EP3411181B1 - Vorrichtung und verfahren zur mikrofeinbearbeitung eines schmalen sohlenzapfens - Google Patents

Vorrichtung und verfahren zur mikrofeinbearbeitung eines schmalen sohlenzapfens Download PDF

Info

Publication number
EP3411181B1
EP3411181B1 EP17747917.7A EP17747917A EP3411181B1 EP 3411181 B1 EP3411181 B1 EP 3411181B1 EP 17747917 A EP17747917 A EP 17747917A EP 3411181 B1 EP3411181 B1 EP 3411181B1
Authority
EP
European Patent Office
Prior art keywords
tooling
journal
bearing
microfinishing
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17747917.7A
Other languages
English (en)
French (fr)
Other versions
EP3411181A1 (de
EP3411181A4 (de
Inventor
Mark HENDEL
Joe PORUBSKY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Impco Microfinishing
Original Assignee
Impco Microfinishing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Impco Microfinishing filed Critical Impco Microfinishing
Publication of EP3411181A1 publication Critical patent/EP3411181A1/de
Publication of EP3411181A4 publication Critical patent/EP3411181A4/de
Application granted granted Critical
Publication of EP3411181B1 publication Critical patent/EP3411181B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/42Single-purpose machines or devices for grinding crankshafts or crankpins
    • B24B5/421Supports therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/42Single-purpose machines or devices for grinding crankshafts or crankpins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B35/00Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/08Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section
    • B24B19/12Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts
    • B24B19/125Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts electrically controlled, e.g. numerically controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/02Machines or devices using grinding or polishing belts; Accessories therefor for grinding rotationally symmetrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/18Accessories
    • B24B21/22Accessories for producing a reciprocation of the grinding belt normal to its direction of movement

