EP3422045B1 - Système amélioré de poursuite d'objets - Google Patents

Système amélioré de poursuite d'objets Download PDF

Info

Publication number
EP3422045B1
EP3422045B1 EP17178908.4A EP17178908A EP3422045B1 EP 3422045 B1 EP3422045 B1 EP 3422045B1 EP 17178908 A EP17178908 A EP 17178908A EP 3422045 B1 EP3422045 B1 EP 3422045B1
Authority
EP
European Patent Office
Prior art keywords
statistical distribution
radar
meas
inno
tracking algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17178908.4A
Other languages
German (de)
English (en)
Other versions
EP3422045A1 (fr
Inventor
Sebastian Marsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veoneer Sweden AB
Original Assignee
Veoneer Sweden AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veoneer Sweden AB filed Critical Veoneer Sweden AB
Priority to EP17178908.4A priority Critical patent/EP3422045B1/fr
Priority to PCT/EP2018/065990 priority patent/WO2019001991A1/fr
Priority to US16/626,925 priority patent/US11650305B2/en
Priority to CN201880036066.2A priority patent/CN110691985B/zh
Publication of EP3422045A1 publication Critical patent/EP3422045A1/fr
Application granted granted Critical
Publication of EP3422045B1 publication Critical patent/EP3422045B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles

Definitions

  • the present disclosure relates to a vehicle radar system comprising a control unit arrangement and at least one radar sensor arrangement that is arranged to transmit signals and receive reflected signals.
  • the vehicle radar system is arranged to acquire a plurality of measured radar detections at different times and to engage a tracking algorithm.
  • Many vehicles comprise radar systems which are arranged for object detection, being able to provide a warning to a driver about an object in the path of a vehicle, as well as providing input to vehicle systems such as Adaptive Cruise Control (ACC) and Rear Cross Traffic Avoidance (RCTA) systems, which can provide both warnings and activate Autonomous Emergency Braking (AEB) to avoid a collision with an object behind a host vehicle.
  • ACC Adaptive Cruise Control
  • RCTA Rear Cross Traffic Avoidance
  • AEB Autonomous Emergency Braking
  • Such radar systems comprise one or more forward-looking radar transceivers and one or more rearward-looking radar transceivers in an ego vehicle. It can be difficult to accurately estimate the heading of a remote vehicle or object, especially if the remote vehicle or object is moving in a predominantly lateral or tangential direction relative to the ego vehicle. This is for example the case when an ego vehicle is backing out from a parking slot, entering a road with an oncoming remote vehicle that is driving towards a position behind the host vehicle, and in this case an RCTA system is used.
  • the RCTA system needs the velocity, distance and azimuth angle of the remote vehicle in order to determine if any warning or emergency braking is needed.
  • the RCTA system comprises a control unit that is arranged to run a tracking algorithm that in turn is arranged to predict the movement of the remote vehicle, for example by means of a Kalman filter.
  • the radar sensors will obtain a plurality of detections from the remote vehicle, and each radar scan will return different points. This in turn leads to tangential velocity uncertainty as well as angular noise, which is detrimental for a tracking algorithm that needs a certain amount of consistent radar detections in order to be able predict the movement of the remote vehicle to a sufficient degree.
  • RCTA systems are described in US 2016/291149 and US 2008/306666 , where camera data is used together with radar data.
  • US 20100191391 discloses determining several tracked objects and classifying these tracked objects.
  • An appropriate Kalman filter is selected from a Kalman filter bank using a so-called Markov decision process.
  • US 20100198513 discloses using a Kalman filter tracker for V2V data fused with sensor data.
  • a tracking algorithm produces a sufficient prediction of the movement of a remote vehicle or other target object as quick as possible, regardless of if the tracking algorithm is used in an RCTA system or for any other relevant purposes such as for example general collision avoidance or automatic and/or assisted driving.
  • the object of the present disclosure is to provide a radar system that comprises a tracking algorithm that is arranged to predict the movement of a remote vehicle or other target object to a sufficient degree in a quicker and more reliable manner than before without having to add further components.
  • a vehicle radar system comprising a control unit arrangement and at least one radar sensor arrangement that is arranged to transmit signals and receive reflected signals.
  • the vehicle radar system is arranged to acquire a plurality of measured radar detections at different times.
  • the control unit arrangement is arranged to engage a tracking algorithm using the present measured radar detections as input such that at least one track is initialized. For each track, the control unit arrangement is arranged to i) by means of the tracking algorithm, calculate a calculated previous radar detection that precedes the present measured radar detections at a corresponding previous time that precedes said different times; and to ii) re-initialize the tracking algorithm using the present measured radar detections in combination with the calculated previous radar detection.
  • This object is also obtained by means of a method for a vehicle radar system, where the method comprises transmitting signals and receiving reflected signals, and acquiring a plurality of measured radar detections at different times.
  • the method further comprises engaging a tracking algorithm using the present measured radar detections as input such that at least one track is initialized.
  • the method comprises calculating a calculated previous radar detection that precedes the present measured radar detections at a corresponding previous time that precedes said different times using the tracking algorithm, and re-initializing the tracking algorithm using the present measured radar detections in combination with the calculated previous radar detection.
  • the control unit arrangement is arranged to calculate a corresponding predicted detection and a corresponding corrected predicted detection.
  • the control unit arrangement is furthermore arranged to calculate a corresponding distance vector, an innovation vector, that runs between a present measured radar detection and a corresponding present predicted detection.
  • Each innovation vector is constituted by a vector part of a first vector type and of a vector part of a second vector type.
