EP3416809A1 - Kaolin for the mechanical reinforcement of polymeric laser sinter powder - Google Patents
Kaolin for the mechanical reinforcement of polymeric laser sinter powderInfo
- Publication number
- EP3416809A1 EP3416809A1 EP17705860.9A EP17705860A EP3416809A1 EP 3416809 A1 EP3416809 A1 EP 3416809A1 EP 17705860 A EP17705860 A EP 17705860A EP 3416809 A1 EP3416809 A1 EP 3416809A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polyamide
- aluminum silicate
- powder
- range
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 162
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 title claims description 17
- 239000005995 Aluminium silicate Substances 0.000 title claims description 12
- 235000012211 aluminium silicate Nutrition 0.000 title claims description 12
- 230000002787 reinforcement Effects 0.000 title description 4
- 229920002647 polyamide Polymers 0.000 claims abstract description 147
- 239000004952 Polyamide Substances 0.000 claims abstract description 145
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 claims abstract description 122
- 238000000034 method Methods 0.000 claims abstract description 63
- 238000000110 selective laser sintering Methods 0.000 claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 238000005245 sintering Methods 0.000 claims description 97
- 239000000203 mixture Substances 0.000 claims description 37
- 239000000654 additive Substances 0.000 claims description 33
- 230000000996 additive effect Effects 0.000 claims description 31
- 229920002292 Nylon 6 Polymers 0.000 claims description 27
- 229920002302 Nylon 6,6 Polymers 0.000 claims description 23
- -1 PA 69 Polymers 0.000 claims description 18
- 229920000299 Nylon 12 Polymers 0.000 claims description 16
- 238000000227 grinding Methods 0.000 claims description 13
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 10
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- 229920006123 polyhexamethylene isophthalamide Polymers 0.000 claims description 9
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 8
- 229920000305 Nylon 6,10 Polymers 0.000 claims description 7
- 229920000572 Nylon 6/12 Polymers 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- 230000002821 anti-nucleating effect Effects 0.000 claims description 4
- 239000000975 dye Substances 0.000 claims description 4
- 229920003189 Nylon 4,6 Polymers 0.000 claims description 3
- 229920000393 Nylon 6/6T Polymers 0.000 claims description 3
- 229920006121 Polyxylylene adipamide Polymers 0.000 claims description 3
- 238000003801 milling Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 description 33
- 239000002904 solvent Substances 0.000 description 33
- 238000000465 moulding Methods 0.000 description 25
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 16
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 16
- 150000003951 lactams Chemical class 0.000 description 15
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 12
- 239000000945 filler Substances 0.000 description 12
- 238000002844 melting Methods 0.000 description 12
- 230000008018 melting Effects 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 238000002425 crystallisation Methods 0.000 description 10
- 230000008025 crystallization Effects 0.000 description 10
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
- 238000000113 differential scanning calorimetry Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052622 kaolinite Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 4
- 235000011037 adipic acid Nutrition 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052901 montmorillonite Inorganic materials 0.000 description 4
- 239000002114 nanocomposite Substances 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920006097 Ultramide® Polymers 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 150000003954 δ-lactams Chemical class 0.000 description 3
- 150000003955 ε-lactams Chemical class 0.000 description 3
- HCUZVMHXDRSBKX-UHFFFAOYSA-N 2-decylpropanedioic acid Chemical compound CCCCCCCCCCC(C(O)=O)C(O)=O HCUZVMHXDRSBKX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920006060 Grivory® Polymers 0.000 description 2
- OKOBUGCCXMIKDM-UHFFFAOYSA-N Irganox 1098 Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NCCCCCCNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 OKOBUGCCXMIKDM-UHFFFAOYSA-N 0.000 description 2
- 229920000577 Nylon 6/66 Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229920003231 aliphatic polyamide Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- CJYXCQLOZNIMFP-UHFFFAOYSA-N azocan-2-one Chemical compound O=C1CCCCCCN1 CJYXCQLOZNIMFP-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- GMAYNBHUHYFCPZ-UHFFFAOYSA-N cyclohexyl-(4,4-dimethylcyclohexyl)methanediamine Chemical compound C1CC(C)(C)CCC1C(N)(N)C1CCCCC1 GMAYNBHUHYFCPZ-UHFFFAOYSA-N 0.000 description 2
- KEIQPMUPONZJJH-UHFFFAOYSA-N dicyclohexylmethanediamine Chemical compound C1CCCCC1C(N)(N)C1CCCCC1 KEIQPMUPONZJJH-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052615 phyllosilicate Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 229920006012 semi-aromatic polyamide Polymers 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 150000003953 γ-lactams Chemical class 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- OYNOCRWQLLIRON-UHFFFAOYSA-N 1-n,3-n-bis(2,2,6,6-tetramethylpiperidin-4-yl)benzene-1,3-dicarboxamide Chemical compound C1C(C)(C)NC(C)(C)CC1NC(=O)C1=CC=CC(C(=O)NC2CC(C)(C)NC(C)(C)C2)=C1 OYNOCRWQLLIRON-UHFFFAOYSA-N 0.000 description 1
- FHKPTEOFUHYQFY-UHFFFAOYSA-N 2-aminohexanenitrile Chemical group CCCCC(N)C#N FHKPTEOFUHYQFY-UHFFFAOYSA-N 0.000 description 1
- JZUHIOJYCPIVLQ-UHFFFAOYSA-N 2-methylpentane-1,5-diamine Chemical compound NCC(C)CCCN JZUHIOJYCPIVLQ-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- BDBZTOMUANOKRT-UHFFFAOYSA-N 4-[2-(4-aminocyclohexyl)propan-2-yl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1C(C)(C)C1CCC(N)CC1 BDBZTOMUANOKRT-UHFFFAOYSA-N 0.000 description 1
- ZYEDGEXYGKWJPB-UHFFFAOYSA-N 4-[2-(4-aminophenyl)propan-2-yl]aniline Chemical compound C=1C=C(N)C=CC=1C(C)(C)C1=CC=C(N)C=C1 ZYEDGEXYGKWJPB-UHFFFAOYSA-N 0.000 description 1
- JAWSTIJAWZBKOU-UHFFFAOYSA-N 7-methylazepan-2-one Chemical compound CC1CCCCC(=O)N1 JAWSTIJAWZBKOU-UHFFFAOYSA-N 0.000 description 1
- VWPQCOZMXULHDM-UHFFFAOYSA-N 9-aminononanoic acid Chemical compound NCCCCCCCCC(O)=O VWPQCOZMXULHDM-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001058457 Mus musculus Glycosylation-dependent cell adhesion molecule 1 Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 241000937908 Pricea Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 1
- 229910052849 andalusite Inorganic materials 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- MNFORVFSTILPAW-UHFFFAOYSA-N azetidin-2-one Chemical compound O=C1CCN1 MNFORVFSTILPAW-UHFFFAOYSA-N 0.000 description 1
- YDLSUFFXJYEVHW-UHFFFAOYSA-N azonan-2-one Chemical compound O=C1CCCCCCCN1 YDLSUFFXJYEVHW-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000003950 cyclic amides Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000008384 inner phase Substances 0.000 description 1
- 238000003990 inverse gas chromatography Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- QZUPTXGVPYNUIT-UHFFFAOYSA-N isophthalamide Chemical compound NC(=O)C1=CC=CC(C(N)=O)=C1 QZUPTXGVPYNUIT-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ZETYUTMSJWMKNQ-UHFFFAOYSA-N n,n',n'-trimethylhexane-1,6-diamine Chemical compound CNCCCCCCN(C)C ZETYUTMSJWMKNQ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 229920006128 poly(nonamethylene terephthalamide) Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229920006114 semi-crystalline semi-aromatic polyamide Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 125000005624 silicic acid group Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052851 sillimanite Inorganic materials 0.000 description 1
- 229910052665 sodalite Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical class [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- BPSKTAWBYDTMAN-UHFFFAOYSA-N tridecane-1,13-diamine Chemical compound NCCCCCCCCCCCCCN BPSKTAWBYDTMAN-UHFFFAOYSA-N 0.000 description 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
- C08G69/14—Lactams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2077/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2309/00—Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/30—Applications used for thermoforming
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the present invention relates to a method for producing a shaped article by selective laser sintering of a sintered powder (SP).