Definitions

  • This invention relates to metal finishing and to an improved apparatus and methods for microfinishing metal cylindrical surfaces with particular applicability for journal bearing surfaces of internal combustion crankshafts.
  • journal bearing and cam surfaces such as are found in internal combustion engine crankshafts, camshafts, power transmission shafts, and other machine-finished surfaces.
  • abrading tool or abrasive media also referred to as microfinishing
  • journal type bearings very accurately formed journal surfaces are needed to provide the desired hydrodynamic bearing effect which results when lubricant is forced into the small clearance between the journal and the associated bearing shell. Improperly finished bearing surfaces may lead to premature bearing failure and can limit the load carrying capacity and performance of the bearing.
  • journal bearings In addition to journal bearings, numerous other types of machined components also require finely controlled surface finishes for relatively rotating components, particularly in areas of sliding contact between parts.
  • Microfinishing for internal combustion engine crankshaft bearing journals is accomplished presently using various types of machining and tooling systems. Microfinishing operations ordinarily take place after a grinding process which produces the desired journal geometry, but such processes in general do not provide desired surface finish parameters.
  • typical microfinishing processes for crankshafts the crankshaft is rotated about its main bearing journal axis and microfinishing tooling is brought to bear against the bearing surfaces, and upon rotation of the crankshaft, the machining action occurs.
  • One approach uses abrasive stone tool inserts which provide the machining action.
  • abrasive coated film or tape is used as the machining agent which is pressed against the bearing surfaces using rigid or compliant tool insets such as formed from urethane type compositions or abrasive materials.
  • the applicants have developed significant improvements in the field of journal microfinishing including machining apparatus and methods as described by US patents: 4,682,444 ; 5,095,663 ; 5,148,636 ; and 5,531,631 .
  • US 4,682,444 A discloses a microfinishing apparatus and a method and is considered as the closest prior art for the independent claims.
  • US 4,682,444 A discloses a microfinishing apparatus for processing journal bearing surfaces of a crankshaft.
  • the crankshaft is of a type having bearing journals including at least one main bearing journal and at least one pin bearing journal.
  • One or more of the bearing journals bound on axial ends by crankshaft webs or other radial projections, each of the bearing journals defining an axial length and an axial center, comprising tooling in the form of at least a pair of microfinishing shoes adapted to be clamped and unclamped from the bearing journals.
  • the tooling having an axial width, a drive for rotating the crankshaft relative to the tooling to provide a machining effect on the journal bearing surface, and clamping arms which position the tooling to engage the bearing journal surface and press the tooling against the bearing journal surface.
  • Microfinishing approaches for crankshafts have generally sought to improve the surface finish of a journal bearing surface without changing the contour or geometry provided in the journal by prior machining processes such as, most commonly, grinding operations.
  • some engine manufacturers specify a slight barrel shape in the journal surface when viewed axially along the journal surface to promote a desired hydrodynamic bearing effect.
  • a so-called hourglass type profile in which the journal diameter is minimum at near the center of the axial length of the journal is less frequently desirable, it is specified for certain applications. In other applications an idealized constant diameter cylindrical surface is desired.
  • crankshaft microfinishing operations available today are limited in their capabilities of correcting geometric errors in incoming workpieces and in forcing the workpiece to a desired profile configuration. It is an object of the present invention to provide capabilities during microfinishing operations for maintaining a desired geometry or generating slight changes in journal shape desirable for providing the journal profiles mentioned above pursuant specifications.
  • crankshafts have two or more main bearing journals, located on the axis of rotation of the crankshaft, and one or more eccentric connecting rod journals which move in an orbital path relative to the crankshaft axis of rotation.
  • a tool is brought into contact with the bearing journal and is oscillated during machining in the direction of the cylindrical axis of the journal during relative rotation between the tool, the abrasive agent and the journal surface to enhance material removal and eliminate machining debris and abrasive particles.
  • Microfinishing tooling for internal combustion crankshafts must operate within the confines of the axial length of the journal bearing surface being machined since crankshaft structures such as the throws, webs, flanges, and gears present between the bearing surfaces interfere at the axial ends of the journals.
  • crankshaft microfinishing machines use a pair of arms exending perpendicular to the crankshaft axis of rotation which clamp onto the bearing journals during machining.
  • High production rate machines provide simultaneous microfinishing of multiples or all the the crankshaft bearing journal surfaces of a crankshaft.
  • microfinishing tooling of the type described above typically must be designed and produced specifically for workpieces with journals having a given axial length and diameter, and desired surface shape profile.
