EP3408015B1 - Method for producing emulsions - Google Patents

Method for producing emulsions Download PDF

Info

Publication number
EP3408015B1
EP3408015B1 EP17706142.1A EP17706142A EP3408015B1 EP 3408015 B1 EP3408015 B1 EP 3408015B1 EP 17706142 A EP17706142 A EP 17706142A EP 3408015 B1 EP3408015 B1 EP 3408015B1
Authority
EP
European Patent Office
Prior art keywords
emulsion
bar
space
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17706142.1A
Other languages
German (de)
French (fr)
Other versions
EP3408015A1 (en
Inventor
Bernd BAUMSTÜMMLER
Hermann Schirra
Akif Emre TÜRELI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Instillo GmbH
Original Assignee
Instillo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instillo GmbH filed Critical Instillo GmbH
Publication of EP3408015A1 publication Critical patent/EP3408015A1/en
Application granted granted Critical
Publication of EP3408015B1 publication Critical patent/EP3408015B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/4105Methods of emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/413Homogenising a raw emulsion or making monodisperse or fine emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • B01F23/702Cooling materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/70Pre-treatment of the materials to be mixed
    • B01F23/711Heating materials, e.g. melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/802Cooling the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/811Heating the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0427Numerical distance values, e.g. separation, position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/0468Numerical pressure values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/0481Numerical speed values

Definitions

  • the invention relates to a method for producing emulsions.
  • emulsions are understood as meaning both colloidal emulsions and technical emulsions, the latter differing from colloidal emulsions in that they have considerably larger particle dimensions in the micrometer range.
  • a large number of branches of industry for example the food industry, the pharmaceutical industry and the cosmetics industry, have a high demand for encapsulation, protection or targeted release of hydrophobic substances such as bioactive lipids, odorous substances, antioxidants and pharmaceuticals.
  • Emulsions are formed when two or more immiscible liquids are mixed together.
  • One of these liquids is usually water soluble and the other is a lipophilic liquid that is immiscible with water.
  • either water-in-oil emulsions or oil-in-water emulsions can be produced.
  • a disadvantage of emulsions is their instability, which is based on physicochemical mechanisms such as gravity separation, flocculation, coalescence and Ostwald ripening. In oil-in-water emulsions, the most common reason for instability is the gravitational separation in the form of "creaming", which occurs due to the lower density of the oil particles.
  • Emulsions with an oil droplet size of more than 10 ⁇ m tend to change into two separate phases within a short time, while for an oil droplet size of less than 1 ⁇ m the stability of the emulsion increases with decreasing oil droplet size.
  • an oil droplet size of less than 1 ⁇ m a four times larger energy input is necessary to reduce the oil droplet size by 50%, which limits the minimum oil droplet size that can be achieved.
  • due to the energy input there is a risk of the temperature rising to temperatures above 70 ° C, at which the emulsifiers can be destroyed.
  • the limiting factors are the pore size of the membranes used and the pressure resulting from the viscosity of the oil phase.
  • a microjet reactor according to the EP 1 165 224 B1 is used.
  • Such a microjet reactor has at least two opposing nozzles, each with an associated pump and feed line for spraying a liquid medium in each case into a reactor space enclosed by a reactor housing at a common collision point, a first opening being provided in the reactor housing through which a gas, a evaporating liquid, a cooling liquid or a cooling gas can be introduced to maintain the gas atmosphere inside the reactor, in particular at the point of collision of the liquid jets, or to cool the resulting products, and a further opening is provided for removing the resulting products and excess gas from the reactor housing is.
  • a gas, an evaporating liquid or a cooling gas is therefore introduced into the reactor space via an opening in order to maintain a gas atmosphere in the interior of the reactor, in particular at the point of collision the liquid jets or to cool the resulting products and the resulting products and excess gas are removed through an opening from the reactor housing by overpressure on the gas inlet side or by negative pressure on the product and gas outlet side.
  • a solvent / non-solvent precipitation in such a microjet reactor for example as in the EP 2 550 092 A1 is carried out, a dispersion of the precipitated particles is obtained. With such a reactor it is possible to generate particularly small particles.
  • a solvent / non-solvent precipitation is understood to mean that a substance is dissolved in a solvent and collides as a liquid jet with a second liquid jet, the dissolved substance being precipitated again.
  • a disadvantage of solvent / non-solvent precipitations is the fact that the dissolved and reprecipitated substance is in particulate form in the solvent-non-solvent mixture after the precipitation.
  • the solvent content has the effect that, in many particles, an Ostwald ripening occurs in a time-dependent manner, which causes the particles to grow.
  • a device for emulsifying at least two liquids which comprises an emulsion reactor which has an outlet for removing the emulsion resulting from the mixing of the liquids and in which a plurality of nozzles are provided for injection at a substantially common collision point, each Nozzle is assigned a feed line and a pump, each of which pumps a liquid from an assigned tank through the feed line into the emulsion reactor.
  • the WO 99/28020 A1 describes a method of making heat sensitive emulsions or dispersions in which the components are pressurized, passed through a first high pressure mixing zone, then cooled in a heat exchanger and then passed through a second high pressure mixing zone.
  • the DE 26 04 610 A1 describes a process in which oil and water are sucked in from separate containers in the desired volume ratio and, as a mixture under high pressure in a pipe-nozzle system, is accelerated and decelerated several times at short intervals from a constant low base speed to about ten to twenty times the flow speed and then sprayed directly into the combustion chamber for burning.
  • the pressure at the basic flow rate is 130 to 180 bar.
  • the GB 331 928 A describes an apparatus for the production of emulsions or dispersions by spraying the components against one another. The pressure of the liquid jets is not specified here.
  • the object of the invention is therefore to create a new process for the production of emulsions which also enables the production of asymmetrical emulsions.
  • This object is achieved according to the invention in that in a first step at least one pre-emulsion is generated from at least two immiscible liquids and then in a second step at least two liquid streams of the at least one pre-emulsion are pumped through separate nozzles with a defined diameter in a microjet reactor, whereby the pressure of the liquid jets is between 5 and 500 bar in order to achieve the flow velocity of the liquid flows of more than 10 m / s and that the liquid flows meet at a collision point in a room, the room being filled or acted upon with gas and the gas pressure in the space is 0.05 to 30 bar, preferably 0.2 to 10 bar and particularly preferably 0.5 to 5 bar.
  • Gas in particular inert gas or inert gas mixtures, but also reactive gas, can be fed into the space through a gas inlet.
  • Such a microjet reactor is from EP 1 165 224 B1 famous.
  • the droplet size of the emulsion depends on the system and operating parameters, in particular the nozzle size in the microjet reactor and the pump pressure of the conveying pumps for the two liquid flows.
  • the collision energy in the microjet reactor does not cause any precipitation reactions, but rather emulsions are formed.
  • a homogeneous emulsion with an oil droplet size of less than 1 ⁇ m is achieved due to the kinetic energy, which is also very stable. No additional energy input, such as shear forces, is required for this. It can be carried out in the aqueous phase at temperatures between 0.degree. C. and 100.degree. C., preferably at temperatures between room temperature and 70.degree. C., particularly preferably at temperatures between room temperature and 50.degree.
  • the pressure of the liquid jets is between 5 and 5,000 bar, preferably between 10 and 1,000 bar and particularly preferably between 20 and 500 bar.
  • the flow rate of the liquid streams and the temperature, the oil droplet size in the emulsion can be influenced.
  • the resulting emulsion is discharged from the room through the outlet. There is thus a continuously operating process.
  • the diameter of the nozzles is identical or different and is 10 to 5,000 ⁇ m, preferably 50 to 3,000 ⁇ m and particularly preferably 100 to 2,000 ⁇ m. It is possible to work with nozzles of different diameters, for example on one side of a nozzle with a diameter of 100 ⁇ m and on the other side of a nozzle with a diameter of 300 ⁇ m. Of course, the diameters of the nozzles can also be the same on both sides.
  • the flow velocities of the liquid streams after the nozzle are identical or different and are more than 20 m / s, preferably more than 50 m / s and particularly preferably more than 100 m / s.
  • one of the liquid flows can have a higher flow velocity than the other liquid flow, for example on the one hand 50 m / s and on the other hand 100 m / s.
  • the flow speed of the liquid streams after the nozzle can reach 500 m / s or 1,000 m / s.
  • the distance between the nozzles is preferably less than 5 cm, preferably less than 3 cm and particularly preferably less than 1 cm.
  • the gas pressure in the space is 0.2 to 10 bar and preferably 0.5 to 5 bar.
  • the droplet size can also be influenced via the gas pressure.
  • a solvent is introduced into the space through a further inlet.
  • propylene glycol can be introduced into the room as a further solvent through the further inlet.
  • One embodiment of the invention consists in the fact that during the collision there is a pressure of less than 100 bar, preferably less than 50 bar and particularly preferably less than 20 bar in the space.
  • the emulsion produced is encapsulated in a further step.
  • Examples 1 to 4 show the effects of varying individual parameters, while Examples 5 to 21 contain examples of possible encapsulation processes.
  • Oil flow rate (ml / min) Water flow rate (ml / min) Oil droplet size (nm) 10 50 596 20th 100 427 30th 150 348 50 250 294 100 500 257
  • the oil droplet size within the emulsion formed thus decreases with increasing flow rates.
  • the influence of the diameter of the nozzles was determined by testing various nozzle diameters while using an oil flow rate of 50 ml / min and a water flow rate of 250 ml / min and the gas pressure was 2 bar.
  • Nozzle diameter ( ⁇ m) Oil droplet size (nm) 200 294 300 318 400 567 500 785
  • Oil and water phases were pre-emulsified and pumped through the two inlets in a closed cycle in order to determine the influence of the number of cycles on the oil droplet size within the emulsion.
  • a flow rate of 250 ml / min and a gas pressure of 2 bar prevailed in the room.
  • Number of cycles Oil droplet size (nm) 1 650 2 540 3 420 4th 355
  • the oil droplet size within the emulsion therefore also decreases with the number of cycles.
  • An essential oil to be encapsulated is emulsified at a flow rate of 67 g / min in the microjet reactor with an aqueous sodium caseinate solution (22.4 mg / ml) at a flow rate of 200 g / min in the microjet reactor.
  • this emulsion is processed at a flow rate of 200 g / min against an aqueous xanthan solution (0.25%) at 25 g / min.
  • the oppositely charged side groups of the protein and the polysaccharide attach to each other. This interaction is strengthened by lowering the pH to pH 4 with 10% citric acid, whereby microcapsules are formed.
  • the microcapsules are 50-100 ⁇ m in size.
  • An essential oil to be encapsulated is emulsified at a flow rate of 50 g / min in the microjet reactor in an aqueous whey protein isolate solution at a flow rate of 200 g / min. After adding 20% maltodextrin as a carrier material, the emulsion is spray-dried. Drying creates a powder that contains microencapsulated essential oil.
  • Example 7 Melt dispersion / matrix encapsulation
  • a fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C.
  • This oil phase is emulsified at 68 ml / min in a 20 ° C. aqueous Tween 20 solution (0.5-1.5%) at 200 ml / min.
  • the rapid cooling of the fat results in the formation of particles and thus matrix encapsulation of the fragrance when the emulsion is formed.
  • the microcapsules are on average 5 ⁇ m (0.5% Tween 20) or 2 ⁇ m (1.5% Tween 20).
  • Example 8 Melt dispersion with modified surface
  • a fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C.
  • This oil phase is emulsified at 68 ml / min in a 20 ° C. cold gum arabic solution (2.5%; 200 ml / min). Due to the rapid cooling of the fat, particles form immediately after the emulsion has formed.
  • microcapsules are modified by processing this melt dispersion (200 ml / min) in the microjet reactor against a gelatin solution (2.5%; 150 g / min) at 50 ° C. By lowering the pH to pH 4 with 10% citric acid, the ionic interactions are strengthened and gelled by cooling.
  • a hydrophilic polyalcohol to be encapsulated (active ingredient) is added to an aqueous ammonia solution (1%) (water phase) and in the MJR reactor against an emulsifier-containing (polyetheralkyl-polymethylsiloxane) 1% encapsulation solution (TEOS) in Isoparaffin (oil phase) processed.
  • a process pressure of 40 bar is set upstream of the nozzles.
  • the result is a stable emulsion, at whose phase boundary the encapsulation material is formed by hydrolysis of the precursors.
  • the capsules can be separated by simple sedimentation or centrifugation and are between 5 and 10 ⁇ m in size.
  • the method indicated in FIG. 1 is applied to the encapsulation substances OTMS, PTMS. With a constant flow rate, the microcapsules obtained have approximately the same properties with a reduced reaction time.
  • the method given in FIG. 1 is applied to variable flow rates. By varying the flow rate, ratios of the disperse phase (active substance) to the oil phase of 30:70, 40:60 and 60:40 can be achieved. The size of the microcapsules obtained increases as the proportion of disperse phase (active substance solution) increases.
  • the method indicated in FIG. 1 is applied to an encapsulation solution containing TEOS with the modification that the concentration of the emulsifier used was reduced to 50% or 25% of the original concentration.
  • the microcapsules obtained are larger than those obtained according to Example 1.
  • Example 17 The method given in Example 17 is used with the modification that the capsule hardening by means of trimesoyl chloride solution takes place in situ by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor.
  • the capsules obtained have approximately the same properties as those obtained according to Example 9.
  • Oil-soluble actives Examples 19-20
  • Example 5 The procedure given in Example 5 is applied to oil-soluble encapsulants.
  • An oil-soluble active substance to be encapsulated is added to a 20% solution of the encapsulation material (OTMS) in isoparaffin and mixed by stirring at room temperature for 5 min.
  • the solution obtained in this way is processed in the MJR reactor at a process pressure of 40 bar against a 2% aqueous emulsifier solution.
  • the result is a stable, homogeneous emulsion which, by adding the catalyst dibutyltin laurate (0.5%), hardens the capsules, which can be separated after hardening by means of centrifugation or sedimentation.
  • Example 19 The method given in Example 19 is used with the modification that the capsule hardening takes place in situ by means of dibutyltin laurate by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor.
  • the capsules obtained have approximately the same properties as those obtained according to Example 19.
  • Step 2b (as an alternative to step 2a):
  • Step 3b (as an alternative to step 3a):
  • pre-emulsion a warm non-solvent
  • This pre-emulsion is introduced into the MJR on the right and left with a flow rate ratio of 1: 1.
  • the loaded polymer is precipitated on a microscale.
  • Step 3c (as an alternative to step 3a or step 3b):
  • the modified melt is mixed with part of the heated non-solvent to reduce the melt viscosity.
  • the mixture is precipitated with the cold residual non-solvent in the MJR process with precipitation of the polymer beads.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Emulsionen.The invention relates to a method for producing emulsions.