  • the control unit arrangement is arranged to calculate a statistical distribution of a plurality of at least one of said vector types, and to determine how the calculated statistical distribution is related to another statistical distribution, and/or to determine symmetrical characteristics of the calculated statistical distribution.
  • the control unit arrangement is then arranged to either maintain or re-initialize the tracking algorithm in dependence of the determined result that provides data for quality measures of said track.
  • said another statistical distribution is constituted by a predetermined statistical distribution where the control unit arrangement is arranged to determine to which extent the calculated statistical distribution deviates from the predetermined statistical distribution. If said deviation is determined to exceed a predefined threshold, the control unit arrangement is arranged to re-initialize the tracking algorithm.
  • said another statistical distribution is constituted by a statistical distribution of parts of the corresponding measured radar detections, where the control unit arrangement is arranged to determine a ratio between the calculated statistical distribution and said another statistical distribution. If said ratio is determined to deviate beyond a predefined threshold, the control unit arrangement is arranged to re-initialize the tracking algorithm.
  • a tracking algorithm is provided that produces a sufficient prediction of the movement of a remote vehicle as quick as possible.
  • Figure 1 schematically shows a top view of an ego vehicle 1 arranged to run on a road 2 in a forward direction F, where the ego vehicle 1 comprises a vehicle radar system 3.
  • the vehicle radar system 3 comprises a rear radar sensor arrangement 4 that is arranged to distinguish and/or resolve single targets 5 from the surroundings by transmitting signals 6 and receiving reflected signals 7 and using a Doppler effect in a previously well-known manner.
  • the transmitted signals 6 are according to some aspects constituted by sweep signals in the form of FMCW (Frequency Modulated Continuous Wave) chirp signals 6 of a previously known kind.
  • FMCW Frequency Modulated Continuous Wave
  • the vehicle radar system 3 further comprises a control unit arrangement 8 that is connected to the rear radar sensor arrangement 4 and is arranged to provide azimuth angles of possible target objects 5 by simultaneously sampling and analyzing phase and amplitude of the received signals in a previously well-known manner.
  • a control unit arrangement 8 that is connected to the rear radar sensor arrangement 4 and is arranged to provide azimuth angles of possible target objects 5 by simultaneously sampling and analyzing phase and amplitude of the received signals in a previously well-known manner.
  • a control unit arrangement 8 that is connected to the rear radar sensor arrangement 4 and is arranged to provide azimuth angles of possible target objects 5 by simultaneously sampling and analyzing phase and amplitude of the received signals in a previously well-known manner.
  • a radar detection 9 is shown, having a certain detected azimuth angle ⁇ relative a radar reference line 22 - suitably a radar sensor arrangement boresight direction, distance r and radial velocity v.
  • an approaching target vehicle 31 is moving towards the ego vehicle with a velocity v target , and is detected by means of the rear radar sensor arrangement 4.
  • each measured radar detection 10, 11, 12, 13 has a certain corresponding measured azimuth angle ⁇ 0 , ⁇ -1 , ⁇ -2 , ⁇ -3 , distance r 0 , r -1 , r -2 , r -3 , and radial velocity v 0 , v -1 , v -2 , v -3 . All azimuth angles ⁇ 0 , ⁇ -1 , ⁇ -2 , ⁇ -3 are defined relative the radar reference line 22.
  • the control unit arrangement 8 is arranged to engage a tracking algorithm using a Kalman filter at the initial time t 0 using the present four measured radar detections 10, 11, 12, 13 as input.
  • the central part of a tracking algorithm is the filtering of the tracks.
  • the used filter algorithm can be chosen freely.
  • a Kalman filter is common, but there is a huge variety of filters, e.g. ⁇ - ⁇ -filters or ⁇ - ⁇ - ⁇ -filters.
  • a track is in this context defined by at least a filter state that consists of the position and its derivatives; at least velocity, but can contain also acceleration and higher derivatives. It is desired to have a reliable track engaged as early as possible, when a distance d between the vehicles 1, 31 is as large as possible.
  • control unit arrangement 8 is arranged to use the tracking algorithm to calculate a calculated previous radar detection 14 that precedes the present four measured radar detections 10, 11, 12, 13 at a corresponding previous time t -4 , where the calculated previous radar detection 14 has a certain corresponding calculated azimuth angle ⁇ -4 , distance r -4 , and radial velocity v -4 .
  • the control unit arrangement 8 is arranged to re-start the tracking algorithm using the present four radar detections 10, 11, 12, 13 and the calculated previous radar detection 14, and then calculate a next calculated radar detection 15 at a corresponding next time t +1 .
  • the rear radar sensor arrangement 4 has also detected a next measured radar detection 16 that corresponds to the next calculated radar detection 15.
  • the rear radar sensor arrangement 4 has detected a following measured radar detection 17.