- the sintered powder (SP) contains at least one polyamide (P) and in the range of 5 to 50 wt .-%, preferably in the range of 10 to 50 wt .-% of at least one aluminosilicate.
- the at least one aluminum silicate has a D50 value in the range of 2.5 to 4.5 ⁇ m.
- the present invention relates to moldings obtainable by the process according to the invention.
- Rapid deployment of prototypes is a common task in recent times.
- One method that is particularly suitable for this so-called "rapid prototyping” is selective laser sintering.
- a plastic powder is selectively exposed in a chamber with a laser beam. The powder melts, the molten particles run into each other and solidify again. Repeated application of plastic powder and subsequent exposure with a laser allows the modeling of three-dimensional moldings.
- thermoplastic powdery composition for the production of moldings in a selective laser sintering process.
- This thermoplastic powdery composition contains a filler and a block copolymer.
- the block copolymer contains a flexible block and a rigid block.
- As a filler various materials are disclosed. Preference is given to calcium carbonate and magnesium carbonate as fillers.
- the D50 value of the filler is ⁇ 20 ⁇ .
- US 2013/0012643 also describes a powdered composition containing a polymer and a filler.
- the filler is enveloped by the polymer.
- a filler glass particles are described with a D50 value in the range of 3 to 100 ⁇ .
- the filler preferably has a D50 value of 20 to 60 ⁇ m.
- the powdery composition can also be used in a selective laser sintering process for the production of moldings.
- EP 2 543 701 likewise describes a pulverulent composition which can be used in a selective laser sintering process for the production of moldings.
- the powdered composition contains polymers and coated fillers. As fillers, various materials are described, in particular ceramics and metals.
- a disadvantage of the powdery compositions described in the prior art for the production of moldings by selective laser sintering is that the mechanical reinforcement of the moldings obtained is often relatively low, but at the same time the resulting molded body becomes brittle.
- the in the The fillers described in the prior art often have too high a hardness, which makes grinding the powdery composition only poor or almost impossible.
- the fillers used in the prior art often nucleate, resulting in a reduction of the sintering window of the powdered composition.
- a reduction of the sintering window is disadvantageous, as this often forgave the moldings during their production. By this delay, a use or further processing of the molded body is almost impossible. The delay can already be so strong during the production of the moldings that a further layer application is not possible and the production process must be terminated.
- the object underlying the present invention was therefore to provide a process for the production of moldings by selective laser sintering, which does not or only to a lesser extent have the aforementioned disadvantages of the processes described in the prior art.
- the process should be simple and inexpensive to carry out and the moldings obtainable should have a mechanical reinforcement and at the same time as little as possible embrittle.
- the resulting molded articles should have improved mechanical properties, in particular improved impact resistance and notched impact strength.
- This object is achieved by a method for producing a shaped body by selective laser sintering of a sintered powder (SP), characterized in that the sintering powder (SP) at least one polyamide (P) and in the range of 5 to 50% by weight, preferably in the range from 10 to 50 wt .-% of at least one aluminosilicate, based on the total weight of the sintering powder (SP), wherein the at least one aluminum silicate has a D50 value in the range of 2.5 to 4.5 ⁇ .
- SP sintered powder
- molded articles produced by selective laser sintering of a sintered powder (SP) containing at least one polyamide (P) and in the range from 10 to 50% by weight of at least one aluminum silicate are particularly well reinforced without simultaneous addition brittle.
- the reinforcement is clearly demonstrated by an increased tensile modulus and a higher breaking stress of the shaped bodies produced according to the invention compared with shaped bodies produced from the at least one polyamide (P) without 10 to 50% by weight of the at least one aluminum silicate.
- the lower embrittlement of the moldings produced in accordance with the invention compared with moldings produced from the at least one polyamide (P) without 10 to 50% by weight of the at least one aluminum silicate is particularly evident in the greater elongation at break and in the higher impact strength and notched impact strength of the Moldings produced according to the invention compared with Moldings which are produced from the at least one polyamide (P) without 10 to 50 wt .-% of the at least one aluminum silicate.
- the moldings produced according to the invention have a higher heat resistance.
- the sintering powder (SP) can be easily compounded and ground.
- the sintering window (W) of the sintering powder (SP) generally remains and is not reduced, as is often the case with powdered compositions as described in the prior art.
- the shaped bodies produced according to the invention have a lower distortion than shaped bodies which are produced only from the at least one polyamide (P) without 10 to 50% by weight of the at least one aluminum silicate.
- unmelted sintered powder can also be reused.
- the sintering powder (SP) according to the invention has similarly advantageous sintering properties after several laser sintering cycles as in the first sintering cycle.
- a first layer of a sinterable powder is arranged in a powder bed and exposed locally and briefly with a laser beam.
- a laser beam In this case, only the part of the sinterable powder which has been exposed by the laser beam, selectively melted (selective laser sintering).
- the molten sinterable powder flows into one another and thus forms a homogeneous melt in the exposed area.
- the area cools down again and the sinterable powder solidifies again.
- the powder bed is lowered by the layer thickness of the first layer, a second layer of the sinterable powder applied, selectively exposed to the laser and melted.
- the upper second layer of the sinterable powder connects to the lower first layer, and in addition the particles of the sinterable powder within the second layer combine with one another by melting.
- the application of the sinterable powder and the melting of the sinterable powder three-dimensional molded bodies can be produced.
- By selective exposure of certain points with the laser beam it is possible to moldings produce, for example, have cavities.
- An additional support material is not necessary because the unmelted sinterable powder itself acts as a support material.
- Suitable sinterable powders in selective laser sintering are all powders known to those skilled in the art which can be melted by exposure to a laser.
- the sintering powder is used as the sinterable powder in selective laser sintering.
- the terms "sinterable powder” and “sintered powder (SP)” can be used synonymously, they then have the same meaning.
- Suitable lasers for selective laser sintering are known to the person skilled in the art and, for example, fiber lasers, Nd: YAG lasers (neodymium-doped yttrium aluminum garnet lasers) and carbon dioxide lasers.
- the sinterable powder is the sintering powder (SP) according to the invention
- the sintering window (W) is used as “sintered window” in the context of the present invention (W S P) "of the sintering powder (SP).
- the sinterable powder is the at least one polyamide (P) contained in the sintering powder (SP)
- the sintering window (W) is referred to as the "sintered window (W P )" of the at least one polyamide (P) in the context of the present invention.
- the sintering window (W) of a sinterable powder can be determined, for example, by differential scanning calorimetry (DSC).
- the temperature of a sample in this case a sample of the sinterable powder, and the temperature of a reference are changed linearly with time.
- the sample and the reference are supplied with heat or removed therefrom. It determines the amount of heat Q necessary to keep the sample at the same temperature as the reference.
- the reference value used is the quantity of heat Q R supplied or discharged to the reference.
- the measurement provides a DSC diagram in which the amount of heat Q, which is supplied to the sample and discharged from it, is plotted as a function of the temperature T.
- a heating run H is first carried out during the measurement, that is, the sample and the reference are heated linearly.
- an additional amount of heat Q must be supplied to keep the sample at the same temperature as the reference.
- a peak is then observed, the so-called melting peak.
- a cooling run (K) is usually measured.
- the sample and the reference are cooled linearly, so heat is dissipated from the sample and the reference.
- a larger amount of heat Q must be dissipated to keep the sample at the same temperature as the reference, since heat is released during crystallization or solidification.
- a peak, the so-called crystallization peak is then observed in the opposite direction to the melting peak.
- Such a DSC diagram with a heating run (H) and a cooling run (K) is shown by way of example in FIG.
- the onset temperature of the melting (T M onset ) and the onset temperature of the crystallization (T c onset ) can be determined.