Unter Emulsionen werden nachfolgend sowohl kolloide Emulsionen als auch technische Emulsionen verstanden, wobei letztere sich von den kolloiden Emulsionen durch erheblich größere Partikeldimensionen im Mikrometerbereich unterscheiden.In the following, emulsions are understood as meaning both colloidal emulsions and technical emulsions, the latter differing from colloidal emulsions in that they have considerably larger particle dimensions in the micrometer range.

Eine Vielzahl von Industriezweigen, beispielsweise die Nahrungsmittelindustrie, die Pharmaindustrie und die Kosmetikindustrie, verzeichnen einen hohen Bedarf an der Verkapselung, dem Schützen oder zielgerichteten Freisetzen hydrophober Substanzen, wie bioaktiven Lipiden, Geruchsstoffen, Antioxidantien und Pharmaka.A large number of branches of industry, for example the food industry, the pharmaceutical industry and the cosmetics industry, have a high demand for encapsulation, protection or targeted release of hydrophobic substances such as bioactive lipids, odorous substances, antioxidants and pharmaceuticals.

Emulsionen werden gebildet, wenn zwei oder mehr unmischbare Flüssigkeiten miteinander vermischt werden. Eine dieser Flüssigkeiten ist in der Regel wasserlöslich und die andere ist eine lipophile Flüssigkeit, die nicht mit Wasser mischbar ist. Je nach den Mischverhältnissen und dem verwendeten Oberflächenmodifikator können entweder Wasser-in-Öl-Emulsionen oder Öl-in-Wasser-Emulsionen hergestellt werden. Ein Nachteil von Emulsionen ist ihre Instabilität, die auf physikochemischen Mechanismen, wie Schwerkrafttrennung, Flockenbildung, Koaleszenz und Ostwald-Reifung beruht. In Öl-in-Wasser-Emulsionen ist der häufigste Grund für die Instabilität die Schwerkrafttrennung in Form des Auscremens ("Creaming"), die aufgrund der niedrigeren Dichte der Ölpartikel auftritt.Emulsions are formed when two or more immiscible liquids are mixed together. One of these liquids is usually water soluble and the other is a lipophilic liquid that is immiscible with water. Depending on the mixing ratios and the surface modifier used, either water-in-oil emulsions or oil-in-water emulsions can be produced. A disadvantage of emulsions is their instability, which is based on physicochemical mechanisms such as gravity separation, flocculation, coalescence and Ostwald ripening. In oil-in-water emulsions, the most common reason for instability is the gravitational separation in the form of "creaming", which occurs due to the lower density of the oil particles.

