gas flow, and exhaust gas treatment system."
US8789356B2 (en) * 2011-07-28 2014-07-29 Johnson Matthey Public Limited Company Zoned catalytic filters for treatment of exhaust gas
US9242238B2 (en) * 2012-10-19 2016-01-26 Basf Corporation Mixed metal 8-ring small pore molecular sieve catalyst compositions, catalytic articles, systems, and methods
JP6303842B2 (en) * 2013-06-14 2018-04-04 東ソー株式会社 LEV type zeolite, nitrogen oxide reduction catalyst containing the same, and nitrogen oxide reduction method
US9878198B2 (en) * 2013-10-27 2018-01-30 Five Rings Design LLC Weight lifting and strength training platforms and pulling blocks
GB2520776A (en) * 2013-12-02 2015-06-03 Johnson Matthey Plc Wall-flow filter comprising catalytic washcoat
US20150231617A1 (en) * 2014-02-19 2015-08-20 Ford Global Technologies, Llc Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING
US9925492B2 (en) * 2014-03-24 2018-03-27 Mellanox Technologies, Ltd. Remote transactional memory
GB2530129B (en) * 2014-05-16 2016-10-26 Johnson Matthey Plc Catalytic article for treating exhaust gas
WO2015193210A1 (en) * 2014-06-16 2015-12-23 Umicore Ag & Co. Kg Exhaust gas treatment system
EP2985068A1 (en) * 2014-08-13 2016-02-17 Umicore AG & Co. KG Catalyst system for the reduction of nitrogen oxides
KR102428707B1 (en) * 2014-10-07 2022-08-04 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Molecular sieve catalyst for treating exhaust gas

Also Published As

Publication number Publication date
JP2019519352A (en) 2019-07-11
US20190060885A1 (en) 2019-02-28
WO2017178576A1 (en) 2017-10-19
KR20180129946A (en) 2018-12-05
JP6899834B2 (en) 2021-07-07
CN108697980A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
EP3442687A1 (en) Particle filter having scr-active coating
EP2898941B1 (en) System for treating diesel engine exhaust gases containing nitrogen oxides and hydrocarbons
WO2016023928A1 (en) Catalyst system for reducing nitrogen oxides
EP3576865B1 (en) Catalyst for cleaning diesel engine exhaust gases
EP3296009B1 (en) Particle filter with scr active coating
DE102008009672B4 (en) Hydrocarbon storage function SCR catalyst, its use and emission control system and its use
EP2428659A1 (en) Catalytic convertor for removing nitrogen oxides from the exhaust gas of diesel motors
DE102014107669A1 (en) CATALYTED FILTER FOR TREATMENT OF EXHAUST GAS
EP3496853A1 (en) Particle filter having scr-active coating
EP3623047B1 (en) Catalyst for reducing nitrogen oxides
EP3695902B1 (en) Catalyst for reducing nitrogen oxides
WO2017178575A1 (en) Catalyst having scr-active coating
EP3496852B1 (en) Scr active material
WO2018069199A1 (en) Catalytic converter arrangement
EP3449999A1 (en) Passive nitric oxide adsorber
EP4221871A1 (en) Bismut containing dieseloxidation catalyst
EP3843896B1 (en) Nitrogen oxide storage catalyst
WO2018029329A1 (en) Scr-active material having enhanced thermal stability
WO2020144195A1 (en) Passive nitrogen oxide adsorber having oxidation-catalytically active function
WO2020141191A1 (en) Catalytically active filter substrate, method for producing same, and use thereof
WO2017191111A1 (en) Active scr catalyst
EP3459617B1 (en) Particle filter with integrated catalytic functions
EP3978100A1 (en) Bismuth-containing zoned diesel oxidation catalyst
EP3450016A1 (en) Palladium-zeolite-based passive nitrogen oxide adsorber catalyst for exhaust gas treatment
EP3450015A1 (en) Palladium-zeolite-based passive nitrogen oxide adsorber catalyst for exhaust gas treatment

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220603

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221014