- T M ° To determine the onset temperature of reflow (T M °), a tangent is applied to the baseline of the heating run (H), which runs at temperatures below the reflow peak. A second tangent is applied to the first inflection point of the reflow peak, which at temperatures below the temperature is at the maximum of the reflow peak. The two tangents are extrapolated to intersect. The vertical extrapolation of the point of intersection to the temperature axis indicates the onset temperature of the melting (T M onset ).
- T c onset To determine the onset temperature of the crystallization (T c onset ), a tangent is applied to the baseline of the cooling run (K), which runs at the temperatures above the Knstallisationspeaks. A second tangent is applied at the inflection point of the crackling peak, which at temperatures above the temperature is at the minimum of the crackling peak. The two tangents are extrapolated to intersect. The vertical extrapolation of the Intersection point on the temperature axis indicates the onset temperature of the crystallization (T c onset ).
- the sintering window (W) results from the difference between the onset temperature of the melting (T M onset ) and the onset temperature of the crystallization (T c onset ). The following applies: onset onset
- the terms "sintered window (W)", “size of the sintering window (W)” and “difference between the onset temperature of the melting (T M onset ) and the onset temperature of crystallization (the determination of the sintered window (W S P) of the sintering powder (SP) and the determination of the sintered window (W P) of the at least a polyamide (P) T c onset) “has the same meaning and are used interchangeably. as described above.
- the sample is then used to determine the sintering window (W S P) of the sintering powder (SP), the sintering powder (SP), for determining the sintering window (W P ) of the at least one polyamide (P), the at least one polyamide (P) is used as a sample.
- the sintering powder (SP) contains the at least one polyamide (P) and in the range from 10 to 50% by weight of the at least one aluminum silicate based on the total weight of the sintering powder (SP).
- the sintering powder (SP) contains in the range from 10 to 50% by weight, preferably in the range from 10 to 45% by weight and especially preferably in the range from 10 to 40% by weight, of the at least one aluminum silicate on the total weight of the sintering powder (SP).
- the sintering powder (SP) contains, for example, in the range from 50 to 90% by weight, preferably in the range from 55 to 90% by weight and more preferably in the range from 60 to 90% by weight, of the at least one polyamide (P) based on the total weight of the sintering powder (SP).
- the sintering powder (SP) may contain at least one additive (A).
- Suitable additives are known to the person skilled in the art.
- Suitable additives (A) are, for example, selected from the group consisting of antinucleating agents, stabilizers, end group functionalizers and dyes.
- the present invention thus also provides a process in which the at least one additive (A) is selected from the group consisting of antinucleating agents, stabilizers, end group functionalizers and dyes.
- Suitable antinucleating agents are, for example, nigrosine, neutral red and lithium chloride.
- Suitable stabilizers are, for example, phenols, phosphites and copper stabilizers.
- Suitable end group functionalizers are, for example, terephthalic acid and propionic acid.
- a suitable dye is, for example, carbon black.
- the sintering powder (SP) may contain, for example, in the range of 0.1 to 10 wt .-% of the at least one additive (A) based on the total weight of the sintered powder (SP).
- the sintering powder (SP) contains in the range of 0.5 to 8 wt .-%, and particularly preferably in the range of 1 to 5 wt .-%, of the at least one additive (A) each based on the total weight of the sintered powder (SP) ,
- the present invention thus also provides a process in which the sintering powder (SP) additionally contains in the range from 0.1 to 10% by weight of at least one additive (A), based on the total weight of the sintering powder (SP).
- SP sintering powder
- A additive
- the sum of the percentages by weight of the at least one aluminum silicate, of the at least one polyamide (P) and optionally of the at least one additive (A) usually add up to 100%.
- the sintering powder (SP) can be prepared by all methods known to those skilled in the art.
- the sintering powder (SP) is prepared by grinding or by precipitation.
- the production of the sintering powder (SP) by grinding can be carried out by all methods known to the person skilled in the art.
- the at least one polyamide (P), the at least one aluminum silicate and optionally the at least one additive (A) are added to a mill and ground therein.
- Suitable mills are all mills known to the person skilled in the art, for example classifier mills, counter-jet mills, pin mills, hammer mills, ball mills, vibrating mills or rotor mills.
- Milling in the mill can also be carried out by all methods known to those skilled in the art.
- the grinding can take place under inert gas and / or under cooling with liquid nitrogen. Cooling under liquid nitrogen is preferred.
- the temperature during grinding is arbitrary.
- the grinding is preferably carried out at temperatures of liquid nitrogen, for example at a temperature in the range -210 to -195 ° C.
- the at least one polyamide (P), the at least one aluminum silicate and optionally the at least one additive (A) can be introduced into the mill by all methods known to those skilled in the art.
- the at least one polyamide (P), the at least one aluminum silicate and optionally the at least one additive (A) may be added separately to the mill and ground and mixed together.
- the preparation of the sintering powder (SP) comprises the following steps: i) mixing at least one polyamide (P) with at least one aluminum silicate and optionally at least one additive (A), wherein the at least one aluminum silicate has a D50 value in the range from 2.5 to 4.5 ⁇ , to obtain a mixture containing at least one polyamide (P), at least one aluminum silicate and optionally at least one other
- the preparation of the sintering powder (SP) comprises the following steps: i) mixing at least one polyamide (P) with at least one aluminum phyllosilicate and optionally at least one additive (A), wherein the aluminum silicate has a D50 value in the range of 2.5 to 4.5 ⁇ , to obtain a mixture containing at least one polyamide (P), at least one aluminum silicate and optionally at least one additive (A), wherein the aluminum silicate has a D50 value in the range of 2.5 to
- Suitable flow aids are, for example, silicic acids or aluminum oxides.
- As a flow aid is preferred alumina.
- a suitable alumina is, for example, Aeroxide ® Alu C from Evonik.
- the sintering powder (SP) contains a flow aid, it is preferably added in process step (ii).
- the sintering powder (SP) generally contains 0.1 to 1 wt .-%, preferably 0.2 to 0.8 wt .-% and particularly preferably 0.3 to 0.6 wt .-% flow aid, each based on the Total weight of the sintering powder (SP) and the Rieselhoff.
- the above and below described embodiments and preferences with respect to the polyamide (P), the additive (A) and the aluminum silicate apply accordingly.
- the present invention thus also provides a process for producing a sintered powder (SP) which comprises the following steps: i) mixing at least one polyamide (P) with at least one aluminum silicate and optionally at least one additive (A), wherein the at least one aluminum silicate a D50 value in the range of 2.5 to 4.5 ⁇ , to obtain a mixture containing at least one polyamide (P), at least one aluminum silicate and optionally at least one further additive (A), wherein the at least one aluminum silicate a D50 value in the range of 2.5 to 4.5 ⁇ , ii) grinding the mixture obtained in step i), to obtain the sintering powder (SP).
- SP sintered powder
- a further subject of the present invention is also a process for producing a sintered powder (SP), in which step ii) comprises the following steps: iia) grinding the mixture obtained in step i) to obtain a polyamide powder, (ii) mixing the polyamide powder obtained in step iia) with a flow aid to obtain the sintering powder (SP).
- step ii) comprises the following steps: iia) grinding the mixture obtained in step i) to obtain a polyamide powder, (ii) mixing the polyamide powder obtained in step iia) with a flow aid to obtain the sintering powder (SP).
- SP sintered powder
- the at least one aluminum silicate is contained in the polyamide (P).
- the at least one polyamide (P) forms the dispersion medium (continuous phase) and the at least one aluminum silicate forms the disperse phase (inner phase).
- the at least one aluminum silicate preferably has a D50 value in the range from 2.5 to 4.5 ⁇ m, the following statements and preferences apply correspondingly with regard to the at least one aluminum silicate.
- the at least one polyamide (P), the at least one aluminum silicate and optionally the at least one additive (A) can be compounded in an extruder, then extruded from this and then added to the mill.
