EP3415860B1 - Verfahren zur vorhersage der flugbahn eines feindlichen luftfahrzeugs, insbesondere im rahmen einer luftverteidigung - Google Patents

Verfahren zur vorhersage der flugbahn eines feindlichen luftfahrzeugs, insbesondere im rahmen einer luftverteidigung Download PDF

Info

Publication number
EP3415860B1
EP3415860B1 EP18175386.4A EP18175386A EP3415860B1 EP 3415860 B1 EP3415860 B1 EP 3415860B1 EP 18175386 A EP18175386 A EP 18175386A EP 3415860 B1 EP3415860 B1 EP 3415860B1
Authority
EP
European Patent Office
Prior art keywords
aircraft
point
hostile
trajectory
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18175386.4A
Other languages
English (en)
French (fr)
Other versions
EP3415860A1 (de
Inventor
Pierre STOLZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62567271&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3415860(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thales SA filed Critical Thales SA
Publication of EP3415860A1 publication Critical patent/EP3415860A1/de
Application granted granted Critical
Publication of EP3415860B1 publication Critical patent/EP3415860B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2206Homing guidance systems using a remote control station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/224Deceiving or protecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems

Definitions

  • the present invention relates to a method for predicting the trajectory of a hostile aircraft. It relates in particular to naval anti-aircraft defense by predicting the target targeted by a hostile aircraft attacking one of several possible ships, the aircraft possibly being for example a missile. More generally, the invention applies to all anti-aircraft defenses where it is necessary to foresee the attacked target among several.
  • a set of ships liable to be attacked by hostile aircraft consists, for example, of a frigate, a large armed naval vessel and several large naval vessels that are not necessarily armed.
  • the frigate is for example followed at a distance of approximately 15 km for the armed naval vessel, the two unarmed vessels following the frigate more closely.
  • the important armed building has powerful means of defense to protect itself, it is for example an aircraft carrier, but it nevertheless needs to be defended by a first defense barrier consisting of the frigate. The latter must, for example, eliminate 80% of the dangers.
  • US 2016/0131455 A1 discloses a method for determining the course of a hostile aircraft towards a given target.
  • the object of the invention is in particular to reduce this degree of uncertainty.
  • the subject of the invention is a method for predicting, at a given instant, the trajectory of a hostile aircraft vis-à-vis buildings, said hostile aircraft (H) has a heading angle ⁇ at moment considered and is located at a distance D from a predicted target point which corresponds to the building having the highest probability of being targeted by the aircraft according to the flight parameters of the latter at the moment considered, or which is the barycenter of the positions of the buildings likely to be targeted by the hostile aircraft, weighted by their probability of being targeted by the latter, characterized in that the predicted trajectory is defined from an extrapolation of a given type of trajectory and connects the position of the hostile aircraft to a fictitious point of impact, the fictitious point of impact being defined, according to the predicted objective point aimed by the aircraft, so as to reduce the curvature of the predicted trajectory taking into account the heading angle ⁇ of the aircraft and the distance this D between the aircraft and the predicted target point at the instant considered, the predicted trajectory then being supplied to calculation means of an air defense missile so as to determine its
  • the main advantages of the invention are that it can be applied to counter many types of hostile aircraft, that it adapts to different types of trajectories of these aircraft and that it can adapt to already existing systems. .
  • the figure 1 presents an example of a set of buildings represented by their location points F, C1, C2, HV.
  • a frigate F is ahead of a building with a high HV value capable of defending itself, an aircraft carrier for example.
  • a distance of about 15 km separates, for example, the frigate from the high-value building.
  • the consort buildings C1, C2 are for example located in a circular zone of 6.5 km radius centered on the frigate F. In the event of an alert, the frigate can only fulfill its mission if it knows what a hostile aircraft is aiming for. , hence the need to predict the intended target.
  • the figure 1 presents at a given instant, through a point H, the position of a hostile aircraft.