  • no azimuth angle, distance, and radial velocity is indicated for the last detection 15, 16, 17 for reasons of clarity.
  • the calculated radar detection above are predicted radar detections before correction in the tracking algorithm.
  • general measured radar detections, predicted radar detections and corrected radar detection for a running tracking algorithm will be discussed.
  • and a first measured radar detection z t at a time t are shown.
  • is corrected such that a first corrected radar detection x t
  • the procedure continues in a well-known manner such that a second measured radar detection z t+1 , a second predicted radar detection x t+1
  • the first measured radar detection z t has a measured velocity vector m 1
  • has a predicted velocity vector p 1
  • has a first corrected velocity vector c 1 .
  • the first innovation vector 18 is constituted by two parts, a first main part 18a that runs along the predicted velocity vector p 1 and a first perpendicular part 18b that is perpendicular to the first main part 18a.
  • the second measured radar detection z t+1 has a measured velocity vector m 2
  • has a predicted velocity vector p 2
  • has a second corrected velocity vector c 2 .
  • the second innovation vector 23 is constituted by two parts, a second main part 23a that runs along the predicted velocity vector p 2 and a second perpendicular part 23b that is perpendicular to the second main part 23a.
  • the control unit arrangement 8 is arranged to determine a plurality of perpendicular parts 18b, 23b for a corresponding plurality of radar cycles, and to calculate a statistical distribution 24 for said perpendicular parts 18b, 23b.
  • the control unit arrangement 8 is then arranged to determine to which extent the calculated statistical distribution deviates from a predetermined statistical distribution 25, according to some aspects a normal, or Gaussian, distribution, and/or its symmetrical characteristics such as symmetry around a zero point. If the deviation exceeds a predefined threshold, the tracking algorithm is re-started.
  • said plurality of perpendicular parts 18b, 23b is constituted by about 10 - 30 perpendicular parts.
  • the main parts 18a, 23a are dependent on the predicted velocity vector p 1 , p 2 .
  • the control unit arrangement 8 is arranged to determine a plurality of main parts for a corresponding plurality of radar cycles, and to calculate a statistical distribution for said main parts. The control unit arrangement 8 is then arranged to determine to which extent the calculated statistical distribution is related to the direction of the track. If the calculated statistical distribution is pointing to the rear of the track, the track is too fast, and if the calculated statistical distribution is pointing to the front of the track, the track is too slow.
  • the calculated statistical distribution 24 deviates from a predetermined statistical distribution 25, according to some aspects a normal, or Gaussian, distribution, and/or its symmetrical characteristics such as symmetry around a zero point. If the deviation exceeds a predefined threshold, the tracking algorithm is re-started in this case as well.
  • has a certain calculated azimuth angle ⁇ p , distance r p , and radial velocity v p
  • the first measured radar detection z t has a certain measured azimuth angle ⁇ m , distance r m , and radial velocity v m
  • the azimuth angles ⁇ p , ⁇ m are measured from the radar reference line 22. Between the azimuth angles ⁇ p , ⁇ m there is a difference angle ⁇ , and between the distances r p , r m there is a difference distance ⁇ r.
  • the innovation vector 19 is constituted by two parts, an angular part, the difference angle ⁇ , and a radial part, the difference distance ⁇ r.
  • has a corresponding corrected radar detection, and of course a plurality of measured radar detections, predicted radar detections and predicted radar detections is obtained during a plurality of radar cycles.
  • the control unit arrangement 8 is arranged to determine a plurality of angular parts ⁇ , and a plurality of measured azimuth angles ⁇ m , for a corresponding plurality of radar cycles, and to calculate a first angular statistical distribution ⁇ inno, ⁇ for the angular parts ⁇ and a second angular statistical distribution ⁇ meas, ⁇ for the measured azimuth angles ⁇ m .
  • the control unit arrangement 8 is then arranged to determine an angular noise ratio by dividing the first angular statistical distribution ⁇ inno, ⁇ with the second angular statistical distribution ⁇ meas, ⁇ .
  • the control unit arrangement 8 is arranged to determine a plurality of radial parts ⁇ r, and a plurality of measured distances r m , for a corresponding plurality of radar cycles, and to calculate a first distance statistical distribution ⁇ inno,r for the radial parts ⁇ r and a second distance statistical distribution ⁇ meas,r for the measured distances r m .
  • the control unit arrangement 8 is then arranged to determine a range noise ration by dividing the first distance statistical distribution ⁇ inno,r with the second distance statistical distribution ⁇ meas,r .
  • the statistical distributions ⁇ inno, ⁇ , ⁇ inno,r , ⁇ meas, ⁇ , ⁇ meas,r are constituted by normal, or Gaussian, distributions.
  • a radar cycle is one observation phase during which the vehicle radar system 2 is arranged to acquire data, process said data on several signal processing levels and to send out available results. This can be a fixed time interval, or it can be a dynamic time interval depending on environment conditions and processing load.