- the at least one polyamide (P) is mixed with a solvent (LM) and the polyamide (P) is optionally dissolved in the solvent (LM) with heating to give a polyamide solution (PL) ,
- the polyamide (P) can be partially or completely dissolved in the solvent (LM).
- the polyamide (P) is completely dissolved in the solvent (LM).
- a polyamide solution (PL) is obtained which contains the polyamide (P) completely dissolved in the solvent (LM).
- the at least one aluminum silicate is added to the mixture of the at least one polyamide (P) and the solvent (LM).
- the time of addition of the at least one aluminum silicate is immaterial, but the addition is generally carried out before the precipitation of the sintered powder (SP).
- the at least one aluminum silicate may be added to the solvent (LM) before the polyamide (P) is mixed with the solvent (LM). It is also possible to add the at least one aluminum silicate to the mixture of the at least one polyamide (P) and the solvent (LM) before the at least one polyamide (P) is dissolved in the solvent (LM). It is also possible to add the at least one aluminum silicate to the polyamide solution (PL).
- the at least one aluminum silicate is suspended in the mixture of the at least one polyamide (P) and the solvent (LM).
- the at least one aluminum silicate is then the dispersed phase (disperse phase).
- the sintering powder (SP) can be precipitated from the polyamide solution (PL) which contains the at least one aluminosilicate dispersed.
- the sintering powder (SP) may be precipitated by cooling the polyamide solution (PL) containing the at least one aluminum silicate, distilling off the solvent (LM) from the polyamide solution (PL) containing the at least one aluminum silicate, or adding a precipitating agent (FM) to the polyamide solution (PL) containing the at least one aluminum silicate.
- the sintering powder (SP) is precipitated by cooling the polyamide solution (PL) containing the at least one aluminum silicate.
- solvent As solvent (LM) exactly one solvent can be used. It is also possible to use two or more solvents as solvent (LM). Suitable solvents (LM) are for example selected from the group consisting of alcohols, lactams and ketones. Preferably, the solvent (LM) is selected from the group consisting of alcohols and lactams.
- lactam is generally understood to mean cyclic amides which have 3 to 12 carbon atoms, preferably 4 to 6 carbon atoms, in the ring.
- Suitable lactams are, for example, selected from the group consisting of propio-3-lactam ( ⁇ -lactam, ⁇ -propiolactam), butyro-4-lactam ( ⁇ -lactam, ⁇ -butyrolactam), 2-piperidinone, ( ⁇ -lactam, ⁇ -Valerolactam), hexano-6-lactam ( ⁇ -lactam; ⁇ -caprolactam), heptano-7-lactam ( ⁇ -lactam; ⁇ -heptanolactam), octano-8-lactam ( ⁇ -lactam; ⁇ -octanolactam), nonano -9-lactam ( ⁇ -lactam; ⁇ -nonanolactam), decano-10-lactam ( ⁇ --l
- the lactams may be unsubstituted or at least monosubstituted. In the event that at least monosubstituted lactams are used, these may carry on the nitrogen atom and / or on the carbon atoms of the ring one, two or more substituents which are independently selected from the group consisting of C 1 -C 10 -alkyl, C 5 - to C 6 -cycloalkyl and C 5 - to C 0 -aryl.
- suitable C 1 -C 10 -alkyl substituents are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl and tert-butyl.
- a suitable C 5 - to C 6 -cycloalkyl substituent is, for example, cyclohexyl.
- Preferred C 5 to Cio-aryl substituents are phenyl and anthranyl.
- Unsubstituted lactams are preferably used, with ⁇ -lactam ( ⁇ -butyrolactam), ⁇ -lactam ( ⁇ -valerolactam) and ⁇ -lactam ( ⁇ -caprolactam) being preferred. Particularly preferred are ⁇ -lactam ( ⁇ -valerolactam) and ⁇ -lactam ( ⁇ -caprolactam), with ⁇ -caprolactam being particularly preferred.
- the solvent (LM) preferably contains at least 20% by weight of lactam, more preferably at least 25% by weight of lactam, more preferably at least 30% by weight of lactam and most preferably at least 40% by weight of lactam, based in each case on Total weight of the solvent (LM).
- the solvent (LM) is lactam.
- the solvent (LM) contain less than 80% by weight of water, more preferably less than 75% by weight of water, more preferably less than 70% by weight of water, and most preferably less than 60% by weight .-% water, each based on the total weight of the solvent (LM).
- the lower limit of the water content of the solvent (LM) is generally in the range of 0 to 0.5 wt .-%, preferably in the range of 0 to 0.3 wt .-%, particularly preferably in the range of 0 to 0.1 wt .-%, in each case based on the total weight of the solvent (LM).
- the at least one polyamide (P) can be dissolved at any temperature in the solvent (LM).
- the at least one polyamide (P) is dissolved with heating in the solvent (LM).
- the dissolution temperature is in the range of 80 to 200 ° C, preferably in the range of 90 to 190 ° C, and more preferably in the range of 120 to 180 ° C. If the sintering powder (SP) is precipitated from the polyamide solution (PL) containing the at least one aluminum silicate by cooling, the polyamide solution (PL) containing the at least one aluminum silicate can be cooled by all methods known to those skilled in the art.
- the polyamide solution (PL) can be cooled to any temperature.
- the polyamide solution (PL) is preferably cooled to a temperature in the range from 20 to 80 ° C., particularly preferably in the range from 20 to 75 ° C. It goes without saying that the temperature at which the polyamide solution (PL) containing the at least one aluminum silicate is cooled is lower than the temperature at which the polyamide (P) is dissolved in the solvent (LM). If the sintering powder (SP) is precipitated by cooling the polyamide solution (PL) containing the at least one aluminum silicate, the polyamide solution (PL) can be stirred during cooling, for example, to produce particularly fine sintered powder particles.
- the sintering powder (SP) contains the at least one polyamide (P) and the at least one aluminum silicate and optionally the at least one additive (A).
- the sintered powder (SP) may contain the at least one polyamide (P) in addition to the at least one aluminum silicate and optionally at least one additive (A). It is likewise possible for the at least one aluminum silicate to be at least partially coated with the at least one polyamide (P) and optionally the additive (A).
- the sintering powder (SP) has particles. These particles have, for example, a size in the range from 10 to 250 ⁇ m, preferably in the range from 15 to 200 ⁇ m, particularly preferably in the range from 20 to 120 ⁇ m, and particularly preferably in the range from 20 to 100 ⁇ m.
- the sintering powder (SP) according to the invention generally has a D10 value in the range from 10 to 30 ⁇ m,
- the sintering powder (SP) has a D10 value in the range from 20 to 300 ⁇ m
- the "D10 value” in this context means the particle size at which 10% by volume of the particles, based on the total volume of the particles, is less than or equal to the D10 value and 90% by volume of the particles Particles based on the total volume of the particles are greater than the D10 value.
- the "D50 value” is understood to mean the particle size at which 50% by volume of the particles, based on the total volume of the particles, is less than or equal to the D50 value and 50% by volume of the particles, based on the total volume the particles are greater than the D50 value.
- D90 value is understood to mean the particle size at which 90% by volume of the particles, based on the total volume of the particles, is less than or equal to the D90 value and 10% by volume of the particles, based on the total volume of the particles, is greater than are the D90 value.
- the sintered powder is suspended by means of compressed air or in a solvent, such as water or ethanol, and measured this suspension.
- the D10, D50 and D90 values are determined by means of laser diffraction using a Master Sizers 3000 from Malvern. The evaluation is carried out by means of Fraunhofer diffraction.
- At least one polyamide (P) is understood to mean both exactly one polyamide (P) and one mixture of two or more polyamides (P).
- Suitable polyamides (P) generally have a viscosity number of from 70 to 350 ml / g, preferably from 70 to 240 ml / g.
- the determination of the viscosity number is carried out according to the invention from a 0.5 wt .-% solution of the polyamide (P) in 96 wt .-% sulfuric acid at 25 ° C according to ISO 307th
- Suitable polyamides (P) have a weight-average molecular weight (M w ) in the range from 500 to 2,000,000 g / mol, preferably in the range from 5,000 to 500,000 g / mol and particularly preferably in the range from 10,000 to 100,000 g / mol, up.
