EP3406998B1 - Wärmetauscher für salzschmelzedampferzeuger in kraftwerk mit konzentrierter solarkraft - Google Patents

Wärmetauscher für salzschmelzedampferzeuger in kraftwerk mit konzentrierter solarkraft Download PDF

Info

Publication number
EP3406998B1
EP3406998B1 EP17172695.3A EP17172695A EP3406998B1 EP 3406998 B1 EP3406998 B1 EP 3406998B1 EP 17172695 A EP17172695 A EP 17172695A EP 3406998 B1 EP3406998 B1 EP 3406998B1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat exchanger
hairpin
straight
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17172695.3A
Other languages
English (en)
French (fr)
Other versions
EP3406998A1 (de
Inventor
Alfred Dethier
Stéphane Winand
Yves LECLOUX
Ridha HARZALLAH
Ildo AGNETTI
Thomas BAUTHIER
Christopher DETAILLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
John Cockerill SA
Original Assignee
Cockerill Maintenance and Ingenierie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES17172695T priority Critical patent/ES2844382T3/es
Application filed by Cockerill Maintenance and Ingenierie SA filed Critical Cockerill Maintenance and Ingenierie SA
Priority to EP17172695.3A priority patent/EP3406998B1/de
Priority to CN201880034199.6A priority patent/CN110691953B/zh
Priority to US16/615,845 priority patent/US20200141568A1/en
Priority to PCT/EP2018/062490 priority patent/WO2018215239A1/en
Priority to KR1020197036756A priority patent/KR20200010318A/ko
Priority to MX2019013991A priority patent/MX2019013991A/es
Priority to AU2018274073A priority patent/AU2018274073A1/en
Priority to PE2019002300A priority patent/PE20200088A1/es
Publication of EP3406998A1 publication Critical patent/EP3406998A1/de
Priority to ZA201907258A priority patent/ZA201907258B/en
Priority to IL270461A priority patent/IL270461B/en
Priority to CL2019003253A priority patent/CL2019003253A1/es
Application granted granted Critical
Publication of EP3406998B1 publication Critical patent/EP3406998B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B17/00Water-tube boilers of horizontally-inclined type, e.g. the water-tube sets being inclined slightly with respect to the horizontal plane
    • F22B17/02Water-tube boilers of horizontally-inclined type, e.g. the water-tube sets being inclined slightly with respect to the horizontal plane built-up from water-tube sets in abutting connection with two header boxes in common for all sets, e.g. with flat header boxes
    • F22B17/025Water-tube boilers of horizontally-inclined type, e.g. the water-tube sets being inclined slightly with respect to the horizontal plane built-up from water-tube sets in abutting connection with two header boxes in common for all sets, e.g. with flat header boxes with combined inlet and outlet header boxes, e.g. connected by U-tubes or Field tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/228Oblique partitions

Definitions

  • the present invention is related to the field of heat exchangers, in particular heat exchangers such as evaporators, superheaters, reheaters, and economizers intended to be used in thermal fluid steam generators such as Molten Salt Steam Generators (MSSG) of Concentrated Solar Power plants (CSP).
  • heat exchangers such as evaporators, superheaters, reheaters, and economizers intended to be used in thermal fluid steam generators such as Molten Salt Steam Generators (MSSG) of Concentrated Solar Power plants (CSP).
  • the CSP tower plants generally comprise one or more solar receivers which are situated at the apex of a central tower. These solar receivers are heated by concentrated incident solar rays and they generate a hot fluid that will be further used to produce high-pressure steam capable of driving a turbine and of producing electricity.
  • the CSP tower plant has as main components, namely, at least a heliostat solar field, a solar receiver installed on the top of the tower, a steam generator, a steam turbine and a storage system.
  • the molten salt is heated typically to 565 °C in the solar receiver and stored in the hot storage tank.
  • the hot salt flows from the hot tank to the Molten Salt Steam Generator (MSSG) to generate steam which will be injected into the steam turbine.
  • MSSG Molten Salt Steam Generator
  • FIG. 1 diagrammatically shows the components of a typical so-called heat exchanger train for MSSG.