  • crankshaft microfinishing tooling has a width just slightly less than the width of the crankshaft journal, with sufficient clearance to provide desired oscillation of the tool during the microfinishing process.
  • Micromachining workpieces with different dimensional specifications typically requires tooling changeover with the attendant operational downtime and manpower commitments. It is a further object of the present invention to provide enhanced flexibility for microfinishing tooling and machines.
  • an apparatus and methods specifically suited for crankshaft microfinishing are described providing numerous benefits over current techniques and devices.
  • Two principal features are described, one feature enables providing standardized machines and tooling for a variety of crankshaft configurations.
  • Another area of enhancements according to the invention is related to producing desired journal bearing surface shape.
  • Both features of the invention are realized utilizing microfinishing tooling with shoes having a width significantly less than the axial length of the journal surface to be machined.
  • the narrow tooling width or "thin shoe” design permits journals over a range of axial length to be machined using common tooling.
  • a shoe width is less than 50% (and preferably less than 40%) of the journal bearing axial length, while greater than about 20% of the length.
  • Additional benefits are provided through precise control over one or more of various machining parameters during microfinishing including, applied shoe clamping force, tool oscillation, and tool stroking which can be implemented to generate the desired journal profile shapes.
  • These parameters take advantage of the tailored machining cababilities using the "thin shoe” configuration since they permit regions of the journal surface to be machined with a different effect than other regions.
  • some flexibility of journal diameter can also be accommodated with individual tools.
  • FIGS 1 , 2 and 3 illustrate a microfinishing machine 10 in accordance with the present invention and which is capable of being operated to practice the methods in accordance with the present invention.
  • a representative workpiece shown as internal combustion engine crankshaft 12 is supported at opposing ends by machine headstock 14 and tailstock 15 which together cause crankshaft 12 to be rotated about its longitudinal center axis 18.
  • Crankshaft 12 forms a number of cylindrical journal bearing surfaces to be microfinished, including main bearing journals 20 (four shown in Figure 1 ) which are concentric with axis 18, and rod bearing journals 22 (six shown in Figure 1 ) which move in rotational and orbital paths upon rotation of crankshaft 12.
  • crankshaft 12 Since crankshaft 12 is rotated about its longitudinal axis 18 which is coaxial with main journals 20, their centers remain theoretically stationary during rotation of the crankshaft.
  • Crankshaft 12 includes a number of structures such as throws or webs 24 which provide for the eccentric positioning of the rod bearing journals 22 and provide counterweights for balancing the crankshaft during operation in an engine. Additional structures including pinion shaft 26 and central drive sprocket 28 of the representative crankshaft 12 are shown. The presence of these additional structures limits the axial length within which microfinishing tools must operate. In other words, these structures present obstacles preventing microfinishing tooling from stroking beyond the axial ends of the journal surfaces being microfinished.
  • crankshaft 12 in Figures 1 and 2 differ slightly; namely, crankshaft 12 in Figure 2 features five main bearings 20 and four rod bearings 22, and does not include drive sprocket 28.
  • crankshaft 12 in Figure 2 features five main bearings 20 and four rod bearings 22, and does not include drive sprocket 28.
  • these are examples of typical crankshafts subject to machining operations in accordance with the present invention and these differing features do not limit the implementation of the present invention.
  • ball screw shuttle mechanism 30 is operated to cause reciprocation of headstock 14 during microfinishing operations.
  • Tailstock 16 is provided with a compliant element such as an air spring (not shown) which allows crankshaft 12 to oscillate in a reciprocating manner along its central axis 18. Oscillation is characterized as small displacements operate at a higher frequency than another type of longitudinal motion described in more detail below termed stroking.
  • Microfinishing machine 10 is operated under computer numerical control by controller 15 and is used with material handling equipment, enabling crankshaft 12 to be loaded into a position between headstock 14 and tailstock 16 which are operated to support the crankshaft for rotation.
  • a rotational drive system (not shown) is provided to drive rotation of crankshaft 12 during microfinishing operations.
  • microfinishing tooling 32 includes upper shoe 34 and lower shoe 36.
  • Shoes 34 and 36 are supported respectively by upper and lower arms 26 and 28.
  • arms 38 and 40 are shown supporting shoes 34 and 36 mounted to the arms.
  • Each of the shoes 34 and 36 forms a semi-cylindrical machining surface 42.
  • a number of tool inserts 44 are mounted to the shoes 34 and 36 and can be formed of hard materials such as ceramics, or compliant materials such as urethane based compounds, as a few examples. Inserts 44 are machined or formed to generate the semi-cylindrical machining surfaces 42.
  • Microfinishing film 46 is pressed against the respective journal bearing surface by the inserts 44 and has a surface coated with an abrasive material.
  • machining surfaces 42 can be formed by an abrasive material which directly acts on the workpiece surface without using and intermediate abrasive film 46.
  • Rotation of crankshaft 12 causes relative motion and machining action between microfinishing film 34 and the journal surfaces 20 and 22.