- M w weight-average molecular weight
- polyamides (P) for example, polyamides (P) are suitable, which are derived from lactams with 7 to 13 ring members.
- polyamides (P) polyamides (P) are also suitable, which are obtained by reacting dicarboxylic acids with diamines.
- polyamides (P) derived from lactams include polyamides derived from polycaprolactam, polycapryl lactam and / or polylaurolactam.
- polyamides (P) are obtainable from co-aminoalkyl nitriles.
- Preferred ⁇ -aminoalkyl nitrile is aminocapronitrile, which leads to polyamide 6.
- dinitriles can be reacted with diamine.
- Adiponitrile and hexamethylenediamine are preferred, the polymerization of which leads to polyamide 66.
- the polymerization of nitriles takes place in the presence of water and is also referred to as direct polymerization.
- dicarboxylic acid alkanes aliphatic dicarboxylic acids
- aromatic dicarboxylic acids are suitable.
- adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and also terephthalic acid and / or isophthalic acid may be mentioned here as dicarboxylic acids.
- Suitable diamines are, for example, alkanediamines having 4 to 36 carbon atoms, preferably alkanediamines having 6 to 12 carbon atoms, in particular alkanediamines having 6 to 8 carbon atoms and aromatic diamines, such as m-xylylenediamine, di (4-aminophenyl) methane, di (4 -aminocyclohexyl) methane, 2,2-di- (4-aminophenyl) -propane and 2,2-di- (4-aminocyclohexyl) -propane and 1, 5-diamino-2-methyl-pentane.
- alkanediamines having 4 to 36 carbon atoms preferably alkanediamines having 6 to 12 carbon atoms, in particular alkanediamines having 6 to 8 carbon atoms and aromatic diamines, such as m-xylylenediamine, di (4-aminophenyl) methane, di (4 -aminocyclohe
- Preferred polyamides (P) are polyhexamethylene adipamide, polyhexamethylene sebacamide and polycaprolactam and copolyamide 6/66, in particular with a content of 5 to 95% by weight of caprolactam units.
- polyamides (P) which are obtainable by copolymerization of two or more of the monomers mentioned above and below, or mixtures of several polyamides (P), the mixing ratio being arbitrary.
- Particularly preferred mixtures are mixtures of polyamide 66 with other polyamides (P), in particular copolyamide 6/66.
- Suitable polyamides (P) are thus aliphatic, partially aromatic or aromatic polyamides (P).
- aliphatic polyamides means that the polyamides (P) are exclusively composed of aliphatic monomers
- partially aromatic polyamides means that the polyamides (P) are composed of both aliphatic and aromatic monomers.
- aromatic polyamides means that the polyamides (P) are composed exclusively of aromatic monomers.
- PA 4 pyrrolidone
- PA 6 ⁇ -caprolactam
- PA 46 tetramethylenediamine, adipic acid
- PA 66 hexamethylenediamine, adipic acid
- PA 69 hexamethylene diamine, azelaic acid
- PA 610 hexamethylenediamine, sebacic acid
- PA 612 hexamethylenediamine, decanedicarboxylic acid
- PA 613 hexamethylenediamine, undecanedicarboxylic acid
- PA 1212 1, 12-dodecanediamine, decanedicarboxylic acid
- PA 1313 1, 13-diaminotridecane, undecanedicarboxylic acid
- PA 6T hexamethylenediamine, terephthalic acid
- PA MXD6 m-xylyenediamine, adipic acid
- PA 6I hexamethylenediamine, isophthalic acid
- PA 6-3-T trimethylhexamethylenediamine, terephthalic acid
- PA 6 / 6T (see PA 6 and PA 6T)
- PA 6/66 (see PA 6 and PA 66)
- PA 6/12 see PA 6 and PA 12
- PA 66/6/610 see PA 66, PA 6 and PA 610)
- PA 6I / 6T see PA 61 and PA 6T
- PA PA PACM 12 diaminodicyclohexylmethane, laurolactam
- PA 6I / 6T / PACM such as PA 6I / 6T and diaminodicyclohexylmethane
- PA PDA-T phenylenediamine, terephthalic acid The present invention thus also relates to a process in which the at least one polyamide (P) is selected from the group consisting of PA 4, PA 6, PA 7, PA 8, PA 9, PA 1 1, PA 12, PA 46, PA 66, PA 69, PA 610, PA 612, PA 613, PA 1212, PA1313, PA 6T, PA MXD6, PA 61, PA 6-3-T, PA 6/6 T, PA 6/66, PA 66/6, PA 6/12, PA 66/6/610, PA 6I / 6T, PA PACM 12, PA 6I / 6T / PACM, PA 12 / MACMI, PA 12 / MACMT
- the at least one polyamide (P) is at least one polyamide selected from the group consisting of polyamide 6 (PA 6), polyamide 66 (PA 66), polyamide 12 (PA 12), polyamide 6/66 (PA 6/66), Polyamide 66/6 (PA 66/6) and polyamide 610 (PA 610).
- At least one polyamide are polyamide 6 (PA 6) and / or polyamide 66 (PA 66), polyamide 6 (PA 6) being particularly preferred.
- the present invention thus also provides a process in which the at least one polyamide (P) is selected from the group consisting of PA 12, PA 6, PA 66, PA 6/66, PA 66/6 and PA 610.
- the sintering powder (SP) contains at least one aluminum silicate.
- At least one aluminum silicate means both exactly one aluminum silicate and one mixture of two or more aluminum silicates.
- the sintering powder (SP) preferably contains exactly one aluminum silicate.
- Aluminum silicates are known to those skilled in the art. As aluminum silicates compounds are referred to containing Al 2 0 3 and Si0 2 . Structurally, the aluminum silicates have in common that the silicon atoms are tetrahedrally coordinated by oxygen atoms and the aluminum atoms are octahedrally coordinated by oxygen atoms. Aluminum silicates may also contain other elements.
- the at least one aluminum silicate is a layered silicate.
- Layered silicates as such are known to the person skilled in the art.
- the silicon atoms, which are tetrahedrally coordinated by oxygen atoms, are arranged in layers.
- the at least one aluminum silicate is calcined.
- the at least one aluminum silicate is a calicinated layered silicate.
- the at least one aluminum silicate is not calcined.
- the at least one aluminum silicate is a non-calcined sheet silicate.
- the present invention thus also provides a process in which the at least one aluminum silicate is amino-functionalized.
- the processes for the calcination of aluminum silicates are known to those skilled in the art.
- the at least one aluminosilicate for calcination is heated to a temperature in the range from 1000 to 1300 ° C., preferably in the range from 1100 to 1200 ° C.
- the water of crystallization contained in the at least one aluminum silicate is removed by the calcination. It is also believed that if the at least one aluminosilicate is a layered silicate that is calcined, the layered structure will be at least partially destroyed.
- the aluminum silicate is amino-functionalized.
- Methods for the amino-functionalization of aluminum silicates are known to those skilled in the art and, for example, in Deeba M. Ansaria, Gareth J. Pricea: Correlation of mechanical properties of clay-filled polyamide moldings with chromatographically measured surface energy. Polymer 45 (2004) 3663-3670.
- the at least one aluminum silicate is a calcined layered silicate which is amino-functionalized on the surface.
- the present invention thus also provides a process in which the at least one aluminum silicate is a calcined layered silicate.
- the at least one aluminum silicate can be used in any form. For example, it may be used as pure aluminosilicate, as well as it is possible that the aluminosilicate is used as a mineral.
- the aluminum silicate is used as a mineral. Suitable aluminosilicates are, for example, feldspars, zeolites, sodalite, sillimanite, andalusite and kaolin. Kaolin is preferred as aluminum silicate.
- the present invention thus also provides a process in which the at least one aluminum silicate is kaolin.
- Kaolin belongs to the clay stones and contains essentially the mineral kaolinite.