Es gibt verschiedene konventionelle Verfahren zum Herstellen von Emulsionen. Diese Verfahren sind insbesondere Mischen mit hohen Scherkräften ("high shear mixing", Rotor/Stator-Systeme), Hochdruckhomogenisation ("high pressure homogenization"), Mikrofluidisierung ("microfluidization"), Ultraschallhomogenisation ("ultrasonic homoginazation") oder Membranemulsifikation ("membrane emulsification"). Die meisten dieser Verfahren erfordern einen hohen Energieeintrag in das System, um die Tröpfchengröße der gebildeten Öltröpfchen zu kontrollieren. Dieser Energieeintrag kann auf unterschiedliche Weise erfolgen, beispielsweise durch Erhitzen, Scherkräfte, Druckerhöhung oder Druckabsenkung. Die Stabilität der Emulsion erhöht sich mit sinkender Tröpfchengröße. Emulsionen mit einer Öltröpfchengröße von mehr als 10 µm tendieren dazu, in kurzer Zeit in zwei getrennte Phasen überzugehen, während bei einer Öltröpfchengröße von weniger als 1 µm sich die Stabilität der Emulsion mit sinkender Öltröpfchengröße erhöht. Allerdings wird bei einer Öltröpchengröße von weniger als 1 µm ein viermal größerer Energieeintrag notwendig ist, um die Öltröpfchengröße um 50 % zu reduzieren, was die erreichbare minimale Öltröpfchengröße beschränkt. Zudem besteht aufgrund des Energieeintrags die Gefahr eines Temperaturanstiegs auf Temperaturen über 70°C, bei denen eine Zerstörung der Emulgatoren eintreten kann.There are several conventional methods of making emulsions. These processes are in particular mixing with high shear forces ("high shear mixing", rotor / stator systems), high pressure homogenization ("high pressure homogenization"), microfluidization ("microfluidization"), ultrasonic homogenization ("ultrasonic homogenization") or membrane emulsification ("membrane emulsification "). Most of these processes require a high energy input into the system in order to control the droplet size of the oil droplets formed. This energy input can take place in different ways, for example by heating, shear forces, or by increasing the pressure Pressure reduction. The stability of the emulsion increases as the droplet size decreases. Emulsions with an oil droplet size of more than 10 µm tend to change into two separate phases within a short time, while for an oil droplet size of less than 1 µm the stability of the emulsion increases with decreasing oil droplet size. However, with an oil droplet size of less than 1 µm, a four times larger energy input is necessary to reduce the oil droplet size by 50%, which limits the minimum oil droplet size that can be achieved. In addition, due to the energy input, there is a risk of the temperature rising to temperatures above 70 ° C, at which the emulsifiers can be destroyed.

Bei einer weiteren Technik, der Membranemulsikation ("membrane emulsification") sind die limitierenden Faktoren die Porengröße der verwendeten Membranen und der Druck, der sich aufgrund der Viskosität der Ölphase ergibt.In another technique, membrane emulsification, the limiting factors are the pore size of the membranes used and the pressure resulting from the viscosity of the oil phase.

Bei der Mikrofluidisierung sind auch unter Hochdruckbedingungen mehrere Durchläufe erforderlich, um die Öltröpfchengröße unter 1 µm zu bringen. Da die Emulsionsbildung in Mikrokanälen erfolgt, ist das Blockieren dieser Mikrokanäle eines der häufigsten Probleme bei dieser Methode.With microfluidization, even under high pressure conditions, several passes are required to bring the oil droplet size below 1 µm. Because emulsification occurs in microchannels, blocking of these microchannels is one of the most common problems with this method.

In der DE 10 2009 008 478 A1 wird ein Verfahren beschrieben, in dem eine Solvent-/Anti-Solvent-Fällung in Anwesenheit von oberflächenaktiven Molekülen erfolgt, wobei ein Mikrojetreaktor entsprechend der EP 1 165 224 B1 zum Einsatz kommt. Ein solcher Mikrojetreaktor weist mindestens zwei sich gegenüberliegende Düsen mit jeweils zugeordneter Pumpe und Zuführleitung zum Spritzen jeweils eines flüssigen Mediums in einen von einem Reaktorgehäuse umschlossenen Reaktorraum auf einen gemeinsamen Kollisionspunkt auf, wobei eine erste Öffnung in dem Reaktorgehäuse vorgesehen ist, durch die ein Gas, eine verdampfende Flüssigkeit, eine kühlende Flüssigkeit oder ein kühlendes Gas zur Aufrechterhaltung der Gasatmosphäre im Reaktorinneren, insbesondere im Kollisionspunkt der Flüssigkeitsstrahlen, bzw. zur Kühlung der entstehenden Produkte einleitbar ist, und eine weitere Öffnung zum Entfernen der entstehenden Produkte und von überschüssigem Gas aus dem Reaktorgehäuse vorgesehen ist. Es wird also über eine Öffnung in den Reaktorraum ein Gas, eine verdampfende Flüssigkeit oder ein kühlendes Gas zur Aufrechterhaltung einer Gasatmosphäre im Reaktorinneren, insbesondere im Kollisionspunkt der Flüssigkeitsstrahlen, bzw. zur Kühlung der entstehenden Produkte eingeleitet und die entstehenden Produkte und überschüssiges Gas durch eine Öffnung aus dem Reaktorgehäuse durch Überdruck auf der Gaseintrittsseite oder durch Unterdruck auf der Produkt- und Gasaustrittsseite entfernt. Wenn in einem solchen Mikrojetreaktor eine Solvent/Nonsolvent-Fällung, beispielsweise wie in der EP 2 550 092 A1 beschrieben, durchgeführt wird, erhält man eine Dispersion der gefällten Partikel. Mit einem solchen Reaktor gelingt es, besonders kleine Partikel zu generieren. Unter einer Solvent/Nonsolvent-Fällung versteht man in diesem Zusammenhang, daß ein Stoff in einem Solvent gelöst und als Flüssigkeitsstrahl mit einem zweiten Flüssigkeitsstrahl kollidiert, wobei der gelöste Stoff wieder gefällt wird. Nachteilig bei Solvent/Nonsolvent-Fällungen ist die Tatsache, daß sich der gelöste und wieder gefällte Stoff nach der Fällung partikulär in dem Solvent-Nonsolvent-Gemisch befindet. Dabei bewirkt der Solventanteil, daß sich bei vielen Partikeln zeitabhängig eine Ostwald-Reifung einstellt, die ein Wachstum der Partikel bewirkt.In the DE 10 2009 008 478 A1 a method is described in which a solvent / anti-solvent precipitation takes place in the presence of surface-active molecules, a microjet reactor according to the EP 1 165 224 B1 is used. Such a microjet reactor has at least two opposing nozzles, each with an associated pump and feed line for spraying a liquid medium in each case into a reactor space enclosed by a reactor housing at a common collision point, a first opening being provided in the reactor housing through which a gas, a evaporating liquid, a cooling liquid or a cooling gas can be introduced to maintain the gas atmosphere inside the reactor, in particular at the point of collision of the liquid jets, or to cool the resulting products, and a further opening is provided for removing the resulting products and excess gas from the reactor housing is. A gas, an evaporating liquid or a cooling gas is therefore introduced into the reactor space via an opening in order to maintain a gas atmosphere in the interior of the reactor, in particular at the point of collision the liquid jets or to cool the resulting products and the resulting products and excess gas are removed through an opening from the reactor housing by overpressure on the gas inlet side or by negative pressure on the product and gas outlet side. If a solvent / non-solvent precipitation in such a microjet reactor, for example as in the EP 2 550 092 A1 is carried out, a dispersion of the precipitated particles is obtained. With such a reactor it is possible to generate particularly small particles. In this context, a solvent / non-solvent precipitation is understood to mean that a substance is dissolved in a solvent and collides as a liquid jet with a second liquid jet, the dissolved substance being precipitated again. A disadvantage of solvent / non-solvent precipitations is the fact that the dissolved and reprecipitated substance is in particulate form in the solvent-non-solvent mixture after the precipitation. The solvent content has the effect that, in many particles, an Ostwald ripening occurs in a time-dependent manner, which causes the particles to grow.

Aus der DE 10 2009 036 537 B3 ist eine Vorrichtung zum Emulgieren von mindestens zwei Flüssigkeiten bekannt, die einen Emulsionsreaktor umfaßt, der einen Auslaß zur Entnahme der bei der Mischung der Flüssigkeiten entstehenden Emulsion und in dem eine Mehrzahl von zum Einspritzen auf im Wesentlichen einen gemeinsamen Kollisionspunkt ausgerichteten Düsen vorgesehen ist, wobei jeder Düse jeweils eine Zufuhrleitung und eine Pumpe zugeordnet ist, die jeweils eine Flüssigkeit aus einem zugeordneten Tank durch die Zuführleitung in den Emulsionsreaktor pumpt.From the DE 10 2009 036 537 B3 a device for emulsifying at least two liquids is known, which comprises an emulsion reactor which has an outlet for removing the emulsion resulting from the mixing of the liquids and in which a plurality of nozzles are provided for injection at a substantially common collision point, each Nozzle is assigned a feed line and a pump, each of which pumps a liquid from an assigned tank through the feed line into the emulsion reactor.

Die WO 99/28020 A1 beschreibt eine Vorfahren zum Herstellen von hitzeempfindlichen Emulsionen oder Dispersionen, wobei die Komponenten unter Druck gesetzt werden, eine erste Hochdruckmischzone durchlaufen, dann in einem Wärmetauscher abgekühlt werden und anschließend eine zweite Hochdruckmischzone durchlaufen.the WO 99/28020 A1 describes a method of making heat sensitive emulsions or dispersions in which the components are pressurized, passed through a first high pressure mixing zone, then cooled in a heat exchanger and then passed through a second high pressure mixing zone.

Die DE 26 04 610 A1 beschreibt ein Verfahren, bei dem Öl und Wasser aus getrennten Behältern im gewünschten Volumenverhältnis angesaugt und als Gemisch unter hohem Druck in einem Rohr-Düsensystem in kurzen Abständen mehrmals von einer etwa gleich bleibenden geringen Grundgeschwindigkeit auf eine etwa zehn- bis zwanzigfache Fließgeschwindigkeit beschleunigt und verzögert wird und danach zum Verbrennen unmittelbar in den Brennraum gesprüht wird. Der Druck bei Grundfließgeschwindigkeit beträgt 130 bis 180 bar. Die GB 331 928 A beschreibt eine Vorrichtung für die Herstellung von Emulsionen oder Dispersionen durch gegeneinander Sprühen der Komponenten. Der Druck der Flüssigkeitsstrahlen wird hier nicht spezifiziert.the DE 26 04 610 A1 describes a process in which oil and water are sucked in from separate containers in the desired volume ratio and, as a mixture under high pressure in a pipe-nozzle system, is accelerated and decelerated several times at short intervals from a constant low base speed to about ten to twenty times the flow speed and then sprayed directly into the combustion chamber for burning. The pressure at the basic flow rate is 130 to 180 bar. the GB 331 928 A describes an apparatus for the production of emulsions or dispersions by spraying the components against one another. The pressure of the liquid jets is not specified here.

Die Aufgabe der Erfindung besteht somit darin, ein neues Verfahren zum Herstellen von Emulsionen zu schaffen, das auch die Herstellung asymmetrischer Emulsionen ermöglicht.The object of the invention is therefore to create a new process for the production of emulsions which also enables the production of asymmetrical emulsions.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in einem ersten Schritt mindestens eine Voremulsion aus mindestens zwei miteinander nicht mischbaren Flüssigkeiten erzeugt wird und dann in einem zweiten Schritt in einem Mikrojetreaktor mindestens zwei Flüssigkeitsströme der mindestens einen Voremulsion durch getrennte Düsen mit definiertem Durchmesser gepumpt werden, wobei der Druck der Flüssigkeitsstrahlen zwischen 5 und 500 bar beträgt, um Fließgeschwindigkeit der Flüssigkeitsströme von mehr als 10 m/s zu erreichen und daß die Flüssigkeitsströme an einem Kollisionspunkt in einem Raum aufeinandertreffen, wobei der Raum mit Gas gefüllt bzw. beaufschlagt wird und der Gasdruck in dem Raum 0,05 bis 30 bar, bevorzugt 0,2 bis 10 bar und besonders bevorzugt 0,5 bis 5 bar beträgt.This object is achieved according to the invention in that in a first step at least one pre-emulsion is generated from at least two immiscible liquids and then in a second step at least two liquid streams of the at least one pre-emulsion are pumped through separate nozzles with a defined diameter in a microjet reactor, whereby the pressure of the liquid jets is between 5 and 500 bar in order to achieve the flow velocity of the liquid flows of more than 10 m / s and that the liquid flows meet at a collision point in a room, the room being filled or acted upon with gas and the gas pressure in the space is 0.05 to 30 bar, preferably 0.2 to 10 bar and particularly preferably 0.5 to 5 bar.

Gas, insbesondere Inertgas oder Inertgasmischungen, aber auch Reaktivgas kann durch einen Gaseinlaß in dem Raum zugeführt werden.Gas, in particular inert gas or inert gas mixtures, but also reactive gas, can be fed into the space through a gas inlet.

Da bei einer Vielzahl von Emulsionen, nämlich den asymmetrischen Emulsionen, bei denen die Öl- und die Wasserphase nicht im Verhältnis 1:1 vorliegen, hat es sich im Rahmen der Erfindung als vorteilhaft herausgestellt, zunächst aus der Öl- und der Wasserphase eine Voremulsion herzustellen. Dies kann beispielsweise über normale Rührprozesse, Ultraschallbehandlung, Ultraturrax, eine Dissolverscheibe, etc. erfolgen. Diese Voremulsion wird dann in Form von zwei Flüssigkeitsströmen in eine Vorrichtung eingeführt, in der beide Flüssigkeitsströme an einem Kollisionspunkt in einem Raum aufeinandertreffen, beispielsweise einen Mikrojetreaktor.Since in the case of a large number of emulsions, namely the asymmetrical emulsions in which the oil and water phases are not present in a ratio of 1: 1, it has been found to be advantageous in the context of the invention to first prepare a pre-emulsion from the oil and the water phase . This can be done, for example, via normal stirring processes, ultrasound treatment, Ultraturrax, a dissolver disk, etc. This pre-emulsion is then introduced in the form of two liquid flows into a device in which both liquid flows meet at a collision point in a room, for example a microjet reactor.

Ein solcher Mikrojetreaktor ist aus der EP 1 165 224 B1 bekannt.Such a microjet reactor is from EP 1 165 224 B1 famous.

Durch die im Mikrojetreaktor angewandte Methode der Kollision der Strahlen unter erhöhtem Druck ist die Tropfengröße der Emulsion abhängig vom System und Betriebsparametern, insbesondere der Düsengröße im Mikrojetreaktor und dem Pumpendruck der fördernden Pumpen für die beiden Flüssigkeitsströme. Im Gegensatz zu der üblichen Anwendung von Mikrojetreaktoren werden bei dem erfindungsgemäßen Verfahren durch die Kollisionsenergie in dem Mikrojetreaktor keine Fällungsreaktionen hervorgerufen, sondern es werden Emulsionen ausgebildet.Due to the method of collision of the jets under increased pressure used in the microjet reactor, the droplet size of the emulsion depends on the system and operating parameters, in particular the nozzle size in the microjet reactor and the pump pressure of the conveying pumps for the two liquid flows. In contrast to the usual use of microjet reactors, in the method according to the invention, the collision energy in the microjet reactor does not cause any precipitation reactions, but rather emulsions are formed.

Durch die Kollision der Flüssigkeitsströme mit hohen Fließgeschwindigkeiten, bei denen sich eine tellerförmige Kollisionsplatte im Kollisionspunkt ausbildet, wird aufgrund der kinetischen Energie eine homogene Emulsion mit einer Öltröpfchengröße von weniger als 1 µm erreicht, die entsprechend auch sehr stabil ist. Es wird hierzu kein weiterer Energieeintrag, wie z.B. Scherkräfte benötigt. Es kann in wässriger Phase bei Temperaturen zwischen 0°C und 100°C gearbeitet werden, vorzugsweise bei Temperaturen zwischen Raumtemperatur und 70°C, besonders bevorzugt bei Temperaturen zwischen Raumtemperatur und 50°C. Der Druck der Flüssigkeitsstrahlen beträgt zwischen 5 und 5.000 bar, vorzugsweise zwischen 10 und 1.000 bar und besonders bevorzugt zwischen 20 und 500 bar.Due to the collision of the liquid streams with high flow velocities, at which a plate-shaped collision plate forms at the collision point, a homogeneous emulsion with an oil droplet size of less than 1 µm is achieved due to the kinetic energy, which is also very stable. No additional energy input, such as shear forces, is required for this. It can be carried out in the aqueous phase at temperatures between 0.degree. C. and 100.degree. C., preferably at temperatures between room temperature and 70.degree. C., particularly preferably at temperatures between room temperature and 50.degree. The pressure of the liquid jets is between 5 and 5,000 bar, preferably between 10 and 1,000 bar and particularly preferably between 20 and 500 bar.

Da die Kollision in dem Raum erfolgt, besteht nicht die Gefahr eines Blockierens, wie dies der Fall bei Mikrokanälen ist. Über den Durchmesser der Düsen, dieSince the collision occurs in the space, there is no risk of blocking, as is the case with microchannels. About the diameter of the nozzles that

Fließgeschwindigkeit der Flüssigkeitsströme und die Temperatur kann die Öltröpfchengröße in der Emulsion beeinflußt werden. Die entstehende Emulsion wird durch den Auslaß aus dem Raum abgeleitet. Es liegt somit ein kontinuierlich arbeitendes Verfahren vor. Um möglichst kleine Öltröpfchengrößen zu erhalten, ist es möglich, eine bereits erhaltene Emulsion nochmals unter den gleichen Bedingungen durch beide Einlässe in den Raum zu leiten, was gegebenenfalls mehrfach wiederholt werden kann.The flow rate of the liquid streams and the temperature, the oil droplet size in the emulsion can be influenced. The resulting emulsion is discharged from the room through the outlet. There is thus a continuously operating process. In order to obtain the smallest possible oil droplet sizes, it is possible to feed an already obtained emulsion again under the same conditions through both inlets into the room, which can be repeated several times if necessary.

Es besteht auch die Möglichkeit, den Auslaß des Raumes mit dem Gaseinlaß eines zweiten Raumes zu verbinden, in dem weitere Flüssigkeitsströme in die gebildete Emulsion eingeleitet werden, beispielsweise um die Oberflächeneigenschaften der Emulsion zu verändern. Kollidieren zwei Flüssigkeitsströme, so schließen sie vorzugsweise einen Winkel von 180° ein, bei drei Flüssigkeitsströmen beträgt der Winkel vorzugsweise 120°, usw. Bei drei Flüssigkeitsströmen sind zwei Flüssigkeiten nicht miteinander mischbar, usw.There is also the possibility of connecting the outlet of the space with the gas inlet of a second space in which further liquid flows are introduced into the emulsion formed, for example in order to change the surface properties of the emulsion. If two liquid flows collide, they preferably enclose an angle of 180 °, with three liquid flows the angle is preferably 120 °, etc. With three liquid flows, two liquids are immiscible with one another, etc.

Es wird gemäß der Erfindung bevorzugt, daß der Durchmesser der Düsenidentisch oder unterschiedlich ist und 10 bis 5.000 µm, vorzugsweise 50 bis 3.000 µm und besonders bevorzugt 100 bis 2.000 µm beträgt. Es ist möglich, mit Düsen unterschiedlichen Durchmessers zu arbeiten, beispielsweise auf einer Seite einer Düse mit einem Durchmesser von 100 µm und auf der anderen Seite einer Düse mit einem Durchmesser von 300 µm. Selbstverständlich können auch die Durchmesser der Düsen auf beiden Seiten gleich sein.According to the invention, it is preferred that the diameter of the nozzles is identical or different and is 10 to 5,000 μm, preferably 50 to 3,000 μm and particularly preferably 100 to 2,000 μm. It is possible to work with nozzles of different diameters, for example on one side of a nozzle with a diameter of 100 µm and on the other side of a nozzle with a diameter of 300 µm. Of course, the diameters of the nozzles can also be the same on both sides.

Erfindungsgemäß ist vorgesehen, daß die Fließgeschwindigkeiten der Flüssigkeitsströme nach der Düse identisch oder unterschiedlich sind und mehr als 20 m/s, bevorzugt mehr als 50 m/s und besonders bevorzugt mehr als 100 m/s beträgt.According to the invention it is provided that the flow velocities of the liquid streams after the nozzle are identical or different and are more than 20 m / s, preferably more than 50 m / s and particularly preferably more than 100 m / s.

Auch hier kann einer der Flüssigkeitsströme eine höhere Fließgeschwindigkeit als der andere Flüssigkeitsstrom aufweisen, beispielsweise einerseits 50 m/s und andererseits 100 m/s. Auch hier ist es möglich, daß die Fließgeschwindigkeiten beider Flüssigkeitsströme gleich groß sind.Here, too, one of the liquid flows can have a higher flow velocity than the other liquid flow, for example on the one hand 50 m / s and on the other hand 100 m / s. Here, too, it is possible for the flow velocities of the two liquid streams to be the same.

Die Fließgeschwindigkeit der Flüssigkeitsströme nach der Düse kann 500 m/s oder auch 1.000 m/s erreichen.The flow speed of the liquid streams after the nozzle can reach 500 m / s or 1,000 m / s.

Vorzugsweise beträgt der Abstand zwischen den Düsen weniger als 5 cm, vorzugsweise weniger als 3 cm und besonders bevorzugt weniger als 1 cm.The distance between the nozzles is preferably less than 5 cm, preferably less than 3 cm and particularly preferably less than 1 cm.

Es wird bevorzugt, daß der Gasdruck in dem Raum 0,2 bis 10 bar und bevorzugt 0,5 bis 5 bar beträgt.It is preferred that the gas pressure in the space is 0.2 to 10 bar and preferably 0.5 to 5 bar.

Auch über den Gasdruck kann die Tröpfchengröße beeinflußt werden.The droplet size can also be influenced via the gas pressure.

Es kann sinnvoll sein, das Gas vor seinem Eintritt in den Raum zu erhitzen oder abzukühlen, um die Temperatur in dem Raum zu beeinflussen.It can be useful to heat or cool the gas before it enters the room in order to influence the temperature in the room.

Weiterhin liegt es im Rahmen der Erfindung, daß ein Lösemittel durch einen weiteren Einlaß in den Raum eingeleitet wird.Furthermore, it is within the scope of the invention that a solvent is introduced into the space through a further inlet.

Beispielsweise kann Propylenglykol als weiteres Lösemittel durch den weiteren Einlaß in den Raum eingeleitet werden.For example, propylene glycol can be introduced into the room as a further solvent through the further inlet.

Eine Ausgestaltung der Erfindung besteht darin, daß während der Kollision in dem Raum ein Druck von weniger als 100 bar, bevorzugt von weniger als 50 bar und besonders bevorzugt von weniger als 20 bar herrscht.One embodiment of the invention consists in the fact that during the collision there is a pressure of less than 100 bar, preferably less than 50 bar and particularly preferably less than 20 bar in the space.

Es ist auch möglich, die Flüssigkeitsströme und/oder die entstehende Emulsion durch einen Wärmetauscher zu führen, um die Temperatur der Flüssigkeitsströme vor der Kollision bzw. die der Emulsion nach der Kollision zu kontrollieren.It is also possible to pass the liquid flows and / or the emulsion formed through a heat exchanger in order to control the temperature of the liquid flows before the collision or that of the emulsion after the collision.

Im Rahmen der Erfindung liegt auch, daß in einem weiteren Schritt die hergestellte Emulsion verkapselt wird.It is also within the scope of the invention that the emulsion produced is encapsulated in a further step.

Ebenfalls liegt es im Rahmen der Erfindung, daß in einem weiteren Schritt die hergestellte und eventuell verkapselte Emulsion mit einer Oberflächenmodifikation versehen wird.It is also within the scope of the invention that in a further step the produced and possibly encapsulated emulsion is provided with a surface modification.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments.

Die Beispiele 1 bis 4 zeigen die Auswirkungen der Variation einzelner Parameter, während die Beispiele 5 bis 21 Beispiele für mögliche Verkapselungsverfahren enthalten.Examples 1 to 4 show the effects of varying individual parameters, while Examples 5 to 21 contain examples of possible encapsulation processes.

Beispiel 1: Auswirkung des GasdrucksExample 1: Effect of gas pressure

Die Auswirkung des Gasdrucks wurde untersucht, indem ein Flüssigkeitsstrom von Öl und ein Flüssigkeitsstrom von Wasser, welches Lecithin enthält, unter verschiedenen Gasdrücken miteinander in einem Raum zur Kollision gebracht wurden, in dem über einen Gaseinlaß Gas mit unterschiedlichen Gasdrücken eingebracht wurde. Das Öl wurde mit einer Flußrate von 50 ml/min und die wässrige Phase mit einer Flußrate von 250 ml/min gepumpt. Die Öltröpfchengröße wurde über DLS bestimmt. In allen Fällen wurde eine Öltröpfchengröße von weniger als 500 nm erreicht. Die Ergebnisse zeigen, daß die Öltröpfchengröße mit zunehmendem Gasdruck abnimmt. Druck (bar) Öltröpfchengröße (nm) 1 455 1,5 368 2 294 2,5 274 3 268 The effect of the gas pressure was examined by colliding a liquid flow of oil and a liquid flow of water containing lecithin under different gas pressures in a room into which gas having different gas pressures was introduced through a gas inlet. The oil was pumped at a flow rate of 50 ml / min and the aqueous phase at a flow rate of 250 ml / min. The oil droplet size was determined by DLS. In all cases an oil droplet size of less than 500 nm was achieved. The results show that the oil droplet size decreases with increasing gas pressure. Pressure (bar) Oil droplet size (nm) 1 455 1.5 368 2 294 2.5 274 3 268

Es kann daraus gefolgert werden, daß der über den Gaseinlaß auf das System wirkende Druck einen direkten Einfluß auf die Öltröpfchengröße hat.It can be concluded from this that the pressure acting on the system via the gas inlet has a direct influence on the oil droplet size.

Beispiel 2: Auswirkung der FlußrateExample 2: Effect of flow rate

Die Auswirkung der Flußrate wurde untersucht, indem verschiedene Flußraten für die Ölphase und die Wasserphase bei gleichbleibendem Verhältnis der Flußraten verwendet wurden. Ein Druck in dem Raum von 2 bar wurde bei allen Versuchen verwendet. Ölflußrate (ml/min) Wasserflußrate (ml/min) Öltröpfchengröße (nm) 10 50 596 20 100 427 30 150 348 50 250 294 100 500 257 The effect of the flow rate was examined by using different flow rates for the oil phase and the water phase while maintaining the ratio of the flow rates. A pressure in the space of 2 bar was used in all experiments. Oil flow rate (ml / min) Water flow rate (ml / min) Oil droplet size (nm) 10 50 596 20th 100 427 30th 150 348 50 250 294 100 500 257

Die Öltröpfchengröße innerhalb der gebildeten Emulsion verringert sich somit mit steigenden Flußraten.The oil droplet size within the emulsion formed thus decreases with increasing flow rates.

Beispiel 3: Durchmesser der DüsenExample 3: Diameter of the nozzles

Der Einfluß des Durchmessers der Düsen wurde bestimmt, indem verschiedene Düsendurchmesser getestet wurden, während eine Ölflußrate von 50 ml/min und eine Wasserflußrate von 250 ml/min verwendet wurde und der Gasdruck 2 bar betrug. Düsendurchmesser (µm) Öltröpfchengröße (nm) 200 294 300 318 400 567 500 785 The influence of the diameter of the nozzles was determined by testing various nozzle diameters while using an oil flow rate of 50 ml / min and a water flow rate of 250 ml / min and the gas pressure was 2 bar. Nozzle diameter (µm) Oil droplet size (nm) 200 294 300 318 400 567 500 785

Je kleiner der Düsendurchmesser ist, desto kleiner ist die Öltröpfchengröße innerhalb der gebildeten Emulsion.The smaller the nozzle diameter, the smaller the oil droplet size within the emulsion formed.

Beispiel 4: Zahl der ZyklenExample 4: number of cycles

Die Öl- und die Wasserphase wurden voremulgiert und durch die beiden Einlässe in einen geschlossenen Zyklus gepumpt, um den Einfluß der Zahl der Zyklen auf die Öltröpfchengröße innerhalb der Emulsion zu ermitteln. Eine Flußrate von 250 ml/min und ein Gasdruck von 2 bar herrschten hierbei in dem Raum. Zyklenzahl Öltröpfchengröße (nm) 1 650 2 540 3 420 4 355 The oil and water phases were pre-emulsified and pumped through the two inlets in a closed cycle in order to determine the influence of the number of cycles on the oil droplet size within the emulsion. A flow rate of 250 ml / min and a gas pressure of 2 bar prevailed in the room. Number of cycles Oil droplet size (nm) 1 650 2 540 3 420 4th 355

Die Öltröpfchengröße innerhalb der Emulsion nimmt somit auch mit der Zyklenzahl ab.The oil droplet size within the emulsion therefore also decreases with the number of cycles.

Verkapselung über einen Solvent/Non-Solvent-Prozeß: Beispiele 5 bis 8Encapsulation via a solvent / non-solvent process: Examples 5 to 8 Beispiel 5: KoazervationExample 5: Coacervation

Ein zu verkapselndes ätherisches Öl wird mit einer Flussrate von 67 g/min im Mikrojetreaktor mit einer wässrigen Na-Caseinat-Lösung (22,4 mg/ml) mit einer Flussrate von 200 g/min im Mikrojetreaktor emulgiert. Im nächsten Schritt wird diese Emulsion mit einer Flussrate von 200 g/min gegen eine wässrige Xanthan-Lösung (0,25%) mit 25 g/min prozessiert. In diesem Schritt lagern sich die gegenläufig geladenen Seitengruppen des Proteins und des Polysaccharids aneinander. Durch pH-Absenkung auf pH 4 mit 10%iger Zitronensäure wird dieses Interaktion verstärkt, wodurch Mikrokapseln entstehen. Die Mikrokapseln sind 50-100 µm groß.An essential oil to be encapsulated is emulsified at a flow rate of 67 g / min in the microjet reactor with an aqueous sodium caseinate solution (22.4 mg / ml) at a flow rate of 200 g / min in the microjet reactor. In the next step, this emulsion is processed at a flow rate of 200 g / min against an aqueous xanthan solution (0.25%) at 25 g / min. In this step, the oppositely charged side groups of the protein and the polysaccharide attach to each other. This interaction is strengthened by lowering the pH to pH 4 with 10% citric acid, whereby microcapsules are formed. The microcapsules are 50-100 µm in size.

Beispiel 6: TrocknungExample 6: drying

Ein zu verkapselndes ätherisches Öl wird mit einer Flussrate von 50 g/min im Mikrojetreaktor in eine wässrige Molkenproteinisolat-Lösung mit einer Flussrate von 200 g/min emulgiert. Nach der Zugabe von 20 % Maltodextrin als Trägermaterial wird die Emulsion sprühgetrocknet. Durch die Trocknung entsteht ein Pulver, welches mikroverkapseltes ätherisches Öl enthält.An essential oil to be encapsulated is emulsified at a flow rate of 50 g / min in the microjet reactor in an aqueous whey protein isolate solution at a flow rate of 200 g / min. After adding 20% maltodextrin as a carrier material, the emulsion is spray-dried. Drying creates a powder that contains microencapsulated essential oil.

Beispiel 7: Schmelzdispersion/MatrixverkapselungExample 7: Melt dispersion / matrix encapsulation

Ein zu verkapselnder Duftstoff (15-30 %) wird bei 85 °C in geschmolzenem Compritol AO 888 gelöst. Diese Ölphase wird mit 68 ml/min in eine 20 °C kalte wässrige Tween 20-Lösung (0,5-1,5 %) mit 200 ml/min emulgiert. Durch die rasche Abkühlung des Fetts kommt es direkt bei Emulsionsbildung zur Partikelbildung und somit Matrixverkapselung des Dufstoffs. Die Mikrokapseln sind im Durchschnitt 5 µm (0,5 % Tween 20) bzw. 2 µm (1,5 % Tween 20).A fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C. This oil phase is emulsified at 68 ml / min in a 20 ° C. aqueous Tween 20 solution (0.5-1.5%) at 200 ml / min. The rapid cooling of the fat results in the formation of particles and thus matrix encapsulation of the fragrance when the emulsion is formed. The microcapsules are on average 5 µm (0.5% Tween 20) or 2 µm (1.5% Tween 20).

Beispiel 8: Schmelzdispersion mit modifizierter OberflächeExample 8: Melt dispersion with modified surface

Ein zu verkapselnder Duftstoff (15-30 %) wird bei 85 °C in geschmolzenem Compritol AO 888 gelöst. Diese Ölphase wird mit 68 ml/min in eine 20 °C kalte Gummi Arabicum-Lösung (2,5 %; 200 ml/min) emulgiert. Durch die rasche Abkühlung des Fetts kommt es direkt nach der Emulsionsbildung zur Partikelbildung.A fragrance to be encapsulated (15-30%) is dissolved in melted Compritol AO 888 at 85 ° C. This oil phase is emulsified at 68 ml / min in a 20 ° C. cold gum arabic solution (2.5%; 200 ml / min). Due to the rapid cooling of the fat, particles form immediately after the emulsion has formed.

Eine Modifizierung dieser Mikrokapseln wird vorgenommen, indem diese Schmelzdispersion (200 ml/min) im Mikrojetreaktor gegen eine 50°C warme Gelatine-Lösung (2,5 %; 150 g/min) prozessiert wird. Durch pH-Absenkung auf pH 4 mit 10%iger Zitronensäure werden die ionischen Wechselwirkungen verstärkt und durch Abkühlung geliert.These microcapsules are modified by processing this melt dispersion (200 ml / min) in the microjet reactor against a gelatin solution (2.5%; 150 g / min) at 50 ° C. By lowering the pH to pH 4 with 10% citric acid, the ionic interactions are strengthened and gelled by cooling.

Reaktivverkapselung: Beispiele 9 bis 18Reactive encapsulation: Examples 9 to 18 Beispiel 9:Example 9:

Ein zu verkapselnder hydrophiler Polyalkohol (Aktivstoff) wird zu einer wässrigen Ammoniaklösung (1%) gegeben (Wasserphase) und im MJR - Reaktor gegen eine emulgatorhaltige (Polyethyeralkyl-polymethylsiloxan) 1% Verkapselungslösung (TEOS) in Isoparaffin (Ölphase) prozessiert. Bei gleicher Flussrate der beiden Lösungen (50:50) wird ein Prozessdruck vor den Düsen von 40 bar eingestellt.A hydrophilic polyalcohol to be encapsulated (active ingredient) is added to an aqueous ammonia solution (1%) (water phase) and in the MJR reactor against an emulsifier-containing (polyetheralkyl-polymethylsiloxane) 1% encapsulation solution (TEOS) in Isoparaffin (oil phase) processed. With the same flow rate of the two solutions (50:50), a process pressure of 40 bar is set upstream of the nozzles.

Es entsteht eine stabile Emulsion, an deren Phasengrenzfläche sich das Verkapselungsmaterial durch Hydrolyse der Vorstufen ausbildet. Die Kapseln können durch einfache Sedimentation oder Zentrifugation abgetrennt werden und sind zwischen 5 und 10 µm groß.The result is a stable emulsion, at whose phase boundary the encapsulation material is formed by hydrolysis of the precursors. The capsules can be separated by simple sedimentation or centrifugation and are between 5 and 10 µm in size.

Beispiele 10 und 11:Examples 10 and 11:

Das in 1 angegebene Verfahren wird auf die Verkapselungsstoffe OTMS, PTMS angewendet. Bei gleichbleibender Flussrate besitzen die erhaltenen Mikrokapseln etwa gleiche Eigenschaften bei reduzierter Reaktionszeit.The method indicated in FIG. 1 is applied to the encapsulation substances OTMS, PTMS. With a constant flow rate, the microcapsules obtained have approximately the same properties with a reduced reaction time.

Beispiele 12, 13, und 14:Examples 12, 13, and 14:

Das in 1 angegebene Verfahren wird auf variable Flussraten angewendet. Durch Variation der Flussrate können Verhältnisse von disperser Phase (Aktivstoff) zu Ölphase von 30:70, 40:60 und 60:40 realisiert werden. Die Größe der erhaltenen Mikrokapseln steigt mit wachsendem Anteil an disperser Phase (Aktivstofflösung).The method given in FIG. 1 is applied to variable flow rates. By varying the flow rate, ratios of the disperse phase (active substance) to the oil phase of 30:70, 40:60 and 60:40 can be achieved. The size of the microcapsules obtained increases as the proportion of disperse phase (active substance solution) increases.

Beispiele 15 und 16.Examples 15 and 16.

Das in 1 angegebene Verfahren wird auf eine TEOS haltige Verkapselungslösung angewendet mit der Abwandlung, dass die Konzentration des eingesetzten Emulgators auf 50% bzw. 25% der Ursprungskonzentration reduziert wurde. Die erhaltenen Mikrokapseln sind größer als wie sie nach Beispiel 1 erzielt werden.The method indicated in FIG. 1 is applied to an encapsulation solution containing TEOS with the modification that the concentration of the emulsifier used was reduced to 50% or 25% of the original concentration. The microcapsules obtained are larger than those obtained according to Example 1.

Beispiel 17:Example 17:

Das in 1 angegebene Verfahren wird auf eine andere Verkapselungschemie angewendet. Eine 20% Lösung eines zu verkapselnden wässrigen Aktivstoffs, die 10 meq NH2 der Verkapselungskompente HMDA enthält wird im MJR gegen eine 1% Emulgatorlösung in Isoparaffin prozessiert. Die so erhaltene Emulsion wird durch Zugabe von 40 meq COCl einer 20% Trimesoyl chlorid - Lösung in Isopar ausgehärtet. Die erhaltenen Kapseln sind 2 bis 30 µm groß.The procedure outlined in Figure 1 is applied to a different encapsulation chemistry. A 20% solution of an aqueous active substance to be encapsulated, which contains 10 meq of NH2 of the encapsulation component HMDA, is processed in the MJR against a 1% emulsifier solution in isoparaffin. The emulsion obtained in this way is by adding 40 meq COCl a 20% trimesoyl chloride solution cured in Isopar. The capsules obtained are 2 to 30 µm in size.

Beispiel 18:Example 18:

Das in Beispiel 17 angegebene Verfahren wird angewendet mit der Abwandlung, dass die Kapselhärtung mittels Trimesoylchlorid-Lösung in situ durch kontinuierlichen Eintrag der Lösung in die Reaktorkammer über die fünfte Öffnung des MJR - Reaktors erfolgt. Die erhaltenen Kapseln haben in etwa die gleichen Eigenschaften wie sie nach Beispiel 9 erhalten wurden.The method given in Example 17 is used with the modification that the capsule hardening by means of trimesoyl chloride solution takes place in situ by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor. The capsules obtained have approximately the same properties as those obtained according to Example 9.

Öllösliche Aktivstoffe: Beispiele 19 bis 20Oil-soluble actives: Examples 19-20 Beispiel 19:Example 19:

Das in Beispiel 5 angegebene Verfahren wird auf öllösliche Verkapselungsstoffe angewendet. Eine zu verkapselnder öllöslicher Aktivstoff wird in eine 20% Lösung des Verkapselungsmaterials (OTMS) in Isoparaffin gegeben und bei Raumtemperatur für 5 min durch Rühren gemischt. Die so erhaltene Lösung wird im MJR - Reaktor bei einem Prozessdruck von 40 bar gegen eine 2% wässrige Emulgatorlösung prozessiert. Es entsteht eine stabile homogene Emulsion, die durch Zugabe des Katalysators Dibutylzinnlaurat (0.5%) erfolgt die Härtung der Kapseln die nach Aushärtung mittels Zentrifugation oder Sedimentation abgetrennt werden können.The procedure given in Example 5 is applied to oil-soluble encapsulants. An oil-soluble active substance to be encapsulated is added to a 20% solution of the encapsulation material (OTMS) in isoparaffin and mixed by stirring at room temperature for 5 min. The solution obtained in this way is processed in the MJR reactor at a process pressure of 40 bar against a 2% aqueous emulsifier solution. The result is a stable, homogeneous emulsion which, by adding the catalyst dibutyltin laurate (0.5%), hardens the capsules, which can be separated after hardening by means of centrifugation or sedimentation.

Beispiel 20:Example 20:

Das in Beispiel 19 angegebene Verfahren wird angewendet mit der Abwandlung, dass die Kapselhärtung mittels Dibutylzinnlaurat in situ durch kontinuierlichen Eintrag der Lösung in die Reaktorkammer über die fünfte Öffnung des MJR - Reaktors erfolgt. Die erhaltenen Kapseln haben in etwa die gleichen Eigenschaften wie sie nach Beispiel 19 erhalten wurden.The method given in Example 19 is used with the modification that the capsule hardening takes place in situ by means of dibutyltin laurate by continuously introducing the solution into the reactor chamber via the fifth opening of the MJR reactor. The capsules obtained have approximately the same properties as those obtained according to Example 19.

Schmelzdispersion/Matrixverkapselung: Beispiel 21Melt dispersion / matrix encapsulation: Example 21

Beispiel 21:Example 21: Schritt 1:Step 1:

Aufschmelzen eines Polymeres (z.B. PEGs, Wachse, Fette, ...) Durch Wahl des aufzuschmelzenden Stoffes kann somit entweder eine hydrophile oder eine oleophile Schmelze generiert werden.Melting a polymer (e.g. PEGs, waxes, fats, ...) By choosing the material to be melted, either a hydrophilic or an oleophilic melt can be generated.

Schritt 2a:Step 2a:

Einrühren der festen Aktivstoffe in die Schmelze (z.B. Tenside, Peroxo-Verbindungen, Enzyme, ...)Stirring solid active ingredients into the melt (e.g. surfactants, peroxo compounds, enzymes, ...)

Schritt 2b (als Alternative zu Schritt 2a):Step 2b (as an alternative to step 2a):

Einrühren der flüssigen Aktivstoffe in die SchmelzeStirring the liquid active ingredients into the melt

Schritt 3a:Step 3a:

Überführen der modifizierten Schmelze in den MJR-Prozess unter Verwendung eines kalten Non-Solvents als zweiter Flüssigkeitsstrom unter Präzipitation von beladenen polymeren MikrokugelnTransferring the modified melt into the MJR process using a cold non-solvent as a second liquid stream with precipitation of loaded polymeric microspheres

Schritt 3b (als Alternative zu Schritt 3a):Step 3b (as an alternative to step 3a):

Mischen der modifizierten Schmelze mit einem warmen Non-Solvent (Voremulsion). Diese Voremulsion wird rechts und links mit einem Flussratenverhältnis von 1:1 in den MJR eingebracht. Unter Verwendung der kühlenden Wirkung des inerten Trägergases wird das beladene Polymer mikroskalig ausgefällt.Mixing the modified melt with a warm non-solvent (pre-emulsion). This pre-emulsion is introduced into the MJR on the right and left with a flow rate ratio of 1: 1. Using the cooling effect of the inert carrier gas, the loaded polymer is precipitated on a microscale.

Schritt 3c (als Alternative zu Schritt 3a oder Schritt 3b):Step 3c (as an alternative to step 3a or step 3b):

Die modifizierte Schmelze wird zur Verringerung der Schmelzviskosität mit einem Teil des erwärmten Non-Solvents gemischt. Die Mischung wird mit dem kalten Rest-Non-Solvent im MJR-Prozess unter Ausfällung der Polymer-Kügelchen ausgefällt.The modified melt is mixed with part of the heated non-solvent to reduce the melt viscosity. The mixture is precipitated with the cold residual non-solvent in the MJR process with precipitation of the polymer beads.

Claims (11)

  1. A method for preparing emulsions, wherein in a first step, at least one pre-emulsion is prepared from at least two non-intermixable liquids, and then in a second step, in a microjet reactor, at least two liquid streams of the at least one pre-emulsion are pumped through separate nozzles with defined diameters, characterized in that the pressure of the liquid jets is between 5 and 500 bar, in order to achieve flow velocity of the liquid streams of more than 10 m/sec., and in that the liquid streams collide at a collision point in a space, wherein the space is filled or pressurized with gas and the gas pressure in the space is 0.05 to 30 bar.
  2. The method according to claim 1, characterized in that the diameter of the nozzles is identical or different, and is 10 to 5,000 µm, preferably 50 to 3,000 µm, and particularly preferably to 100 to 2,000 µm.
  3. The method according to claim 1 or 2, characterized in that the flow velocity of the liquid streams is identical or different and is more than 20 m/sec., preferably more than 50 m/sec., and particularly preferably to more than 100 m/sec.
  4. The method according to one of claims 1 to 3, characterized in that the distance between the nozzles is less than 5 cm, preferably less than 3 cm and particularly preferably less than 1 cm.
  5. The method according to one of claims 1 to 4, characterized in that the gas pressure in the space is 0.2 to 10 bar and preferably 0.5 to 5 bar.
  6. The method according to one of claims 1 to 5, characterized in that the gas is heated or cooled before entering the space, in order to influence the temperature in the space.
  7. The method according to one of claims 1 to 6, characterized in that a solvent is introduced into the space via another inlet.
  8. The method according to one of claims 1 to 7, characterized in that a pressure of less than 100 bar, preferably less than 50 bar, and particularly preferably less than 20 bar prevails in the space during collision.
  9. The method according to one of claims 1 to 8, characterized in that the liquid streams and/or the resulting emulsion are guided through a heat exchanger, in order to control the temperature of the liquid streams prior to the collision or the temperature of the emulsion after the collision, respectively.
  10. The method according to one of claims 1 to 9, characterized in that the prepared emulsion is encapsulated in a further step.
  11. The method according to one of claims 1 to 10, characterized in that in a further step, the prepared and possibly encapsulated emulsion is provided with a surface modification.
EP17706142.1A 2016-01-25 2017-01-25 Method for producing emulsions Active EP3408015B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016101232.7A DE102016101232A1 (en) 2016-01-25 2016-01-25 Process for producing emulsions
PCT/DE2017/100046 WO2017129177A1 (en) 2016-01-25 2017-01-25 Method for producing emulsions

Publications (2)

Publication Number Publication Date
EP3408015A1 EP3408015A1 (en) 2018-12-05
EP3408015B1 true EP3408015B1 (en) 2021-08-11

Family

ID=58094095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17706142.1A Active EP3408015B1 (en) 2016-01-25 2017-01-25 Method for producing emulsions

Country Status (9)

Country Link
US (1) US20190030497A1 (en)
EP (1) EP3408015B1 (en)
JP (1) JP7031103B2 (en)
KR (1) KR20180101573A (en)
CN (1) CN108495708B (en)
DE (1) DE102016101232A1 (en)
DK (1) DK3408015T3 (en)
ES (1) ES2893124T3 (en)
WO (1) WO2017129177A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912326B2 (en) 2018-08-22 2021-02-09 Rachelle MACSWEENEY Nanoformulations containing encapsulted omega-3 fatty acids
CA3063417C (en) 2018-12-04 2023-01-03 Leon-Nanodrugs Gmbh Nanoparticles comprising tacrolimus
DE102019112382A1 (en) * 2019-05-13 2020-11-19 MyBiotech GmbH Use of a MikroJet reactor for cell disruption
JP2022533463A (en) 2019-05-23 2022-07-22 ヘルム・アクチエンゲゼルシャフト Nanoparticles containing enzalutamide
EP3915544A1 (en) 2020-05-25 2021-12-01 Leon-Nanodrugs GmbH Method for producing a liposome dispersion
CN114010541B (en) * 2021-11-03 2022-08-30 江苏久膜高科技股份有限公司 Preparation method of lavender essential oil emulsion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036537B3 (en) * 2009-08-07 2011-02-17 Cannon Deutschland Gmbh Apparatus and method for emulsifying liquids
DE102011113413A1 (en) * 2010-09-17 2012-08-09 Synthesechemie Dr. Penth Gmbh Particulate dispersion of organic semiconductor materials useful for making photovoltaic cells comprises nanoparticles of organic semiconductor materials prepared by dissolving organic semiconductor material in solvent and precipitating

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB331928A (en) * 1929-04-13 1930-07-14 Ici Ltd Apparatus for the manufacture of emulsions or dispersions
DE2604610C3 (en) * 1976-02-06 1978-07-13 Hans 7209 Aldingen Messner Device for generating a directly combustible, emulsifying oil-water mixture
US5927852A (en) * 1997-12-01 1999-07-27 Minnesota Mining And Manfacturing Company Process for production of heat sensitive dispersions or emulsions
JP2002540930A (en) 1999-04-08 2002-12-03 ペント ベルント Method and apparatus for performing chemical and physical processes
DE10123092B4 (en) * 2001-05-07 2005-02-10 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Method and static mixer for mixing at least two fluids
DE20306915U1 (en) * 2003-05-05 2003-08-07 Haagen & Rinau Mischtechnik Gm disperser
US20060133955A1 (en) * 2004-12-17 2006-06-22 Peters David W Apparatus and method for delivering vapor phase reagent to a deposition chamber
CN101765743A (en) * 2007-07-23 2010-06-30 大和综合环境株式会社 Water emulsion production apparatus
JP2010043212A (en) * 2008-08-15 2010-02-25 Karasawa Fine Ltd Manufacturing method of water-in-oil emulsion, manufacturing apparatus of water-in-oil emulsion, and manufacturing apparatus of water-in-oil emulsion fuel
CN101513595B (en) * 2009-01-15 2012-01-25 中国纺织工业设计院 Multi-level and multi-direction Y-type impinging jet mixer
DE102009008478A1 (en) * 2009-02-11 2010-08-19 PHAST Gesellschaft für pharmazeutische Qualitätsstandards mbH Apparatus and method for producing pharmaceutically ultrafine particles and for coating such particles in microreactors
PL2550092T3 (en) * 2010-03-22 2019-01-31 Instillo Gmbh Process for the production of micro- or nanoparticles
DE102010056345B4 (en) * 2010-12-29 2017-01-19 Siegfried Zech Process for the preparation of an oil-water emulsion
CN103349937B (en) * 2013-07-05 2015-09-30 江南大学 A kind of continuous emulsification device
CN103495356A (en) * 2013-09-22 2014-01-08 黄光智 Standardized processing method and device of jet device capable of quickly dissolving oxygen
CN103990406B (en) * 2014-05-16 2018-04-24 江苏大学 Flow mixer based on shape-memory polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036537B3 (en) * 2009-08-07 2011-02-17 Cannon Deutschland Gmbh Apparatus and method for emulsifying liquids
DE102011113413A1 (en) * 2010-09-17 2012-08-09 Synthesechemie Dr. Penth Gmbh Particulate dispersion of organic semiconductor materials useful for making photovoltaic cells comprises nanoparticles of organic semiconductor materials prepared by dissolving organic semiconductor material in solvent and precipitating

Also Published As

Publication number Publication date
DK3408015T3 (en) 2021-11-01
ES2893124T3 (en) 2022-02-08
CN108495708A (en) 2018-09-04
EP3408015A1 (en) 2018-12-05
WO2017129177A1 (en) 2017-08-03
DE102016101232A1 (en) 2017-07-27
CN108495708B (en) 2021-07-30
JP7031103B2 (en) 2022-03-08
KR20180101573A (en) 2018-09-12
US20190030497A1 (en) 2019-01-31
JP2019508233A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
EP3408015B1 (en) Method for producing emulsions
EP2978515B1 (en) Apparatus and method for the production of dispersions and solid matter
DE60315489T2 (en) Particles are obtained by extracting an emulsion by means of a supercritical fluid
EP2550092B1 (en) Process for the production of micro- or nanoparticles
DE60132094T3 (en) Process for the preparation of purified particles
EP2432580A2 (en) Method for producing nanoparticles using miniemulsions
DE10206083B4 (en) A method for producing monodisperse nanotubes and microfluidic reactor for carrying out the method
DE1900865A1 (en) Process for the production of microcapsules
EP0570335B1 (en) Device and process for mixing a pulverulent solid component to a liquid material
DE102017110292A1 (en) Process and apparatus for producing reaction products
DE2746489A1 (en) Microcapsule mfr. by spray drying - in ternary nozzle with atomiser air-dispersing core and wall substances
EP1728814B1 (en) Process for the preparation of nanoparticles making use of porous membranes
DE2010110A1 (en) Process for the production of microcapsules with the aid of synthetic coacervates
WO2021018479A2 (en) Process and apparatus for production of a granular cannabinoid material essentially soluble in aqueous medium
DE102017110293A1 (en) Process for the surface modification of encapsulated substances
WO2003027170A1 (en) Method for the production of fine particles from fusible solids
WO2023148405A1 (en) Method and device for polymer precipitation
DE10065068A1 (en) Multi-stage process for the production of gas-filled microcapsules with a defined narrow size distribution due to defined external gassing during the microcapsule construction
DE102009009060B3 (en) Process for the preparation of a dispersion and device for this purpose
EP1645269A1 (en) Method and apparatus for the production of nanoparticles and microparticles and the use of said particles
WO2005056169A1 (en) Method and device for producing monodispersed emulsions
DE3041555C2 (en) Process for the aerodynamic production of liquid or solid disperse aerosols
DE102017119569A1 (en) Rotating ring reactor
DE10241305A1 (en) Production of polymer particles comprises forming emulsion of molten polymer droplets at high temperature and pressure, reducing droplet size and reducing pressure to evaporate liquid and solidify droplets

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHIRRA, HERMANN

Inventor name: BAUMSTUEMMLER, BERND

Inventor name: TUERELI, AKIF EMRE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011162

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1418812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211026

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017011162

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0013000000

Ipc: B01F0033000000

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2893124

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011162

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230123

Year of fee payment: 7

Ref country code: IE

Payment date: 20230119

Year of fee payment: 7

Ref country code: FR

Payment date: 20230123

Year of fee payment: 7

Ref country code: ES

Payment date: 20230216

Year of fee payment: 7

Ref country code: DK

Payment date: 20230123

Year of fee payment: 7

Ref country code: CH

Payment date: 20230130

Year of fee payment: 7

Ref country code: AT

Payment date: 20230118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230131

Year of fee payment: 7

Ref country code: GB

Payment date: 20230124

Year of fee payment: 7

Ref country code: DE

Payment date: 20230119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240122

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240118

Year of fee payment: 8

Ref country code: ES

Payment date: 20240216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 8