  • Upper and lower arms 38 and 40 exert a clamping force F, forcing the associated shoes 34 and 36 against film 46 and the journal surface being machined.
  • rod bearing journals 22 undergo orbital motion and accordingly the associated upper and lower arms 26 and 28 engaging the rod bearing journals follow this orbital path during machining.
  • a representative microfinishing machine 10 has multiples of upper and lower arms 38 and 40, and respective tooling for engagement with each of the rod and main bearing journals 20 and 22. Accordingly, during a machining operation, rotation of crankshaft 12 provides machining action for each of the bearing journals.
  • microfinishing film 46 the film is indexed between machining cycles so that a fresh abrasive surface patch acts on the journals during a machining sequence.
  • Upper and lower arms 38 and 40 open following a machining operation to permit unloading of crankshaft 12. Once a new part is positioned between the machine headstock 14 and tailstock 16, arms 38 and 40 are moved to clamp against the journal surfaces under computer numerical control by controller 15.
  • Microfinishing machine 10 further includes stroking linear actuator 48 which causes each of the clamping arms 38 and 40 stroke across the axial width of the respective bearing surfaces 20 and 22 in a precise manner. Preferably such stroking causes all of the clamping arms 38 and 42 acting on the crankshaft to move together.
  • stroking linear actuator 48 causes each of the clamping arms 38 and 40 stroke across the axial width of the respective bearing surfaces 20 and 22 in a precise manner.
  • stroking linear actuator 48 causes all of the clamping arms 38 and 42 acting on the crankshaft to move together.
  • separate sequentially operated microfinishing machines 10 may be used, one for the bearing journals having a particular axial length and stroke displacement, and another for the bearing journals having a differing axial length and stroke displacement.
  • An example of such multiple operations is used for crankshafts having so-called split pin rod bearing journals with a single rod journal 22 supporting two connecting rods. Such a sequential process is referred to in the industry as "stitching".
  • upper and lower shoes 34 and 36 define a width w.
  • Journals 20 and 22 define an axial width (or length) W, which as mentioned previously may differ between the journals 20 and 22.
  • journals 20 and 22 typically have accurately machined cylindrical surfaces with the axial ends forming relief or oil grooves 50. Due to interference with the crankshaft throws 24 or other structures, it is possible with these types of workpieces to move shoes 34 and 36 axially only within the confines of the length of the respective bearing journals or until interference with the throws 24 or other structures would occur.
  • microfinishing machine 10 having the capabilities of controlling the clamping pressure F exerted by upper and lower arms 38 and 40
  • control over the axial position of the arms and tools along the axial length of the journals is also provided by stroking linear actuator 48, again under numerical control by controller 15.
  • Axial motion of the tooling during machining can be provided in two categories; termed oscillation and stroking. Oscillation of the tools mentioned previously is characterized as a high frequency (e.g. 5-300 Hz) and small magnitude relative motion (e.g. 1-2mm) provided to enhance the cleaning effect for the abrasive agent during microfinishing machining.
  • liquid machining fluids are used to carry away abrasive particles and metal waste material removed during microfinishing.
  • This oscillation movement is provided by ball screw shuttle 30.
  • Arms 26 and 28 are also controlled by controller 15 to provide a desired stroking motion under control of stroking linear actuator 48, characterized as causing the shoes 34 and 36 to move linearly across the entire or a substantial portion of the axial length of the journal being microfinished.
  • tooling width w is chosen to be less than 50% and greater than about 20% of the axial length W of journals for a class of crankshafts 12 to be machined (or .2 W ⁇ w ⁇ .5 W ).
  • Preferred embodiments have an upper range of width w of equal to or less than about 40% of the axial length W (i.e..2 W ⁇ w ⁇ .4 W ).
  • the shoes 34 and 36 are stroked across the axial length of the journals to provide a machining effect along their entire length. Moreover, by modifying the dynamic position of the tools and/or the clamping force F acting on the tools in a prescribed schedule, desired machining effects can be provided. Shoes 34 and 36 are positioned and moved dynamically throughout a machining cycle under numerical control by controller 15. In order to implement the custom machining effects described herein it is preferred that the tool can be stroked to the axial ends of the journal surface being machined while the axial center of the journal is not machined. This leads to the "less than 50%" parameter mentioned above. When machining split pin rod journals 22, the tooling width w is likely to approach the lower end of the width range mentioned previously.
  • a material removal of around 6 ⁇ can be achieved for cast iron and forged steel crankshafts.
  • a machining process will typically involve several strokes of the tooling across the axial length of the journal.
  • six passes or cycles of stroking of the tooling may be provided, with each pass occurring during a period of about 1 second (i.e. stroking frequency of 1 Hz.). During such stroking, oscillation may occurs during the entire machining cycle.
