EP3439630A1 - Composition gazeuse inhalable hypothermique - Google Patents

Composition gazeuse inhalable hypothermique

Info

Publication number
EP3439630A1
EP3439630A1 EP16731620.7A EP16731620A EP3439630A1 EP 3439630 A1 EP3439630 A1 EP 3439630A1 EP 16731620 A EP16731620 A EP 16731620A EP 3439630 A1 EP3439630 A1 EP 3439630A1
Authority
EP
European Patent Office
Prior art keywords
helium
oxygen
xenon
mixture
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16731620.7A
Other languages
German (de)
English (en)
Inventor
Hélène DAVID
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monatomics Technology
Original Assignee
Monatomics Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monatomics Technology filed Critical Monatomics Technology
Publication of EP3439630A1 publication Critical patent/EP3439630A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0059Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit
    • A61F2007/006Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit of gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F2007/126Devices for heating or cooling internal body cavities for invasive application, e.g. for introducing into blood vessels

Definitions

  • the present invention relates to an inhalable gas composition and more particularly relates to a choice of adequate proportions of the gases of the composition.
  • hypothermic conditions are very often the only therapy proposed in the context of neurological (ischemic or non-ischemic) and psychiatric ("Drug Treatment in Psychiatry", Trevor Silverstone and Paul Turner Eds, 1995 ( P291)).
  • Xenon has been an anesthetic agent with marketing authorization in Europe since 2007. It is probably as an antagonist of N-methyl-D-aspartate (NMDA) glutamatergic receptors and for its anti-inflammatory effect. proteolytic, that xenon has organoprotective and especially neuroprotective properties. ("Xenon: Elemental Anaesthesia in Clinical Practice," Robert D. Sanders, Daqing Ma and Mervyn Maze, British Medical Bulletin (2005) 71 (1): 115-135).
  • argon, agonist GABAergic type A receptors (Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, gold nitrous oxide", Abraini JH, Kriem B, Balon N, Rostain JC, Risso JJ, Anesthesia and Analgesia 2003; 96: 746-9) and Mu-type opioid-receptor antagonists ("Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor").
  • xenon and argon have the drawback of having hyperthermic properties for given inhalation temperatures, these inert gases having a molar mass greater than that of nitrogen and a thermal conductivity lower than that of nitrogen. nitrogen, which gives them, in their use in inhalable gaseous compositions, a hyperthermic character.
  • nitrogen which gives them, in their use in inhalable gaseous compositions, a hyperthermic character.
  • the use of a gas with hyperthermic properties will tend to put the subjects breathing in a hyperthermic state, which is deleterious in the context of the therapies of most neurological or psychiatric diseases.
  • independent cooling means such as pockets of water or cold gel
  • the independent cooling means may also be a use of an adjustable temperature hydraulic mattress or selective cooling carried out using a chilled water circuit.
  • cooling means by direct application to the skin do not make it possible to obtain an optimal cooling of the subject, that is to say a homogeneous cooling, it being understood that a temperature gradient is formed between the skin on contact with the skin.
  • cooling means and the internal organs [009]
  • the invention therefore relates to an inhalable gaseous composition comprising oxygen and a mixture of inert gases.
  • the inert gas mixture comprises a first compound selected from xenon and argon having hyperthermic and a second compound having hypothermic properties, said inert gas mixture having proportions of the first compound and the second compound such that said mixture of inert gases is hypothermic under predetermined temperature conditions.
  • Gas composition "inhalable” means a gaseous composition comprising at least 21% oxygen so that it can be breathed by a subject, it being understood that less than 21% oxygen in the inhaled mixture the subject is hypoxic.
  • a gas or a mixture of inert gases having hypothermic properties is defined as being a gas or a mixture having a molar mass lower than that of nitrogen and a thermal conductivity greater than that of nitrogen thus conferring on it the possibility of putting the subject breathing in a state of hypothermia.
  • the gaseous composition inhaled at a given temperature makes it possible to maintain the body temperature of the subjects inhaling it in a so-called hypothermic temperature range below 36.degree. C. and more specifically from 32.degree. C. to 35.degree.
  • the inhalation of such a composition for inhalation temperatures between 16 ° C and 27 ° C allows the maintenance of body hypothermia, that is to say the maintenance of a body temperature in a hypothermic range, i.e., a range of temperatures below the range of normal body variability, substantially between 36.1 ° C and 37.8 ° C (Simmers, Louise, Diversified Health Occupations, 2nd ed. Canada: Delmar, 1988: 150-151), this range being rounded to 36-38 ° C, ie 37 + 1 ° C.
  • the therapeutic hypothermic range generally extends below 36 ° C, and more specifically between 32 ° C and 35 ° C.
  • the invention makes it possible to provide a gaseous composition that does not cause or risk causing an increase in the body temperature of the subjects inhaling the composition outside a range of so-called hypothermic values. extending below 36 ° C and more specifically from 32 ° C to 35 ° C. [013]
  • this gas composition eliminates the temperature gradient between the skin and the internal organs during the use of mechanical cooling means.
  • the inhalable gaseous composition makes it possible to obtain an optimal cooling of the subject, that is to say a homogeneous cooling.
  • the second compound with hypothermic properties also has organoprotective properties.
  • organoprotective properties is meant the protection of internal organs, such as for example the brain, blood vessels and nerves.
  • the inhalable gaseous composition according to the invention allows, in addition to the maintenance of body temperature in a range of values corresponding to therapeutic body hypothermia, the protection of the internal organs during inhalation by a subject.
  • the second compound may advantageously be helium.
  • helium has both hypothermic and organoprotective properties.
  • Heliox and oxygen reduce infarct volume in a rat model of focal ischemia Pan Y, Zhang H, Van Deripe DR, Cruz Flores S, Panneton WM (2007), Experimental Neurology 205: 587-90; Helium-oxygen mixtures on body temperature ", Tapper D, Arensman R, Johnson C, Folkman J (1974), Journal of Pediatrics Surgery 9: 597-603
  • Post-ischemic helium provides neuroprotection in rats subjected to middle cerebral artery ocelusion- Indueed ischemia by producing hypothermia ", David HN, Haelewyn B, Chazalviel L, Lecocq M, Degoulet M, Risso JJ, Abraini JH (2009), Journal of Cerebral Blood Flow & Metabolism 29: 1159-1165” Modulation by the Noble Gas Heli
  • the inhalable gaseous composition comprises 50% to 79% of the inert gas mixture; these proportions make it possible to ensure that the composition is inhalable and to avoid hypoxia of the subject inhaling the composition.
  • composition comprises at least 13% helium. [019] - said composition comprises at most 50% xenon. Limiting the xenon content below 50% makes it possible to avoid an anesthetic effect on the subject breathing the composition, while also limiting the cost of obtaining the composition.
  • said composition comprises 21% to 25% oxygen, 43% to 48% of helium and 30% to 35% xenon.
  • the composition may comprise 45% to 47% of helium and 31% to 33% of xenon or for a 25% oxygen content, 43% to 45% helium and 30% to 32% xenon to ensure a body temperature of between 32 ° C and 35 ° C in humans.
  • said composition may substantially comprise 22% of oxygen, 43% of helium and 35% of xenon.
  • substantially it is meant that a margin of error or uncertainty of 1% is permissible.
  • composition comprises at least 11% helium.
  • composition comprises at most 67% of argon.
  • said composition comprises 21% to 25% oxygen, 22% to 76% helium and 2% to 56% argon.
  • said composition when the composition is inhaled at a temperature of 22 ° C., may comprise 22% oxygen, 37% to 68% helium and 10% to 41% argon or said composition comprises 25% oxygen, 36% to 65% helium and 10% to 39% of argon to ensure a body temperature of between 33 ° C and 35 ° C in humans.
  • FIG. 1 is a graphical representation of the body temperature of the rat as a function of the temperature of the inhaled gas which is helium (curve C1) or xenon (curve C2);
  • FIG. 2 is a graphical representation of the body temperature of the rat as a function of the temperature of the inhaled gas which is helium (curve C1) or argon (curve C3);
  • Table 1 in the appendix represents the physical properties of the compounds of the present invention.
  • Table 2 in the appendix shows the proportions of xenon and helium as a function of the oxygen content, the inhalation temperature of the composition and its effect on body temperature measured in the rat;
  • Table 3 in the appendix shows the proportions of argon and helium as a function of the oxygen content, the inhalation temperature of the composition and its effect on body temperature measured in the rat.
  • the air consists mainly of 21% oxygen, 78% nitrogen and 1% rare gas. It is substantially equivalent to say that the reference air consists of 21% oxygen and 79% nitrogen, this oxygen content being the minimum value that a gas mixture must contain to avoid hypoxia. a subject inhaling such a gaseous mixture.