  • the hot molten salt flows, from an inlet 100, through a reheater 101 and a superheater 104 to enter in an evaporator 102. Thereafter, the hot salt flows from the outlet of the evaporator 102 to the economizer 103 and further to the outlet 105.
  • So-called "shell and tube” heat exchangers refer in prior art to a class of heat exchanger designs suitable for higher pressure applications.
  • This type of heat exchanger is consisting of a large pressure vessel called a "shell” having a set of tubes, called “bundle”, inside it.
  • a first fluid runs through the tubes while a second fluid flows inside the shell over the tubes, the first and the second fluid having different temperatures, with the aim of transferring heat from the second fluid to the first fluid or vice versa.
  • FIG. 2 diagrammatically shows a straight-tube heat exchanger (two pass tube-side).
  • the ends of each tube 21 are connected to water boxes or plenums 29 through holes provided in separating plates called 'tube sheets" 27.
  • the tubes 21 may be straight, as depicted in FIG. 2 , or bent in "U" (U-tubes).
  • the flow path of the second fluid is often determined by intermediate baffles 28 forming respective passages so that the second fluid flow changes its direction in passing from one passage to the next one.
  • the baffles are usually under the form of partial circular segments or annular rings and disks, installed perpendicular to the longitudinal axis of the shell 22 to provide a zigzag flow of the second fluid.
  • hair pin heat exchanger 1 has two shells 22 containing the straight part of U-tubes.
  • the head of the hairpin contains the 180° U-bent part of the tubes.
  • a hair pin heat exchanger according to the preamble of claim 1 is known from JP S60 4790A .
  • the advantages of this hairpin design are :
  • baffles mounted in the shell can have a specific shape intended to guide the fluid in a helical path.
  • the heat transfer rate increases of about 10% compared with that of conventional segmental baffles for the same shell-side pressure drop ( J. Heat Transfer (2007), Vol. 129(10), 1425-1431 ).
  • This pattern allows to reduce leakage streams occurring in segmental baffles and further to increase the heat transfer coefficient greatly ( J. Heat Transfer (2010), Vol. 132(10), 101801 ).
  • the flow stratification and stagnant zone are avoided (according to calculations), which allows a complete draining and decreases fouling susceptibility (lower fouling resistance and lower heat transfer area).
  • Document WO 2009/148822 discloses baffles mounted in the shell to guide the fluid into a helical flow pattern, with different helix angles when the baffle is proximate the inlet and the outlet respectively.
  • Documents US 2,384,714 , US 2,693,942 , US 3,400,758 , US 4,493,368 and WO 2005/019758 each disclose each different kinds of baffles, but with the same aim of providing a helical flow pattern of the fluid.
  • Document US 1,782,409 discloses a continuous helical baffle.
  • forced-recirculation evaporator material and manufacturing costs are higher than those for natural-circulation evaporators due to the recirculation pump capital cost.
  • the present invention aims to overcome the drawbacks of the heat exchangers of prior art intended for steam generators.
  • the invention aims to obtain a reduced-size evaporator presenting high flexibility in terms of thermal gradient as well as improved efficiency thanks to optimized hydrodynamic salt flow leading to lower pressure drop, lower internal leakage (by-pass), improved heat transfer coefficient, lower tendency to foul, easily drainable molten salt, natural circulation (i.e. without circulation pump), long lifetime, and competitive cost.
  • Another purpose of the present invention is to avoid the utilization of thick components such as current tube sheets necessary in the shell-and-tube classical heat exchangers leading to the drawback that a high pressure zone is adjacent a low pressure zone.
  • a first aspect of the present invention relates to a hairpin heat exchanger having a first straight section, a second straight section and a bent section linking the first straight section and the second straight section, each straight section comprising a part of a first cylindrical shell or internal cylindrical shell and of a second cylindrical shell or external cylindrical shell, said first cylindrical shell being located inside said second cylindrical shell, both forming an intershell space enclosing a bundle of parallel U-bent tubes having each a first and a second straight part respectively located in said first and second straight section of the exchanger and a 180°-bent part located in said bent section of the exchanger, wherein, in use, a first fluid to be heated and vaporized is flowing, said external cylindrical shell being provided respectively at one end with an inlet and at another end with an outlet for a second fluid which is a hot thermal fluid, so that, in use, said second fluid is flowing in the intershell space and cooling down by exchanging heat with the first fluid flowing in the straight tubes, said intershell space enclosing also baffles to guide
  • the hairpin heat exchanger also comprises one of the following characteristics or a suitable combination thereof:
  • a second aspect of the invention relates to the use of the hairpin heat exchanger as described above, as an evaporator.