  • the tracking algorithm can be re-started or reinitialized.
  • the quality measures define how well a certain track fits corresponding measurement.
  • a core of the present disclosure lies not that the statistical distribution of innovation vector parts 18a, 18b; ⁇ , ⁇ r are determined and investigated. The investigation result provides data for said quality measures.
  • a tracking procedure follows the following steps:
  • the ego vehicle 1 comprises a safety control unit 20 and safety means 21, for example an emergency braking system and/or an alarm signal device.
  • the safety control unit 20 is arranged to control the safety means 21 in dependence of input from the radar system 3. Such input may be input via the control unit arrangement 8.
  • the present disclosure also relates to a method for a vehicle radar system 3, where the method comprises:
  • the method comprises:
  • the radar system may be implemented in any type of vehicle such as cars, trucks and buses as well as boats and aircraft.
  • the statistical distributions 24, 25; ⁇ inno, ⁇ , ⁇ meas, ⁇ ; ⁇ inno,r, ⁇ meas,r, shown are only examples of statistical distributions that are used for explaining the present disclosure.
  • the statistical distributions 24, 25; ⁇ inno, ⁇ , ⁇ meas, ⁇ ; ⁇ inno,r, ⁇ meas,r, can have any forms possible and/or suitable within the scope of the present disclosure.
  • control unit arrangement 8 may be comprised by one or more separate or integrated control units.
  • the safety control unit 20 is according to some aspects comprised in the control unit arrangement 8.
  • tracked target vehicle generally there can be any type of tracked target object such as for example a bicycle or a pedestrian.
  • FMCW signals and FMCW signal configurations are also conceivable, as well as other types of Doppler radar signals.
  • Other types of radar systems are also conceivable; not only FMCW radar systems are conceivable.
  • Pulse radar, FSK (frequency-shift keying) or CW (continuous wave) waveform are also conceivable like all other kinds of suitable modulation techniques.
  • a rear vehicle radar system is shown in Figure 1 and Figure 2 , but the examples above are of course applicable for any type of vehicle radar system at any position in a vehicle.
  • the present disclosure relates to a vehicle radar system 3 comprising a control unit arrangement 8 and at least one radar sensor arrangement 4 that is arranged to transmit signals 6 and receive reflected signals 7, where the vehicle radar system 3 is arranged to acquire a plurality of measured radar detections 10, 11, 12, 13 at different times; where the control unit arrangement 8 is arranged to engage a tracking algorithm using the present measured radar detections 10, 11, 12, 13 as input such that at least one track is initialized. For each track, the control unit arrangement 8 is arranged to:
  • said plurality of measured radar detections 10, 11, 12, 13 constitutes at least four measured radar detections 10, 11, 12, 13.
  • the tracking algorithm comprises a Kalman filter.
  • the control unit arrangement 8 is arranged to calculate a corresponding predicted detection x t
  • said another statistical distribution is constituted by a predetermined statistical distribution 25, where the control unit arrangement 8 is arranged to determine to which extent the calculated statistical distribution deviates from the predetermined statistical distribution 25, and if said deviation is determined to exceed a predefined threshold, to re-initialize the tracking algorithm.
  • said another statistical distribution is constituted by a statistical distribution ⁇ meas, ⁇ , ⁇ meas,r of parts of the corresponding measured radar detections z t , z t+1 , where the control unit arrangement 8 is arranged to determine a ratio between the calculated statistical distribution ⁇ inno, ⁇ , ⁇ inno,r and said another statistical distribution ⁇ meas, ⁇ , ⁇ meas,r , and if said ratio is determined to deviate beyond a predefined threshold, to re-initialize the tracking algorithm.
  • the present disclosure also relates to a method for a vehicle radar system 3, where the method comprises:
  • said plurality of measured radar detections 10, 11, 12, 13 constitutes at least four measured radar detections 10, 11, 12, 13.
  • the tracking algorithm uses a Kalman filter.
  • the method comprises calculating a corresponding predicted detection x t
  • said another statistical distribution is constituted by a predetermined statistical distribution 25, where the control unit arrangement 8 is arranged to determine to which extent the calculated statistical distribution deviates from the predetermined statistical distribution 25, and if said deviation is determined to exceed a predefined threshold, to re-initialize the tracking algorithm.
  • said another statistical distribution is constituted by a statistical distribution ⁇ meas, ⁇ , ⁇ meas,r of parts of the corresponding measured radar detections z t , z t+1 , where the control unit arrangement 8 is arranged to determine a ratio between the calculated statistical distribution ⁇ inno, ⁇ , ⁇ inno,r and said another statistical distribution ⁇ meas, ⁇ , ⁇ meas,r , and if said ratio is determined to deviate beyond a predefined threshold, to re-initialize the tracking algorithm.