  • the gaseous composition according to the invention comprises oxygen and a mixture of inert gases, the proportion of nitrogen in the air being replaced by the mixture of inert gases.
  • This mixture of inert gases consists of a first compound with hyperthermic properties and a second compound with hypothermic properties. The proportions of each compound of the inert gas mixture are such that they allow the composition inhaled gas to maintain the body temperature of a subject in a so-called hypothermic temperature range of 32 ° C to 35 ° C.
  • the composition contains at least 21% oxygen, to avoid hypoxia during its inhalation.
  • the composition contains at most 50% oxygen and preferably between 21% and 30%, or even between 21% and 25%.
  • the composition contains at least 50% of inert gas mixture and preferably 70% to 79%.
  • the inert gas mixture comprises a first compound selected from inert gases with hyperthermic properties and a second compound selected from inert gases with hypothermic properties.
  • Inert gases have the advantage of not being metabolized after being inhaled.
  • the first compound selected from inert gases with hyperthermic properties is xenon or argon. Indeed, as shown in Table 1 in the appendix, xenon and argon have a molar mass greater than nitrogen and a thermal conductivity lower than nitrogen, which gives them a hyperthermic character when one or another replaces nitrogen in a gaseous mixture.
  • xenon and argon have organoprotective properties, that is to say that these compounds allow the protection of organs, blood vessels and nerves. These compounds are likely to protect the brain.
  • the gaseous composition comprises, as first compound, that is to say as a compound with hyperthermic properties, xenon.
  • the xenon is then mixed with a gas with hypothermic properties in proportions such that the mixture has hypothermic properties.
  • a gas with hypothermic properties in proportions such that the mixture has hypothermic properties.
  • it is chosen, to be mixed with xenon, a particular inert gas in that it has hypothermic properties, namely helium.
  • helium has a lower molecular weight than nitrogen and a higher thermal conductivity than nitrogen, which gives it a hypothermic character when it replaces nitrogen in a gaseous mixture.
  • helium also has organoprotective properties.
  • FIG. 1 represents the experimental data of body temperature Te taken in a rat as a function of the inhalation temperature Ti of a helium-oxygen mixture (curve C1) or of a xenon-mixture oxygen (C2 curve), used to determine the proportions of the gaseous composition to meet to obtain a hypothermic gas mixture according to the inhalation temperature.
  • curve C1 and C2 correspond to regression lines obtained on the basis of said experimental data Pi, some examples of which are given in FIG.
  • the rat is commonly used as a preclinical model for the study of human physiology and pathology, normal body temperatures of rats and humans being otherwise of the same order, the administration of a gaseous mixture at different temperatures in the rat in a closed chamber is therefore comparable to the administration in humans of such a mixture of gases whose inhalation temperature Ti is substantially equal to the ambient temperature of the room where the treatment is administered. gaseous.
  • the inhalation temperature Ti may for example be between 16 ° C and 27 ° C.
  • a distance H22-T34 which represents the proportion of xenon making it possible to maintain the body temperature at 34.degree.
  • a distance X22-T35 which represents the proportion of helium making it possible to maintain the body temperature at 35.degree.
  • a distance H22-T35 which represents the proportion of xenon for maintaining the body temperature at 35 ° C.
  • the distance H22-X22 corresponds to the difference between a body temperature of a rat breathing an oxygen-helium mixture, and a body temperature of a rat breathing an oxygen-xenon mixture at the same temperature. inhalation of 22 ° C.
  • the distance X22-T34 corresponds to the difference between a body temperature of an oxygen-xenon breathing rat, for an inhalation temperature of 22 ° C, and a target body temperature of 34 ° C.
  • the distances X22-T32, X22-T33 and X22-T35 correspond to the difference between the body temperature of the oxygen-xenon breathing rat and the target body temperatures of 32. ° C to 35 ° C.
  • a first step consists of a calculation of the body temperatures: for an inhalation temperature substantially equal to 22 ° C, when a 22% 02-78% He mixture is breathed, a body temperature of 32.32 is obtained. ° C using the function representative of the curve C1, and when a mixture 22% 02-78% Xe is breathed, a body temperature of 38.60 ° C is obtained using the function representative of the curve C2.
  • a difference, for the inhalation temperature of 22 ° C, between the body temperatures obtained by the calculation in the first step, which will subsequently serve as a reference value for calculations of the content of each of the compounds of the mixture a first difference D1 is thus calculated between the body temperature obtained with a mixture 22% O2-78% Xe and the body temperature obtained with a mixture 22% O2-78% He, and in the described case of an inhalation temperature equal to 22 ° C, a value of 6.28 is obtained here.
  • a third step consists of a calculation of the content of one of the gases to be provided to ensure a body temperature of 34 ° C for an inhalation temperature of 22 ° C.
  • it is arbitrarily chosen to determine the helium content, it being understood that one could choose to first determine the xenon content.
  • a second difference D2 is calculated between the body temperature obtained with a mixture 22% O2-78% Xe and the desired body temperature for this inhalation temperature of 22 ° C, and here a value of 4.6 is obtained.
  • This ratio between the values calculated in the second and third steps is used in a calculation of the cross-product type to determine the helium content, on the 78% of inert gases in addition to the oxygen, of the gas composition.
  • the composition comprises 8 to 33% xenon and 45 to 70% helium. More specifically, if it is desired to obtain a body temperature of 34 ° C., the composition comprises 22% of oxygen, 56% to 58% of helium and 20% to 22% of xenon.
  • the composition comprises at least 9% helium and at most 65% xenon. More particularly, when the oxygen content is between 21 and 30%, the composition comprises at least 13% of helium and at most 65% of xenon.
  • a gaseous composition for the one hand to present the targeted thermal properties, that is to say the thermal properties obtained using a mixture of inert hypothermic gas, the appropriate proportions to obtain such a composition can be read in the tables, and it is intended according to the present invention a composition for further use on subjects without risking an undesired anesthetic effect, that is to say by limiting the contribution of xenon at 50% maximum.
  • the composition comprises 21 to 30% oxygen, 26 to 77% helium, and 2 to 50% xenon.
  • the composition comprises 22% oxygen, 45% to 47% helium and 31% to 33% xenon.
  • the graph of FIG. 2 represents the experimental Pi body temperature data obtained in the rat as a function of the helium inhalation temperature (curve C1) or argon ( curve C3), from which the proportions of the different gases in a helium-argon-oxygen mixture were calculated (Table 3).
  • the reference points Al 8 and Hl 8 used in this case were taken at an inhalation temperature Ti of 18 ° C., and the distances with the target body temperatures T32, T33, T34 and T35 are therefore representative of the proportions of the mixture of inert gases for this inhalation temperature of 18 ° C.
  • curve C3 has a lower steering coefficient than curve C2.
  • proportions of the inert gases in the inhalable gaseous composition according to the invention vary according to the quality of the first compound used in this composition, selected from argon or xenon.
  • the composition comprises at most 67% of argon and at least 8% of helium. More particularly, when the oxygen content is between 21 and 30%, the composition comprises at most 67% of argon and at least 11% of helium. In addition, for Ti inhalation temperatures between 19 ° C and 23 ° C, the composition comprises 21 to 30% oxygen, 20 to 76% helium, and 2 to 56% argon. And still for inhalation temperatures Ti between 19 ° C and 23 ° C, the composition comprises 21 to 25% oxygen, 22% to 76% helium, and 2% to 56% argon.
  • the inhalation of such a composition can be carried out by means of a man-machine interface such as a respiratory fan, a face mask, breathing goggles or any other type of interface.
  • a man-machine interface such as a respiratory fan, a face mask, breathing goggles or any other type of interface.
  • the packaging of such a composition is preferably carried out in a single container having the three compounds, namely xenon or argon , helium and oxygen, in previously fixed proportions under a pressure of between 10 and 300 bar.
  • the container has a volume of 0, IL to 50L.
  • the proportion of oxygen in this type of conditioning is always at least 22%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention porte sur une composition gazeuse inhalable comprenant de l'oxygène ainsi qu'un mélange de gaz inertes, caractérisée en ce que ledit mélange de gaz inertes comprend : - un premier composé choisi parmi le xénon et l'argon présentant des propriétés hyperthermiques et - un deuxième composé aux propriétés hypothermiques, ledit mélange de gaz inertes comportant des proportions du premier composé et du deuxième composé telles que ledit mélange de gaz inertes est hypothermique.