  • the tooling and machining system according to the present invention is capable of providing desired journal profile shape in a number of ways which may be used independently or in combination to produce the desired results. Three approaches are described which involve varying or controlling a machining parameter or multiple parameters as a function of the axial positioning of the tooling along the journal surface, including; 1) clamping pressure, 2) oscillation, and 3) dwell time (or stroking schedule).
  • Figure 4 identifies three positions or areas of the tooling along the axial length of a representative bearing journal (which can be a main bearing journal 20 or a rod bearing journal 22).
  • the journal axial length can be thought of as composed of the three illustrated axial length sub-components; 52, 54, and 56 (with subcomponents 52 and 56 at the axial ends, and 54 at the center).
  • Figure 4 shows the tooling in the three region positions.
  • Figures 5 (A-C), 6(A-C), and 7(A-C) some of the controlled machining parameters mentioned above are described in more detail.
  • a line is shown which exaggerates the journal profile surface for illustration purposes.
  • Figures 5(A) , 6(A) and 7(A) illustrate a so-called “barrel” or convex journal profile in which the middle component 54 (axial center) has a slightly larger diameter than end components 52 and 56.
  • Figures 5(B) , 6(B) and 7(B) illustrate a so-called “hourglass” or concave profile form in which end components 52 and 56 have a slightly larger diameter than center component 54.
  • Figures 5(C) , 6(C) and 7(C) illustrate a so-called “double barrel” profile form which is equivalent to two of the convex forms of Figures 5(A) , 6(A) and 7(A) in a co-linear arrangement, particularly used for so-called split pin journals described previously.
  • clamping force F exerted on the tooling by clamping arms 38 and 40 is varied as a function of the position of the tooling 32 along the axial length of the bearing journal surface.
  • symbols "+” or “0” are used to show a relatively higher and a relatively lower clamping pressure, respectively.
  • clamping pressure F is at the higher "+” level when the tooling is in the position of the axial end subcomponents 52 and 56, and reduced while the tooling is at the position of center component 54.
  • clamping pressure F is less at the center section 40 than at the axial ends 38 and 42.
  • oscillation frequency Hz acting on the tooling 32 provided by ball screw shuttle 30 is varied as a function of the position of the tooling 32 along the axial length of the bearing journal surface.
  • symbols "+” or “0” are used to show a relatively higher and a relatively lower oscillation frequency Hz, respectively.
  • the "0" level could be 0 Hz (no oscillation) or some small value e.g. 5 Hz, and the "+” level could be at a higher level e.g. 200 Hz.
  • oscillation frequency Hz is at the higher "+" level while the tooling is positioned at the axial end subcomponents 52 and 56, and reduced while the tooling is at the position of center component 54.
  • the machining action is increased as oscillation frequency Hz increases.
  • oscillation frequency Hz is less at the center section 54 than at the axial ends 52 and 56.
  • the stroking schedule acting on the tooling 32 provided by stroking linear actuator 48 is a controlled and varied by controller 15 as a function of the position of the tooling 32 along the axial length of the bearing journal surface.
  • symbols "+” or "0" are used to show a relatively higher and a relatively lower dwell time or inversely stroking axial velocity at the mentioned bearing areas, respectively.
  • the tooling may be stroked along the journal surface and cause to dwell or park at the end positions 52 and 56 for a specified time period before the direction is reversed to traverse across the journal surface. This again results in greater material removal rate at the axial ends to provide the desired profile shape mentioned previously.
  • the "0" level could be a dwell time of 1.0 second and the "+" level could be at 0.5 seconds to generate the barrel configuration of Figure 6(A) .
  • the machining action is increased as dwell time increases.
  • dwell time is less at the center section 54 than at the axial ends 52 and 56.
  • less dwell time "0" exerted on the tooling 32 while positioned at the center section 54 of the journal a less integrated machining action occurs and accordingly less material is removed.
  • the diameter D of the journal at the axial center region 54 is controlled by controller 15 to be slightly greater than the diameters D measured at the axial ends 52 and 56 of the journal.
  • Generating the concave surface profile configuration of Figure 7(B) and the double barrel configuration of 7(C) is achieved using the indicated dwell time schedules shown in the Figures varied between the relative values "+" and "0".
  • journal surface profiles are described as being one of barrel, hourglass, or double barrel configurations. It should be noted that an idealized cylindrical i.e. constant diameter surface may also be a desired configuration.
  • a preferred feature of the tooling in accordance with this invention is its narrow width w (mentioned previously as a less than 0.5 W ) which allows the variation in machining effect to be provided.
  • a desired bearing journal surface profile specified by a customer can be provided by accurately gauging incoming parts to determine their machined surface characteristics.
  • a set of crankshafts 12 may have one of the surface profile configurations described previously, or can exhibit journals with nearly idealized constant diameter cylindrical profile.
  • a different surface profile configuration can be impressed in the workpiece journal surface even where the workpieces are provided before microfinishing with a different configuration.
  • the surface profile configuration provided in incoming parts can be precisely preserved using these controllable machining parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Claims (15)