- the molecular formula of kaolinite is Al 2 [(OH) 4 Si 2 O 5 ].
- Kaolinite is a layered silicate.
- kaolin usually contains other compounds, such as, for example, titanium dioxide, sodium oxides and iron oxides.
- Kaolin preferred according to the invention contains at least 98% by weight of kaolinite based on the total weight of the kaolin.
- Most preferred as the at least one aluminum silicate is calcined kaolin, the surface of which has been amino-functionalized.
- the aluminum silicate has a D50 value in the range from 2.5 to 4.5 ⁇ m.
- the at least one aluminum silicate has a D10 value in the range from 0.5 to 1.5 ⁇ ,
- the present invention thus also provides a process in which the at least one aluminum silicate has a D10 value in the range from 0.5 to 1.5 ⁇ .
- the at least one aluminum silicate may have all the forms known to those skilled in the art.
- the at least one aluminum silicate can be platelet-shaped or in particulate form.
- the at least one aluminum silicate is platelet-shaped.
- platelet-shaped is understood to mean that the particles of the at least one aluminum silicate have a diameter-to-thickness ratio in the range from 4: 1 to 10: 1.
- the at least one aluminum silicate is preferably present in particulate form, the particles being as spherical as possible, that is to say having as circular a shape as possible. A measure of this is the so-called Sphotticianswert (SPHT value).
- SPHT value Sphotticianswert
- the sphericity value of the particles of the at least one aluminum silicate in this case indicates the ratio of the surface area of the particles of the at least one aluminum silicate to the surface of ideal spheres of equal volume.
- the sphericity value can be determined by image analysis using, for example, a camsizer.
- the at least one polyamide (P) contains the at least one aluminum silicate.
- the polyamide forms the dispersion medium and the aluminosilicate forms the disperse phase.
- D10, D50 and D90 values of aluminum phyllosilicate dispersed in the sintered powder (SP) in the polyamide (P) there are two possibilities. On the one hand, it is possible to determine the particle size of the aluminum silicate dispersed in the polyamide (P) visually, for example by scanning electron microscopy (SEM).
- Suitable solvents for dissolving out the polyamide (P) are, for example, formic acid, sulfuric acid (eg 96% strength), phenol / methanol mixture (75:25) and / or hexafluoroisopropanol.
- Another object of the invention is a method for producing a shaped article by selective laser sintering of a sintered powder (SP), in which the at least one polyamide (P) containing at least one aluminum silicate, wherein the polyamide (P) the continuous phase and the at least one aluminum silicate forms the disperse phase and wherein the at least one aluminum silicate has a D50 value in the range of 2.5 to 4.5 ⁇ .
- SP sintered powder
- a further subject matter of the present invention is a sintered powder (SP) in which the sintering powder (SP) contains at least one polyamide (P) and in the range from 10 to 50% by weight of at least one aluminum silicate, based on the total weight of the sintering powder (SP ), wherein the at least one aluminum silicate has a D50 value in the range of 2.5 to 4.5 ⁇ , wherein the at least one polyamide (P) containing at least one aluminum silicate and wherein the at least one polyamide (P) the continuous phase and the at least one aluminum silicate forms the disperse phase.
- SP sintered powder
- the shaped bodies according to the invention are obtained by the method of selective laser sintering described above.
- the sintered powder (SP) melted in the selective exposure with the laser solidifies again after the exposure and thus forms the shaped body according to the invention.
- the molding can be removed from the powder bed immediately after solidification. It is also possible to cool the shaped body first and then remove it from the powder bed.
- adhering particles of the sintering powder (SP), which is not melted can be mechanically removed from the surface by known methods. Methods of surface treatment of the molded article include, for example, tumbling or sliding cutting, and sandblasting, glass bead blasting or microblasting.
- the shaped article according to the invention contains the at least one polyamide (P) and from 10 to 50% by weight of the at least one aluminum silicate, preferably from 10 to 45% by weight and particularly preferably from 10 to 40% by weight of the at least one aluminum silicate, in each case based on the total weight of the molding.
- the at least one aluminum silicate is the at least one aluminum silicate contained in the sintered powder (SP)
- the polyamide (P) is the polyamide (P) contained in the sintered powder (SP).
- the shaped body also contains the at least one additive (A) which was contained in the sintering powder (SP).
- the at least one polyamide (P), the at least one aluminum silicate and optionally the at least one additive (A) can have undergone chemical reactions by the exposure of the sintering powder (SP) and may have changed as a result. Such reactions are known in the art.
- the at least one polyamide (P), the at least one aluminum silicate and optionally the at least one additive (A) do not undergo any chemical reactions by the exposure of the sintering powder (SP) to the laser, but the sintered powder (SP) merely melts.
- the present invention thus also provides a shaped article obtainable by the process according to the invention.
- the invention will be explained in more detail by examples without limiting it thereto.
- the components given in Table 1 were compounded in the ratio shown in Table 1 in a twin-screw extruder (ZSK40) at a speed of 200 rpm, a cylinder temperature of 240 ° C. and a throughput of 50 kg / h subsequent strand granulation.
- the granules thus obtained were cryogenically ground to obtain the sintered powder.
- the powder was dried to a water content of about 0.5% (Aquatrac 3E Fa. Brabender Messtechnik, measurement temperature 160 ° C, sample amount 3 to 5 g), and 0.4 wt.% Riesel plausible (Al 2 0 3;. Aeroxide ® Alu C, from Evonik) were mixed.
- Tension rods were produced from the sintered powders V1 and B2.
- the sintered powder was introduced into the installation space at a temperature of 0.12 mm at the temperature indicated in Table 2. Subsequently, the sintering powder was exposed with a laser at the laser power indicated in Table 2 and the specified dot pitch, the speed of the laser over the sample during exposure being 5080 mm / s.
- the dot pitch is also referred to as laser spacing or track pitch. In selective laser sintering, scanning is usually done in stripes. The dot pitch indicates the distance between the centers of the stripes, ie between the two centers of the laser beam of two stripes.
- the resulting tensile bars were dried for 14 days at 80 ° C in a vacuum and then tensile tests according to ISO 527-2: 2012 carried out at a measurement temperature of 23 ° C and a relative humidity of 50%.
- the test speed for determining the elastic modulus was 1 mm / min, for the determination of the other sizes, a test speed of 5 mm / min was chosen. The results can also be found in Table 2.
- the sintering powders V3 and B4 were used to determine the thermooxidative stability.
- the viscosity of freshly prepared sintering powders and of sintered powders after furnace storage at 0.5% oxygen was determined for 16 hours and 195.degree.
- the ratio of viscosity after storage to viscosity before storage was determined.
- the viscosity is measured by means of rotational rheology at a measuring frequency of 0.5 rad / s at a temperature of 240 ° C.
- the sintering window W was determined. The results are shown in Table 3. Table 3:
- the components shown in Table 5 were in the ratio shown in Table 5 in a twin-screw extruder (MC26) with a speed of 300 rpm (revolutions per minute) and a throughput of 10 kg / h at a temperature of 270 ° C or 245 ° C for formulations with (P4) compounded with a subsequent strand granulation.
- the granules thus obtained were ground to a particle size of 20 to 100 ⁇ cryogen. After grinding, the powder was dried to a water content of about 0.5% (Aquatrac 3E Fa. Brabender Messtechnik, measurement temperature 160 ° C, sample amount 3 to 5 g), and 0.4 wt.% Riesel plausible (Al 2 0 3;. Aeroxide ® Alu C, from Evonik) were mixed.
- the resulting sintered powders were characterized as described above.
- the bulk density was determined according to DIN EN ISO 60 and the tamped density according to DIN EN ISO 787-1 1 and the Hausner factor as the ratio of tamped density to bulk density.
- the particle size distribution reported as d10, d50 and d90 as described above, was determined with a Malvern Mastersizer.
- the aluminum silicate content of the sintering powder (SP) was determined gravimetrically after ashing.
- Tension rods were produced from sintered powders V5, B5, B6, B7, V8, B9 and B10.