Description

COMPOSITION GAZEUSE INHALABLE HYPOTHERMIQUE
[001] La présente invention porte sur une composition gazeuse inhalable et concerne plus particulièrement un choix de proportions adéquates des gaz de la composition.
[002] Dans le cas d'une ischémie suivie d'une reperfusion, et à titre d'exemple dans le cas d'AVC (acronyme pour « accident vasculaire cérébral »), d'encéphalopathie néonatale, ou d'ischémie de type thérapeutique comme une ischémie due à une transplantation d'organe ou à la mise en place d'un clamp lors d'une intervention chirurgicale, notamment en chirurgie cardiaque, il est classique de mettre en place une hypothermie contrôlée à des fins de protection du cerveau en réduisant le métabolisme cellulaire.
[003] Une telle mise en place de conditions hypothermiques est encore très souvent la seule thérapie proposée dans le cadre des pathologies neurologiques (ischémiques ou non ischémiques) et psychiatriques (« Drug Treatment in Psychiatry », Trevor Silverstone and Paul Turner Eds, 1995 (p291)).
[004] Le xénon est un agent anesthésique sous autorisation de mise sur le marché en Europe depuis 2007. C'est probablement en tant qu'antagoniste des récepteurs glutamatergiques de type N-methyl-D-aspartate (NMDA) et pour son effet anti-protéolytique, que le xénon a des propriétés organoprotectrices et notamment neuroprotectrices. (« Xénon: elemental anaesthesia in clinical practice », Robert D. Sanders, Daqing Ma and Mervyn Maze, British Médical Bulletin (2005) 71 (1): 115-135).
[005] Des études ont également montré que l'argon, agoniste des récepteurs GABAergiques de type A (« Gamma- aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide", Abraini JH, Kriem B, Balon N, Rostain JC, Risso JJ, Anesthesia and Analgesia 2003; 96:746-9) et antagonistes des récepteurs opioidergiques de type Mu (« Argon blocks the expression of locomotor sensitization to amphétamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens", David HN, Dhilly M, Degoulet M, Poisnel G, Meckler C, Vallée N, Blatteau JE, Risso JJ, Lemaire M, Debruyne D, Abraini JH, Translational Psychiatry 2015; 5:e594), a des propriétés organopro tectrices et notamment neuroprotectrices (« Argon: Systematic Review on Neuro- and Organoprotective Properties of an "Inert" Gas », A. Hôllig, A. Schug, AV. Fahlenkamp , R. Rossaint, M. Coburn and Argon Organo-Protective Network (AON), International Journal of Molecular Sciences. 2014 Oct; 15(10): 18175— 18196)).
[006] Toutefois, le xénon et l'argon présentent l'inconvénient d'avoir des propriétés hyperthermiques pour des températures d'inhalation données, ces gaz inertes possédant une masse molaire supérieure à celle de l'azote et une conductivité thermique inférieure à celle de l'azote, ce qui leur confère, dans leur utilisation dans des compostions gazeuses inhalables, un caractère hyperthermique. Or, l'utilisation d'un gaz aux propriétés hyperthermiques aura tendance à mettre les sujets le respirant en état d'hyperthermie, ce qui est délétère dans le cadre des thérapies de la plupart des maladies neurologiques ou psychiatriques.
[007] Il en résulte que l'utilisation du xénon ou de l'argon nécessiterait une opération de refroidissement parallèle du sujet inhalant ces gaz inertes, notamment par des moyens de refroidissement mécaniques indépendants afin d'obtenir un état d'hypothermie général.
[008] Ces moyens de refroidissement indépendants, tels que des poches d'eau ou de gel froid, sont appliqués directement sur le corps ou la zone à refroidir. Les moyens de refroidissement indépendants peuvent aussi être une utilisation d'un matelas hydraulique à température réglable ou un refroidissement sélectif effectué à l'aide d'un circuit d'eau réfrigéré. Or de tels moyens de refroidissement par application directe sur la peau ne permettent pas d'obtenir un refroidissement optimal du sujet, c'est-à-dire un refroidissement homogène, étant entendu qu'un gradient de températures est formé entre la peau au contact des moyens de refroidissement et les organes internes. [009] Dans ce contexte, l'invention a donc pour objet une composition gazeuse inhalable comprenant de l'oxygène ainsi qu'un mélange de gaz inertes. Le mélange de gaz inertes comprend un premier composé choisi parmi le xénon et l'argon présentant des propriétés hyperthermiques et un deuxième composé présentant des propriétés hypothermiques, ledit mélange de gaz inertes comportant des proportions du premier composé et du deuxième composé telles que ledit mélange de gaz inertes est hypothermique dans des conditions de température prédéterminées. [010] Par composition gazeuse « inhalable », on entend une composition gazeuse comprenant au moins 21% d'oxygène afin qu'elle puisse être respirée par un sujet, étant entendu qu'en deçà de 21% d'oxygène dans le mélange inhalé, le sujet est en hypoxie.
[011] En écho à ce qui a été défini précédemment, on comprend qu'un gaz ou un mélange de gaz inertes présentant des propriétés hypothermiques est défini comme étant un gaz ou un mélange possédant une masse molaire inférieure à celle de l'azote et une conductivité thermique supérieure à celle de l'azote lui conférant ainsi la possibilité de mettre le sujet le respirant en état d'hypothermie. En d'autre termes la composition gazeuse inhalée à une température donnée permet de maintenir la température corporelle des sujets l'inhalant dans une gamme de température dite hypothermique en dessous de 36°C et plus précisément allant de 32°C à 35°C. [012] On comprend que l'inhalation d'une telle composition pour des températures d'inhalation comprises entre 16°C et 27°C permet le maintien d'une hypothermie corporelle, c'est-à-dire le maintien d'une température du corps dans une gamme hypothermique, c'est-à- dire une gamme de températures inférieures à la gamme de variabilité normale du corps, sensiblement comprise entre 36.1°C et 37.8°C (Simmers, Louise. Diversified Health Occupations. 2nd ed. Canada : Delmar, 1988: 150-151), cette gamme pouvant être arrondie à 36-38 °C, soit 37 + 1 °C. La gamme hypothermique thérapeutique s'étend généralement en dessous de 36 °C, et plus spécifiquement entre 32°C et 35°C. En d'autres termes, l'invention permet de fournir une composition gazeuse qui n'engendre pas ou ne risque pas d'engendrer une augmentation de la température corporelle des sujets inhalant la composition en dehors d'une plage de valeurs dites hypothermiques s'étendant en dessous de 36°C et plus spécifiquement de 32°C à 35°C. [013] De plus, cette composition gazeuse permet de s'affranchir du gradient de température existant entre la peau et les organes internes lors de l'utilisation de moyens de refroidissement mécaniques. Autrement dit, la composition gazeuse inhalable permet d'obtenir un refroidissement optimal du sujet, c'est-à-dire un refroidissement homogène. [014] Selon une caractéristique de l'invention, le deuxième composé aux propriétés hypothermiques présente aussi des propriétés organoprotectrices. Par propriétés organoprotectrices, on entend la protection d'organes internes, tels que par exemple le cerveau, des vaisseaux sanguins et des nerfs. Ainsi, la composition gazeuse inhalable selon l'invention permet, outre le maintien de la température corporelle dans une plage de valeurs correspondant à une hypothermie corporelle thérapeutique, la protection des organes internes lors de son inhalation par un sujet.