  • two trajectories T1, T2 are for example still possible.
  • the correct trajectory Once the correct trajectory has been defined, it can be transmitted, for example, to an anti-aircraft missile launching system. Knowing this trajectory, calculation means define the trajectory of a missile in such a way that the latter meets the predicted trajectory of the hostile aircraft, the point of impact between the two machines taking place at the intersection of the two trajectories .
  • Hostile aircraft are for example missiles with great maneuverability, especially for short turns.
  • the figure 2 illustrates the main steps for implementing the method according to the invention.
  • a first step 1 predicts an objective point targeted by a spotted, in particular hostile, aircraft.
  • a second step 2 determines a fictitious point of impact as a function of the predicted target target point.
  • a third step 3 determines a trajectory of the aircraft ending on the previously determined fictitious point of impact.
  • This trajectory is then taken into account by anti-aircraft means, a missile for example, to define a meeting point between the latter and the hostile aircraft to which this trajectory is attributed, the destruction of the hostile aircraft being done by example at this meeting point.
  • anti-aircraft means a missile for example
  • a fictitious point of impact to define the trajectory of the spotted aircraft and not using the predicted objective point, in fact improves the chances of hitting a hostile aircraft. Indeed, once the objective point of the predicted aircraft, several trajectories are possible between this aircraft and the predicted objective point. All these trajectories cannot for example be memorized by the calculation means associated with an anti-aircraft missile, these calculation means defining in particular from a predicted trajectory of the aircraft the meeting point of the latter with the missile.
  • a single trajectory can for example be memorized by the calculation means while by acting on one of the ends of this trajectory, the meeting point calculated on this trajectory can effectively correspond to the actual meeting of the missile or of any other air defenses and hostile aircraft.
  • One objective of the method according to the invention is therefore to provide the anti-aircraft missile, based on radar information and the position of the ships, with the predicted position of the impact between a hostile aircraft and the missile so as to promote the interception hostile aircraft.
  • the picture 3 illustrates an example of a possible implementation of the method according to the invention by two sub-steps 11, 12, a first sub-step 11 of classifying potentially attackable ships followed by a second sub-step of determining the targeted objective .
  • the figure 4 presents in the plane ( x , y ) the position O of an analyzed building and the position D of a hostile aircraft, all the buildings being analyzed successively.
  • Curve 41 represents a cubic trajectory, corresponding to relation (1), for which the definition of the boundary conditions makes it possible to define the coefficients of relation (1).
  • a principle adopted consists for example in associating with a ship a probability Pcap which is all the greater as the heading of the runway of the aircraft compared to the building analyzed is low.
  • the probability Pcap is equal to 0. If ⁇ is between ⁇ min and ⁇ max, the probability decreases linearly from 1 to 0 as illustrated by the figure 5 , it is 1 when ⁇ is less than ⁇ min.
  • Relation (4) thus ensures a fairly severe discrimination in distance between 5 km and 15 km.
  • the objective is to determine which ships the maneuver of the hostile aircraft is taking place towards. This detection is based for example on the exploitation of the results of a linear regression on the last estimated positions.
  • the purpose of the linear regression on the last estimated positions makes it possible to shelter as much as possible from an error in estimating the direction taken by the hostile aircraft. Only for example the window containing the last four positions estimated by the multifunction radar is considered.
  • the figure 6 illustrates the maneuver detection criterion.
  • a hostile aircraft H successively presents three speed vectors V 1 , V 2 , V 3 .
  • the maneuver probability depends for example on the relative position of the last three speed vectors V 1 , V 2 , V 3 with respect to the aforementioned straight line 61, this probability increasing when these vectors successively approach the straight line, that is to say that the angle they make with the straight line decreases.
  • the probability Pm freezes at 1, i.e. it no longer intervenes in the combination with the other criteria.