  • a third aspect of the invention relates to the use of the hairpin heat exchanger as described above, as a superheater.
  • a fourth aspect of the invention relates to the use of the hairpin heat exchanger as described above, as a reheater or an economizer.
  • a fifth aspect of the invention relates to the use of the evaporator, the superheater, the reheater and economizer as described above, making at least one heat exchanger train in a molten salt steam generator (MSSG).
  • MSSG molten salt steam generator
  • the superheater, the reheater and/or the economizer are running counter-current, while the evaporator is running co-current.
  • the molten salt steam generator is a once-through or a forced circulation steam generator.
  • the present invention relates to a new design for a horizontal hairpin heat exchanger 1, as depicted in FIG. 4 to 8 .
  • the heat exchanger has a reciprocating flow between two fluids.
  • a first fluid generally a mixture of water and water steam, circulates through a first bundle of parallel horizontal straight tubes sections 2 located in the first straight part of the hairpin and further through a second bundle of parallel horizontal straight tubes sections 2 located in the second straight part of the hairpin.
  • the tubes 2 of the first bundle are connected to the tubes 2 of the second bundle by 180° bent tube sections located in the head of the hairpin, forming thereby U-bent tube sections.
  • Supercritical carbon dioxide is another example of usable first fluid in the present invention.
  • the straight tubes sections of the first bundle can discharge fluid into a bonnet through a thick(er) tube shell into which also end the straight tubes sections of the second bundle.
  • the tubes have no U-bent tube sections.
  • the bundle of tubes 2 in each straight part is located between an internal cylindrical shell 3 and an external cylindrical shell 4, as represented in FIG. 5 .
  • the internal space 5 delimited by the two shells 3, 4 permits to hold a heat source, preferably a second fluid, within an annular flow path.
  • This second fluid is a thermal fluid, for example molten salt(s) having been heated by the solar receivers at the apex of a CSP tower plant.
  • the thermal fluid by having its flow in contact with the bundle(s) of tubes 2, will transfer heat to the parallel-flowing first fluid running through the tubes 2.
  • the first fluid and the second fluid can be co-current or counter-current, without departing from the scope of the present invention.
  • the heat source or the second fluid can be any thermal fluid such as water, thermal oil, liquid sodium, fluidized bed, etc.
  • the external cylindrical shell 4, or a distribution jacket coupled therewith is provided at one end with an inlet nozzle 6, respectively an outlet nozzle 6, through which the thermal fluid enters into, respectively leaves the heat exchanger 1.
  • an outlet nozzle 7, respectively inlet nozzle 7, is provided at another end of the external cylindrical shell 4 in order to discharge the cooled thermal fluid, respectively admit the hot fluid.
  • the thermal fluid is uniformly distributed on the shell at 360° (inlet, circulation, fluid temperature) thanks to a distribution jacket located at the inlet nozzle of the heat exchanger (see below).
  • space 5 is provided in the straight parts of the hairpin exchanger with an enclosed continuous helical baffle 8 allowing to guide the flow of the thermal fluid.
  • the thermal fluid then helically flows in the heat exchanger, which is for example an evaporator running under natural circulation, between the internal and the external shell, according to an annular flow path.
  • the continuous helical baffle configuration ensures a gentle flowing of the second fluid, without any sharp direction change or dead zones as in the exchangers having flow-perpendicular baffles. In this manner, the heat transfer rate is greatly increased and the pressure drop is greatly lowered compared with that of exchangers with conventional segment baffles (see above).
  • the internal cylindrical shell 3 and the baffles 8 can be welded or bolted. Further a sealing means can be provided between the external shell 4 and the baffles 8 to avoid parasitic streams.
  • the annular bundle of parallel straight tubes 2 is connected, via suitably bent tubes 11, located outside the internal and the external shells 3, 4 to at least one cylindrical linear header 9, 10.