[015] Plus précisément, le deuxième composé peut être avantageusement de l'hélium. En effet, l'hélium présente à la fois des propriétés hypothermiques et organoprotectrices. (« Heliox and oxygen reduce infarct volume in a rat model of focal ischemia », Pan Y, Zhang H, Van Deripe DR, Cruz-Flores S, Panneton WM (2007), Expérimental Neurology 205:587-90 ; « The effect of helium-oxygen mixtures on body température », Tapper D, Arensman R, Johnson C, Folkman J (1974), Journal of Pédiatrie Surgery 9:597-603 ; « Post-ischemic hélium provides neuroprotection in rats subjected to middle cérébral artery ocelusion-indueed ischemia by producing hypothermia », David HN, Haelewyn B, Chazalviel L, Lecocq M, Degoulet M, Risso JJ, Abraini JH (2009), Journal of Cérébral Blood Flow & Metabolism 29:1159-1165; « Modulation by the Noble Gas Hélium of Tissue Plasminogen Activator: Effects in a Rat Model of Thromboembolic Stroke », Haelewyn B, David HN, Blatteau JE, Vallée N, Meckler C, Risso JJ, Abraini JH (2016), Critical Care Médecine in press).
[016] La composition gazeuse inhalable comprend 50% à 79% du mélange de gaz inertes ; ces proportions permettent d'assurer que la composition est inhalable et d'éviter une hypoxie du sujet inhalant la composition. [017] Selon une première série de caractéristiques de l'invention, prises seules ou en combinaison, dans le cas d'application d'un premier composé sous forme de xénon, on pourra prévoir que :
[018] - ladite composition comprend au moins 13% d'hélium. [019] - ladite composition comprend au plus 50% de xénon. Limiter la teneur de xénon en dessous de 50% permet d'éviter un effet anesthésique sur le sujet respirant la composition, en limitant par ailleurs le coût d'obtention de la composition.
[020] Selon un mode de réalisation de l'invention, pour des températures d'inhalation inférieures ou égales à 22°C, on peut prévoir que ladite composition comprend 21% à 25 % d'oxygène, 43% à 48% d'hélium et 30% à 35% de xénon.
[021] Plus précisément, pour un taux d'oxygène de 22%, la composition peut comprendre 45% à 47% d'hélium et 31% à 33% de xénon ou pour un taux de 25% d'oxygène, 43% à 45% d'hélium et 30% à 32% de xénon afin d'assurer une température corporelle comprise entre 32°C et 35°C chez l'homme. A titre d'exemple, pour assurer une température corporelle de 34°C, ladite composition peut sensiblement comprendre 22% d'oxygène, 43% d'hélium et 35% de xénon. Par sensiblement, on entend qu'une marge d'erreur ou une incertitude de 1% est admissible.
[022] Selon une deuxième série de caractéristiques de l'invention, prises seules ou en combinaison, dans le cas d'application d'un premier composé sous forme d'argon, on pourra prévoir que :
[023] - ladite composition comprend au moins 11% d'hélium.
[024] - ladite composition comprend au plus 67% d'argon.
[025] Selon un mode de réalisation de l'invention, on peut prévoir que ladite composition comprend 21% à 25% d'oxygène, 22% à 76% d'hélium et 2% à 56% d'argon. [026] Plus précisément, lorsque la composition est inhalée à une température de 22°C, elle peut comprendre 22% d'oxygène, 37% à 68% d'hélium et 10% à 41% d'argon ou ladite composition comprend 25% d'oxygène, 36% à 65% d'hélium et 10% à 39% d'argon afin d'assurer une température corporelle comprise entre 33°C et 35°C chez l'homme.
[027] D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels :
- la figure 1 est une représentation graphique de la température corporelle du rat en fonction de la température du gaz inhalé qui est l'hélium (courbe Cl) ou le xénon (courbe C2) ;
- la figure 2 est une représentation graphique de la température corporelle du rat en fonction de la température du gaz inhalé qui est l'hélium (courbe Cl) ou l'argon (courbe C3) ;
- le tableau 1 en annexe représente les propriétés physiques des composés de la présente invention ;
- le tableau 2 en annexe représente les proportions du xénon et de l'hélium en fonction de la proportion d'oxygène, de la température d'inhalation de la composition et de son effet sur la température corporelle mesurée chez le rat ;
- le tableau 3 en annexe représente les proportions de l'argon et de l'hélium en fonction de la proportion d'oxygène, de la température d'inhalation de la composition et de son effet sur la température corporelle mesurée chez le rat.
[028] L'air est principalement constitué de 21% d'oxygène, de 78% d'azote et de 1% de gaz rare. Il est sensiblement équivalent de dire que l'air de référence est constitué de 21% d'oxygène et de 79% d'azote, cette teneur en oxygène étant la valeur minimale qu'un mélange gazeux doit contenir pour éviter l'hypoxie d'un sujet inhalant un tel mélange gazeux. La composition gazeuse selon l'invention comporte de l'oxygène et un mélange de gaz inertes, la proportion d'azote dans l'air étant remplacée par le mélange de gaz inertes. [029] Ce mélange de gaz inertes est constitué d'un premier composé aux propriétés hyperthermiques et d'un deuxième composé aux propriétés hypothermiques. Les proportions de chaque composé du mélange de gaz inertes sont telles qu'elles permettent à la composition gazeuse inhalée de maintenir la température corporelle d'un sujet dans une gamme de température dite hypothermique allant de 32°C à 35°C.
[030] La composition contient au moins 21% d'oxygène, afin d'éviter toute hypoxie lors de son inhalation. La composition contient au plus 50% d'oxygène et de préférence entre 21% et 30%, voire entre 21% et 25%. Ainsi la composition contient au moins 50% de mélange de gaz inertes et de préférence de 70% à 79%.
[031] Le mélange de gaz inertes comprend un premier composé choisi parmi des gaz inertes aux propriétés hyperthermiques et un deuxième composé choisi parmi des gaz inertes aux propriétés hypothermiques. Les gaz inertes présentent l'avantage de ne pas être métabolisés après avoir été inhalés.
[032] Le premier composé choisi parmi les gaz inertes aux propriétés hyperthermiques est du xénon ou de l'argon. En effet, comme le montre le tableau 1 en annexe, le xénon et l'argon possèdent une masse molaire supérieure à l'azote et une conductivité thermique inférieure à l'azote, ce qui leur confère un caractère hyperthermique lorsque l'un ou l'autre remplace de l'azote dans un mélange gazeux.
[033] En plus d'avoir des propriétés hyperthermiques, le xénon et l'argon présentent des propriétés organoprotectrices, c'est-à-dire que ces composés permettent la protection d'organes, de vaisseaux sanguins et de nerfs. Ces composés sont susceptibles de protéger notamment le cerveau. [034] On décrit ci-après un premier mode de réalisation de l'invention, dans lequel la composition gazeuse comprend comme premier composé, c'est-à-dire comme composé aux propriétés hyperthermiques, le xénon.