- the sintering powder was introduced with a layer thickness of 0.1 mm into the installation space with the installation space temperature given in Table 7. Subsequently, the sintering powder was exposed with a laser at the laser power indicated in Table 7 and the specified dot pitch, with the speed of the laser over the sample during exposure at 5 m / s.
- the dot pitch is also referred to as laser spacing or track pitch. In selective laser sintering, scanning is usually done in stripes. The dot pitch indicates the distance between the centers of the stripes, ie between the two centers of the laser beam of two stripes.
- the shaped bodies produced from the sintering powders according to the invention have a low distortion and therefore the sintering powder according to the invention can be used well in the selective laser sintering process.
- B9 and B10 show, compared to V8, that aluminum silicate results in better millability and improved mechanical properties of the sinter powder based on low melting point PA6 copolymers.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16156543 | 2016-02-19 | ||
PCT/EP2017/053481 WO2017140764A1 (en) | 2016-02-19 | 2017-02-16 | Kaolin for the mechanical reinforcement of polymeric laser sinter powder |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3416809A1 true EP3416809A1 (en) | 2018-12-26 |
Family
ID=55409756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17705860.9A Pending EP3416809A1 (en) | 2016-02-19 | 2017-02-16 | Kaolin for the mechanical reinforcement of polymeric laser sinter powder |
Country Status (12)
Country | Link |
---|---|
US (1) | US11802191B2 (en) |
EP (1) | EP3416809A1 (en) |
JP (1) | JP7013379B2 (en) |
KR (1) | KR20180115689A (en) |
CN (1) | CN108698315A (en) |
AU (1) | AU2017221105A1 (en) |
CA (1) | CA3014262A1 (en) |
IL (1) | IL261074A (en) |
MX (1) | MX2018010013A (en) |
SG (1) | SG11201806148XA (en) |
TW (1) | TW201805143A (en) |
WO (1) | WO2017140764A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2018010012A (en) | 2016-02-19 | 2018-11-09 | Basf Se | Polyamide composition containing a polyamide and an additive. |
TW201817812A (en) * | 2016-07-29 | 2018-05-16 | 巴斯夫歐洲公司 | Polyamide blends for laser sinter powder |
EP3576916B1 (en) | 2017-02-01 | 2020-11-11 | Basf Se | Method for the production of polyamide powder by precipitation |
EP3691861B1 (en) * | 2017-10-04 | 2022-12-14 | Basf Se | Sinter powder comprising a mineral flame retardant for the production of moulded articles |
WO2020064825A1 (en) * | 2018-09-26 | 2020-04-02 | Basf Se | Sinter powder (sp) comprising a first polyamide component (pa1) and a second polyamide component (pa2), where the melting point of the second polyamide component (pa2) is higher than the melting point of the first polyamide component (pa1) |
US20220134648A1 (en) * | 2019-07-15 | 2022-05-05 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
DE102021111495A1 (en) * | 2021-05-04 | 2022-11-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Method for producing 3D printing material and components made from it, and 3D printing material and component produced using the method |
FR3124112A1 (en) * | 2021-06-17 | 2022-12-23 | Fabulous | ADDITIVE MANUFACTURING METHOD, POLYMER POWDER COMPOSITION COMPRISING A DETECTION ADDITIVE, AND OBJECT OBTAINED BY SAID METHOD |
WO2023135143A1 (en) * | 2022-01-11 | 2023-07-20 | Basf Se | Sinter powder (sp) comprising at least one polyamide mxd6 and at least one semicrystalline polyamide |
FR3144138A1 (en) * | 2022-12-26 | 2024-06-28 | Arkema France | Thermoplastic polymer powder with wide particle size distribution |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE562610A (en) | 1957-11-22 | |||
CH372423A (en) | 1958-08-12 | 1963-10-15 | Ciba Geigy | Process for the production of solid preparations |
US3446782A (en) | 1965-04-14 | 1969-05-27 | Toray Industries | Method of manufacture of powdery synthetic linear polyamides |
CH519000A (en) | 1970-02-24 | 1972-02-15 | Inventa Ag | Process for the production of polyamide 12 sinter powder |
CH549622A (en) | 1971-06-16 | 1974-05-31 | Ciba Geigy Ag | PLASTIC-CONTAINING POWDERS, THEIR USE FOR THE PRODUCTION OF PURE POWDER AND MANUFACTURING METHODS FOR PLASTIC-CONTAINING POWDERS. |
DE2458347A1 (en) | 1974-12-10 | 1976-06-16 | Hoechst Ag | PROCESS FOR THE PREPARATION OF BASIC OXAZINE DYES |
DE2906647C2 (en) | 1979-02-21 | 1980-12-11 | Chemische Werke Huels Ag, 4370 Marl | Process for the production of powdery coating agents !! based on polyamides with at least 10 aliphatically bonded carbon atoms per carbonamide group |
US5166237A (en) * | 1989-04-20 | 1992-11-24 | Sumitomo Chemical Company, Ltd. | Thermoplastic resin composition |
US5648450A (en) | 1992-11-23 | 1997-07-15 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therein |
US5527877A (en) | 1992-11-23 | 1996-06-18 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
JPH08143768A (en) * | 1994-11-16 | 1996-06-04 | Kanegafuchi Chem Ind Co Ltd | Heat-resistant thermoplastic resin composition |
DE19708946A1 (en) | 1997-03-05 | 1998-09-10 | Huels Chemische Werke Ag | Production of polyamide powder with narrow particle size distribution and low porosity |
US6110411A (en) * | 1997-03-18 | 2000-08-29 | Clausen; Christian Henning | Laser sinterable thermoplastic powder |
DE19747309B4 (en) | 1997-10-27 | 2007-11-15 | Degussa Gmbh | Use of a polyamide 12 for selective laser sintering |
JP3757081B2 (en) | 1999-06-30 | 2006-03-22 | オリヱント化学工業株式会社 | Water-insoluble nigrosine and related technologies |
US6773859B2 (en) * | 2001-03-06 | 2004-08-10 | E. I. Du Pont De Nemours And Company | Process for making a flexographic printing plate and a photosensitive element for use in the process |
EP1256595A1 (en) * | 2001-05-10 | 2002-11-13 | Sika AG, vorm. Kaspar Winkler & Co. | Adhesive filled with surface-treated chalk and carbon black |
US20060108567A1 (en) | 2002-07-23 | 2006-05-25 | Charati Sanjay G | Conductive poly (arylene ether) compositions and methods of making the same |
US20110217495A1 (en) * | 2002-08-27 | 2011-09-08 | Ems-Chemie Ag | Polyamide moulding materials for the production of moulded articles having reduced surface carbonization |
JP2004155927A (en) * | 2002-11-07 | 2004-06-03 | Asahi Kasei Chemicals Corp | Polyamide resin composition giving low discoloration to weathering |
DE102004012682A1 (en) * | 2004-03-16 | 2005-10-06 | Degussa Ag | Process for the production of three-dimensional objects by means of laser technology and application of an absorber by inkjet method |
US7579397B2 (en) * | 2005-01-27 | 2009-08-25 | Rensselaer Polytechnic Institute | Nanostructured dielectric composite materials |
JP5374148B2 (en) * | 2006-03-20 | 2013-12-25 | 日本板硝子株式会社 | Cosmetics containing scaly glass |
ATE428751T1 (en) * | 2007-02-07 | 2009-05-15 | Ems Chemie Ag | FILLED POLYAMIDE MOLDING COMPOUNDS WITH REDUCED WATER ABSORPTION |
DE502008000140D1 (en) * | 2007-05-03 | 2009-11-26 | Ems Patent Ag | Partially aromatic polyamide molding compounds and their uses |