  • the header axis is orthogonal to the hairpin exchanger axis.
  • the bundle of straight tubes 2 is connected to at least a first cylindrical linear header 9, or entry header 9, which feeds the straight tubes 2 with the first fluid, while, at a second end of the exchanger, the first fluid which is running inside the bundle of tubes 2 is collected by at least a second cylindrical linear header 10, or exit header 10, from the bundle of tubes 2.
  • the need of more than one entry header 9 or exit header 10 may appear when there is a large number of tubes 2 in the bundle.
  • the bundle of straight tubes 2 is connected, either to the entry header 9 or to the exit header 10 by suitably bent tubes 11, in an area which is outside the internal and external shells 3, 4 of the hairpin exchanger.
  • the use of tube sheets and/or high pressure spherical collectors, bonnets and headers, as in the so-called "shell-and-tube” heat exchangers of prior art, is avoided in the present invention because it is simply replaced by the use of cylindrical headers moved outside of the hairpin heat exchanger.
  • the first fluid usually water
  • the first fluid is generally under high pressure in quasi-spherical vessels or plenums.
  • the salt flowing around the tube bundles is maintained under much lower pressure, requiring very thick tube sheets to withstand the pressure difference.
  • the invention configuration provides prolongated tubes connected to standard headers (cylindrical, spherical, etc.) at the ends of the exchanger, in which the high pressure fluid is circulating. This allows to reduce the thickness of the tube sheets, if any, the pressure being limited. More specifically, in the rectangular section on FIG.7 , one sees that the pressure drop supported by the tube sheet 16 is governed by the difference of the external (air) pressure 12 and the internal thermal fluid pressure 13.
  • a tube sheet is preferably used under the form of a elliptical tube sheet 16 or the like, having orifices or passages 17 for the parallel tubes 2.
  • the tubes 2 are welded to the elliptical tube sheet 16 only with the sole purpose to ensure fluid tightness.
  • These elliptical tube sheets 16 advantageously have lower thickness than prior art flat tube sheets for the reasons explained above.
  • Thick vessel walls or headers are not suited for accepting higher temperature gradients and are more subject to fatigue leading to shorter lifetime of the heat exchanger.
  • the present invention provides extended lifetime of the heat exchanger components.
  • FIG. 7 also shows a detailed view for an embodiment of the entry/exit distribution jacket 30 from the fluid inlet/outlet 6, 7 into the hairpin heat exchanger.
  • a uniform distribution of the second fluid at its entry/exit in the heat exchanger is ensured by a series of distribution openings 31 located at 360° over the internal side of the distribution jacket 30, preferably in a first turn 32 of the helical baffle 8.
  • the present invention is flexible and intended to be applied to a series of heat exchanger design used in MSSG technology, such as reheater, superheater, preheater and evaporator devices, wherein all the common components are made according to the generic heat exchanger design of the invention.
  • a hot molten salt with decreasing temperature flows for example firstly in parallel through a reheater and a superheater to recombine and enter into the evaporator and further in the preheater/economizer in series.
  • hot molten salt is entering the system at high temperature, for example 563°C and certainly below 565°C which is the degradation temperature for the usal molten salts.
  • the thermal fluid can withstand a temperature up to 700°C. All metal parts are advantageously made of stainless steel or noble metals which can withstand temperatures up to 600°C and above.
  • Cold salt leaves the preheater at a temperature typically in the range of 290-300°C, or above a minimum temperature which is either the solidification temperature of the heat transfer fluid (as low as 240°C for the molten salts such as sodium derivatives).
  • a thermal fluid e.g. thermal oil
  • molten salt with an operating temperature range in this case going for example from 80°C (condensation and/or cristallization temperature) to 380°C (example of degradation temperature).

Claims (18)

  1. Haarnadel-Wärmetauscher (1) mit einem ersten geraden Abschnitt, einem zweiten geraden Abschnitt und einem gebogenen Abschnitt, der den ersten geraden Abschnitt und den zweiten geraden Abschnitt verbindet, dadurch gekennzeichnet, dass jeder gerade Abschnitt einen Teil einer ersten zylindrischen Hülse oder internen zylindrischen Hülse (3) und einer zweiten zylindrischen Hülse oder externen zylindrischen Hülse (4) umfasst, wobei sich die erste zylindrische Hülse (3) im Inneren der zweiten zylindrischen Hülse (4) befindet, wobei beide einen Hülsenzwischenraum (5) bilden, der ein Bündel paralleler, zum U gebogener Röhren (2) umschließt, die jeweils einen ersten und einen zweiten geraden Teil aufweisen, die sich in dem ersten beziehungsweise dem zweiten geraden Abschnitt des Tauschers befinden, und einen um 180° gebogenen Teil, der sich in dem gebogenen Abschnitt des Tauschers befindet, wobei im Gebrauch ein erstes zu erwärmendes und zu verdampfendes Fluid strömt, wobei die externe zylindrische Hülse (4) an einem Ende mit einem Einlass (6) beziehungsweise an einem anderen Ende mit einem Auslass (7) für ein zweites Fluid versehen ist, das ein heißes thermisches Fluid ist, sodass im Gebrauch das zweite Fluid in dem Hülsenzwischenraum (5) strömt und durch Austausch von Wärme mit dem ersten Fluid, das in den geraden Röhren (2) strömt, abkühlt, wobei der Hülsenzwischenraum (5) auch Ablenkplatten (8) zum Lenken des zweiten Fluids umschließt, wobei sich das Bündel paralleler, zum U gebogener Röhren (2) aus dem Tauscher hinaus erstreckt und über gebogene Röhren (11) über ein Ende der internen zylindrischen Hülse (3) und der externen zylindrischen Hülse (4) an dem ersten geraden Abschnitt hinaus mit einem ersten Kopfstück (9) verbunden ist, welches das erste Fluid zu dem Bündel gerader Röhren (2) verteilt, beziehungsweise über ein Ende der internen zylindrischen Hülse (3) und der externen zylindrischen Hülse (4) an dem zweiten geraden Abschnitt hinaus mit einem zweiten Kopfstück (10) verbunden ist, welches das erste Fluid in der Form von Flüssigkeit, Dampf oder einem Flüssigkeits-Dampf-Gemisch aus dem Bündel gerader Röhren (2) auffängt.
  2. Haarnadel-Wärmetauscher (1) nach Anspruch 1, wobei er horizontal ist und in dem der Strom des zweiten Fluids in Bezug auf den Strom des ersten Fluids entweder ein Gleichstrom oder ein Gegenstrom ist.
  3. Haarnadel-Wärmetauscher (1) nach Anspruch 1, wobei das erste Kopfteil (9) und das zweite Kopfteil (10) gerade und zylindrisch oder kugelförmig sind.
  4. Verwendung des Haarnadel-Wärmetauschers (1) nach Anspruch 1, wobei das erste Fluid ein Fluid ist, das Speisewasser oder superkritisches Kohlenstoffdioxid ist.
  5. Verwendung des Haarnadel-Wärmetauschers (1) nach Anspruch 1, wobei das zweite Fluid ein Flüssigsalz oder ein Gemisch aus Flüssigsalzen, ein thermisches Öl oder flüssiges Natrium ist.
  6. Haarnadel-Wärmetauscher (1) nach Anspruch 1, wobei die Ablenkplatten (8) die Form einer durchgehenden spiralförmigen Ablenkplatte aufweisen.
  7. Haarnadel-Wärmetauscher (1) nach Anspruch 1, wobei die Ablenkplatten (8) an der internen zylindrischen Hülse (3) angebracht, vorzugsweise angeschweißt oder angeschraubt, sind.
  8. Haarnadel-Wärmetauscher (1) nach Anspruch 1, wobei zwischen dem ersten Kopfstück (9) beziehungsweise dem zweiten Kopfstück (10) und dem Haarnadelabschnitt des Tauschers, der die interne und die externe zylindrische Hülse (3, 4) enthält, ein Rohrboden (16) bereitgestellt ist.
  9. Haarnadel-Wärmetauscher (1) nach Anspruch 8, wobei der Rohrboden (16) von elliptischer Form ist und mit Durchgängen (17) zum Ermöglichen eines abgedichteten Durchleitens der zum U gebogenen Röhren (2) durch den Rohrboden (16) versehen ist.