[035] Le xénon est alors mélangé avec un gaz aux propriétés hypothermiques dans des proportions telles que le mélange présente des propriétés hypothermiques. Dans ce qui suit, on choisit, pour être mélangé avec le xénon, un gaz inerte particulier en ce qu'il présente des propriétés hypothermiques, à savoir l'hélium. En effet, comme le montre le tableau 1 en annexe, l'hélium possède une masse molaire inférieure à l'azote et une conductivité thermique supérieure à l'azote, ce qui lui confère un caractère hypothermique lorsqu'il remplace de l'azote dans un mélange gazeux. D'autre part, l'hélium présente également des propriétés organoprotectrices.
[036] Afin de proposer une composition gazeuse hypothermique, c'est-à-dire ne modifiant pas la température corporelle des sujets inhalant la composition en dehors d'une fourchette de température comprise entre 32°C et 35°C, les proportions du premier et du deuxième composé du mélange de gaz inertes doivent être précisément calculées. Ces proportions sont notamment extrapolées à partir de données expérimentales réalisées avec des gaz composant le mélange. Ces données expérimentales, obtenues chez le rat dont la température corporelle dite normale est proche de celle de l'homme et se situe entre 35.9°C et 37.5°C (Animal care and use committee, Johns Hopkins University, http://web.jhu.edu/animalcare/procedures/rat.html), ont permis de réaliser les graphiques des figures 1 et 2.
[037] Le graphique de la figure 1, qui représente les données expérimentales de température corporelle Te relevées sur un rat en fonction de la température d'inhalation Ti d'un mélange hélium-oxygène (courbe Cl) ou d'un mélange xénon-oxygène (courbe C2), permet de déterminer les proportions de la composition gazeuse à respecter pour obtenir un mélange gazeux hypothermique selon la température d'inhalation. De manière plus détaillée, les courbes Cl et C2 correspondent à des droites de régression obtenues sur la base desdites données expérimentales Pi, dont certains exemples ont été portés sur la figure 1.
[038] Les données expérimentales ont été obtenues comme suit : Les rats étaient placés pendant 3 heures dans une enceinte close alimentée par un flux continu d'un mélange gazeux contenant 22% d'oxygène (θ2) et 78% d'hélium, de xénon ou d'argon (He, Xe ou Ar). Ce mélange gazeux était administré à différentes températures. Le flux du mélange gazeux était de 10L/min et permettait de maintenir la concentration de dioxyde de carbone (C02) inférieure à 0,03% et l'humidité autour de 60% à 70%. Les mélanges de gaz étaient obtenus à l'aide de débitmètres massiques d'une précision absolue de 0,2% de la valeur affichée (par exemple : valeur affichée 78%, précision = 0, 16% soit 78 +/- 0,16%) ; la concentration d'oxygène était contrôlée à l'aide d'un analyseur spécifique. A la fin des 3 heures d'exposition, pour chaque température d'administration, la température corporelle rectale des rats était mesurée.
[039] Le rat étant couramment utilisé comme modèle préclinique pour l'étude de la physiologie et des pathologies humaines, les températures corporelles Te normales du rat et de l'homme étant par ailleurs du même ordre, l'administration d'un mélange gazeux à différentes températures chez le rat dans une enceinte close est donc assimilable à l'administration chez l'homme d'un tel mélange de gaz dont la température d'inhalation Ti est sensiblement égale à la température ambiante de la pièce où est administré le traitement gazeux. La température d'inhalation Ti peut par exemple être comprise entre 16°C et 27°C. [040] Pour une température d'inhalation de 22°C, on détermine :
[041] - des points H22 et X22 respectivement situés sur la courbe de l'hélium Cl et du xénon C2 ;
[042] - des lignes horizontales T32, T33, T34 et T35 correspondant à des températures corporelles cibles de 32°C, 33°C, 34°C et 35°C. [043] On obtient de la sorte, pour une distance H22 - X22 qui représente la somme des pourcentages de l'hélium et du xénon dans la composition gazeuse inhalable comprenant de l'oxygène, du xénon et de l'hélium :
[044] - une distance X22-T33 qui représente la proportion de l'hélium permettant de maintenir la température corporelle Te à 33 °C, [045] - une distance H22 - T33 qui représente la proportion de xénon permettant de maintenir la température corporelle à 33 °C,
[046] - une distance X22-T34 qui représente la proportion d'hélium permettant de maintenir la température corporelle à 34 °C,
[047] - une distance H22-T34 qui représente la proportion de xénon permettant de maintenir la température corporelle à 34 °C, [048] - une distance X22-T35 qui représente la proportion d'hélium permettant de maintenir la température corporelle à 35 °C,
[049] -une distance H22-T35 qui représente la proportion de xénon permettant de maintenir la température corporelle à 35 °C.
[050] Ces données expérimentales ont ainsi permis d'élaborer le tableau 2 présenté en annexe qui reprend les proportions d'un mélange entre l'hélium et le xénon tout en tenant compte de la proportion de l'oxygène. Il apparaît clairement que ces proportions d'hélium et de xénon dépendent à la fois de la température du gaz inhalé Ti, de la proportion d'oxygène présente dans la composition gazeuse et de la température corporelle Te que l'on souhaite obtenir. On constate alors que plus la température d'inhalation Ti est élevée plus la proportion d'hélium est grande afin de maintenir la température corporelle Te dans une gamme de température hypothermique fixée en dessous de 36°C et plus spécifiquement entre 32°C et 35°C.
[051] Plus précisément, la distance H22-X22 correspond à la différence entre une température corporelle d'un rat respirant un mélange oxygène-hélium, et une température corporelle d'un rat respirant un mélange oxygène-xénon, à une même température d'inhalation de 22°C. La distance X22-T34 correspond à la différence entre une température corporelle d'un rat respirant un mélange oxygène-xénon, pour une température d'inhalation de 22°C, et une température corporelle cible de 34°C. De même, pour une température d'inhalation de 22°C, les distances X22-T32, X22-T33 et X22-T35 correspondent à la différence entre la température corporelle du rat respirant le mélange oxygène-xénon et les températures corporelles cibles de 32°C à 35°C.
[052] En tenant compte des fonctions représentées par les droites de régression Cl, C2, les proportions du mélange gazeux à respecter pour obtenir un mélange hypothermique ont été déterminées selon le procédé de calcul décrit ci-dessous.
[053] La courbe Cl représente la fonction y=0,526x + 20,748 et la courbe C2 représente la fonction y=0,3877x + 30,075. Prenons par exemple le cas où on souhaite obtenir une température corporelle de 34°C avec une température ambiante de 22°C et un taux d'oxygène de 22%, c'est-à-dire un taux de gaz inertes de 78% : [054] Une première étape consiste en un calcul des températures corporelles : pour une température d'inhalation sensiblement égale à 22°C, lorsqu'un mélange 22%02-78%He est respiré, on obtient une température corporelle de 32,32°C en utilisant la fonction représentative de la courbe Cl, et lorsqu'un mélange 22%02-78%Xe est respiré, on obtient une température corporelle de 38,60°C en utilisant la fonction représentative de la courbe C2.