  1. Feinstbearbeitungsverfahren zum Bearbeiten von Lagerzapfenoberflächen einer Kurbelwelle (12), wobei die Kurbelwelle (12) von einem Typ ist, der Lagerzapfen (20, 22) mit mindestens einem Hauptlagerzapfen (20) und mindestens einem Hublagerzapfen (22) aufweist, wobei einer oder mehrere der Lagerzapfen (20, 22) an axialen Enden durch Kurbelwangen (24) oder andere radiale Hindernisse begrenzt ist, wobei jeder der Lagerzapfen (20, 22) eine axiale Länge (W) definiert, aufweisend die Schritte;
    Bereitstellen eines Werkzeugs (32) in Form von mindestens einem Paar von Feinstbearbeitungsschuhen (34, 36), die ausgebildet sind, um an die Lagerzapfen (20, 22) geklemmt und gelöst zu werden,
    Bereitstellen des Werkzeugs (32) mit einer axialen Breite (w) von weniger als 50% der Lagerzapfenaxiallänge (W) und mehr als 20% der Lagerzapfenaxiallänge (W),
    Klemmen des Werkzeugs (32) an den Lagerzapfen (20, 22),
    Drehen der Kurbelwelle (12) relativ zu dem Werkzeug (32), um einen Bearbeitungseffekt an der Lagerzapfenoberfläche bereitzustellen, und
    Veranlassen, dass das Werkzeug (32) entlang der axialen Länge (W) des Lagerzapfens (20, 22) zwischen den axialen Enden streicht, wenn die Kurbelwelle (12) relativ zu dem Werkzeug (32) gedreht wird, was den Bearbeitungseffekt bereitstellt, einschließlich, dass das Werkzeug (32) die axiale Mitte der Lagerzapfenoberfläche kreuzt, und an Positionen des Werkzeugs (32) an den axialen Enden des Lagerzapfens (20, 22) wirkt das Werkzeug (32) nicht auf die Lagerzapfenoberfläche an der axialen Mitte.
  2. Feinstbearbeitungsverfahren nach Anspruch 1, weiter aufweisend, dass das Bereitstellen der Lagerzapfen (20, 22) umfasst, dass die Lagerzapfen (20, 22) mit einem Bereich der axialen Längen bereitgestellt werden.
  3. Feinstbearbeitungsverfahren nach Anspruch 1, weiter aufweisend, Variieren eines Bearbeitungsparameters, während der Bearbeitungseffekt bereitgestellt wird, umfassend einen oder mehrere aus Klemmdruck des Werkzeugs (32), Oszillation des Werkzeugs (32) und Verweilzeit oder Hubgeschwindigkeit des Werkzeugs (32), oder weiter aufweisend, Variieren eines Bearbeitungsparameters, während der Bearbeitungseffekt als eine Funktion der axialen Position des Werkzeugs (32) entlang der axialen Länge (W) des Lagerzapfens (20, 22) bereitgestellt wird.
  4. Feinstbearbeitungsverfahren nach Anspruch 1, weiter aufweisend, Variieren eines Bearbeitungsparameters durch Einstellen des auf das Werkzeug (32) ausgeübten Klemmdrucks als Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche, oder weiter aufweisend, Variieren eines Bearbeitungsparameters durch Einstellen der Oszillationsfrequenz des Werkzeugs (32) als Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche.
  5. Feinstbearbeitungsverfahren nach Anspruch 1, weiter aufweisend, Variieren eines Bearbeitungsparameters durch Einstellen der Oszillationsverschiebung des Werkzeugs (32) als Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche, oder weiter aufweisend, Variieren eines Bearbeitungsparameters durch Einstellen des Hubplans des Werkzeugs (32) als Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche.
  6. Feinstbearbeitungsverfahren nach Anspruch 1, weiter aufweisend, Drehen der Kurbelwelle (12) relativ zu dem Werkzeug (32) während des Feinstbearbeitungsverfahrens, oder weiter aufweisend, wobei das Werkzeug (32) einen abrasiven beschichteten Film (46) gegen den Lagerzapfen (20, 22) drückt, wenn das Werkzeug (32) gegen den Lagerzapfen (20, 22) geklemmt wird, oder weiter aufweisend, Bereitstellen des Werkzeugs (32) in Form von einem Paar von Schuhen (34, 36), die von Klemmarmen (38, 40) getragen werden.
  7. Feinstbearbeitungsverfahren nach Anspruch 1, weiter aufweisend den Schritt des Bereitstellens einer gewünschten Profilform für die Lagerzapfenoberfläche, die eine Form mit konstantem Durchmesser, eine tonnenförmige Form, eine sanduhrförmige Form oder eine doppelt tonnenförmige Form umfasst, durch Variieren eines Bearbeitungsparameters während der Bearbeitungseffekt als eine Funktion der axialen Position des Werkzeugs (32) entlang der axialen Länge (W) des Lagerzapfens (20, 22) bereitgestellt wird.
  8. Feinstbearbeitungsvorrichtung (10) zum Bearbeiten von Lagerzapfenoberflächen einer Kurbelwelle (12), wobei die Kurbelwelle (12) von einem Typ ist, der Lagerzapfen (20, 22) mit mindestens einem Hauptlagerzapfen (20) und mindestens einem Hublagerzapfen (22) aufweist, wobei einer oder mehrere der Lagerzapfen (20, 22) an axialen Enden durch Kurbelwangen (24) oder andere radiale Vorsprünge begrenzt ist, wobei jeder der Lagerzapfen (20, 22) eine axiale Länge (W) und eine axiale Mitte definiert, aufweisend