  • the probability Pm is fixed at 1 for example after a given number of speed vectors V 4 successive aircraft located on the same side of the right; this number can be equal for example to 3.
  • the classification of ships is done by combining for each of them the results of the three previously defined probabilities Pcap , Pdis and Pm.
  • the first possibility consists simply in retaining the ship with the highest probability of being targeted Pv .
  • the second possibility consists in carrying out the calculation of a barycenter from the position of each ship weighted by its probability of being targeted Pv , the calculated barycenter then being considered as the point targeted by the aircraft.
  • This second solution makes it possible in particular to eliminate discontinuities.
  • the second step 2 determines a fictitious point of impact as a function of this predicted target, this target possibly being for example the ship with the highest probability of be targeted or the barycenter as previously calculated.
  • the curvature of the cubic trajectory is therefore important.
  • the calculated cubic trajectory 73 moves away significantly from the true trajectory of the aircraft.
  • the second step 2 makes it possible to approximate the predicted cubic trajectory 73 of the actual trajectory, in particular by reducing its curvature.
  • the second step 2 consists in particular, from the targeted objective determined during step 1, in calculating a fictitious point of impact which reduces the curvature, by reducing the distance D and the heading angle ⁇ when these latter are too important. Reducing the curvature of the cubic trajectory thus brings it closer to the real trajectory.
  • the fictitious point of impact is for example located on the line segment between the predicted target target and the orthogonal projection of this predicted target on the line carried by the speed vector of the hostile aircraft as illustrated by the figure 8 .
  • the predicted targeted objective is for example either the ship having the highest probability of being targeted, or the barycenter of the vessels weighted by their probabilities of being targeted.
  • the second step determines for example a fictitious point of impact I located on the line segment 81 between the position 0 of the predicted objective, located for example at the center of the system of axes x , y , and the orthogonal projection N of this objective on the straight line 82 passing through the position P of the aircraft and carried by its speed vector V .
  • This fictitious point of impact is used as a new boundary condition to define the predicted cubic trajectory, starting from the fact that this trajectory ends at this fictitious point of impact.
  • the shape of the curvature is given by relation (5) and the decrease in D and ⁇ decreases the curvature.
  • the figure 9 shows that the new distance D ' between the aircraft and the fictitious point of impact is less than the distance D between the predicted target and the aircraft. The same is true for the heading angles ⁇ ', ⁇ .
  • the coefficient ⁇ is a function of the distance D and the heading angle ⁇ .
  • This coefficient ⁇ can for example be defined by neglecting the influence of the distance D . This may in particular be permitted by the fact that the targets concerned are for example located between 5 km and 15 km, in this distance range only the influence of the heading angle ⁇ being preponderant.
  • the figure 10 illustrates by a diagram an example of possible determination of the coefficient ⁇ represented on the ordinate as a function of the heading angle ⁇ represented on the abscissa.
  • the coefficient ⁇ is limited for example to 0.5, in particular so as not to reduce the length of the cubic trajectory too much.
  • the time taken by the hostile aircraft to travel the cubic trajectory to the fictitious point of impact must be large enough to allow an anti-aircraft missile to calculate the interception time.
  • the fictitious point of impact I is located on the first half of the segment [ ON ] starting from position O of the predicted target objective.
  • a new cubic trajectory 101 is calculated in the third step 3 of the method according to the invention taking into account a fictitious point of impact as defined above.
  • the radius of curvature of the new cubic trajectory 101 having clearly decreased compared to the first cubic trajectory 73, this new cubic trajectory is considerably closer to the real trajectory.
  • the trajectory 101 thus defined is then supplied, for example, to an anti-aircraft missile whose calculation means will determine its point of interception with the aircraft on this same trajectory.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Regulating Braking Force (AREA)