Claims (12)

  1. Système radar de véhicule (3) comprenant un agencement d'unité de commande (8) et au moins un agencement de capteur de radar (4) qui est agencé pour transmettre des signaux (6) et recevoir des signaux réfléchis (7), où le système radar de véhicule (3) est agencé pour acquérir une pluralité de détections radar mesurées (10, 11, 12, 13) à différents moments ; où l'agencement d'unité de commande (8) est agencé pour engager un algorithme de pistage en utilisant les détections radar mesurées présentes (10, 11, 12, 13) en guise d'entrée de telle sorte qu'au moins une piste est initialisée, caractérisé en ce que pour chaque piste, l'agencement d'unité de commande (8) est agencé pour :
    - au moyen de l'algorithme de pistage, calculer une détection radar précédente calculée (14) qui précède les détections radar mesurées présentes (10, 11, 12, 13) à un moment précédent correspondant qui précède lesdits différents moments ; et pour
    - réinitialiser l'algorithme de pistage en utilisant les détections radar mesurées présentes (10, 11, 12, 13) en combinaison avec la détection radar précédente calculée (14).
  2. Système radar de véhicule (3) selon la revendication 1, caractérisé en ce que ladite pluralité de détections radar mesurées (10, 11, 12, 13) constitue au moins quatre détections radar mesurées (10, 11, 12, 13).
  3. Système radar de véhicule (3) selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que l'algorithme de pistage comprend un filtre de Kalman.
  4. Système radar de véhicule (3) selon l'une quelconque des revendications précédentes, caractérisé en ce que pour chaque piste, pour chacune d'une pluralité de détections radar mesurées (zt, zt+1), l'agencement d'unité de commande (8) est agencé pour calculer une détection prédite correspondante (xt|t-1|, xt+1|t|) et une détection prédite corrigée correspondante (xt|t|, xt+1|t+1|), et pour calculer en outre un vecteur de distance correspondant, un vecteur d'innovation (18, 19), qui s'étend entre une détection radar mesurée présente (zt) et une détection prédite présente correspondante (xt|t-1|), où chaque vecteur d'innovation (18, 19) est constitué par une partie de vecteur d'un premier type de vecteur (18a, Δϕ) et d'une partie de vecteur d'un second type de vecteur (18b, Δr), où l'agencement d'unité de commande (8) est agencé pour :
    - calculer une distribution statistique (24 ; σinno,ϕ, σinno,r) d'une pluralité d'au moins l'un desdits types de vecteur (18a, Δϕ ; 18b, Δr) ;
    - déterminer comment la distribution statistique calculée (24 ; σinno,ϕ, σinno,r) est apparentée à une autre distribution statistique (25 ; σmeas,r) ; et/ou
    - déterminer des caractéristiques symétriques de la distribution statistique calculée (24 ; σinno.ϕ, σinno,r) ;
    - et pour soit maintenir soit réinitialiser l'algorithme de pistage en fonction de la relation déterminée et/ou de caractéristiques symétriques qui fournit des données pour des mesures de qualité de ladite piste,
    où ladite autre distribution statistique est constituée soit par une distribution statistique prédéterminée (25), soit par une distribution statistique (σmeas,ϕ, σmeas,r) de parties des détections radar mesurées correspondantes (zt, zt+1).
  5. Système radar de véhicule (3) selon la revendication 4, caractérisé en ce que ladite autre distribution statistique est constituée par une distribution statistique prédéterminée (25), où l'agencement d'unité de commande (8) est agencé pour déterminer dans quelle mesure la distribution statistique calculée dévie de la distribution statistique prédéterminée (25), et si ladite déviation est déterminée comme dépassant un seuil prédéfini, pour réinitialiser l'algorithme de pistage.
  6. Système radar de véhicule (3) selon la revendication 4, caractérisé en ce que ladite autre distribution statistique est constituée par une distribution statistique (σmeas,ϕ, σmeas,r) de parties des détections radar mesurées correspondantes (zt, zt+1), où l'agencement d'unité de commande (8) est agencé pour déterminer un rapport entre la distribution statistique calculée (σinno,ϕ, σinno,r) et ladite autre distribution statistique (σmeas,ϕ, σmeas,r), et si ledit rapport est déterminé comme déviant au-delà d'un seuil prédéfini, pour réinitialiser l'algorithme de pistage.
  7. Procédé pour un système radar de véhicule (3), où le procédé comprend :
    (26) la transmission de signaux (6) et la réception de signaux réfléchis (7) ;