[055] On en déduit dans une deuxième étape une différence, pour la température d'inhalation de 22°C, entre les températures corporelles obtenues par le calcul dans la première étape, qui va par la suite servir de valeur de référence pour les calculs de teneur de chacun des composés du mélange : une première différence Dl est ainsi calculée entre la température corporelle obtenue avec un mélange 22%O2-78%Xe et la température corporelle obtenue avec un mélange 22%O2-78%He, et dans le cas décrit d'une température d'inhalation égale à 22°C, on obtient ici une valeur de 6,28.
[056] Une troisième étape consiste en un calcul de la teneur d'un des gaz à prévoir pour assurer une température corporelle de 34°C pour une température d'inhalation de 22°C. Dans le cas décrit, on choisit arbitrairement de déterminer la teneur d'hélium, étant entendu que l'on pourrait choisir de déterminer tout d'abord la teneur de xénon. Une deuxième différence D2 est calculée entre la température corporelle obtenue avec un mélange 22%O2-78%Xe et la température corporelle souhaitée pour cette température d'inhalation de 22°C, et on obtient ici une valeur de 4,6. [057] Ce rapport entre les valeurs calculées aux deuxième et troisième étapes est utilisé dans un calcul du type produit en croix pour déterminer la teneur en hélium, sur les 78% de gaz inertes en sus de l'oxygène, de la composition gazeuse à préparer pour obtenir une température corporelle de 34°C : Dans le cas décrit, on obtient ici une teneur égale à 57% (4,6 x 78 / 6,28) %. On en déduit la teneur en xénon par soustraction (78 - 57 =21) et dans le cas présent, la composition sera alors constituée de 57% d'hélium, de 22% d'oxygène et de 21% de xénon.
[058] Selon cet exemple et à la lecture du tableau 2, pour une température d'inhalation Ti de 22°C, une proportion d'oxygène de 22% et une température corporelle souhaitée entre 32°C et 35°C, la composition comprend 8 à 33% de xénon et 45 à 70% d'hélium. Plus précisément, si l'on souhaite obtenir une température corporelle de 34°C, la composition comprend 22% d'oxygène, 56% à 58% d'hélium et 20% à 22% de xénon.
[059] On observe également que dans tous les cas, la composition comprend au moins 9% d'hélium et au plus 65% de xénon. Plus particulièrement, lorsque la teneur en oxygène est comprise entre 21 et 30%, la composition comprend au moins 13% d'hélium et au maximum 65% de xénon. On vise selon la présente invention une composition gazeuse permettant d'une part de présenter les propriétés thermiques ciblées, c'est-à-dire les propriétés thermiques obtenues à l'aide d'un mélange de gaz inertes hypothermique, les proportions adéquates pour obtenir une telle composition pouvant être lues dans les tableaux, et on vise selon la présente invention une composition permettant d'autre part une utilisation sur des sujets sans risquer un effet anesthésique non souhaité, c'est-à-dire en limitant l'apport de xénon à 50% maximum. En outre, pour des températures d'inhalation Ti comprises entre 19°C et 23°C, la composition comprend 21 à 30% d'oxygène, 26 à 77% d'hélium, et 2 à 50% de xénon. De préférence, pour des températures d'inhalation inférieures ou égales à 22°C, la composition comprend 22% d'oxygène, 45% à 47% d'hélium et 31% à 33% de xénon.
[060] De la même manière que précédemment décrit, le graphique de la figure 2 représente les données expérimentales Pi de la température corporelle obtenues chez le rat en fonction de la température d'inhalation d'hélium (courbe Cl) ou d'argon (courbe C3), à partir desquelles les proportions des différents gaz dans un mélange hélium-argon-oxygène ont été calculées (tableau 3). A titre d'exemple, les points de références Al 8 et Hl 8 utilisés dans ce cas ont été pris à une température d'inhalation Ti de 18°C, et les distances avec les températures corporelles cibles T32, T33, T34 et T35 sont donc représentatives des proportions du mélange de gaz inertes pour cette température d'inhalation de 18°C. [061] Une comparaison entre les graphiques de la figure 1 et 2 met en évidence que la courbe C3 présente un coefficient directeur inférieur à la courbe C2. En effet, la courbe C2 représente la fonction y= 0,3877x + 30,075 alors que la courbe C3 représente la fonction y= 0,2328x + 32,334, l'argon présentant des propriétés hyperthermiques inférieures au xénon. Ainsi, les proportions des gaz inertes dans la composition gazeuse inhalable selon l'invention varient en fonction de la qualité du premier composé utilisé dans cette composition, choisi parmi l'argon ou le xénon.
[062] A la lecture du tableau 3, on observe que dans tous les cas, la composition comprend au plus 67% d'argon et au moins 8% d'hélium. Plus particulièrement, lorsque la teneur en oxygène est comprise entre 21 et 30%, la composition comprend au plus 67% d'argon et au moins 11% d'hélium. En outre, pour des températures d'inhalation Ti comprises entre 19°C et 23°C, la composition comprend 21 à 30% d'oxygène, 20 à 76% d'hélium, et 2 à 56% d'argon. Et toujours pour des températures d'inhalation Ti comprises entre 19°C et 23°C, la composition comprend 21 à 25% d'oxygène, 22% à 76% d'hélium, et 2% à 56% d'argon.
[063] Finalement, ces proportions permettent d'assurer que le mélange de gaz inertes est hypothermique. Lorsque la composition gazeuse est inhalée à une température donnée Ti, elle permet le maintien de la température corporelle Te du sujet l'inhalant dans une gamme de température corporelle dite hypothermique allant de 32°C à 35°C tout en s' affranchissant d'un gradient de température corporelle entre la peau et les organes internes.
[064] De manière non limitative, l'inhalation d'une telle composition peut être réalisée au moyen d'une interface homme-machine tel qu'un ventilateur respiratoire, un masque facial, des lunettes respiratoires ou tout autre type d'interface.
[065] Par ailleurs, pour des raisons de sécurité, et notamment pour éviter que seul un ou plusieurs gaz inertes soient inhalés, le conditionnement d'une telle composition est préférentiellement réalisé dans un seul contenant ayant les trois composés, à savoir xénon ou argon, hélium et oxygène, dans des proportions préalablement fixées sous une pression comprise entre 10 et 300 bars. Le contenant présente un volume de 0, IL à 50L. Ce conditionnement dans une seule bouteille est dit « prêt à l'emploi ». Afin d'assurer une proportion d'au moins 21% d'oxygène dans la composition et d'obtenir toujours une composition gazeuse inhalable, en tenant compte d'une incertitude de 1% entre les différentes étapes existantes entre la fabrication, le conditionnement et l'administration de la composition gazeuse, et afin d'éviter une hypoxie pour le sujet auquel on administre le mélange, la proportion d'oxygène dans ce type de conditionnement est toujours d'au moins 22%.
ANNEXES
Tableau 1 :
Tableau 2 :

Claims

REVENDICATIONS
1. Composition gazeuse inhalable comprenant de l'oxygène ainsi qu'un mélange de gaz inertes, caractérisée en ce que ledit mélange de gaz inertes comprend :
- un premier composé présentant des propriétés hyperthermiques, choisi parmi le xénon et l'argon, et
- un deuxième composé présentant des propriétés hypothermiques, ledit mélange de gaz inertes comportant des proportions du premier composé et du deuxième composé telles que ledit mélange de gaz inertes est hypothermique.
2. Composition gazeuse selon la revendication 1, caractérisée en ce que le deuxième composé présente des propriétés organoprotectrices.
3. Composition gazeuse selon la revendications 1 ou 2, caractérisée en ce que le deuxième composé est de l'hélium.
4. Composition gazeuse selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite composition comprend au maximum 50% d'oxygène.
5. Composition gazeuse selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite composition comprend 21 à 30% d'oxygène.
6. Composition gazeuse selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite composition comprend 21 à 25% d'oxygène.
7. Composition gazeuse selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite composition comprend au plus 50% de xénon.
8. Composition gazeuse selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 3, caractérisée en ce que ladite composition comprend au moins 13% d'hélium.
9. Composition gazeuse selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 3, caractérisée en ce que ladite composition comprend 21% à 30 % d'oxygène, 26% à 77% d'hélium et 2% à 50% de xénon.
10. Composition gazeuse selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 3, caractérisée en ce que ladite composition comprend 21% à 25 % d'oxygène, 43% à 48% d'hélium et 30% à 35% de xénon.
11. Composition gazeuse selon l'une quelconque des revendications précédentes prise en combinaison avec la revendication 3, caractérisée en ce que ladite composition comprend 22% d'oxygène, 45% à 47% d'hélium et 31% à 33% de xénon.
12. Composition gazeuse selon l'une quelconque des revendications 1 à 10 prise en combinaison avec la revendication 3, caractérisée en ce que ladite composition comprend sensiblement 22% d'oxygène, 43% d'hélium et 35% de xénon.
13. Composition gazeuse selon l'une quelconque des revendications 1 à 10 prise en combinaison avec la revendication 3, caractérisée en ce que ladite composition comprend 25% d'oxygène, 43% à 45% d'hélium et 30% à 32% de xénon.
14. Composition gazeuse selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ladite composition comprend au plus 67% d'argon.
15. Composition gazeuse selon l'une quelconque des revendications 1 à 6 ou selon la revendication 14, caractérisée en ce que ladite composition comprend au moins 11% d'hélium.
16. Composition gazeuse selon l'une des revendications 14 ou 15, caractérisée en ce que ladite composition comprend 21% à 30% d'oxygène, 20% à 76% d'hélium et 2% à 56% d'argon.
17. Composition gazeuse selon l'une quelconque des revendications 14 à 16, caractérisée en ce que ladite composition comprend 22% d'oxygène, 37% à 68% d'hélium et 10% à 41% d'argon.
18. Composition gazeuse selon l'une quelconque des revendications 14 à 16, caractérisée en ce que ladite composition comprend 25% d'oxygène, 36% à 65% d'hélium et 10% à 39% d'argon.
EP16731620.7A 2016-04-08 2016-04-08 Composition gazeuse inhalable hypothermique Withdrawn EP3439630A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2016/050824 WO2017174884A1 (fr) 2016-04-08 2016-04-08 Composition gazeuse inhalable hypothermique

Publications (1)

Publication Number Publication Date
EP3439630A1 true EP3439630A1 (fr) 2019-02-13

Family

ID=56194507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16731620.7A Withdrawn EP3439630A1 (fr) 2016-04-08 2016-04-08 Composition gazeuse inhalable hypothermique

Country Status (7)

Country Link
US (2) US20190125785A1 (fr)
EP (1) EP3439630A1 (fr)
JP (1) JP6840834B2 (fr)
CN (1) CN109069412B (fr)
AU (1) AU2016401882B2 (fr)
CA (1) CA3020039A1 (fr)
WO (1) WO2017174884A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111920548A (zh) * 2020-08-18 2020-11-13 南通大学 一种氩氧气体的动物实验高压舱及其动物实验方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228434A (en) * 1991-07-16 1993-07-20 Praxair Technology, Inc. Mixture for anesthesia
US5099834A (en) 1991-07-16 1992-03-31 Union Carbide Industrial Gases Technology Corporation Method for anesthesia
US5271401A (en) * 1992-01-15 1993-12-21 Praxair Technology, Inc. Radiological imaging method
EP2156634B1 (fr) * 2007-04-10 2015-10-21 Apertio Limited Contrôle d'accès amélioré à un sous-arbre dans des architectures de réseau
WO2008132239A1 (fr) 2007-04-30 2008-11-06 Nnoxe Pharmaceutiques Inc Composition pharmaceutique comprenant au moins un agent thrombolytique (a) et au moins un gaz (b) choisi dans le groupe composé d'axyde nitrique, d'argon, de xénon, d'hélium, de néon
WO2010035074A1 (fr) 2008-09-25 2010-04-01 Nnoxe Pharmaceutiques Inc Utilisation d'oxyde de diazote, d'argon, de xénon, d'hélium ou de néon pour fabriquer une composition pharmaceutique destinée à traiter des lésions ischémiques chez des patients ne pouvant pas être traités par des agents thrombolytiques
FR2999082A1 (fr) * 2012-12-12 2014-06-13 Air Liquide Utilisation d'argon combine a une hypothermie pour prevenir ou traiter les consequences neurologiques d'une asphyxie perinatale
RU2524765C1 (ru) * 2012-12-29 2014-08-10 Сергей Александрович Наумов Способ лечения стресса и устройство для его осуществления
FR3004350A1 (fr) 2013-04-12 2014-10-17 Air Liquide Delivrance de gaz medical a un receveur de materiel biologique

Also Published As

Publication number Publication date
AU2016401882B2 (en) 2022-02-10
US11052106B2 (en) 2021-07-06
US20200254010A1 (en) 2020-08-13
US20190125785A1 (en) 2019-05-02
CA3020039A1 (fr) 2017-10-12
JP2019511577A (ja) 2019-04-25
CN109069412B (zh) 2022-07-05
AU2016401882A1 (en) 2018-11-01
JP6840834B2 (ja) 2021-03-10
CN109069412A (zh) 2018-12-21
WO2017174884A1 (fr) 2017-10-12

Similar Documents

Publication Publication Date Title
US11659857B2 (en) Cannabinoid formulations for aerosol devices and methods thereof
EP2014293B1 (fr) Utilisation d'argon gazeux pour le traitement des neuro-intoxications
EP2536415A1 (fr) Médicament gazeux inhalable à base d'argon contre les déficiences ou défaillances d'organes périphériques
EP3439630A1 (fr) Composition gazeuse inhalable hypothermique
FR3049863A1 (fr) Composition gazeuse inhalable hypothermique
EP2851077A1 (fr) Utilisation de protoxyde d'azote pour le traitement d'une douleur chronique d'origine dysfunctionnelle
WO2017174883A1 (fr) Composition gazeuse inhalable thermiquement neutre
FR3049862A1 (fr) Composition gazeuse inhalable thermiquement neutre
WO2011154630A1 (fr) Médicament gazeux inhalable à base de krypton contre les déficiences ou défaillance d'organes périphériques
FR2999082A1 (fr) Utilisation d'argon combine a une hypothermie pour prevenir ou traiter les consequences neurologiques d'une asphyxie perinatale
EP1438963B1 (fr) Utilisation de N2O dans le traitement des détériorations cellulaires cérébrales post-ischémiques
CA2874022A1 (fr) Conditionnement a haute pression d'un melange gazeux no/azote
FR2964876A1 (fr) Composition anesthesique gazeuse a base de xenon utilisable pendant une endarteriectomie avec clampage de l'artere carotide
EP3791886B1 (fr) Argon associé à une thrombectomie en cas d'accident vasculaire cérébral ischémique
EP2575828B1 (fr) Médicament inhalable à base de xénon pour prévenir les rechutes addictives chez l'être humain
FR3123803A3 (fr) Mélange gazeux utilisable en cas d’accident vasculaire cérébral ischémique
EP3868361A1 (fr) Mélange gazeux inhalable pour traiter les douleurs chroniques chez des patients sous opioïdes
FR2929513A1 (fr) Traitement des migraines sans aura chez le femmes enceintes par inhalation de dioxygene gazeux.
EP2608770B1 (fr) Medicament gazeux inhalable a base de krypton pour le traitement des neuro-intoxications
Blumenthal Sativex Cannabis-Based Medicine Reduces Pain in MS Patients.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190906

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231101