Claims (16)

  1. Verfahren zum Vorhersagen, zu einem gegebenen Zeitpunkt, der Flugbahn eines feindlichen Luftfahrzeugs (H) gegenüber Seefahrzeugen (HV, C1, C2, F), wobei das feindliche Luftfahrzeug (H) zum betrachteten Zeitpunkt einen Kurswinkel Ψ aufweist und sich in einer Entfernung D von einem vorhergesagten Zielpunkt (O) befindet, der dem Seefahrzeug (HV, C1, C2, F) mit der höchsten Wahrscheinlichkeit entspricht, in Abhängigkeit von den Flugparametern des Luftfahrzeugs zu dem betreffenden Zeitpunkt von dem Luftfahrzeug (H) anvisiert zu werden, oder der das Baryzentrum der Positionen der Seefahrzeuge (HV, C1, C2, F) ist, die wahrscheinlich von dem feindlichen Luftfahrzeug (H) anvisiert werden, gewichtet nach ihrer Wahrscheinlichkeit, von diesem anvisiert zu werden, dadurch gekennzeichnet, dass die vorhergesagte Flugbahn (101) durch Extrapolation eines gegebenen Flugbahntyps definiert wird und die Position des feindlichen Luftfahrzeugs mit einem fiktiven Aufschlagpunkt (I) verbindet, wobei der fiktive Aufschlagpunkt in Abhängigkeit von dem vorhergesagten von dem Luftfahrzeug (H) anvisierten Zielpunkt (O) definiert wird, um die Krümmung der vorhergesagten Flugbahn unter Berücksichtigung des Kurswinkels Ψ des Luftfahrzeugs und der Entfernung D zwischen dem Luftfahrzeug und dem vorhergesagten Zielpunkt (O) zu dem betrachten Zeitpunkt zu reduzieren, wobei die vorhergesagte Flugbahn dann an Mittel zur Berechnung einer Flugabwehrrakete geliefert wird, um ihren Abfangpunkt mit dem feindlichen Luftfahrzeug (H) auf der vorhergesagten Flugbahn zu bestimmen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es einen ersten Schritt (1) des Vorhersagens eines von einem Luftfahrzeug anvisierten Zielpunkts (O), einen zweiten Schritt (2) des Bestimmens eines fiktiven Aufschlagpunkts (I) in Abhängigkeit von dem vorhergesagten Zielpunkt und einen dritten Schritt (3) des Bestimmens einer Flugbahn (101) umfasst, die an dem fiktiven Aufschlagpunkt (I) endet.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der erste Schritt (1) einen ersten Unterschritt (11) des Klassifizierens von Seefahrzeugen (HV, C1, C2, F) in Abhängigkeit von ihrer Wahrscheinlichkeit von dem feindlichen Luftfahrzeug (H) anvisiert zu werden, umfasst.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Wahrscheinlichkeit von der maximalen Beschleunigung des feindlichen Luftfahrzeugs (H) abhängt.
  5. Verfahren nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Wahrscheinlichkeit vom Kurswinkel Ψ des feindlichen Luftfahrzeugs (H) abhängt, der durch den Winkel definiert ist, der durch den Geschwindigkeitsvektor des Luftfahrzeugs mit seiner Visierlinie gebildet wird.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Wahrscheinlichkeit von der Entfernung des feindlichen Luftfahrzeugs (H) zum Seefahrzeug (HV, C1, C2, F) abhängt.
  7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Wahrscheinlichkeit von einer Manöverwahrscheinlichkeit (Pm) abhängig ist, die ihrerseits von der Entwicklung des Geschwindigkeitsvektors in Bezug auf die Gerade abhängig ist, die das feindliche Luftfahrzeug (H) mit dem Seefahrzeug verbindet, wobei die Wahrscheinlichkeit zunimmt, wenn sich der Vektor dieser Geraden nähert, und bei 1 erstarrt, wenn er die Gerade überquert.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Manöverwahrscheinlichkeit (Pm) bei 1 erstarrt, wenn eine gegebene Anzahl von aufeinander folgenden Geschwindigkeitsvektoren ( V 4) auf derselben Seite der Geraden geblieben ist.
  9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der fiktive Aufschlagpunkt (I) auf dem Geradensegment (81) zwischen dem vorhergesagten Zielpunkt (O) und der Projektion (N) dieses Punkts auf die Gerade (82) liegt, die durch den Geschwindigkeitsvektor ( V ) des feindlichen Luftfahrzeugs (H) getragen wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass, wenn der Kurswinkel Ψ des feindlichen Luftfahrzeugs (H) groß ist, der fiktive Aufschlagpunkt (I) die Mitte des Segments (81) bildet.
  11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass, wenn der Kurswinkel Ψ des feindlichen Luftfahrzeugs (H) klein ist, der fiktive Aufschlagpunkt (I) gleich dem vorhergesagten Zielpunkt (O) ist.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass, wenn der Kurswinkel Ψ zwischen zwei gegebenen Winkeln liegt, die Position des fiktiven Aufschlagpunkts (I) vom vorhergesagten Zielpunkt (O) für den kleinsten Kurswinkel Ψ bis zur Mitte des Segments (61) für den größten Kurswinkel Ψ variiert.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Position des fiktiven Aufschlagpunkts (I) linear in Abhängigkeit vom Kurswinkel Ψ variiert.
  14. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass die Position des fiktiven Aufschlagpunkts (I) bei Kurswinkeln Ψ variiert, die im Wesentlichen zwischen 20° und 70° variieren.
  15. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die vorhergesagte Flugbahn (101) des Luftfahrzeugs durch eine kubische Gleichung definiert wird.
  16. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Seefahrzeuge (HV, C1, C2, F) Schiffe sind.
EP18175386.4A 2017-06-16 2018-05-31 Verfahren zur vorhersage der flugbahn eines feindlichen luftfahrzeugs, insbesondere im rahmen einer luftverteidigung Active EP3415860B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1700646A FR3067840B1 (fr) 2017-06-16 2017-06-16 Procede de prediction de la trajectoire d'un aeronef hostile notamment dans le cadre d'une defense antiaerienne

Publications (2)

Publication Number Publication Date
EP3415860A1 EP3415860A1 (de) 2018-12-19
EP3415860B1 true EP3415860B1 (de) 2022-11-16

Family

ID=62567271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18175386.4A Active EP3415860B1 (de) 2017-06-16 2018-05-31 Verfahren zur vorhersage der flugbahn eines feindlichen luftfahrzeugs, insbesondere im rahmen einer luftverteidigung

Country Status (3)