    (27) l'acquisition d'une pluralité de détections radar mesurées (10, 11, 12, 13) à différents moments;
    (28) l'engagement d'un algorithme de pistage en utilisant les détections radar mesurées présentes (10, 11, 12, 13) en guise d'entrée de telle sorte qu'au moins une piste est initialisée, caractérisé en ce que pour chaque piste, le procédé comprend :
    (29) le calcul d'une détection radar précédente calculée (14) qui précède les détections radar mesurées présentes (10, 11, 12, 13) à un moment précédent correspondant qui précède lesdits différents moments en utilisant l'algorithme de pistage ; et
    (30) la réinitialisation de l'algorithme de pistage en utilisant les détections radar mesurées présentes (10, 11, 12, 13) en combinaison avec la détection radar précédente calculée (14).
  8. Procédé selon la revendication 7, caractérisé en ce que ladite pluralité de détections radar mesurées (10, 11, 12, 13) constitue au moins quatre détections radar mesurées (10, 11, 12, 13).
  9. Procédé selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que l'algorithme de pistage utilise un filtre de Kalman.
  10. Procédé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que pour chaque piste, pour chacune d'une pluralité de détections radar mesurées (zt, zt+1), le procédé comprend le calcul d'une détection prédite correspondante (xt|t-1|, xt+1|t|) et d'une détection prédite corrigée correspondante (xt|t|, xt+1|t+1|), et le calcul d'un vecteur de distance correspondant, d'un vecteur d'innovation (18, 19), qui s'étend entre une détection radar mesurée présente (zt) et une détection prédite présente correspondante (xt|t-1|), où chaque vecteur d'innovation (18, 19) est constitué par une partie de vecteur d'un premier type de vecteur (18a, Δϕ) et d'une partie de vecteur d'un second type de vecteur (18b, Δr), où le procédé comprend en outre :
    - le calcul d'une distribution statistique (24 ; σinno,ϕ, σinno,r) d'une pluralité d'au moins l'un desdits types de vecteur (18a, Δϕ ; 18b, Δr) ;
    - la détermination de comment la distribution statistique calculée (24 ; σinno,ϕ, σinno,r) est apparentée à une autre distribution statistique (25 ; σmeas,ϕ, σmeas,r) ; et/ou
    - la détermination de caractéristiques symétriques de la distribution statistique calculée (24 ; σinno,ϕ, σinno,r) ; et soit
    le maintien ou la réinitialisation de l'algorithme de pistage en fonction de la relation déterminée et/ou de caractéristiques symétriques qui fournit des données pour des mesures de qualité de ladite piste, où ladite autre distribution statistique est constituée soit par une distribution statistique prédéterminée (25), soit par une distribution statistique (σmeas,ϕ, σmeas,r) de parties des détections radar mesurées correspondantes (zt, zt+1).
  11. Procédé selon la revendication 10, caractérisé en ce que ladite autre distribution statistique est constituée par une distribution statistique prédéterminée (25), où l'agencement d'unité de commande (8) est agencé pour déterminer dans quelle mesure la distribution statistique calculée dévie de la distribution statistique prédéterminée (25), et si ladite déviation est déterminée comme dépassant un seuil prédéfini, pour réinitialiser l'algorithme de pistage.
  12. Procédé selon la revendication 10, caractérisé en ce que ladite autre distribution statistique est constituée par une distribution statistique (σmeas,ϕ, σmeas,r) de parties des détections radar mesurées correspondantes (zt, zt+1), où l'agencement d'unité de commande (8) est agencé pour déterminer un rapport entre la distribution statistique calculée (σinno,ϕ, σinno,r) et ladite autre distribution statistique (σmeas,ϕ, σmeas,r), et si ledit rapport est déterminé comme déviant au-delà d'un seuil prédéfini, pour réinitialiser l'algorithme de pistage.
EP17178908.4A 2017-06-30 2017-06-30 Système amélioré de poursuite d'objets Active EP3422045B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17178908.4A EP3422045B1 (fr) 2017-06-30 2017-06-30 Système amélioré de poursuite d'objets
PCT/EP2018/065990 WO2019001991A1 (fr) 2017-06-30 2018-06-15 Système pour l'amélioration du pistage d'un objet
US16/626,925 US11650305B2 (en) 2017-06-30 2018-06-15 System for enhanced object tracking
CN201880036066.2A CN110691985B (zh) 2017-06-30 2018-06-15 用于增强的对象追踪的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17178908.4A EP3422045B1 (fr) 2017-06-30 2017-06-30 Système amélioré de poursuite d'objets