US7737091B2 (en) * | 2007-08-28 | 2010-06-15 | Imerys | Proppants and anti-flowback additives made from sillimanite minerals, methods of manufacture, and methods of use |
FR2933706B1 (en) * | 2008-07-10 | 2010-08-27 | Arkema France | PULVERULENT COMPOSITION FOR THE MANUFACTURE OF OBJECTS HAVING A STABLE METAL APPEARANCE DURING TIME AND AN IMPROVED CUT RESISTANCE |
CN102388088B (en) | 2009-03-05 | 2015-11-25 | 宇部兴产株式会社 | Polyamide granules and preparation method thereof |
FR2955330B1 (en) | 2010-01-19 | 2012-01-20 | Arkema France | THERMOPLASTIC POWDER COMPOSITION AND THREE-DIMENSIONAL ARTICLES MADE BY SINKING SUCH A COMPOSITION |
BR112012023703B1 (en) * | 2010-04-01 | 2018-09-25 | Basf Corp | method for preparing a coated monolithic support member, monolithic support member, and use of a monolithic support member |
EP2621712B1 (en) | 2010-09-28 | 2018-10-24 | DSM IP Assets B.V. | Polymer powder composition |
US8999483B2 (en) * | 2010-11-29 | 2015-04-07 | Corning Incorporated | Honeycomb structure comprising an outer cement skin and a cement therefor |
BR112013013543B1 (en) * | 2010-12-02 | 2020-02-11 | Adeka Corporation | COMPOSITION OF POLYESTER RESIN AND MOLDED BODY |
EP2716715B2 (en) | 2011-05-27 | 2019-03-27 | Asahi Kasei Chemicals Corporation | Reinforced polyamide resin pellets |
DE102011078722A1 (en) | 2011-07-06 | 2013-01-10 | Evonik Degussa Gmbh | Powder containing polymer-coated inorganic particles |
DE102011078719A1 (en) | 2011-07-06 | 2013-01-10 | Evonik Degussa Gmbh | Powder containing polymer-coated particles |
CN103665746B (en) * | 2012-08-30 | 2015-07-01 | 上海壬丰复合材料有限公司 | Micropore friction material with low abrasion and high stability coefficient and manufacturing method thereof |
KR102466147B1 (en) | 2014-12-01 | 2022-11-10 | 바스프 에스이 | Thermoplastic polyamide particles |
KR102574669B1 (en) | 2015-01-23 | 2023-09-04 | 바스프 에스이 | Demineralization of Polyaryl Ethers by Melt Extraction |
US20180009950A1 (en) | 2015-01-23 | 2018-01-11 | Basf Se | Desalination of polyaryl ethers from a melt polymerization method |
ES2745030T3 (en) | 2015-07-29 | 2020-02-27 | Basf Se | Cleaning particles and their use |
CA3008952A1 (en) * | 2015-12-21 | 2017-06-29 | Sika Technology Ag | Polyaldimine and curable polyurethane composition |
WO2017140773A1 (en) | 2016-02-19 | 2017-08-24 | Basf Se | Process for preparing polyamide powders by precipitation |
US20200023577A1 (en) | 2016-02-19 | 2020-01-23 | Basf Se | Anti-nucleating agent for laser sintering powder |
MX2018010012A (en) | 2016-02-19 | 2018-11-09 | Basf Se | Polyamide composition containing a polyamide and an additive. |
-
2017
- 2017-02-16 WO PCT/EP2017/053481 patent/WO2017140764A1/en active Application Filing
- 2017-02-16 EP EP17705860.9A patent/EP3416809A1/en active Pending
- 2017-02-16 CA CA3014262A patent/CA3014262A1/en not_active Abandoned
- 2017-02-16 MX MX2018010013A patent/MX2018010013A/en unknown
- 2017-02-16 US US15/999,522 patent/US11802191B2/en active Active
- 2017-02-16 JP JP2018544055A patent/JP7013379B2/en active Active
- 2017-02-16 KR KR1020187022697A patent/KR20180115689A/en not_active Application Discontinuation
- 2017-02-16 CN CN201780009973.3A patent/CN108698315A/en active Pending
- 2017-02-16 AU AU2017221105A patent/AU2017221105A1/en not_active Abandoned
- 2017-02-16 SG SG11201806148XA patent/SG11201806148XA/en unknown
- 2017-02-18 TW TW106105445A patent/TW201805143A/en unknown
-
2018
- 2018-08-09 IL IL261074A patent/IL261074A/en unknown
Non-Patent Citations (5)
Title |
---|
"POLYAMIDE NANOCOMPOSITES FOR SELECTIVE LASER SINTERING", 31 January 2006, article J H KOO ET AL: "POLYAMIDE NANOCOMPOSITES FOR SELECTIVE LASER SINTERING", XP055291856, DOI: 10.2514/6.2015-1353 * |
ANSARI D M ET AL: "Correlation of mechanical properties of clay filled polyamide mouldings with chromatographically measured surface energies", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 45, no. 11, 1 May 2004 (2004-05-01), pages 3663 - 3670, XP004506671, ISSN: 0032-3861, DOI: 10.1016/J.POLYMER.2004.03.045 * |
PRASHANT K. JAIN ET AL: "Selective laser sintering of clay-reinforced polyamide", POLYMER COMPOSITES, 30 March 2009 (2009-03-30), US, pages NA - NA, XP055291846, ISSN: 0272-8397, DOI: 10.1002/pc.20854 * |
See also references of WO2017140764A1 * |
SONGHAN: "BYK Cloisite� 30B Nanoclay Category : Other Engineering Material , Additive/Filler for Polymer , Polymer", 3 January 2016 (2016-01-03), XP055292075, Retrieved from the Internet <URL:http://www.lookpolymers.com/pdf/BYK-Cloisite-30B-Nanoclay.pdf> [retrieved on 20160728] * |
Also Published As
Publication number | Publication date |
---|---|
CN108698315A (en) | 2018-10-23 |
MX2018010013A (en) | 2018-11-09 |
US20210206941A1 (en) | 2021-07-08 |
SG11201806148XA (en) | 2018-09-27 |
KR20180115689A (en) | 2018-10-23 |
JP7013379B2 (en) | 2022-01-31 |
TW201805143A (en) | 2018-02-16 |
IL261074A (en) | 2018-11-04 |
AU2017221105A1 (en) | 2018-08-23 |
US11802191B2 (en) | 2023-10-31 |
CA3014262A1 (en) | 2017-08-24 |
WO2017140764A1 (en) | 2017-08-24 |
JP2019507034A (en) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3416809A1 (en) | Kaolin for the mechanical reinforcement of polymeric laser sinter powder | |
EP3491067A1 (en) | Polyamide blends containing a reinforcing agent for laser sintered powder | |
EP3491066A1 (en) | Polyamide blends for laser sintered powder | |
EP3491065B1 (en) | Polyamide blends containing a polyaryl ether for laser sintering powder | |
EP3416808B1 (en) | Polyamide composition comprising a polyamide and an additive | |
DE10057455C2 (en) | Polyamide molding compounds with improved properties | |
EP3416811B1 (en) | Anti nucleating agents for laser inter powder | |
EP1460108B1 (en) | Process for the preparation of articles by selective laser sintering of sinter powder comprising a polyamide and a poly(N-methylmethacrylimide) and articles prepared thereby | |
EP3691861B1 (en) | Sinter powder comprising a mineral flame retardant for the production of moulded articles | |
US20050027050A1 (en) | Laser sinter powder with a metal salt and a fatty acid derivative, process for its production, and moldings produced from this laser sinter powder | |
DE102004047876A1 (en) | Powder with improved recycling properties, process for its preparation and use of the powder in a process for producing three-dimensional objects | |
WO2019068658A1 (en) | Sintered powder containing a near-infrared reflector for producing moulded bodies | |
EP1563009A1 (en) | Polyamide molding material, molded articles that can be produced therefrom and the use thereof | |
WO2018141631A1 (en) | Process for producing a polyamide powder by precipitation | |
WO2020002352A1 (en) | Sinter powder containing a multivalent alcohol for producing moulded bodies | |
EP4384577A1 (en) | Process for preparing a molded body by selective laser sintering of an amorphous sintering powder (sp) which contains polyamide 6i/6t and/or polyamide dt/di |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180919 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190828 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |