EP3407774A1 - Adjunktive lokalisierungssysteme und -vorrichtungen - Google Patents

Adjunktive lokalisierungssysteme und -vorrichtungen

Info

Publication number
EP3407774A1
EP3407774A1 EP16888366.8A EP16888366A EP3407774A1 EP 3407774 A1 EP3407774 A1 EP 3407774A1 EP 16888366 A EP16888366 A EP 16888366A EP 3407774 A1 EP3407774 A1 EP 3407774A1
Authority
EP
European Patent Office
Prior art keywords
component
effector
inner shaft
cart
target zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16888366.8A
Other languages
English (en)
French (fr)
Other versions
EP3407774A4 (de
Inventor
John R. Gilbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Pacific Medical Technology Development Company Ltd
Original Assignee
Asia Pacific Medical Tech Development Co Ltd
Asia Pacific Medical Technology Development Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Pacific Medical Tech Development Co Ltd, Asia Pacific Medical Technology Development Company Ltd filed Critical Asia Pacific Medical Tech Development Co Ltd
Publication of EP3407774A1 publication Critical patent/EP3407774A1/de
Publication of EP3407774A4 publication Critical patent/EP3407774A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1011Multiple balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/0014Fastening element for attaching accessories to the outside of an endoscope, e.g. clips, clamps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • A61B2017/22039Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire eccentric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22067Blocking; Occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • A61B2017/22084Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance stone- or thrombus-dissolving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • A61B2017/320766Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven eccentric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1011Multiple balloon catheters
    • A61M2025/1015Multiple balloon catheters having two or more independently movable balloons where the distance between the balloons can be adjusted, e.g. two balloon catheters concentric to each other forming an adjustable multiple balloon catheter system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1052Balloon catheters with special features or adapted for special applications for temporarily occluding a vessel for isolating a sector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty

Definitions

  • thromboembolic disorders such as stroke, pulmonary embolism, peripheral thrombosis, atherosclerosis, and the like, are characterized by an occlusion of a blood vessel.
  • the occlusion can be caused in a localized area of tissue by a clot which is viscoelastic and is comprised of platelets, fibrinogen and other clotting proteins.
  • tissue ischemia laack of oxygen and nutrients
  • failure to re-establish blood-flow can lead to the loss of limb, angina pectoris, myocardial infarction, stroke or even death.
  • Occlusion of the venous circulation by thrombi can lead to blood stasis which can cause numerous problems. Re-establishing blood flow and removal of the thrombus is highly desirable.
  • Foreign bodies introduced into the circulation can be fragments of catheters, pace-maker electrodes, guide wires, and misplaced embolic material such as thrombogenic coils.
  • concentric cylinder systems in the art that can be used to demark regions of tissue for performing a procedure.
  • the ends of an outer cylinder and an inner cylinder can be used to demark a section of tissue, thereby creating a localized region of tissue for the performance of the procedure.
  • the example systems, methods, and apparatus herein provide adjunctive system that can be easily deployed with an existing concentric cylinder system to provide additional functionality in localized area of tissue.
  • the example systems, methods, and apparatus herein provide adjunctive devices that can be mounted to a concentric cylinder system for performing certain specialized, targeted procedures on localized target areas of tissue.
  • the example adjunctive devices can be mounted to a shaft at a proximal portion of the concentric cylinder system, while the distal portion of the concentric cylinder system is positioned at a target region of interest in a tissue lumen.
  • the example adjunctive systems disclosed herein are configured to be fed along the shaft of a concentric cylinder system in a controlled manner to the localized demarked region of tissue.
  • the example adjunctive systems allow for a greater number and variety of procedures to be performed on tissue in a localized target zone.
  • the example adjunctive devices can be configured as a set of simplified devices to be used adjunctively to improve or modify treatments in a target zone established using a concentric cylinder system.
  • the target zone can be established by the length defined by the exposed inner cylinder of a concentric cylinder system.
  • An example adjunctive system herein can be configured, as non-limiting examples, for the removal of thrombi, emboli, or foreign bodies, arterial or venous filtration, local agent administration, or other functions during intravascular procedures.
  • Example systems, methods, and apparatus herein provide an effector deployment system that includes a mounting element configured to slidably couple to an inner shaft of a concentric cylinder system, and an effector component configured to couple to the mounting element at a proximal portion of the inner shaft and to perform a procedure on a portion of tissue proximate to a localized target zone that is between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system.
  • An example method using the effector deployment system includes disposing the concentric cylinder system proximate to a localized target zone of tissue forming a lumen of a body, where the localized target zone is between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system.
  • the concentric cylinder system includes the inner shaft and the outer cylinder surrounding at least a portion of the inner shaft.
  • the method further includes mounting an effector deployment system to a portion of the inner shaft, where the effector deployment system includes a mounting element configured to slidably couple to the inner shaft and an effector component coupled to the mounting element and configured to perform a procedure on a portion of tissue, sapplying a force to advance or retract the mounting element along at least a portion of the inner shaft in a region of the localized target zone.
  • the effector deployment system includes a mounting element configured to slidably couple to the inner shaft and an effector component coupled to the mounting element and configured to perform a procedure on a portion of tissue, sapplying a force to advance or retract the mounting element along at least a portion of the inner shaft in a region of the localized target zone.
  • Example systems, methods, and apparatus herein provide an effector deployment system the includes a mounting element configured to slidably couple to an inner shaft of a concentric cylinder system, an effector component configured to couple to the mounting element and to perform a procedure on a portion of tissue proximate to a localized target zone that is between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system, and a feeder linkage configured to couple to a proximal portion of the mounting element and to apply a force to advance or retract the mounting element along at least a portion of the inner shaft.
  • An example method using the example effector deployment system includes disposing the concentric cylinder system proximate to a localized target zone of tissue forming a lumen of a body, such that the localized target zone is between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system, and mounting an effector deployment system to a portion of the inner shaft.
  • the effector deployment system includes a mounting element configured to slidably couple to the inner shaft, a feeder linkage coupled to the mounting element, and an effector component coupled to the mounting element and configured to perform a procedure on a portion of tissue.
  • the example method further includes using the feeder linkage to apply a force to advance or retract the mounting element along at least a portion of the inner shaft in a region of the localized target zone.
  • Example systems, methods, and apparatus herein provide an effector deployment system that includes a cart configured to slidably couple to an inner shaft of a concentric cylinder system, an effector component configured to couple to the cart and to perform a procedure on a portion of tissue in a localized target zone, the localized target zone being between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system, a feeder linkage configured to couple to the cart and to apply a force to advance or retract the cart along at least a portion of the inner shaft, and an applicator configured to mount the cart to the inner shaft.
  • An example method using the example effector deployment system includes disposing a concentric cylinder system proximate to a localized target zone of tissue forming a lumen of a body, such that the localized target zone is between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system, and using an applicator to mount an effector deployment system to a portion of the inner shaft.
  • the effector deployment system includes a cart to configured to slidably couple to the applicator and the inner shaft, a feeder linkage coupled to a proximal portion of the cart, and an effector component coupled to the cart and configured to perform a procedure on a portion of tissue.
  • the method further includes using the feeder linkage to apply a force to advance or retract the cart along at least a portion of the inner shaft in a region of the localized target zone.
  • Example systems, methods, and apparatus herein provide an effector deployment system that includes a bus slidably attached to an inner shaft of a concentric cylinder system, an effector component configured to perform a procedure on a portion of tissue in a localized target zone, the localized target zone being between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system, a feeder linkage configured to apply a force to advance or retract the bus along at least a portion of the inner shaft, a socket means configured to couple the feeder linkage to the bus, and a socket applicator configured to effect the coupling using the socket means.
  • An example method using the example effector deployment system includes disposing a concentric cylinder system proximate to a localized target zone of tissue forming a lumen of a body, such that the localized target zone is between a distal tip of an outer cylinder and a distal tip of an inner cylinder of the concentric cylinder system, and using a socket applicator to couple a feeder linkage of an effector deployment system to a bus using a socket means.
  • the effector deployment system also includes an effector component.
  • the bus is slidably attached to an inner shaft of a concentric cylinder system, the socket means couples the feeder linkage to a proximal portion of the bus, and the effector component is configured to perform a procedure on a portion of tissue.
  • the method further includes using the feeder linkage to apply a force to advance or retract the bus along at least a portion of the inner shaft in a region of the localized target zone.
  • Figures 1A - 1C show example concentric cylinder systems, according to principles of the present disclosure.
  • Figures 2A - 2B show an example effector deployment system, according to principles of the present disclosure.
  • Figures 3A - 3C show another example effector deployment system, according to principles of the present disclosure.
  • Figures 4A - 4B show another example effector deployment system, according to principles of the present disclosure.
  • Figure 5 shows another example effector deployment system, according to principles of the present disclosure.
  • Figures 6A - 6B show example mounting elements configured as carts, according to principles of the present disclosure.
  • Figure 6C shows an example mounting element configured as a bus, according to principles of the present disclosure.
  • FIGS 7 A - 7D show example socket means, according to principles of the present disclosure.
  • Figures 8A - 8D show other example effector deployment systems, according to principles of the present disclosure.
  • FIGS. 9A - 9C show example applicators, according to principles of the present disclosure
  • Figures 10A - 10B show an example of coupling of a cart to an applicator, according to principles of the present disclosure.
  • Figures 11 A(i) through 1 lC(iv) show an example process flow for coupling an example effector deployment system to a concentric cylinder system, according to principles of the present disclosure.
  • the term “includes” means includes but is not limited to, the term “including” means including but not limited to.
  • any references to “top” surface and “bottom” surface are used primarily to indicate relative position, alignment and/or orientation of various elements/components with respect to the substrate and each other, and these terms do not necessarily indicate any particular frame of reference (e.g. , a gravitational frame of reference).
  • reference to a “bottom” of a surface or layer does not necessarily require that the indicated surface or layer be facing a ground surface.
  • feature A being “disposed on,” “disposed between,” or “disposed over” feature B encompasses examples where feature A is in contact with feature B, as well as examples where other layers and/or other components are positioned between feature A and feature B.
  • proximal refers to a direction towards a portion of a concentric cylinder system, or other instrument that a user would operate, such as but not limited to a grip or other handle.
  • distal refers to a direction away from the grip or other handle of the concentric cylinder system, or other instrument.
  • concentric cylinder systems During certain procedures using many concentric cylinder systems, attempt is made to localize a vascular region in order to allow that region to be treated while minimizing systemic side effects.
  • concentric cylinder systems are described in connection with Figures 1A - 1C hereinbelow.
  • One class of such concentric cylinder systems uses an occlusive occlusive balloon mounted on the distal portion of the inner shaft, a non-limiting example of which is described in connection with Figure IB.
  • the occlusive balloon isolation system can be used to demark the region distal to the balloon from the region proximal to the isolation balloon to define a target zone of a tissue lumen (also referred to herein as a demarked zone or a "to-be-treated" zone).
  • a tissue lumen herein can be any orifice, passageway, hollow, or other opening existing or formed in tissue.
  • Another class of such concentric cylinder systems is a dual-balloon concentric cylinder system, a non- limiting example of which is described in connection with Figure 1C.
  • Other non-limiting examples of concentric cylinder systems are disclosed in, e.g. , U.S. Patent Nos. 8,721,592, 8,900, 185, and 9,028,442.
  • the example adjunctive devices herein are also applicable to infusion catheters, such as but not limited to the system disclosed in U.S. Patent Nos. 8,062,251 and 8,251,948.
  • a target zone may be defined as a controlled zone or other specified location established at a location in the vasculature relative to the tissue lumen, or may be a portion of the tissue lumen that is demarked (including being fully isolated or partly isolated) by isolation balloons or other occlusive component.
  • effector deployment systems described herein are adjunctive to the concentric cylinder systems, to perform additional or supplemental procedures on a target zone of the tissue lumen.
  • Figure 1A illustrates a non-limiting example concentric cylinder system 100.
  • Example concentric cylinder system 100 includes an inner shaft 102, an outer shaft 104 that includes one or more lumens, connectors 106 to the one or more lumens of the outer shaft 104, and connectors 108 to the one or more lumens of the inner shaft 102.
  • the proximal portion 109 of the inner shaft also can include one or more lumens.
  • the outer cylinder 104 of the example concentric cylinder system 100 defines the proximal edge of the target zone of a tissue lumen, while the inner shaft 102 extends beyond the outer cylinder 104 and defines the distal end of the target zone.
  • the concentric cylinder system 100' may also include a deployable or expandable component 110 disposed at the distal end of the inner shaft 102.
  • the deployable or expandable component 110 is illustrated as an isolation balloon.
  • the deployable or expandable component 110 can be any other technology in the art that may be used to demark the target zone of the tissue lumen, such as but not limited to a depoyable netting, or any other component that can be used to reduce or impede fluid flow at the distal end of the concentric cylinder system 100'.
  • the concentric cylinder system 100" may also include a first deployable or expandable component 110 disposed proximate to the distal end of the inner shaft 102 and a second first deployable or expandable component 112 disposed proximate to the distal end of the outer shaft 104.
  • the first deployable or expandable component 110, or second deployable or expandable component 112, or both can be any other technology in the art that may be used to demark the target zone of the tissue lumen, such as but not limited to an isolation balloon, a depoyable netting, or any other component that can be used to reduce or impede fluid flow.
  • the present disclosure provides example effector deployment systems that are adjunctive to the concentric cylinder system.
  • the example effector deployment systems include a mounting element that allows them to follow a shaft.
  • the mounting element can be caused to follow a guidewire or other shaft of a distal balloon inside a proximal shaft of a concentric cylinder system.
  • An example mounting element allows an adjunctive device herein to be combined in operation to a concentric cylinder system.
  • An example adjunctive device herein can include an effector component that can be used to modify or improve the desired procedure or other operations in a controlled target zone of the tissue lumen.
  • the example effector deployment systems allow an operator using an occlusive balloon isolation system, or a concentric-cylinder system, or other similar system, to apply an effector component to effect a diagnostic procedure and/or a treatment procedure in a portion of the tissue lumen demarked as the target zone.
  • the effector component provides additional capabilities that allows for modification, improvement, and/or complementing of a treatment procedure being applied in the demarked target zone.
  • Figure 2A illustrates an example effector deployment system 200 that includes a mounting element 202 and at least one effector component 204.
  • Figure 2B shows the example effector deployment system 200 coupled to an example concentric cylinder system.
  • the mounting element 202 and effector component 204 of the example effector deployment system 200 can be coupled to the portion of the inner shaft 206 of the concentric cylinder system disposed proximate to a targeted region 208 of a tissue lumen.
  • the overall target zone of the tissue lumen is demarked between isolation balloons 210 and 212.
  • Connectors 214 to the one or more lumens of an outer shaft (not shown), and/or connectors 216 to the one or more lumens of the inner shaft 206 can be used for performing procedures in the tissue lumen.
  • the effector component can be any component or subsystem that can be implemented to perform a diagnostic or treatment procedure, or any other useful action, in the target zone of the tissue lumen.
  • the effector component may be an "active" component or a "passive” component.
  • a passive effector component can be deployed or otherwise operated in the target zone using little more than the force or energy required to dispose the effector deployment system at the target zone of the tissue lumen.
  • an active effector component requires some amount of additional force or energy to deploy or otherwise operate when the effector deployment system reaches the target zone, beyond the forces and linkage required to move effector deployment system in and out of the target zone.
  • Non-limiting examples of a passive effector component include a spiral, a mesh or a network of wire effector component, a stirring means, a coil, a blade, a loop, or a drug or pharmaceutical delivery formulation.
  • the drug or pharmaceutical formulation can be a solid material formed as a bulk structure or a thin-film at a portion of the passive effector component.
  • the drug or pharmaceutical formulation can be disposed at a portion of the passive effector component that allow for dissolution of the formulation to release active agents once the passive effector component is in the target zone of the tissue.
  • the example passive effector component can be formed of a plastic, or a metal, or other material.
  • a spiral effector component could be moved forward and backward in the target zone to stir a liquid in the target zone (i.e., to serve as a stirring means), thereby improving the mixing of materials in the target zone.
  • a stirring means can be a benefit in the case where the target zone includes a thrombus and the concentric cylinder system is used to apply a thrombolytic agent, such as but not limited to a urokinase, to the target zone. In that case, the stirring of the thrombus and the thrombolytic agent could improve their mixing and help to increase the rate or efficiency of thrombus dissolution by the thrombolytic agent.
  • the example mesh or network of wire effector component could be advanced into a thrombus for an appropriate period of time to cause it to set in the thrombus.
  • the passive effector component would carry or drag all or parts of the thrombus out of the target zone, thereby performing a passive thrombectomy procedure.
  • Non-limiting examples of active effector components include an inflatable balloon or shaped inflatable device, a deployable member (including a netting or a mesh), an agent delivery module, an optical component, an ultrasonic component, an electric component, a magnetic component, a fluidic component, a pneumatic component, a chemical component, a mechanical component, a drug or pharmaceutical delivery lumen, or other similar means of interacting with the tissue lumen at the target zone.
  • a pump, syringe, or other component can be used to introduce a liquid, gel, or other drug or pharmaceutical formulation through the delivery lumen.
  • an inflatable balloon may also serve as a stirring means or an active thrombectomy means.
  • An example delivery module can be configured as a plastic tube with a closed end, including side ports over its distal region, and an internal lumen arranged so that a drug or other mixture including an active agent could be injected from the proximal end of lumen and flow out to a desired region of the target zone.
  • Figure 3A illustrates another example effector deployment system 300 that includes a mounting element 302 coupled at or near the distal end of a feeder linkage 305.
  • FIG. 3B shows the example effector deployment system 300 coupled to an example concentric cylinder system.
  • the mounting element 302 can be disposed at a proximal part of inner shaft 306 of the example concentric cylinder system.
  • the feeder linkage 305 is configured to allow an operator to move the mounting element 302 along the inner shaft 306, to advance it to or retract it from the proximity of a targeted region 308 of the target zone of tissue lumen.
  • the overall target zone of the tissue lumen is demarked between isolation balloons 310 and 312.
  • Connectors 314 to the one or more lumens of an outer shaft (not shown), and/or connectors 316 to the one or more lumens of the inner shaft 306, can be used for performing procedures in the tissue lumen.
  • Figure 3C shows the example effector deployment system 300, as a result of the feeder linkage 305 being used to advance the mounting element 302 from the proximal part of inner shaft 306 to a distal portion of the example concentric cylinder system, positioned in the target zone.
  • Figure 4A illustrates another example effector deployment system 400 that includes a mounting element 402 and an effector component 404 coupled at or near the distal end of the feeder linkage 405.
  • FIG. 4B shows the example effector deployment system 400 coupled to an example concentric cylinder system.
  • the mounting element 402 and an effector component 404 are shown coupled to a distal part of inner shaft 406.
  • the feeder linkage 405 allows an operator to move the mounting element 402 and the effector component 404 along the inner shaft 406, to advance it to or retract it from the proximity of a targeted region 408 of the target zone of tissue lumen.
  • the overall target zone of the tissue lumen is demarked between isolation balloons 410 and 412.
  • Connectors 414 to the one or more lumens of an outer shaft (not shown), and/or connectors 416 to the one or more lumens of the inner shaft 406, can be used for performing procedures in the tissue lumen.
  • a passive effector component can be deployed, or otherwise effected in the target zone using little or no more than the force or energy required to dispose the effector deployment system at the target zone of the tissue lumen, including through use of the shaft of the concentric cylinder system or the feeder linkage.
  • An active effector component can require some amount of additional force or energy to deploy or otherwise operate when the effector deployment system reaches the target zone.
  • the example effector deployment system further includes at least one additional control connector component to supply the additional force or energy to the active effector component.
  • the one or more control connector components can be coupled to the active effector component, to actuate the effector component.
  • the control connector component can be an integral component of the feeder linkage, can be a second component coupled to the feeder linkage, or can be a separate component from the feeder linkage, such as but not limited to a second or third linkage.
  • a second or third mechanical linkage can be actuated to deploy needles or other components to dispose them to a desired position relative to the tissue lumen.
  • the one or more control connector components can be used to apply forced in the same direction or in an opposite direction to the feeder linkage. For example, once a feeder linkage is used to push a mounting element towards the target zone, the one or more control connector components can be effected in the opposite direction to cause a sleeve of the effector component to retract to deploy the needles or other components.
  • the one or more control connector components can be coupled to a computing device.
  • One or more processing units of the computing device be programmed to execute processor executable instructions to cause the one or more control connector components to actuate the effector component.
  • the one or more control connector components can be caused to actuate the effector component using a change in the temperature, application of an electrical pulse, application of an optical excitation, generation of an ultrasonic impulse, pump a drug or pharmaceutical formulation through a lumen, or other means of activation or actuation.
  • the feeder linkage can serve multiple purposes.
  • the feeder linkage 405 serves to hold the effector component 404 and allow force to be applied to advance the effector component 404 into or out of the target zone, or to retract the mounting element 402 from the target zone to the proximal part of the inner shaft 406.
  • the feeder linkage 405 also couples to the effector component 404 at or near its distal end.
  • the feeder linkage 405 can be a stiff wire, rhombus or scissor linkages, a telescoping line, or other series of rigid or semi-rigid links.
  • the feeder linkage can include additional structure or features to provide the additional energy or force required to activate or actuate the active effector component, and/or the agent to be dispensed by the active effector component.
  • additional structure or feature include a lumen, an additional mechanical wire, an optical fiber, an electrical wire, a fluid line, a hydraulic line, a pneumatic line, a control arm, or other activation means.
  • the feeder linkage can include a shaft with a balloon inflation lumen, for advancing and retracting the active effector component.
  • the feeder linkage can include an additional wire for pushing and pulling a flexible shaft including a balloon inflation lumen.
  • the feeder linkage can include one or more active means to provide support and actuation to an active effector component, which may be implemented at a distal portion of the concentric cylinder system via a distal connection.
  • FIG. 5 shows a non-limiting example effector deployment system 500 that includes a mounting element 502 and an effector component 504 coupled to the distal end of a dual-element feeder linkage 505-a, 505-b.
  • the feeder linkage element 505- a can be used to advance and retract the mounting element 502 and effector component 504 along a shaft
  • feeder linkage element 505-b can be used as an active means to provide active control and/or fluid access to the effector component 504.
  • feeder linkage element 505-b can include a lumen, an additional mechanical wire, an optical fiber, an electrical wire, a fluid line, a hydraulic line, a pneumatic line, a control arm, or other activation means.
  • the mounting element is either configured to be removable from the inner shaft (referred to herein as a "cart") or non-removable from the inner shaft (referred to herein as a "bus").
  • the inner surface of the mounting element can be formed from, or at least partially covered with, a material that enables proper functioning of the mounting element.
  • the material preferably provides a sufficient amount of friction against the shaft of the concentric cylinder system to allow displacement of the mounting element along the shaft, but also cause the mounting element to apply a sufficiently strong grip of the shaft during use of the effector component.
  • Figure 6A shows an example of a mounting element configured as a cart 602.
  • the example cart 602 includes one or more circling elements 603 (such as but not limited to prongs) that surround a shaft 604 as a means of attachment to a concentric cylinder system. For clarity, as portion of the shaft 604 is shown using dashed lines.
  • the example circling elements 603 allow the cart 602 to remain mounted to the shaft while the cart 602 is slid or pushed along the shaft 604 into and out of a target zone of the tissue lumen, and to be removed from the shaft when desired.
  • the cart 602 can be coupled to a distal portion of the inner shaft of a concentric cylinder system while the proximal portion of the inner shaft is in place in the tissue lumen, advanced into and withdrawn from the target zone, and also removed from the shaft without the need to remove the concentric cylinder system from the tissue lumen.
  • the cart 602 can be mounted to the distal end of the feeder linkage.
  • Figure 6B shows another example of a mounting element configured as a cart
  • the example cart 622 includes circling elements 623-a, 623-b (such as but not limited to prongs) that surround a shaft 624 as a means of attachment to a concentric cylinder system. For clarity, as portion of the shaft 624 is shown using dashed lines.
  • the example circling elements 623-a, 623-b allow the cart 622 to remain mounted to the shaft while the cart 622 is slid or pushed along the shaft 624 into and out of a target zone of the tissue lumen, and to be removed from the shaft when desired.
  • the cart 622 can be coupled to a distal portion of the inner shaft of a concentric cylinder system, while the proximal portion of the inner shaft is in place in the tissue lumen, advanced into and withdrawn from the target zone, and also removed from the shaft without the need to remove the concentric cylinder system from the tissue lumen.
  • the cart 622 can be mounted to the distal end of the feeder linkage.
  • each of the circling elements 623-a, 623-b includes an opening sections 625-a, 625-b that allows the example cart 622 to be mounted to and removed from the shaft 624.
  • the opening section 625-a of circling element 623-a can be at a differing, rotated position as compared to opening section 625-b of circling element 623-b.
  • This alternating alignment of the opening sections 625-a and 625-b can prevent inadvertent decoupling of the cart 622 from shaft 624 as forces are applied to cause the cart 622 to advance into or withdraw from the target zone, or to deploy or use any effector component in the target zone.
  • Figure 6C shows an example of a mounting element configured as a bus 652.
  • the example bus 652 can be formed as a ring, a cylinder, or other conformation that can be maintained on the shaft 654 and slid or pushed along the shaft 654 to advance it into and withdraw it from the target zone of the tissue lumen.
  • the bus 652 can be coupled to the distal end of the feeder linkage.
  • the feeder linkage may be coupled to the mounting element (i.e., the cart or bus) using one or more socket means.
  • An example socket means can be formed as two or more socket units that combine through a coupling or mating mechanism to physically couple the feeder linkage to a portion of the cart or bus.
  • the example socket units can be formed as a 'left' socket unit and a 'right' socket unit, or as a 'proximal' socket unit and a 'distal' socket unit, which mate together to form a binding connection.
  • the socket means is configured such that forces (including forces to push or pull) can be transmitted the feeder linkage to the cart or bus across the socket units and the socket units do not disengage or otherwise separate.
  • the coupling between the socket units can be engaged using a specified coupling procedure, and may be broken, or decoupled, by applying a specified decoupling procedure.
  • the example socket means can be configured such that the coupling procedure and decoupling procedure would not be unintentionally triggered during the course of use of the example effector deployment system, including while being used to transmit the useful forces.
  • the socket means can be any components that are configured to establish the specified functionality between the feeder linage and the cart or bus, and are configured to implement a variety of applicable coupling/decoupling procedures.
  • the socket means can be configured to transmit push or pull forces to slide a mounting element along an inner shaft from a proximal end of a concentric cylinder system to the target zone of the tissue lumen at the distal end of the concentric cylinder system.
  • Non-limiting examples of coupling/decoupling procedures include twisting, threading, looping, rotating, magnetic coupling, electrostatic coupling, mechanical coupling (including hook-and-loop fasteners or touch fasteners), or controlled adhesive based chemical means of coupling and decoupling.
  • the socket means also may be configured to establish a desired functionality between the feeder linage and an active effector component, including transmittal of effector activation control where applicable.
  • an example effector deployment system herein can be changed while the distal part of the concentric cylinder system is disposed in situ in a patient, without need to remove the concentric cylinder system from the patient and without need for threading a component on a guidewire.
  • the socket means can be engaged to couple the feeder linkage to the cart prior to the cart being coupled to a proximal part of an inner shaft of the concentric cylinder system.
  • a different set of a feeder linkage and effector component may be swapped in and coupled to the same cart (or a different cart) via the socket means, prior to the cart being coupled to the inner shaft.
  • the functionality of the effector deployment system can be changed while the distal part of the concentric cylinder system is disposed in situ in a patient.
  • a different set of a feeder linkage and effector component can be swapped in and coupled to the bus via the socket means when the bus is positioned at a proximal part of the inner shaft.
  • FIGS 7A - 7C show non-limiting example socket means that can be used to couple a feeder linkage 701 to a bus 702 mounted to a shaft 704.
  • the example socket means shown in Figure 7A is formed from a distal socket unit 706 and a proximal socket unit 708.
  • the proximal socket unit 708 can be coupled reversibly or irreversibly to the feeder linkage 701.
  • the distal socket unit 706 can be coupled reversibly or irreversibly to the bus 702.
  • the distal socket unit 706 of the example socket means is configured to couple with the proximal socket unit 708 of the example socket means.
  • the coupling and decoupling between the distal socket unit 706 and the proximal socket unit 708 can be engaged reversibly using any applicable coupling and decoupling procedures.
  • the socket means can be configured for irreversible attachment between the distal socket unit 706 and the proximal socket unit 708.
  • the distal socket unit 706 may be coupled reversibly to the bus 702.
  • the distal socket unit 706 and the proximal socket unit 708 can be coupled in a manner that requires destructively reversible removal.
  • the proximal socket unit 708 can a wire loop or other unit that is separable from the distal socket unit 706 only using a destructive means, e.g., by cutting or breaking.
  • the distal socket unit 706 could be re-usable, e.g., using a different section of the cut or otherwise broken proximal socket unit 708, or using an entirely different proximal socket unit 708.
  • both the proximal socket unit 708 and the distal socket unit 706 are removable using an irreversible destructive means, e.g. , by cutting or breaking both.
  • the example socket means shown in Figure 7B is formed from a distal socket unit 706' and a proximal socket unit 708'.
  • the distal socket unit 706' is formed as a loop attachment
  • the proximal socket unit 708' is formed as a hook attachment.
  • the coupling and decoupling between the loop attachment (distal socket unit 706') and the hook attachment (proximal socket unit 708') can be engaged using any applicable coupling and decoupling technique.
  • an effector component 710 may be coupled to the feeder linkage 701 behind the proximal socket unit 708, prior to coupling of the distal socket unit 706 to the proximal socket unit 708.
  • the distal socket unit 706 and the proximal socket unit 708 may be used to couple the feeder linkage 701 to the bus 702, prior to the effector component 710 being mounted to the feeder linkage 701.
  • the socket means also may be configured to maintain a desired functionality between the feeder linage 701 and the active effector component 710, including for transmittal of effector activation control.
  • FIG. 7D shows a non-limiting example socket applicator 712 that can be used to attach or detach the socket units 706 and 708 of the socket means, for coupling the feeder linkage 701 to a bus 702 mounted to shaft 704.
  • the socket applicator 712 can be used to reversibly or irreversibly couple the socket units 706 and 708.
  • the socket applicator 712 can be used to couple the socket units 706 and 708 through thermal means, chemical means, electrochemical means, mechanical means, or any other applicable means.
  • FIGs 8A - 8D show a non-limiting example effector deployment system that includes an applicator (having a coupling portion 802-a and a handle 802-b), a cart 804, and a feeder linkage 806.
  • the coupling portion 802-a of the applicator is configured to mount the cart 804 to the proximal part of an inner shaft 808 of an example concentric cylinder system, such that the cart 804 grips the inner shaft 808 with sufficient force to remain in place during use.
  • the handle 802-b can be configured to any shape that permits ease of application of the cart 804.
  • the handle 802-b of the applicator can be used to bring the cart 804 in proximity to the proximal part of the inner shaft 808.
  • the coupling portion 802-a of the applicator can be used to position the cart 804 on the inner shaft 808.
  • An example applicator herein can be used to open or hold open portions of the cart 804 so it may be more easily placed on the inner shaft 808.
  • the cart 804 Upon withdrawal of the applicator, the cart 804 is coupled with a sufficiently firm hold to the inner shaft 808 so that it can be operated as describe herein.
  • the cart 804 can be pushed or pulled in the distal or proximal direction along the inner shaft 808 without decoupling under the loading forces of the intended use cases of the cart 804.
  • the applicator is configured such that the cart
  • the feeder linkage 806 can be used to advance the cart 304 from the proximal part of inner shaft 808 to a distal portion of the example concentric cylinder system, such as to within a target zone demarked between distal isolation balloon 810 and proximal isolation balloon 812 (shown in Figures 8A and 8B).
  • an effector component may be coupled to the feeder linkage and/or to the cart 804 either prior to the applicator being used to couple the cart 804 to the inner shaft, or after the cart 804 is coupled to the inner shaft.
  • Figure 9A shows a non-limiting example applicator 900 that can be used with an example cart described hereinabove.
  • the example applicator 900 includes a coupling portion 902 that couples to the example cart, and an extension 904 that can be used to assist in the coupling of the cart to a shaft.
  • Figure 9B shows a cross-section of the coupling portion 902 of an example applicator, as it is mounted on an example shaft 906 of a concentric cylinder system.
  • the width (di) of the hollow inner portion of the coupling portion 902 approximates the diameter of the shaft 906.
  • the outer dimension (d a ) of the coupling portion 902 can be made sufficiently wide to cause separation and spreading of the circling elements of the cart to assist with coupling the cart of the effector deployment system to the shaft of the concentric cylinder system.
  • the coupling portion 902 can be made to have an outer dimension (d 0 ) that causes the circling elements of the cart to separate and allow for easier coupling to the shaft of the concentric cylinder system.
  • the outer dimension (d 0 ) of the applicator can be approximately the perimeter of the circling elements of the cart.
  • Figure 9C shows a magnified image of the section 908 of the example applicator between the extension 904 and the coupling portion 902.
  • the lateral width increase gradually from the lateral dimension of the extension 904 to the outer dimension (d 0 ) of the coupling portion 902.
  • the gradually increasing width of section 908 of the applicator can be used for gradually separating the prongs (or other separable coupling members) from the shaft of a concentric cylinder system.
  • Figures 10A and 10B illustrate use of an example applicator (having a coupling portion 1002 and an extension 1004) to couple a cart 1006 from a shaft of an example concentric cylinder system.
  • the extension 1004 is so dimensioned that it can be inserted between the circling elements of the cart 1006 and the shaft (not shown) of the example concentric cylinder system.
  • the gradually increasing dimensions of the section between the coupling portion 1002 and the extension 1004 causes gradual separation of the circling elements (such as but not limited to prongs or other separable coupling members) of the cart 1006.
  • the circling elements of the cart 1006 are substantially separated at the point that the cart 1006 is mounted on the coupling portion 1002 of the applicator.
  • the procedure of Figures 10A and 10B can be performed to mount a cart 1006 to the coupling portion 1002 of an applicator.
  • the cart 1006 With the extension 1004 of the applicator positioned proximate to a shaft, the cart 1006 can be pushed from the coupling portion 1002 of the applicator towards the extension 1004.
  • the gradually decreasing dimensions of the section between the coupling portion 1002 and the extension 1004 causes the circling elements (including prongs or other separable coupling members) of the cart 1006 to grip the shaft of the concentric cylinder system.
  • an example applicator can also include one or more mounting features 1008, such as but not limited to flanges, segment, notches or other features, that the circling elements can be caused to rest on once the cart is coupled to the applicator.
  • example effector deployment systems can include two or more of a mounting element, a feeder linkage, and an effector component. The example effector deployment system may be used to bring an effector means into the target zone established by a base concentric cylinder system, while at least a portion of that base concentric cylinder system is deployed in a patient.
  • the example effector deployment system also may be configured for withdrawal of the mounting element and an effector component without removing the base concentric cylinder system. It will be apparent to one of ordinary skill in the art that, during any single procedure or multiple procedures, one or more effector deployment systems may be used to bring a sequence of similar or different effector components to the target zone, and implement the effector components as desired.
  • Figures l lA(i) through HC(iv) illustrate an example process flow for coupling an example effector deployment system to a shaft of a concentric cylinder system using an example applicator.
  • FIGs l lA(i) - HA(iii) illustrate an example cart-applicator assembly procedure for mounting a cart 1100 to an applicator (having a coupling portion 1102 and an extension 1104).
  • the cart 1100 includes a plurality of circling elements 1101.
  • the extension 1104 of the application shown in Figure HA(ii) is inserted between the circling elements of the cart 1100.
  • the gradually increasing dimensions of the section of the applicator between the coupling portion 1102 and the extension 1104 causes gradual separation of the circling elements 1101 of the cart 1100 as the applicator is advanced through the circling elements 1101.
  • the circling elements 1101 of the cart 1100 are substantially separated at the point that the cart 1100 is mounted on the coupling portion 1102 of the applicator. .
  • the example applicator with the cart mounted thereon can be disposed at a proximal portion of a shaft 1110 of a concentric cylinder system, such that the extension portion 1104 of the applicator is pointed towards the distal portion of the concentric cylinder system.
  • Figures l lC(i) - HC(iv) show an example cart disposition procedure, to couple the cart 1100 to the shaft 1110 of the example concentric cylinder system.
  • Figure HC(ii) shows a cross-sectional view along line A— A' of Figure l lC(i), showing the cart 1100 disposed on the distal portion 1102 of the applicator, with the applicator disposed on the shaft 1110 of the concentric cylinder system.
  • the cart 1100 is pushed distally, and the applicator is pulled proximally, to move the circling elements 1101 from the coupling portion 1102 of the applicator towards the extension 1004.
  • the gradually decreasing dimensions of the section between the coupling portion 1102 and the extension 1104 causes the circling elements 1101 of the cart 1100 to grip the shaft 1110 of the concentric cylinder system.
  • Figure HC(iii) shows an intermediate stage in the procedure, where some of the circling members 1101 are gripping the shaft 1110, while others remain minted to the distal portion 1102 of the applicator.
  • Figure HC(iv) shows a cross-sectional view along line B— B' of Figure 1 lC(iii), showing the circling elements 1101 of the cart 1100 that are disposed on and gripping the shaft 1110 of the concentric cylinder system. With full withdrawal of the applicator, all of the circling elements 1101 of cart 1100 circle and grip the shaft 1110. In this manner, the applicator effects the coupling of the cart to the shaft of the concentric cylinder system.
  • the present disclosure provides example effector deployment systems configured with the capability of one or more effector components to be easily coupled to the inner shaft of a concentric cylinder system in such a manner that the effector component(s) may pushed along the inner shaft into the target zone.
  • the example effector deployment system provide an operator with the capability to interact with the tissue lumen in the target zone to perform a function modifying, improving, or complementing the treatment being applied by the base concentric cylinder system.
  • the example effector deployment systems include a complimentary applicator component for ease of application of some components of the example effector deployment system to the shaft of a concentric cylinder system.
  • inventive embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed.
  • inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein.
  • program or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of the present technology as discussed above.
  • program or “software” are used herein in a generic sense to refer to any type of computer code or set of computer-executable instructions that can be employed to program a computer or other processor to implement various aspects of the present technology as discussed above.
  • the technology described herein may be embodied as a method, of which at least one example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
  • a reference to "A and/or B", when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
  • the phrase "at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
  • This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified.
  • At least one of A and B can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biophysics (AREA)
  • Anesthesiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)
EP16888366.8A 2016-01-26 2016-01-26 Adjunktive lokalisierungssysteme und -vorrichtungen Withdrawn EP3407774A4 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/014877 WO2017131630A1 (en) 2016-01-26 2016-01-26 Adjunctive localization systems and devices

Publications (2)

Publication Number Publication Date
EP3407774A1 true EP3407774A1 (de) 2018-12-05
EP3407774A4 EP3407774A4 (de) 2019-10-09

Family

ID=59398296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16888366.8A Withdrawn EP3407774A4 (de) 2016-01-26 2016-01-26 Adjunktive lokalisierungssysteme und -vorrichtungen

Country Status (6)

Country Link
EP (1) EP3407774A4 (de)
JP (1) JP2019503797A (de)
KR (1) KR20180105188A (de)
CN (1) CN108882839B (de)
AU (1) AU2016389786A1 (de)
WO (1) WO2017131630A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110338889A (zh) * 2019-07-20 2019-10-18 朱世新 一种腱鞘囊肿穿刺针

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1192465A (en) * 1981-03-11 1985-08-27 Edward A. Lottick Removable switch electrocautery instruments
JP4121615B2 (ja) * 1997-10-31 2008-07-23 オリンパス株式会社 内視鏡
KR20010052095A (ko) * 1997-11-07 2001-06-25 폴 길슨, 디렉터 색전 보호 장치
US6280414B1 (en) * 1998-09-30 2001-08-28 Medtronic Ave, Inc. Method and apparatus for local delivery of therapeutic agent
US8060207B2 (en) 2003-12-22 2011-11-15 Boston Scientific Scimed, Inc. Method of intravascularly delivering stimulation leads into direct contact with tissue
US8182422B2 (en) * 2005-12-13 2012-05-22 Avantis Medical Systems, Inc. Endoscope having detachable imaging device and method of using
CN2801192Y (zh) * 2005-05-26 2006-08-02 华中科技大学同济医学院附属同济医院 自动膨胀式食管扩张导管
WO2009116159A1 (ja) * 2008-03-21 2009-09-24 ニプロ株式会社 カテーテル用バルーン・アセンブリ
US20090318943A1 (en) * 2008-06-19 2009-12-24 Tracee Eidenschink Vascular intervention catheters with pacing electrodes
EP3695772B1 (de) * 2008-11-18 2023-07-26 United States Endoscopy Group, Inc. Adapter zur befestigung von vorrichtungen an endoskopen
DE112012003250T5 (de) * 2011-08-05 2014-04-30 Mc10, Inc. Katheder Ballon-Verfahren und Vorrichtung unter Einsatz von Abtastelementen

Also Published As

Publication number Publication date
JP2019503797A (ja) 2019-02-14
EP3407774A4 (de) 2019-10-09
WO2017131630A1 (en) 2017-08-03
CN108882839B (zh) 2021-02-19
WO2017131630A8 (en) 2017-08-31
AU2016389786A1 (en) 2018-08-09
KR20180105188A (ko) 2018-09-27
CN108882839A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6646085B2 (ja) 血栓治療用の器具とシステム
US11464537B2 (en) Device and method for removing material from a hollow anatomical structure
US9901245B2 (en) Selectively bendable remote gripping tool
AU2018250821B2 (en) Hydrodynamic vortex aspiration catheter
EP2301450B1 (de) Embolektomievorrichtung
EP1355692B1 (de) Embolektomie-katheter
JP2017526463A (ja) 回収装置
US8784441B2 (en) Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
AU2018364666A1 (en) Thrombectomy device and methods of use
JP2014519904A (ja) 体腔挿入装置用展開機構
JP2019513486A (ja) 注入カテーテル及び使用方法
US10226266B2 (en) Selectively bendable remote gripping tool
US20150012006A1 (en) Anastomosis stapling/clipping devices, systems and methods
US11896252B2 (en) Medical device to remove an obstruction from a body lumen, vessel or organ
US20230414236A1 (en) Obstruction Retrieval Devices
EP3407774A1 (de) Adjunktive lokalisierungssysteme und -vorrichtungen
US11134965B2 (en) Adjunctive localization systems and devices
TWI720964B (zh) 附屬定位系統及裝置
US20230165617A1 (en) Blood clot retrieval systems and methods
US20210220006A1 (en) Device and Method for Removing Material from a Hollow Anatomical Structure
JP2023545121A (ja) 肺塞栓除去システム

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190911

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 1/018 20060101AFI20190905BHEP

Ipc: A61B 17/3207 20060101ALI20190905BHEP

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40001429

Country of ref document: HK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASIA PACIFIC MEDICAL TECHNOLOGY DEVELOPMENT COMPANY, LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220607