    ein Werkzeug (32) in Form von mindestens einem Paar von Feinstbearbeitungsschuhen (34, 36), die ausgebildet sind, um an die Lagerzapfen (20, 22) geklemmt und gelöst zu werden, wobei das Werkzeug (32) eine axiale Breite (w) von weniger als 50% der Lagerzapfenaxiallänge (W) und mehr als 20% der Lagerzapfenaxiallänge (W) aufweist,
    einen Antrieb zum Drehen der Kurbelwelle (12) relativ zu dem Werkzeug (32), um einen Bearbeitungseffekt an der Lagerzapfenoberfläche bereitzustellen, Klemmarme (38, 40), die das Werkzeug (32) positionieren, um an der Lagerzapfenoberfläche anzuliegen, und die das Werkzeug (32) gegen die Lagerzapfenoberfläche drücken,
    ein Shuttle (30), um das Werkzeug (32) zu veranlassen, entlang der axialen Länge (W) des Lagerzapfens (20, 22) zu oszillieren, und
    ein Armhubstellglied (48), um das Werkzeug (32) zu veranlassen, entlang der axialen Länge (W) des Lagerzapfens (20, 22) zu streichen, wenn der Antrieb die Kurbelwelle (12) relativ zu dem Werkzeug (32) dreht, was den Bearbeitungseffekt bereitstellt, wobei das Hubstellglied (48) das Werkzeug (32) veranlasst, die axiale Mitte der Lagerzapfenoberfläche zu kreuzen, und wobei an Positionen des Werkzeugs (32) an den axialen Enden des Lagerzapfens (20, 22) das Werkzeug (32) nicht auf die Lagerzapfenoberfläche in der axialen Mitte wirkt.
  9. Feinstbearbeitungsmaschine (10) nach Anspruch 8, weiter aufweisend, dass die Lagerzapfen (20, 22) einen Bereich der axialen Längen aufweisen.
  10. Feinstbearbeitungsmaschine (10) nach Anspruch 8, weiter aufweisend, eine Steuerung (15) zum Variieren eines Bearbeitungsparameters, während der Bearbeitungseffekt bereitgestellt wird, umfassend einen oder mehrere aus Klemmdruck des Werkzeugs (32), Oszillation des Werkzeugs (32) und Verweilzeit des Werkzeugs (32), oder weiter aufweisend, eine Steuerung (15) zum Variieren eines Bearbeitungsparameters, während der Bearbeitungseffekt bereitgestellt wird durch Variieren als eine Funktion der axialen Position des Werkzeugs (32) entlang der axialen Länge (W) des Lagerzapfens (20, 22).
  11. Feinstbearbeitungsmaschine (10) nach Anspruch 8, weiter aufweisend, eine Steuerung (15), die einen Bearbeitungsparameter variiert, durch Einstellen des auf das Werkzeug (32) ausgeübten Klemmdrucks als Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche, oder weiter aufweisend, eine Steuerung (15) zum Variieren eines Bearbeitungsparameters durch Einstellen der Oszillationsfrequenz des Werkzeugs (32) als Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche.
  12. Feinstbearbeitungsmaschine (10) nach Anspruch 8, weiter aufweisend, eine Steuerung (15) zum Variieren eines Bearbeitungsparameters durch Einstellen der Oszillationsverschiebung des Werkzeugs (32) als eine Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche, oder weiter aufweisend, eine Steuerung (15) zum Variieren eines Bearbeitungsparameters durch Einstellen des Hubplans des Werkzeugs (32) als eine Funktion der Position des Werkzeugs (32) entlang der axialen Länge (W) der Lagerzapfenoberfläche.
  13. Feinstbearbeitungsmaschine (10) nach Anspruch 8, weiter aufweisend, dass der Antrieb die Kurbelwelle (12) während des Feinstbearbeitungsprozesses relativ zum Werkzeug (32) dreht, oder aufweisend, wobei das Werkzeug (32) einen abrasiven beschichteten Film (46) gegen den Lagerzapfen (20, 22) drückt, wenn das Werkzeug (32) gegen den Lagerzapfen (20, 22) geklemmt wird.
  14. Feinstbearbeitungsmaschine (10) nach Anspruch 8, weiter aufweisend, das Werkzeug (32) in Form von einem Paar von Schuhen (34, 36), die von den Klemmarmen (38, 40) getragen werden.
  15. Feinstbearbeitungsmaschine (10) nach Anspruch 8, weiter aufweisend, eine Steuerung (15), die konfiguriert ist zum Bereitstellen einer gewünschten Profilform für die Lagerzapfenoberfläche, die eine Form mit konstantem Durchmesser, eine tonnenförmige Form, eine sanduhrförmige Form oder eine doppelt tonnenförmige Form umfasst, durch Variieren eines Bearbeitungsparameters während der Bearbeitungseffekt als eine Funktion der axialen Position des Werkzeugs (32) entlang der axialen Länge (W) des Lagerzapfens (20, 22) bereitgestellt wird.
EP17747917.7A 2016-02-01 2017-01-20 Vorrichtung und verfahren zur mikrofeinbearbeitung eines schmalen sohlenzapfens Active EP3411181B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662289382P 2016-02-01 2016-02-01
PCT/US2017/014348 WO2017136163A1 (en) 2016-02-01 2017-01-20 Narrow shoe journal microfinishing apparatus and method

