EP3423703A1 - Water turbine, in particular axial turbine, and hydroelectric power plant having said water turbine - Google Patents

Water turbine, in particular axial turbine, and hydroelectric power plant having said water turbine

Info

Publication number
EP3423703A1
EP3423703A1 EP17706484.7A EP17706484A EP3423703A1 EP 3423703 A1 EP3423703 A1 EP 3423703A1 EP 17706484 A EP17706484 A EP 17706484A EP 3423703 A1 EP3423703 A1 EP 3423703A1
Authority
EP
European Patent Office
Prior art keywords
bearing
turbine
rotor
water
water turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17706484.7A
Other languages
German (de)
French (fr)
Inventor
Jan Niko HÄUSER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wobben Properties GmbH
Original Assignee
Wobben Properties GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wobben Properties GmbH filed Critical Wobben Properties GmbH
Publication of EP3423703A1 publication Critical patent/EP3423703A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/08Machine or engine aggregates in dams or the like; Conduits therefor, e.g. diffusors
    • F03B13/083The generator rotor being mounted as turbine rotor rim
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/53Hydrodynamic or hydrostatic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • Hydro turbine in particular axial turbine, and hydroelectric power plant with selbiger
  • the present invention relates to a water turbine for a hydroelectric power plant, as well as a hydroelectric power plant with selbiger.
  • Turbines are used in hydroelectric power plants to generate electrical energy by rotationally driving their turbine blades by utilizing the kinetic energy of a water flow.
  • a distinction is fundamentally made between turbines which transmit torque via a rotor shaft to a region outside a flow channel, whereupon the torque present at the rotor shaft is used to drive a generator, and those turbines in which the turbine rotors are directly connected to a rotor of a generator are connected.
  • the first-mentioned types are known inter alia from DE 10 2008 045 500 A1. In the latter case one speaks of so-called straight-flow turbines. If the axis of rotation of the turbines is essentially parallel to the flow direction of the water, this is referred to as axial turbines.
  • the invention was based on the object of specifying a water turbine of the type described at the outset as well as a hydroelectric power station with the same, which overcome the aforementioned disadvantages as far as possible.
  • the invention had the object of specifying a water turbine and a hydroelectric power plant, which have a reduced susceptibility to wear.
  • the invention was in particular the object of specifying a water turbine and a hydroelectric power plant, in which a contamination of the flowing water with lubricant can be reliably avoided.
  • the invention was particularly the task of specifying a water turbine and a hydroelectric power plant, which allow a compact design with high efficiency in power generation.
  • the invention solves the underlying task by proposing a water turbine with the features of claim 1.
  • the water turbine according to the invention comprises a flow channel having a flow inlet and a flow outlet, a turbine rotor arranged in the flow channel with a rotation axis, a ring generator for generating electrical energy with a generator rotor and a generator stator, wherein the generator rotor with the turbine rotor rotatably connected to a rotor unit is and a bearing unit for receiving the force acting on the rotor unit radial axial forces, wherein the bearing unit relative to the Rotation axis is arranged radially outside the flow channel.
  • a ring generator is used, this is preferably understood to mean a gearless, externally excited synchronous generator.
  • the invention makes use of the knowledge that two advantages can be achieved at the same time by abandoning the established concept of inner storage. Because the bearing unit is arranged radially outside the flow channel, the bearings of the bearing unit inevitably have larger bearing surfaces than would be feasible in the interior of the flow channel. This reduces the surface pressure acting on the bearing surfaces, resulting in a significant reduction of potential wear. Furthermore, contamination of the flow channel with lubricant is excluded even in the event of failure of the bearing unit, since the bearing unit is no longer located inside, but radially outside of the flow channel. Another advantage is that by displacing the bearing unit to the outside of the flow channel more free flow cross-section is available in the flow channel to realize the function of the turbine. This allows for a more compact overall design, without restricting the efficiency of the turbine.
  • the storage unit is water lubricated.
  • the use of water as a lubricant compared to the known from the prior art oil or grease-based lubricants already minimally minimized contamination risk of the turbine flowing through the water is further reduced.
  • the storage unit has a water inlet, which is fluid-conductively connected to a dedicated water reservoir.
  • the water reservoir preferably contains filtered river water.
  • a filter unit is arranged in the inlet to the water reservoir and / or between the water reservoir and the water inlet to the storage unit in order to free the water as much as possible of solids before entering the storage unit.
  • the bearing unit has at least one thrust bearing, preferably two thrust bearings, and at least one radial bearing, preferably two radial bearings.
  • the bearing unit has at least one thrust bearing, preferably two thrust bearings, and at least one radial bearing, preferably two radial bearings.
  • all bearing surfaces are located radially outside the flow channel with respect to the axis of rotation.
  • the at least one thrust bearing and / or the at least one radial bearing are designed as slide bearings.
  • the Design as a plain bearing is made possible by the reduction of surface pressure, which goes along with the laying of the bearing radially outward of the flow channel.
  • the bearing unit has two outer bearing rings spaced apart in the direction of the axis of rotation.
  • the outer bearing rings preferably take in the assembled state, the rotor unit between them.
  • the outer bearing rings preferably have mutually facing axial bearing outer surfaces, and the rotor unit has correspondingly formed, oppositely disposed axial bearing inner surfaces for forming the axial bearings.
  • the two outer bearing rings are designed as identical components, which reduces the component complexity.
  • the outer bearing rings each have a circumferential radial bearing surface, preferably a radial bearing inner surface
  • the rotor unit each has a corresponding, oppositely disposed radial bearing surface, preferably radial bearing outer surface, for forming the radial bearings.
  • the outer bearing rings on their bearing surfaces on sliding linings.
  • bearing surfaces here are meant the thrust bearing surfaces and the radial bearing surfaces which have been described above.
  • the sliding linings are preferably arranged in the form of a plurality of, preferably spaced-apart, segments on the respective bearing surfaces.
  • the sliding linings are preferably formed from elastomers or duromers.
  • the division of the sliding linings into a plurality of segments on the one hand enables the formation of lubricant pads in the spaces between the segments, and on the other hand, the replacement of only those segments that are damaged, while other segments do not need to be replaced.
  • the turbine rotor has a plurality of turbine blades, preferably two, three, four or more.
  • the turbine blades are preferably mounted rotatably on the rotor unit essentially perpendicular to the axis of rotation for adjusting their blade angle.
  • the advantages of a blade angle adjustment in the turbine blades are in particular the Regel d the power plant. If a water turbine according to the embodiments described above in a hydropower plant is used, in the adjacent to the turbine rotor a nozzle is arranged, the process of power generation can be influenced by a triple control, which consists of a speed regulation, an impeller adjustment by adjusting the blade angle, as well a regulation of the flow cross-section over the distributor. Such a regulation has proven to be advantageous for fluctuating water levels or large fall height change in hydroelectric power plants.
  • the turbine blades are preferably received by means of a moment bearing in a rotor ring having an inner wall bounding the flow channel.
  • the invention solves their underlying task further by a Hydroelectric plant according to claim 13, which has a turbine according to one of the preferred embodiments described above.
  • Figure 1 is a schematic representation of a hydroelectric power plant with a
  • FIG. 2 shows a partial view of the turbine from FIG. 1,
  • FIG. 3 is a further partial view of the turbine according to Figures 1 and 2, and
  • FIG. 4 shows a schematic spatial representation of an outer bearing ring of the turbine according to FIGS. 1 to 3.
  • FIG. 1 shows a water turbine 1 1, in particular an axial turbine, of a hydroelectric power plant 1, shown partially in cross section.
  • the water turbine 1 1 has a flow channel 12 with a flow inlet 13 and a flow outlet 15.
  • a turbine rotor 17 is arranged, which is rotatably mounted about a rotation axis X.
  • the water turbine 1 1 has a hub shell 19, in which a plurality of turbine blades 21a-d are rotatably mounted. From a radial outer end opposite the hub shell, the turbine blades 21a-d are non-rotatably coupled to a generator rotor 25.
  • the generator rotor 25 is in the present embodiment, an internal rotor which rotates in a generator stator 27.
  • the generator rotor 25 and the generator stator 27 form a, preferably designed as a third-excited synchronous generator, the generator 23.
  • the generator 23 is a gearless ring generator.
  • a nozzle 29 Adjacent, in the present embodiment downstream, to the turbine rotor 17, a nozzle 29 is disposed in the flow channel 12.
  • the distributor 29 is set up to adjust or regulate the free flow cross section of the flow channel 12 by means of a plurality of adjustable guide vanes. Further details of the water turbine 1 1 are shown in Figure 2.
  • the water turbine 1 1 is bordered by a bearing unit comprising a first outer bearing ring 31a and a second outer bearing ring 31b.
  • the outer bearing rings 31 a, b form a radially outside of the flow channel 12 arranged outer bearing for the turbine rotor 17th
  • the turbine rotor 17 and the generator rotor 27 are connected to a rotor unit 35 which is supported by the outer bearing rings 31 a, 31 b.
  • the turbine blades 21a-d are rotatably received in a turbine ring 33, the inner wall of which preferably merges flush into the wall of the non-rotating flow channel 12.
  • FIG. 3 shows an enlarged section from FIG. Shown is an example of the inclusion of the turbine blade 21d, the illustration applies by way of example for all other turbine blades.
  • the turbine blade 21d is rotatably supported in the turbine ring 33 by means of a moment bearing 37.
  • a static seal 14 is provided for sealing against fluid transfer from and into the flow channel 12.
  • the rotor unit 35 has a first axial bearing surface 39a. Opposite the first thrust bearing surface 39a, a first thrust bearing surface 41a of the first outer race 31a is provided. On the first axial bearing surface 41a of the first outer bearing ring 31a, a first sliding coating 43a is arranged.
  • a mechanically adjustable axial seal 45a is arranged radially inside the bearing surfaces 39a, 41a for sealing against fluid leakage from the outer bearing.
  • the first outer bearing ring 31a has a first radial bearing surface 47a. Opposite to the first radial bearing surface 47a, a corresponding first radial bearing surface 49a is formed on the rotor unit 35. On the first radial bearing surface 47a of the first outer bearing ring 31a, a sliding coating 51a is arranged.
  • a further seal 53a Radially outside the radial bearing surfaces 47a, 49a, a further seal 53a, preferably identical to the seal 45a, is arranged in order to prevent fluid leakage from the outer bearing.
  • the rotor unit 35 further includes a second thrust bearing surface 39b. Opposite the second axial bearing surface 39b, a second axial bearing surface 41b of the second outer bearing ring 31b is provided. On the second axial bearing surface 41 b of the second outer bearing ring 31 b, a sliding coating 43 b is arranged.
  • a mechanically adjustable axial seal 45b is arranged radially inside the bearing surfaces 39b, 41b for sealing against fluid leakage from the outer bearing.
  • the second outer bearing ring 31 b has a second radial bearing surface 47 b. Opposite to the second radial bearing surface 47b, a corresponding radial bearing surface 49b is formed on the rotor unit 35. On the second radial bearing surface 47 b of the second outer bearing ring 31 b, a sliding coating 51 b is arranged.
  • a further seal 53b preferably identical to the seal 45b, is arranged in order to prevent fluid leakage from the bearing.
  • the outer bearing formed by the bearing rings 31 a, b outer passage has passage bores 55 a, b as fluid inlets or fluid outlets for introducing and discharging lubricant in the bearing interior, with particular preference water is used as a lubricant, in particular filtered river water.
  • the water is preferably provided in a water reservoir 57.
  • a filter unit 59 is optionally upstream and / or downstream of the water reservoir.
  • FIG. 4 the design of the outer bearing ring 31a, b according to FIG. 3 is shown by way of example.
  • the outer bearing ring 31a, b has on the radial bearing surface 47a, b on a plurality of Gleitbelags segments, which together form the sliding coating 51a, b.
  • the axial bearing surface 41a, b also has a large number of sliding lining segments which jointly form the sliding lining 43a, b.
  • the outer bearing rings 31a, b can be preassembled in an advantageous manner already ex works the one outer bearing ring 31a, b followed by the rotor unit 35 and finally the second outer bearing ring 31b allows easy mounting in the hydropower plant 1.
  • the high number of segments of the sliding linings 51a, b and 43a, b provides in connection with the large diameter of the bearing surfaces 41a , b and 47a, b for a low surface pressure and high wear resistance of the entire plain bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

The invention relates to a water turbine (11) for a hydroelectric power plant (1), and to a hydroelectric power plant (1) of this type. It is proposed that the water turbine has a flow duct (12) with a flow inlet (13) and a flow inlet (15), a turbine rotor (17) which is arranged in the flow duct (12) with a rotational axis (X), a ring generator for generating electric power with a generator rotor (25) and a generator stator (27), wherein the generator rotor (25) is connected fixedly to the turbine rotor (17) so as to rotate with it, forming a rotor unit (35), and a bearing unit (31a, b) for absorbing the radial and axial forces which act on the rotor unit, wherein the bearing unit is arranged radially outside the flow duct (12) in relation to the rotational axis (X). It is proposed according to the invention that the bearing unit is water-lubricated, wherein the bearing unit has a water inlet (55a) which is connected in a fluid-conducting manner to a dedicated water reservoir (57).

Description

Wasserturbine, insbesondere Axialturbine, und Wasserkraftwerk mit selbiger  Hydro turbine, in particular axial turbine, and hydroelectric power plant with selbiger
Die vorliegende Erfindung betrifft eine Wasserturbine für ein Wasserkraftwerk, sowie ferner ein Wasserkraftwerk mit selbiger. The present invention relates to a water turbine for a hydroelectric power plant, as well as a hydroelectric power plant with selbiger.
Turbinen werden in Wasserkraftwerken dazu eingesetzt, mittels rotatorischen Antriebs ihrer Turbinenschaufeln unter Ausnutzung der kinetischen Energie einer Wasserströmung elektrische Energie zu erzeugen. Hierbei wird grundsätzlich unterschieden zwischen Turbinen, die über eine Rotorwelle ein Drehmoment in einen Bereich außerhalb eines Strömungskanals übertragen, wo sodann das an der Rotorwelle vorliegende Drehmoment zum Antrieb eines Generators genutzt wird, und solchen Turbinen, bei denen die Turbinenrotoren unmittelbar mit einem Läufer eines Generators verbunden sind. Erstgenannte Typen sind unter anderem aus DE 10 2008 045 500 A1 bekannt. In letzterem Fall spricht man von sogenannten Straight-Flow Turbinen. Sofern die Rotationsachse der Turbinen im Wesentlichen parallel zur Strömungsrichtung des Wassers liegt, spricht man von Axial-Turbinen. Turbines are used in hydroelectric power plants to generate electrical energy by rotationally driving their turbine blades by utilizing the kinetic energy of a water flow. In this case, a distinction is fundamentally made between turbines which transmit torque via a rotor shaft to a region outside a flow channel, whereupon the torque present at the rotor shaft is used to drive a generator, and those turbines in which the turbine rotors are directly connected to a rotor of a generator are connected. The first-mentioned types are known inter alia from DE 10 2008 045 500 A1. In the latter case one speaks of so-called straight-flow turbines. If the axis of rotation of the turbines is essentially parallel to the flow direction of the water, this is referred to as axial turbines.
Sämtlichen Turbinentypen, insbesondere den Axialturbinen, ist die Herausforderung gemein, dass auf die Turbinenschaufeln hohe axiale Kräfte wirken, die auf den Druck des Wassers zurückzuführen sind. Ferner erreichen die Turbinen hohe Umdrehungsgeschwindigkeiten ihrer Rotoren, was insbesondere in Verbindung mit den aufzunehmenden Kräften für Verschleiß sorgt. Die aufgrund der axialen Kräfte und aufgrund der Rotation einwirkenden Kräfte werden im Stand der Technik von ein- oder mehrreihigen Wälzlageranordnungen aufgenommen, die nach Art einer Innenlagerung die Rotorwelle abstützen und im Wesentlichen zentral im Strömungskanal angeordnet sind. Üblicherweise werden im Stand der Technik diese Lagerungen von separaten Stützeinrichtungen gehalten, welche beispielsweise in die benachbart zu den Turbinenrotoren selbst angeordneten Leitapparaten angeordnet sein können. All turbine types, especially the axial turbines, have in common the challenge that the turbine blades have high axial forces due to the pressure of the water. Furthermore, the turbines reach high rotational speeds of their rotors, which in particular in conjunction with the forces to be absorbed causes wear. The forces acting on the basis of the axial forces and due to the rotation forces are absorbed in the prior art of single or multi-row rolling bearing assemblies, which support the rotor shaft in the manner of an inner bearing and are arranged substantially centrally in the flow channel. Usually, in the prior art, these bearings are held by separate support means, which may be arranged, for example, in the nozzles adjacent to the turbine rotors themselves.
Die bekannte Art der Lagerung hat zum einen den Nachteil, dass für die Innenlagerung freier Strömungsquerschnitt im Strömungskanal geopfert werden muss. Zum anderen entsteht an den Lagern aufgrund der beschränkten Platzverhältnisse aufgrund hoher Flächenpressungen potentiell Verschleiß. The known type of storage on the one hand has the disadvantage that for the inner bearing free flow cross-section must be sacrificed in the flow channel. On the other hand, due to the limited space available due to high surface pressures, potentially wear occurs at the bearings.
Es ist ferner in Extremfällen denkbar, dass bei Versagen der Lagerdichtungen oder der Lager selbst Schmierstoff austreten und das die Turbine durchströmende Wasser kontaminieren kann. Der Erfindung lag vor diesem Hintergrund die Aufgabe zugrunde, eine Wasserturbine der eingangs bezeichneten Art sowie ein Wasserkraftwerk mit selbiger anzugeben, die die vorstehend erwähnten Nachteile möglichst weitgehend überwinden. Insbesondere lag der Erfindung die Aufgabe zugrunde, eine Wasserturbine und ein Wasserkraftwerk anzugeben, die eine verminderte Verschleißanfälligkeit aufweisen. Ferner lag der Erfindung insbesondere die Aufgabe zugrunde, eine Wasserturbine sowie ein Wasserkraftwerk anzugeben, bei der eine Kontaminierung des durchströmenden Wassers mit Schmierstoff zuverlässig vermieden werden kann. Ferner lag der Erfindung insbesondere die Aufgabe zugrunde, eine Wasserturbine und ein Wasserkraftwerk anzugeben, die eine kompakte Bauweise ermöglichen bei gleichzeitig hoher Effizienz in der Stromerzeugung. It is also conceivable in extreme cases that leak in case of failure of the bearing seals or the bearing lubricant itself and can contaminate the water flowing through the turbine. Against this background, the invention was based on the object of specifying a water turbine of the type described at the outset as well as a hydroelectric power station with the same, which overcome the aforementioned disadvantages as far as possible. In particular, the invention had the object of specifying a water turbine and a hydroelectric power plant, which have a reduced susceptibility to wear. Furthermore, the invention was in particular the object of specifying a water turbine and a hydroelectric power plant, in which a contamination of the flowing water with lubricant can be reliably avoided. Furthermore, the invention was particularly the task of specifying a water turbine and a hydroelectric power plant, which allow a compact design with high efficiency in power generation.
Die Erfindung löst die ihr zugrunde liegende Aufgabe, indem sie eine Wasserturbine mit den Merkmalen gemäß Anspruch 1 vorschlägt. Die Wasserturbine gemäß der Erfindung weist einen Strömungskanal mit einem Strömungseinlass und einem Strömungsauslass auf, einen in dem Strömungskanal angeordneten Turbinenrotor mit einer Rotationsachse, einem Ringgenerator zum Erzeugen elektrischer Energie mit einem Generatorrotor und einem Generatorstator, wobei der Generatorrotor mit dem Turbinenrotor zu einer Rotoreinheit drehfest verbunden ist, und einer Lagereinheit zur Aufnahme der auf die Rotoreinheit wirkenden radialen axialen Kräfte, wobei die Lagereinheit bezogen auf die Rotationsachse radial außerhalb des Strömungskanals angeordnet ist. Sofern im Zusammenhang mit der Erfindung von einem Ringgenerator gesprochen wird, so wird hierunter vorzugsweise ein getriebeloser, fremderregter Synchrongenerator verstanden. The invention solves the underlying task by proposing a water turbine with the features of claim 1. The water turbine according to the invention comprises a flow channel having a flow inlet and a flow outlet, a turbine rotor arranged in the flow channel with a rotation axis, a ring generator for generating electrical energy with a generator rotor and a generator stator, wherein the generator rotor with the turbine rotor rotatably connected to a rotor unit is and a bearing unit for receiving the force acting on the rotor unit radial axial forces, wherein the bearing unit relative to the Rotation axis is arranged radially outside the flow channel. If, in connection with the invention, a ring generator is used, this is preferably understood to mean a gearless, externally excited synchronous generator.
Die Erfindung macht sich die Erkenntnis zunutze, dass durch die Abkehr vom etablierten Konzept der Innenlagerung zeitgleich zwei Vorteile erreicht werden können. Dadurch, dass die Lagereinheit radial außerhalb des Strömungskanals angeordnet wird, weisen die Lager der Lagereinheit zwangsläufig größere Lagerflächen auf, als im Inneren des Strömungskanals realisierbar wären. Dadurch sinkt die Flächenpressung, die auf die Lagerflächen wirkt, was eine deutliche Reduzierung des potentiellen Verschleißes zur Folge hat. Ferner wird selbst im Versagensfall der Lagereinheit eine Kontamination des Strömungskanals mit Schmierstoff ausgeschlossen, da die Lagereinheit nicht mehr innerhalb, sondern radial außerhalb des Strömungskanals angeordnet ist. Ein weiterer Vorteil zeigt sich darin, dass durch das Verlagern der Lagereinheit nach außerhalb des Strömungskanals mehr freier Strömungsquerschnitt im Strömungskanal zur Verfügung steht, um die Funktion der Turbine zu realisieren. Dies ermöglicht insgesamt eine kompaktere Bauform, ohne die Effizienz der Turbine einzuschränken. The invention makes use of the knowledge that two advantages can be achieved at the same time by abandoning the established concept of inner storage. Because the bearing unit is arranged radially outside the flow channel, the bearings of the bearing unit inevitably have larger bearing surfaces than would be feasible in the interior of the flow channel. This reduces the surface pressure acting on the bearing surfaces, resulting in a significant reduction of potential wear. Furthermore, contamination of the flow channel with lubricant is excluded even in the event of failure of the bearing unit, since the bearing unit is no longer located inside, but radially outside of the flow channel. Another advantage is that by displacing the bearing unit to the outside of the flow channel more free flow cross-section is available in the flow channel to realize the function of the turbine. This allows for a more compact overall design, without restricting the efficiency of the turbine.
Die Lagereinheit ist wassergeschmiert. Durch die Verwendung von Wasser als Schmierstoff im Vergleich zu dem aus Stand der Technik bekannten öl- oder fettbasierten Schmiermitteln wird ein bereits konstruktiv minimiertes Kontaminationsrisiko des die Turbine durchströmenden Wassers weiter vermindert. The storage unit is water lubricated. The use of water as a lubricant compared to the known from the prior art oil or grease-based lubricants already minimally minimized contamination risk of the turbine flowing through the water is further reduced.
Ferner weist die Lagereinheit einen Wassereinlass auf, der fluidleitend mit einem dedizierten Wasserreservoir verbunden ist. Das Wasserreservoir enthält vorzugsweise gefiltertes Flusswasser. Vorzugsweise ist im Zulauf zu dem Wasserreservoir und/oder zwischen dem Wasserreservoir und dem Wassereinlass zu der Lagereinheit eine Filtereinheit angeordnet, um das Wasser vor dem Eintritt in die Lagereinheit möglichst weitgehend von Feststoffen zu befreien. Furthermore, the storage unit has a water inlet, which is fluid-conductively connected to a dedicated water reservoir. The water reservoir preferably contains filtered river water. Preferably, a filter unit is arranged in the inlet to the water reservoir and / or between the water reservoir and the water inlet to the storage unit in order to free the water as much as possible of solids before entering the storage unit.
Die Erfindung wird dadurch vorteilhaft weitergebildet, dass die Lagereinheit mindestens ein Axiallager, vorzugsweise zwei Axiallager, und mindestens ein Radiallager, vorzugsweise zwei Radiallager aufweist. Vorzugsweise liegen sämtliche Lagerflächen bezogen auf die Rotationsachse radial außerhalb des Strömungskanals. The invention is advantageously further developed in that the bearing unit has at least one thrust bearing, preferably two thrust bearings, and at least one radial bearing, preferably two radial bearings. Preferably, all bearing surfaces are located radially outside the flow channel with respect to the axis of rotation.
In einer besonders bevorzugten Ausgestaltung der Erfindung sind das mindestens eine Axiallager und/oder das mindestens eine Radiallager als Gleitlager ausgeführt. Die Ausführung als Gleitlager wird durch die Verringerung der Flächenpressung ermöglicht, die mit dem Verlegen der Lagerung nach radial außerhalb des Strömungskanals einhergeht. In a particularly preferred embodiment of the invention, the at least one thrust bearing and / or the at least one radial bearing are designed as slide bearings. The Design as a plain bearing is made possible by the reduction of surface pressure, which goes along with the laying of the bearing radially outward of the flow channel.
Durch die Verwendung von Gleitlagern wird ein konstruktiv einfacheres Design mit weniger Komponenten gegenüber bekannten Wasserturbinen erreicht. Gleitlager übernehmen zuverlässig ihre Lagerfunktion bei den hohen Umfangsgeschwindigkeiten, die bei der radial außerhalb der Strömungskammer angeordneten relativ bewegten Lagerflächen auftreten. By using plain bearings a structurally simpler design with fewer components compared to known water turbines is achieved. Sliding bearings reliably take over their bearing function at the high peripheral speeds which occur in the case of the bearing surfaces arranged radially outside the flow chamber.
In einer weiteren bevorzugten Ausführungsform weist die Lagereinheit zwei in Richtung der Rotationsachse beabstandete Außenlagerringe auf. Die Außenlagerringe nehmen vorzugsweise in montiertem Zustand die Rotoreinheit zwischen sich auf. In a further preferred embodiment, the bearing unit has two outer bearing rings spaced apart in the direction of the axis of rotation. The outer bearing rings preferably take in the assembled state, the rotor unit between them.
Vorzugsweise weisen die Außenlagerringe einander zugewandte Axiallager- Außenflächen auf, und die Rotoreinheit weist korrespondierend ausgebildete, gegenüberliegend angeordnete Axiallager-Innenflächen zum Bilden der Axiallager auf. Durch entsprechende Positionierung der beiden Außenlagerringe lässt sich auf diese Weise beidseitig der Rotoreinheit das Axialspiel der Lagereinheit bereits werkseitig sehr präzise einstellen, was die Verschleißanfälligkeit wiederum reduziert. Vorzugsweise sind die beiden Außenlagerringe als identische Bauteile ausgeführt, was die Bauteilkomplexität senkt. In einer bevorzugten Ausgestaltung weisen die Außenlagerringe jeweils eine umlaufende Radiallagerfläche auf, vorzugsweise eine Radiallager-Innenfläche, und die Rotoreinheit weist jeweils eine korrespondierende, gegenüberliegend angeordnete Radiallagerfläche, vorzugsweise Radiallager-Außenfläche, zum Bilden der Radiallager auf. Während bei einer Wasserturbine die Kräfte, die in axialer Richtung aufgenommen werden müssen, um ein Vielfaches höher sind als die Kräfte, die in radialer Richtung aufgenommen werden müssen, ist eine zuverlässige und vor allem präzise radiale Lagerung dennoch unerlässlich. Dies gilt insbesondere dann, wenn ein getriebeloser fremderregter Synchrongenerator zum Erzeugen elektrischer Energie verwendet werden soll. Bei diesem Generatortyp ist zwischen Generatorrotor und Generatorstator nur ein sehr geringer Spalt vorgesehen. Aufgrund des geringen Spalts und der aufgrund des großen Durchmessers des Generatorrotors vorherrschenden hohen Umfangsgeschwindigkeiten ist eine sehr präzise Ausrichtung des Generatorrotors relativ zum Generatorstator unerlässlich. Zudem muss, um eine möglichst homogene Spannungsinduktion zu erreichen, der Spaltverlauf während des Betriebs des Generators möglichst konstant sein. Hierzu ist eine Lagerung mit möglichst geringem radialem Spiel erforderlich. Dies wird vorbildlich durch ein als Gleitlager ausgebildetes Radiallager erfüllt. Indem die Außenlagerringe die Radiallager-Innenfläche aufweisen, und die Rotoreinheit die Radiallager-Außenfläche, die als radial außen auf der Radiallager-Innenfläche umläuft, wird die radiale Lagerfläche größtmöglich gestaltet. Hierdurch sinkt zum einen die Flächenpressung. The outer bearing rings preferably have mutually facing axial bearing outer surfaces, and the rotor unit has correspondingly formed, oppositely disposed axial bearing inner surfaces for forming the axial bearings. By appropriate positioning of the two outer bearing rings can be in this way on both sides of the rotor unit, the axial play of the bearing unit factory set very precisely, which in turn reduces the susceptibility to wear. Preferably, the two outer bearing rings are designed as identical components, which reduces the component complexity. In a preferred embodiment, the outer bearing rings each have a circumferential radial bearing surface, preferably a radial bearing inner surface, and the rotor unit each has a corresponding, oppositely disposed radial bearing surface, preferably radial bearing outer surface, for forming the radial bearings. While in a water turbine, the forces that must be absorbed in the axial direction, are many times higher than the forces that must be absorbed in the radial direction, a reliable and above all precise radial bearing is still essential. This applies in particular if a gearless, externally excited synchronous generator is to be used for generating electrical energy. In this generator type, only a very small gap is provided between generator rotor and generator stator. Due to the small gap and the high circumferential speeds prevailing due to the large diameter of the generator rotor, a very precise alignment of the generator rotor relative to the generator stator is essential. In addition, in order to achieve the most homogeneous possible stress induction reach, the gap profile during operation of the generator to be as constant as possible. For this purpose, a storage with the least possible radial clearance is required. This is exemplary fulfilled by trained as plain bearings radial bearing. By having the outer bearing rings the radial bearing inner surface, and the rotor unit, the radial bearing outer surface, which rotates as radially outward on the radial bearing inner surface, the radial bearing surface is designed as large as possible. This reduces the surface pressure on the one hand.
In einer besonders bevorzugten Ausführungsform der Wasserturbine weisen die Außenlagerringe auf ihren Lagerflächen Gleitbeläge auf. Mit Lagerflächen sind hierbei die Axiallagerflächen und die Radiallagerflächen gemeint, die vorstehend beschrieben wurden. Die Gleitbeläge sind vorzugsweise in Form mehrerer, vorzugsweise voneinander beabstandeter, Segmente auf den jeweiligen Lagerflächen angeordnet. In a particularly preferred embodiment of the water turbine, the outer bearing rings on their bearing surfaces on sliding linings. By bearing surfaces here are meant the thrust bearing surfaces and the radial bearing surfaces which have been described above. The sliding linings are preferably arranged in the form of a plurality of, preferably spaced-apart, segments on the respective bearing surfaces.
Die Gleitbeläge sind vorzugsweise aus Elastomeren oder Duromeren ausgebildet. Die Aufteilung der Gleitbeläge in eine Mehrzahl von Segmenten ermöglicht einerseits das Ausbilden von Schmierstoffkissen in den Zwischenräumen zwischen den Segmenten, und zum anderen erzielt das Austauschen nur solcher Segmente, die beschädigt sind, während andere Segmente nicht ausgetauscht werden müssen. The sliding linings are preferably formed from elastomers or duromers. The division of the sliding linings into a plurality of segments on the one hand enables the formation of lubricant pads in the spaces between the segments, and on the other hand, the replacement of only those segments that are damaged, while other segments do not need to be replaced.
In einer weiteren bevorzugten Ausführungsform weist der Turbinenrotor mehrere Turbinenschaufeln auf, vorzugsweise zwei, drei, vier oder mehr. Vorzugsweise sind die Turbinenschaufeln im Wesentlichen senkrecht zur Rotationsachse zur Verstellung ihres Schaufelwinkels drehbar an der Rotoreinheit gelagert. Die Vorteile einer Schaufelwinkelverstellung bei den Turbinenschaufeln liegen insbesondere im Regelverhaltend des Kraftwerks. Wird eine Wasserturbine gemäß der vorstehend beschriebenen Ausführungsformen in einem Wasserkraftwerk eingesetzt, bei dem benachbarte zum Turbinenrotor ein Leitapparat angeordnet ist, lässt sich der Vorgang der Stromerzeugung mittels einer dreifach Regelung beeinflussen, die sich zusammensetzt aus einer Drehzahlregulierung, einer Laufradverstellung mittels Einstellung des Schaufelwinkels, sowie einer Regulierung des Strömungsquerschnittes über den Leitapparat. Eine solche Regelung hat sich als vorteilhaft für schwankende Wasserstände beziehungsweise große Fallhöhenänderung in Wasserkraftwerken herausgestellt. In a further preferred embodiment, the turbine rotor has a plurality of turbine blades, preferably two, three, four or more. The turbine blades are preferably mounted rotatably on the rotor unit essentially perpendicular to the axis of rotation for adjusting their blade angle. The advantages of a blade angle adjustment in the turbine blades are in particular the Regelverhaltend the power plant. If a water turbine according to the embodiments described above in a hydropower plant is used, in the adjacent to the turbine rotor a nozzle is arranged, the process of power generation can be influenced by a triple control, which consists of a speed regulation, an impeller adjustment by adjusting the blade angle, as well a regulation of the flow cross-section over the distributor. Such a regulation has proven to be advantageous for fluctuating water levels or large fall height change in hydroelectric power plants.
Die Turbinenschaufeln sind vorzugsweise mittels einer Momentenlagerung in einem Rotorring aufgenommen, der eine dem Strömungskanal begrenzende Innenwandung aufweist. Die Erfindung löst die ihr zugrunde liegende Aufgabe ferner, indem sie ein Wasserkraftwerk nach Anspruch 13 vorschlägt, welches eine Turbine gemäß einer der vorstehend beschriebenen bevorzugten Ausführungsformen aufweist. The turbine blades are preferably received by means of a moment bearing in a rotor ring having an inner wall bounding the flow channel. The invention solves their underlying task further by a Hydroelectric plant according to claim 13, which has a turbine according to one of the preferred embodiments described above.
Die Erfindung wird im Folgenden unter Bezugnahme auf die beigefügten Figuren anhand eines bevorzugten Ausführungsbeispiels näher beschrieben. Hierbei zeigen: The invention will be described in more detail below with reference to the attached figures with reference to a preferred embodiment. Hereby show:
Figur 1 eine schematische räumliche Darstellung eines Wasserkraftwerks mit einer Figure 1 is a schematic representation of a hydroelectric power plant with a
Wasserturbine gemäß einem bevorzugten Ausführungsbeispiel,  Hydro turbine according to a preferred embodiment,
Figur 2 eine Teilansicht der Turbine aus Figur 1 , FIG. 2 shows a partial view of the turbine from FIG. 1,
Figur 3 eine weitere Teilansicht der Turbine gemäß Figuren 1 und 2, und Figure 3 is a further partial view of the turbine according to Figures 1 and 2, and
Figur 4 eine schematische räumliche Darstellung eines Außenlagerrings der Turbine gemäß den Figuren 1 bis 3. FIG. 4 shows a schematic spatial representation of an outer bearing ring of the turbine according to FIGS. 1 to 3.
Figur 1 zeigt eine teilweise im Querschnitt abgebildete Wasserturbine 1 1 , insbesondere Axialturbine, eines Wasserkraftwerks 1. Die Wasserturbine 1 1 weist einen Strömungskanal 12 mit einem Strömungseinlass 13 und einem Strömungsauslass 15 auf. Im Inneren des Strömungskanals 12 ist ein Turbinenrotor 17 angeordnet, der um eine Rotationsachse X drehbar gelagert ist. FIG. 1 shows a water turbine 1 1, in particular an axial turbine, of a hydroelectric power plant 1, shown partially in cross section. The water turbine 1 1 has a flow channel 12 with a flow inlet 13 and a flow outlet 15. Inside the flow channel 12, a turbine rotor 17 is arranged, which is rotatably mounted about a rotation axis X.
Die Wasserturbine 1 1 weist ein Nabengehäuse 19 auf, in welchem eine Mehrzahl von Turbinenschaufeln 21a-d drehbar gelagert sind. Von einem dem Nabengehäuse gegenüberliegenden radial äußeren Ende sind die Turbinenschaufeln 21a-d drehfest mit einem Generatorrotor 25 gekoppelt. Der Generatorrotor 25 ist im vorliegenden Ausführungsbeispiel ein Innenläufer, der in einem Generatorstator 27 umläuft. Der Generatorrotor 25 und der Generatorstator 27 bilden ein, vorzugsweise als fremderregter Synchrongenerator ausgebildeten, Generator 23. Der Generator 23 ist ein getriebeloser Ringgenerator. The water turbine 1 1 has a hub shell 19, in which a plurality of turbine blades 21a-d are rotatably mounted. From a radial outer end opposite the hub shell, the turbine blades 21a-d are non-rotatably coupled to a generator rotor 25. The generator rotor 25 is in the present embodiment, an internal rotor which rotates in a generator stator 27. The generator rotor 25 and the generator stator 27 form a, preferably designed as a third-excited synchronous generator, the generator 23. The generator 23 is a gearless ring generator.
Benachbart, im vorliegenden Ausführungsbeispiel stromabwärts, zu dem Turbinenrotor 17 ist ein Leitapparat 29 im Strömungskanal 12 angeordnet. Der Leitapparat 29 ist dazu eingerichtet, mittels einer Mehrzahl verstellbarer Leitschaufeln den freien Strömungsquerschnitt des Strömungskanals 12 einzustellen bzw. zu regeln. Weitere Details zur Wasserturbine 1 1 sind in Figur 2 dargestellt. Die Wasserturbine 1 1 wird von einer Lagereinheit umfassend einen ersten Außenlagerring 31a und einen zweiten Außenlagerring 31 b eingefasst. Die Außenlagerringe 31a, b bilden eine radial außerhalb des Strömungskanals 12 angeordnete Außenlagerung für den Turbinenrotor 17. Adjacent, in the present embodiment downstream, to the turbine rotor 17, a nozzle 29 is disposed in the flow channel 12. The distributor 29 is set up to adjust or regulate the free flow cross section of the flow channel 12 by means of a plurality of adjustable guide vanes. Further details of the water turbine 1 1 are shown in Figure 2. The water turbine 1 1 is bordered by a bearing unit comprising a first outer bearing ring 31a and a second outer bearing ring 31b. The outer bearing rings 31 a, b form a radially outside of the flow channel 12 arranged outer bearing for the turbine rotor 17th
Der Turbinenrotor 17 und der Generatorrotor 27 sind zu einer Rotoreinheit 35 verbunden, die von den Außenlagerringen 31 a, 31 b gelagert wird. The turbine rotor 17 and the generator rotor 27 are connected to a rotor unit 35 which is supported by the outer bearing rings 31 a, 31 b.
Die Turbinenschaufeln 21a-d sind drehbar in einem Turbinenring 33 aufgenommen, dessen innere Wandung vorzugsweise fluchtend in die Wandung des nicht rotierenden Strömungskanals 12 übergeht. The turbine blades 21a-d are rotatably received in a turbine ring 33, the inner wall of which preferably merges flush into the wall of the non-rotating flow channel 12.
Die Aufnahme der Turbinenschaufeln sowie die Lagerung der Rotoreinheit 35 ist in Figur 3 dargestellt, die einen vergrößerten Abschnitt aus Figur 1 wiedergibt. Gezeigt ist exemplarisch die Aufnahme der Turbinenschaufel 21d, wobei die Darstellung exemplarisch auch für alle übrigen Turbinenschaufeln gilt. Die Turbinenschaufel 21d ist mittels einer Momentenlagerung 37 in dem Turbinenring 33 drehbar gelagert. Eine statische Dichtung 14 ist zum Abdichten gegen Fluidübertritt aus dem und in den Strömungskanal 12 vorgesehen. The reception of the turbine blades and the mounting of the rotor unit 35 is shown in FIG. 3, which shows an enlarged section from FIG. Shown is an example of the inclusion of the turbine blade 21d, the illustration applies by way of example for all other turbine blades. The turbine blade 21d is rotatably supported in the turbine ring 33 by means of a moment bearing 37. A static seal 14 is provided for sealing against fluid transfer from and into the flow channel 12.
Die Rotoreinheit 35 weist eine erste Axial-Lagerfläche 39a auf. Gegenüberliegend der ersten Axial-Lagerfläche 39a ist eine erste Axial-Lagerfläche 41a des ersten Außenlagerrings 31a vorgesehen. Auf der ersten Axial-Lagerfläche 41a des ersten Außenlagerrings 31a ist ein erster Gleitbelag 43a angeordnet. The rotor unit 35 has a first axial bearing surface 39a. Opposite the first thrust bearing surface 39a, a first thrust bearing surface 41a of the first outer race 31a is provided. On the first axial bearing surface 41a of the first outer bearing ring 31a, a first sliding coating 43a is arranged.
Eine mechanisch einstellbare Axialdichtung 45a ist radial innerhalb der Lagerflächen 39a, 41a zum Abdichten gegen Fluidaustritt aus der Außenlagerung angeordnet. A mechanically adjustable axial seal 45a is arranged radially inside the bearing surfaces 39a, 41a for sealing against fluid leakage from the outer bearing.
Der erste Außenlagerring 31a weist eine erste Radiallagerfläche 47a auf. Gegenüberliegend zu der ersten Radiallagerfläche 47a ist an der Rotoreinheit 35 eine korrespondierende erste Radiallagerfläche 49a ausgebildet. Auf der ersten Radiallagerfläche 47a des ersten Außenlagerrings 31a ist ein Gleitbelag 51a angeordnet. The first outer bearing ring 31a has a first radial bearing surface 47a. Opposite to the first radial bearing surface 47a, a corresponding first radial bearing surface 49a is formed on the rotor unit 35. On the first radial bearing surface 47a of the first outer bearing ring 31a, a sliding coating 51a is arranged.
Radial außerhalb der Radiallagerflächen 47a, 49a ist eine, vorzugsweise identisch zu der Dichtung 45a ausgebildete, weitere Dichtung 53a angeordnet, um Fluidaustritt aus der Außenlagerung zu verhindern. Die Rotoreinheit 35 weist ferner eine zweite Axial-Lagerfläche 39b auf. Gegenüberliegend der zweiten Axial-Lagerfläche 39b ist eine zweite Axial-Lagerfläche 41 b des zweiten Außenlagerrings 31 b vorgesehen. Auf der zweiten Axial-Lagerfläche 41 b des zweiten Außenlagerrings 31 b ist ein Gleitbelag 43b angeordnet. Eine mechanisch einstellbare Axialdichtung 45b ist radial innerhalb der Lagerflächen 39b, 41 b zum Abdichten gegen Fluidaustritt aus der Außenlagerung angeordnet. Radially outside the radial bearing surfaces 47a, 49a, a further seal 53a, preferably identical to the seal 45a, is arranged in order to prevent fluid leakage from the outer bearing. The rotor unit 35 further includes a second thrust bearing surface 39b. Opposite the second axial bearing surface 39b, a second axial bearing surface 41b of the second outer bearing ring 31b is provided. On the second axial bearing surface 41 b of the second outer bearing ring 31 b, a sliding coating 43 b is arranged. A mechanically adjustable axial seal 45b is arranged radially inside the bearing surfaces 39b, 41b for sealing against fluid leakage from the outer bearing.
Der zweite Außenlagerring 31 b weist eine zweite Radiallagerfläche 47b auf. Gegenüberliegend zu der zweiten Radiallagerfläche 47b ist an der Rotoreinheit 35 eine korrespondierende Radiallagerfläche 49b ausgebildet. Auf der zweiten Radiallagerfläche 47b des zweiten Außenlagerrings 31 b ist ein Gleitbelag 51 b angeordnet. The second outer bearing ring 31 b has a second radial bearing surface 47 b. Opposite to the second radial bearing surface 47b, a corresponding radial bearing surface 49b is formed on the rotor unit 35. On the second radial bearing surface 47 b of the second outer bearing ring 31 b, a sliding coating 51 b is arranged.
Radial außerhalb der Radiallagerflächen 47b, 49b ist eine, vorzugsweise identisch zu der Dichtung 45b ausgebildete, weitere Dichtung 53b angeordnet, um Fluidaustritt aus dem Lager zu verhindern. Radially outside the radial bearing surfaces 47b, 49b, a further seal 53b, preferably identical to the seal 45b, is arranged in order to prevent fluid leakage from the bearing.
Die durch die Lagerringe 31 a,b gebildete Außenlagerung weist Durchlassbohrungen 55a, b als Fluideinlässe bzw. Fluidauslässe zum Ein- und Ablassen von Schmierstoff in das Lagerinnere auf, wobei besonders bevorzugt Wasser als Schmierstoff verwendet wird, insbesondere gefiltertes Flusswasser. Das Wasser wird vorzugsweise in einem Wasserreservoir 57 bereitgestellt. Eine Filtereinheit 59 ist optional dem Wasserreservoir vor- und/oder nachgeschaltet. In Figur 4 ist exemplarisch die Gestaltung des Außenlagerrings 31a, b gemäß Figur 3 gezeigt. Der Außenlagerring 31a, b weist an der Radiallagerfläche 47a, b eine Vielzahl von Gleitbelags-Segmenten auf, die gemeinsam den Gleitbelag 51a, b ausbilden. Die Axial- Lagerfläche (41a, b weist ebenfalls eine Vielzahl von Gleitbelags-Segmenten auf, die gemeinsam den Gleitbelag (43a, b ausbilden. Die Außenlagerringe 31a, b lassen sich auf vorteilhafte Weise bereits ab Werk vormontieren. Ein modulartiges, ringweises axiales Montieren erst des einen Außenlagerrings 31a, b gefolgt von der Rotoreinheit 35 und schließlich dem zweiten Außenlagerring 31 b ermöglicht eine einfache Montage im Wasserkraftwerk 1. Die hohe Anzahl der Segmente der Gleitbeläge 51a, b und 43a, b sorgt in Verbindung mit dem großen Durchmesser der Lagerflächen 41a, b und 47a, b für eine geringe Flächenpressung und hohe Verschleißresistenz des gesamten Gleitlagers. The outer bearing formed by the bearing rings 31 a, b outer passage has passage bores 55 a, b as fluid inlets or fluid outlets for introducing and discharging lubricant in the bearing interior, with particular preference water is used as a lubricant, in particular filtered river water. The water is preferably provided in a water reservoir 57. A filter unit 59 is optionally upstream and / or downstream of the water reservoir. In FIG. 4, the design of the outer bearing ring 31a, b according to FIG. 3 is shown by way of example. The outer bearing ring 31a, b has on the radial bearing surface 47a, b on a plurality of Gleitbelags segments, which together form the sliding coating 51a, b. The axial bearing surface 41a, b also has a large number of sliding lining segments which jointly form the sliding lining 43a, b. The outer bearing rings 31a, b can be preassembled in an advantageous manner already ex works the one outer bearing ring 31a, b followed by the rotor unit 35 and finally the second outer bearing ring 31b allows easy mounting in the hydropower plant 1. The high number of segments of the sliding linings 51a, b and 43a, b provides in connection with the large diameter of the bearing surfaces 41a , b and 47a, b for a low surface pressure and high wear resistance of the entire plain bearing.

Claims

Ansprüche claims
1. Wasserturbine (1 1 ) für ein Wasserkraftwerk (1 ), mit 1. Water turbine (1 1) for a hydroelectric power plant (1), with
einem Strömungskanal (12) mit einem Strömungseinlass (13) und einem Ström ungsein- lass (15), a flow channel (12) having a flow inlet (13) and a flow inlet (15),
einem in dem Strömungskanal (12) angeordneten Turbinenrotor (17) mit einer Rotationsachse (X), a turbine rotor (17) arranged in the flow channel (12) with an axis of rotation (X),
einem Ringgenerator zum Erzeugen elektrischer Energie mit einem Generatorrotor (25) und einen Generatorstator (27), wobei der Generatorrotor (25) mit dem Turbinenrotor (17) zu einer Rotoreinheit (35) drehfest verbunden ist, und a ring generator for generating electrical energy with a generator rotor (25) and a generator stator (27), wherein the generator rotor (25) with the turbine rotor (17) to a rotor unit (35) is rotatably connected, and
einer Lagereinheit (31 a,b) zur Aufnahme der auf die Rotoreinheit wirkenden radialen und axialen Kräfte, a bearing unit (31 a, b) for receiving the radial and axial forces acting on the rotor unit,
wobei die Lagereinheit bezogen auf die Rotationsachse (X) radial außerhalb des Strömungskanals (12) angeordnet ist, wherein the bearing unit is arranged radially outside the flow channel (12) with respect to the axis of rotation (X),
dadurch gekennzeichnet, dass die Lagereinheit wassergeschmiert ist, characterized in that the storage unit is water lubricated,
wobei die Lagereinheit einen Wassereinlass (55a) aufweist, der fluidleitend mit einem dedizierten Wasserreservoir (57) verbunden ist. wherein the storage unit comprises a water inlet (55a) fluidly connected to a dedicated water reservoir (57).
2. Wasserturbine (1 1 ) nach Anspruch 1 , 2. Water turbine (1 1) according to claim 1,
wobei die Lagereinheit mindestens ein Axiallager, vorzugsweise zwei Axiallager, und mindestens ein Radiallager, vorzugsweise zwei Radiallager, aufweist. wherein the bearing unit has at least one thrust bearing, preferably two thrust bearings, and at least one radial bearing, preferably two radial bearings.
3. Wasserturbine (1 1 ) nach Anspruch 3, 3. water turbine (1 1) according to claim 3,
wobei sämtliche Lagerflächen bezogen auf die Rotationsachse radial außerhalb des Strömungskanals (12) liegen. wherein all bearing surfaces with respect to the axis of rotation radially outside the flow channel (12).
4. Wasserturbine (1 1 ) nach Anspruch 2 oder 3, 4. Water turbine (1 1) according to claim 2 or 3,
wobei das mindestens eine Axiallager und/oder das mindestens eine Radiallager als Gleitlager ausgeführt ist. wherein the at least one thrust bearing and / or the at least one radial bearing is designed as a sliding bearing.
5. Wasserturbine (1 1 ) nach einem der vorstehenden Ansprüche, 5. water turbine (1 1) according to any one of the preceding claims,
wobei die Lagereinheit zwei in Richtung der Rotationsachse (X) beabstandete Außenlagerringe aufweist. wherein the bearing unit comprises two outer bearing rings spaced apart in the direction of the axis of rotation (X).
6. Wasserturbine (1 1 ) nach Anspruch 5, 6. Water turbine (1 1) according to claim 5,
wobei die Außenlagerringe einander zugewandte Axiallager-Außenflächen aufweisen, und die Rotoreinheit korrespondierend ausgebildete, gegenüberliegend angeordnete Axiallager-Innenflächen zum Bilden der Axiallager aufweist. wherein the outer bearing rings facing each other have thrust bearing outer surfaces, and the rotor unit has correspondingly formed, oppositely disposed thrust bearing inner surfaces for forming the thrust bearings.
7. Wasserturbine (1 1 ) nach Anspruch 5 oder 6, 7. water turbine (1 1) according to claim 5 or 6,
wobei die Außenlagerringe jeweils eine umlaufende Radiallagerfläche, vorzugsweise eine Radiallager-Innenfläche, aufweisen, und die Rotoreinheit jeweils eine korrespondierend ausgebildete, gegenüberliegend angeordnete Radiallagerfläche, vorzugsweise Radiallager-Außenfläche, zum Bilden der Radiallager aufweist. wherein the outer bearing rings each have a circumferential radial bearing surface, preferably a radial bearing inner surface, and the rotor unit each having a correspondingly formed, oppositely disposed radial bearing surface, preferably radial bearing outer surface, for forming the radial bearing.
8. Wasserturbine (1 1 ) nach Anspruch 6 oder 7, 8. Water turbine (1 1) according to claim 6 or 7,
wobei die Außenlagerringe auf ihren Lagerflächen Gleitbeläge aufweisen. wherein the outer bearing rings have on their bearing surfaces sliding linings.
9. Wasserturbine (1 1 ) nach Anspruch 6, 9. water turbine (1 1) according to claim 6,
wobei die Gleitbeläge in Form mehrerer, vorzugsweise voneinander beabstand eter, Segmente auf den jeweiligen Lagerflächen angeordnet sind. wherein the sliding linings are arranged in the form of a plurality of, preferably spaced-apart, segments on the respective bearing surfaces.
10. Wasserturbine (1 1 ) nach einem der vorstehenden Ansprüche, 10. Water turbine (1 1) according to one of the preceding claims,
wobei der Turbinenrotor (17) mehrere Turbinenschaufeln (21a-d) aufweist, vorzugsweise zwei, drei, vier oder mehr, und wherein the turbine rotor (17) comprises a plurality of turbine blades (21a-d), preferably two, three, four or more, and
wobei die Turbinenschaufeln (21a-d) im Wesentlichen senkrecht zur Rotationsachse X zur Verstellung ihres Schaufelwinkels drehbar an der Rotoreinheit (35) gelagert sind. wherein the turbine blades (21a-d) are mounted rotatably on the rotor unit (35) substantially perpendicular to the rotation axis X for adjusting its blade angle.
1 1. Wasserkraftwerk (1 ), mit 1 1. Hydroelectric power plant (1), with
einem wasserdurchströmten Strömungskanal (12), a water flow through flow channel (12),
einer Wasserturbine (1 1 ), die zur Erzeugung elektrischer Energie mit einem Generator (23) verbunden ist, und einem Leitapparat (29), der stromabwärts oder stromaufwärts benachbart zur der Wasserturbine angeordnet ist, a water turbine (1 1) connected to a generator (23) for generating electrical energy and a nozzle (29) located downstream or upstream adjacent to the water turbine,
wobei die Wasserturbine (1 1 ) nach einem der vorstehenden Ansprüche ausgebildet ist. wherein the water turbine (1 1) is designed according to one of the preceding claims.
EP17706484.7A 2016-03-04 2017-02-22 Water turbine, in particular axial turbine, and hydroelectric power plant having said water turbine Withdrawn EP3423703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203596.7A DE102016203596A1 (en) 2016-03-04 2016-03-04 Hydro turbine, in particular axial turbine, and hydroelectric power plant with selbiger
PCT/EP2017/054003 WO2017148756A1 (en) 2016-03-04 2017-02-22 Water turbine, in particular axial turbine, and hydroelectric power plant having said water turbine

Publications (1)

Publication Number Publication Date
EP3423703A1 true EP3423703A1 (en) 2019-01-09

Family

ID=58098631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17706484.7A Withdrawn EP3423703A1 (en) 2016-03-04 2017-02-22 Water turbine, in particular axial turbine, and hydroelectric power plant having said water turbine

Country Status (3)

Country Link
EP (1) EP3423703A1 (en)
DE (1) DE102016203596A1 (en)
WO (1) WO2017148756A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910173B (en) * 2021-01-29 2022-08-02 广船国际有限公司 Power generation facility and boats and ships for boats and ships
DE102021125501A1 (en) 2021-10-01 2023-04-06 ECO Valve Germany GbR (vertretungsberechtigter Gesellschafter: Jan Klappstein, 25023 Humptrup) control valve
AT525669B1 (en) * 2022-06-15 2023-06-15 Global Hydro Energy Gmbh Bearing lubrication of a shaft turbine using natural pressure difference

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1485186A (en) * 1919-11-24 1924-02-26 Leroy F Harza Hydraulic turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095918A (en) * 1975-10-15 1978-06-20 Mouton Jr William J Turbine wheel with catenary blades
JPS58190578A (en) * 1982-04-30 1983-11-07 Toshiba Eng Co Ltd Water lubricating device for hydraulic machine
DE3718954A1 (en) * 1987-06-05 1988-12-22 Uwe Gartmann Propeller arrangement, in particular for ship propulsion plants
US6806586B2 (en) * 1999-10-06 2004-10-19 Aloys Wobben Apparatus and method to convert marine current into electrical power
NO321755B1 (en) * 2003-06-25 2006-07-03 Sinvent As Method and apparatus for converting energy from / to water under pressure.
US7378750B2 (en) * 2005-07-20 2008-05-27 Openhybro Group, Ltd. Tidal flow hydroelectric turbine
NO20055236A (en) * 2005-11-08 2007-01-08 Elinova As Integrated water turbine and generator without hub
GB0700128D0 (en) * 2007-01-04 2007-02-14 Power Ltd C Tidal electricity generating apparatus
DE102008045500A1 (en) 2008-09-03 2010-03-04 Wobben, Aloys Hydropower plant
US9394942B2 (en) * 2014-02-14 2016-07-19 Us Synthetic Corporation Bearing assemblies and apparatuses including superhard bearing elements

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1485186A (en) * 1919-11-24 1924-02-26 Leroy F Harza Hydraulic turbine

Also Published As

Publication number Publication date
DE102016203596A1 (en) 2017-09-07
WO2017148756A1 (en) 2017-09-08

Similar Documents

Publication Publication Date Title
DE102015113145A1 (en) Multi-stage axial compressor arrangement
DE102014117841A1 (en) Device having a rotationally fixed first component and a second component rotatably connected at least in regions to the first component
EP2683941B1 (en) Planetary transmission for wind turbine
EP3721104B1 (en) Rolling bearing assembly
WO2017148756A1 (en) Water turbine, in particular axial turbine, and hydroelectric power plant having said water turbine
DE102016111855A1 (en) Oil distribution system and turbomachinery with an oil distribution system
DE102015112765A1 (en) Powertrain architectures with low-loss hybrid bearings and low-density materials
DE102015113216A1 (en) Powertrain architectures with low-loss monotype bearings and low-density materials
EP1972804A2 (en) Axial bearing with a radial inner roller bearing and a radial outer roller bearing
EP3018375B1 (en) Roller bearing lubrication of a wind power facility
WO2022034040A1 (en) Transmission
WO2021069143A1 (en) Turbomachine, method for operating a turbomachine
EP4012212B1 (en) Bearing housing
EP3034784A1 (en) Cooling means for flow engines
DE102010018555A1 (en) Turbine generator i.e. water turbine generator, for generating electricity from flow of water from e.g. ocean, in hydroelectric power plant, has inner ring connected with turbine wheel surrounds water stream guided by turbine wheel
WO2018006999A1 (en) Bearing device for an exhaust gas turbocharger, and exhaust gas turbocharger
WO2013020578A1 (en) Turbine generator
EP3721103B1 (en) Rolling bearing assembly
DE102018112025A1 (en) Power transmission device
WO2019002564A1 (en) Wind turbine rotary connection, and wind turbine comprising same
EP3536993A1 (en) Slide bearing system, planetary gear, wind power plant and industrial use
EP3844392B1 (en) Bearing arrangement of a wind motor rotor and wind motor
WO2023240304A1 (en) Shaft turbine with a ring generator and conveying and throttle devices
WO2023240305A1 (en) Bearing lubrication of a shaft turbine by means of natural pressure difference
DE102014215623A9 (en) Rolling, in particular needle roller bearings, for arrangement on a pivot of a variable guide vane of a turbomachine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190904

RIC1 Information provided on ipc code assigned before grant

Ipc: H02K 7/18 20060101ALI20200228BHEP

Ipc: H02K 7/08 20060101AFI20200228BHEP

Ipc: F03B 13/08 20060101ALI20200228BHEP

Ipc: B63B 35/44 20060101ALI20200228BHEP

Ipc: H02K 7/14 20060101ALI20200228BHEP

Ipc: F03B 17/06 20060101ALI20200228BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200716

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200909