Publications (2)

Publication Number Publication Date
EP3422045A1 EP3422045A1 (fr) 2019-01-02
EP3422045B1 true EP3422045B1 (fr) 2022-04-20

Family

ID=59258148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17178908.4A Active EP3422045B1 (fr) 2017-06-30 2017-06-30 Système amélioré de poursuite d'objets

Country Status (4)

Country Link
US (1) US11650305B2 (fr)
EP (1) EP3422045B1 (fr)
CN (1) CN110691985B (fr)
WO (1) WO2019001991A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181010B2 (ja) * 2018-06-11 2022-11-30 株式会社デンソーテン レーダ装置および物標検出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626535B2 (en) * 2006-11-09 2009-12-01 Raytheon Company Track quality based multi-target tracker
GB0701869D0 (en) * 2007-01-31 2007-03-14 Cambridge Consultants Adaptive radar
US20080306666A1 (en) 2007-06-05 2008-12-11 Gm Global Technology Operations, Inc. Method and apparatus for rear cross traffic collision avoidance
US8812226B2 (en) * 2009-01-26 2014-08-19 GM Global Technology Operations LLC Multiobject fusion module for collision preparation system
US8229663B2 (en) * 2009-02-03 2012-07-24 GM Global Technology Operations LLC Combined vehicle-to-vehicle communication and object detection sensing
US8793046B2 (en) * 2012-06-01 2014-07-29 Google Inc. Inferring state of traffic signal and other aspects of a vehicle's environment based on surrogate data
TWI470257B (zh) * 2013-10-07 2015-01-21 Univ Nat Chiao Tung 角度估計檢測方法及電子裝置
US10191150B2 (en) * 2014-03-14 2019-01-29 Embraer S.A. High precision radar to track aerial targets
US9599706B2 (en) 2015-04-06 2017-03-21 GM Global Technology Operations LLC Fusion method for cross traffic application using radars and camera
US10718864B2 (en) * 2016-06-17 2020-07-21 Fujitsu Ten Limited Radar device and information transfer method
JP6597517B2 (ja) * 2016-08-10 2019-10-30 株式会社デンソー 物標検出装置

Also Published As

Publication number Publication date
WO2019001991A1 (fr) 2019-01-03
US20200132827A1 (en) 2020-04-30
CN110691985A (zh) 2020-01-14
US11650305B2 (en) 2023-05-16
EP3422045A1 (fr) 2019-01-02
CN110691985B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
JP2001242242A (ja) 検知性能向上機能を備えたミリ波レーダ装置
US20180095103A1 (en) State calculation apparatus, state calculation method, and recording medium storing program for moving object
CN105093213A (zh) 具有改进的多目标区分的雷达系统
EP3539837B1 (fr) Système de radar de véhicule permettant de détecter des véhicules précédents
US11307300B2 (en) Vehicle radar system
KR20190125453A (ko) 하나 이상의 표적의 반경방향 상대 가속도를 결정하기 위한 방법 및 레이더 장치
KR20200108464A (ko) 임계적인 횡방향 이동을 검출하는 방법 및 장치
Macaveiu et al. Automotive radar target tracking by Kalman filtering
US11391833B2 (en) System for enhanced object tracking
KR102569539B1 (ko) 차량용 물체감지시스템 및 차량용 물체감지방법
JPWO2005066656A1 (ja) 車載レーダ装置およびその信号処理方法
EP3422045B1 (fr) Système amélioré de poursuite d'objets
EP3401699A1 (fr) Système de détection d'environnement de véhicule pour la détection de stationnement
EP3413082B1 (fr) Système de véhicule pour la détection de véhicules en approche
EP3480624A1 (fr) Détection d'orientation de rangée de stationnement
US11435474B2 (en) Vehicle system for detection of oncoming vehicles
US11300660B2 (en) Determining relative velocity in a vehicle radar system
EP3699632A1 (fr) Système de radar de véhicule permettant de détecter des objets précédents
JP2007232747A (ja) 車載用レーダ装置
KR102175492B1 (ko) 도플러 주파수를 이용한 각도 분해장치
CN111615641B (zh) 用于探测关键横向运动的方法和设备
CN114402224A (zh) 用于物体跟踪的方法
KR20160112672A (ko) 레이더 신호 처리장치 및 방법
JPH04305184A (ja) 自動車用障害物検知装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190701

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602017056156

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01S0013720000

Ipc: G01S0013931000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 13/72 20060101ALI20211028BHEP

Ipc: G01S 13/931 20200101AFI20211028BHEP

INTG Intention to grant announced

Effective date: 20211119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017056156

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1485578

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220420

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1485578

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220720

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017056156

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230626

Year of fee payment: 7

Ref country code: DE

Payment date: 20230620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230622

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017056156

Country of ref document: DE

Owner name: MAGNA ELECTRONICS SWEDEN AB, SE

Free format text: FORMER OWNER: VEONEER SWEDEN AB, VARGARDA, SE