Publications (3)

Publication Number Publication Date
EP3411181A1 EP3411181A1 (de) 2018-12-12
EP3411181A4 EP3411181A4 (de) 2020-03-25
EP3411181B1 true EP3411181B1 (de) 2023-04-19

Family

ID=59500952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17747917.7A Active EP3411181B1 (de) 2016-02-01 2017-01-20 Vorrichtung und verfahren zur mikrofeinbearbeitung eines schmalen sohlenzapfens

Country Status (3)

Country Link
US (1) US20210101244A1 (de)
EP (1) EP3411181B1 (de)
WO (1) WO2017136163A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107336121B (zh) * 2017-09-05 2019-02-19 湖州吴兴华隆机械有限公司 一种汽车曲轴加工用抛光机
CN109202590A (zh) * 2018-09-29 2019-01-15 宁波智正伟盈信息科技有限公司 一种用于汽车零部件去焊渣的打磨装置
CN111251130B (zh) * 2020-03-03 2021-02-19 河南理工大学 一种用于凸轮加工的双工位磨削工装

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438646A (en) * 1981-01-19 1984-03-27 Caterpillar Tractor Co. Crankshaft journal surface gauge and kit thereof
US4682444A (en) * 1984-05-07 1987-07-28 Industrial Metal Products Corporation Microfinishing apparatus and method
US5148636A (en) 1989-02-07 1992-09-22 Industrial Metal Products Corporation Size control shoe for microfinishing machine
US5095663A (en) 1989-02-07 1992-03-17 Industrial Metal Products Corporation Size control shoe for microfinishing machine
US5437125A (en) * 1992-03-16 1995-08-01 Barton, Ii; Kenneth A. Surface polishing assembly
US5531631A (en) 1994-04-28 1996-07-02 Industrial Metal Products Corporation Microfinishing tool with axially variable machining effect
DE4423422A1 (de) * 1994-07-06 1996-01-11 Grieshaber Masch Verfahren zur Außen-Feinstbearbeitung, insbesondere rotationssymmetrischer Körper
JP2820059B2 (ja) * 1995-03-24 1998-11-05 トヨタ自動車株式会社 研摩装置
DE602004006654T2 (de) * 2003-02-12 2008-02-07 Nissan Motor Co., Ltd., Yokohama Vorrichtung und Verfahren zur Oberflächen-Endbearbeitung
EP1906280A3 (de) * 2006-09-28 2011-02-23 Jtekt Corporation Programmschreibverfahren einer numerischen Steuerung, numerische Steuerung und damit gesteuerte Schneidmaschine
JP2008307633A (ja) * 2007-06-14 2008-12-25 Jtekt Corp 工作物の研削方法
JP2009119548A (ja) * 2007-11-14 2009-06-04 Honda Motor Co Ltd 軸部仕上げ加工装置
EP2650081B1 (de) * 2012-04-13 2013-11-27 Supfina Grieshaber GmbH & Co. KG Verfahren und Vorrichtung zur Finishbearbeitung einer Werkstückoberfläche
EP2769806B1 (de) * 2013-02-21 2014-12-17 Supfina Grieshaber GmbH & Co. KG Vorrichtung und System zur Finishbearbeitung eines Werkstücks in Form einer Kurbelwelle oder einer Nockenwelle
DE102014203018B4 (de) * 2014-02-19 2024-03-21 Supfina Grieshaber Gmbh & Co. Kg Finishbearbeitungsverfahren und Vorrichtung zur Finishbearbeitung

Also Published As

Publication number Publication date
WO2017136163A1 (en) 2017-08-10
EP3411181A1 (de) 2018-12-12
EP3411181A4 (de) 2020-03-25
US20210101244A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR101844124B1 (ko) 호닝 방법 및 호닝 툴
EP0219301B1 (de) Feinstbearbeitungsvorrichtung und Verfahren
EP3411181B1 (de) Vorrichtung und verfahren zur mikrofeinbearbeitung eines schmalen sohlenzapfens
US5664991A (en) Microfinishing and roller burnishing machine
KR20090012338A (ko) 크랭크 샤프트의 메인 베어링 및 로드 베어링의 베어링 시트의 기계가공 방법
US10322490B2 (en) Method and device for producing non-cylindrical bores with at least one recess by honing
US5531631A (en) Microfinishing tool with axially variable machining effect
US6960121B2 (en) Method of honing bores
US6852015B2 (en) Method and apparatus for grinding workpiece surfaces to super-finish surface with micro oil pockets
RU2312758C1 (ru) Способ чистового упрочнения пружинным инструментом
US2634561A (en) Method of honing grooved elements
RU2371300C1 (ru) Устройство для обкатывания с регулируемой нагрузкой
CN110253091B (zh) 一种齿轮轮廓的抛光机构
RU2297317C1 (ru) Способ многоэлементного обкатывания валов
RU2430826C2 (ru) Устройство для поверхностного пластического деформирования
JP4045634B2 (ja) エンジンシリンダボアの油溝加工方法
RU2311279C1 (ru) Пружинный упрочняющий инструмент
RU2252856C1 (ru) Способ вибрационного хонингования
RU2230648C1 (ru) Способ отделочной обработки винтов проволочно-абразивным охватывающим инструментом
GB2206067A (en) Crankpin grinders
RU2297318C1 (ru) Обкатывающее приспособление с деформирующей пружиной
RU2349444C1 (ru) Способ обкатывания винтов
RU2433901C2 (ru) Способ обкатывания пружинными кольцами
RU2349443C1 (ru) Устройство для обкатывания винтов
US2621451A (en) Apparatus for making and mounting perfect screws

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200225

RIC1 Information provided on ipc code assigned before grant

Ipc: B24B 35/00 20060101ALI20200219BHEP

Ipc: B24B 21/00 20060101ALI20200219BHEP

Ipc: B24B 21/02 20060101ALI20200219BHEP

Ipc: B24B 5/00 20060101ALI20200219BHEP

Ipc: B24B 19/12 20060101ALI20200219BHEP

Ipc: B24B 5/42 20060101AFI20200219BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220420

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PORUBSKY, JOE

Inventor name: HENDEL, MARK

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20220926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017067826

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1560823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230419

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1560823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230720

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017067826

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 8

Ref country code: GB

Payment date: 20240227

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419