Country Link
EP (1) EP3415860B1 (de)
ES (1) ES2932621T3 (de)
FR (1) FR3067840B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111783358B (zh) * 2020-07-02 2022-10-04 哈尔滨工业大学 一种基于贝叶斯估计的高超速飞行器长期轨迹预报方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1610152A1 (de) 2004-05-28 2005-12-28 Saab Ab Verfolgung eines sich bewegenden Objektes für ein Selbstverteidigungssystem
US20160131455A1 (en) 2013-05-28 2016-05-12 Bae Systems Bofors Ab Method of fire control for gun-based anti-aircraft defence
KR20160070573A (ko) 2014-12-10 2016-06-20 국방과학연구소 유도탄의 요격지점 실시간 예측 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1610152A1 (de) 2004-05-28 2005-12-28 Saab Ab Verfolgung eines sich bewegenden Objektes für ein Selbstverteidigungssystem
US20160131455A1 (en) 2013-05-28 2016-05-12 Bae Systems Bofors Ab Method of fire control for gun-based anti-aircraft defence
KR20160070573A (ko) 2014-12-10 2016-06-20 국방과학연구소 유도탄의 요격지점 실시간 예측 방법

Also Published As

Publication number Publication date
FR3067840A1 (fr) 2018-12-21
ES2932621T3 (es) 2023-01-23
EP3415860A1 (de) 2018-12-19
FR3067840B1 (fr) 2022-05-27

Similar Documents

Publication Publication Date Title
EP2092366B1 (de) Verfahren zur schätzung der höhe eines ballistischen projektils
EP2150836B1 (de) Verfahren und vorrichtung zur auswahl eines ziels aus radarerfassungsdaten
US8550346B2 (en) Low-altitude low-speed small target intercepting method
US20070250260A1 (en) Method and system for autonomous tracking of a mobile target by an unmanned aerial vehicle
FR3063554A1 (fr) Procede et dispositif de prediction de solutions d'attaque et de defense optimales dans un scenario de conflit militaire
CN105022035A (zh) 一种基于模型修正的弹道目标发射点估计装置及其方法
EP3415860B1 (de) Verfahren zur vorhersage der flugbahn eines feindlichen luftfahrzeugs, insbesondere im rahmen einer luftverteidigung
FR3000238A1 (fr) Procede avec un systeme pour la determination et la prediction d'un mouvement d'un objet cible
CN109297497B (zh) 对无人机操控者溯源的方法及系统
CN111612673B (zh) 一种无人驾驶飞行器对多要地威胁程度确认方法及系统
FR2978282A1 (fr) Procede et dispositif pour le filtrage d'alertes provenant d'un systeme de detection de collision d'un aeronef
US20140067312A1 (en) Launch Origin and Apparent Acceleration Determination Technique
EP2354753A1 (de) Verfahren zur Bestimmung der Flugbahn einer ballistischen Rakete
EP3239656B1 (de) Optimierungsverfahren der erkennung von zielen im meer, und radar an bord eines fluggeräts zur umsetzung dieses verfahrens
Pohasii et al. UAVs intercepting possibility substantiation: economic and technical aspects
EP2612103A1 (de) Vorrichtung und verfahren zur erkennung und abwehr einer gefahr auf see
EP3236331A1 (de) Verfahren zur optimierung der bildaufnahmen, die von einer fliegenden vorrichtung zur radarbilderfassung stammen, und einsatzsystem zur umsetzung dieses verfahrens
FR2929700A1 (fr) Dispositif decentralise d'autodefense comprenant un pointeur portable et mobile apte a assurer en urgence la defense rapprochee d'un navire ou d'une plate-forme en mer contre une menace de surface.
EP0809084B1 (de) Vorrichtung zur Rollwinkelbestimmung eines Flugkörpers, insbesondere einer Munition
FR3103305A1 (fr) Procédé et dispositif de prédiction d’au moins une caractéristique dynamique d’un véhicule en un point d’un segment routier.
FR2619634A1 (fr) Procede et dispositif de reperage de cible a emission infrarouge et munition en comportant application
FR2569858A1 (fr) Dispositif et procede de visualisation pour dispositif de detection de mobiles
FR2726360A1 (fr) Procede d'elaboration d'un ordre d'allumage automatique pour un piege antichar et allumeur pour la mise en oeuvre du procede
US12025691B2 (en) Systems and methods for radar detection having intelligent acoustic activation
EP4425211A1 (de) System zur klassifizierung von radarspuren in falsche juckenspuren und anderen spuren, die sich auf interessierende ziele wie flugzeuge oder flugkörper sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190613

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220714

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018043051

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1531998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2932621

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230123

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1531998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602018043051

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: BAE SYSTEMS BOFORS AB

Effective date: 20230807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: TITRE

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BAE SYSTEMS BOFORS AB

Effective date: 20230807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240416

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240613

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240426

Year of fee payment: 7

Ref country code: FR

Payment date: 20240422

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240429

Year of fee payment: 7