  10. Haarnadel-Wärmetauscher (1) nach Anspruch 1, wobei ein Abdichtungsmittel zwischen der externen Hülse (4) und den Ablenkplatten (8) bereitgestellt ist.
  11. Haarnadel-Wärmetauscher (1) nach Anspruch 1, wobei er mit einer Verteilungsbuchse (30) zum gleichmäßige Speisen des zweiten Fluids von dem Einlass für thermisches Fluid (6, 7) in den Wärmetauscher ausgestattet ist.
  12. Haarnadel-Wärmetauscher (1) nach Anspruch 11, wobei die Verteilungsbuchse (30) mehrere Öffnungen (31) aufweist, die 360° über ihre Außenfläche verteilt sind, wobei die Öffnungen (31) vorzugsweise das zweite Fluid in die ersten Wendung (32) der spiralförmigen Ablenkplatte (8) speisen.
  13. Verwendung des Haarnadel-Wärmetauschers (1) nach Anspruch 1 als Verdampfer.
  14. Verwendung des Haarnadel-Wärmetauschers (1) nach Anspruch 1 als Überhitzer.
  15. Verwendung des Haarnadel-Wärmetauschers (1) nach Anspruch 1 als Zwischenhitzer oder Vorwärmer.
  16. Verwendung des Verdampfers nach Anspruch 13, eines Überhitzers nach Anspruch 14 und eines Zwischenhitzers und/oder Vorwärmers nach Anspruch 15, die mindestens einen Wärmetauscherzug in einem Flüssigsalz-Dampferzeuger (Molten Salt Steam Generator, MSSG) bilden.
  17. Verwendung des Haarnadel-Wärmetauschers (1) nach Anspruch 16, wobei der Überhitzer, der Zwischenhitzer und/oder der Vorwärmer im Gegenstrom laufen, während der Verdampfer im Gleichstrom läuft.
  18. Verwendung des Haarnadel-Wärmetauschers (1) nach Anspruch 16, wobei der Flüssigsalz-Dampferzeuger ein Durchlaufdampferzeuger (OTSG) oder ein Zwanglaufdampferzeuger ist.
EP17172695.3A 2017-05-24 2017-05-24 Wärmetauscher für salzschmelzedampferzeuger in kraftwerk mit konzentrierter solarkraft Active EP3406998B1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP17172695.3A EP3406998B1 (de) 2017-05-24 2017-05-24 Wärmetauscher für salzschmelzedampferzeuger in kraftwerk mit konzentrierter solarkraft
ES17172695T ES2844382T3 (es) 2017-05-24 2017-05-24 Intercambiador de calor para generador de vapor de sal fundida en una planta de energía solar concentrada
AU2018274073A AU2018274073A1 (en) 2017-05-24 2018-05-15 Heat exchanger for molten salt steam generator in concentrated solar power plant
PCT/EP2018/062490 WO2018215239A1 (en) 2017-05-24 2018-05-15 Heat exchanger for molten salt steam generator in concentrated solar power plant
KR1020197036756A KR20200010318A (ko) 2017-05-24 2018-05-15 집광형 태양열 발전소의 용융 염 증기 발생기용 열교환기
MX2019013991A MX2019013991A (es) 2017-05-24 2018-05-15 Intercambiador de calor para generador de vapor de sal fundida en central de energia solar concentrada (ii).
CN201880034199.6A CN110691953B (zh) 2017-05-24 2018-05-15 用于集中太阳能发电设备中的熔盐蒸汽发生器的热交换器
PE2019002300A PE20200088A1 (es) 2017-05-24 2018-05-15 Intercambiador de calor para generador de vapor de sal fundida en central de energia solar concentrada (ii)
US16/615,845 US20200141568A1 (en) 2017-05-24 2018-05-15 Heat exchanger for molten salt steam generator in concentrated solar power plant
ZA201907258A ZA201907258B (en) 2017-05-24 2019-10-31 Heat exchanger for molten salt steam generator in concentrated solar power plant
IL270461A IL270461B (en) 2017-05-24 2019-11-05 Heat exchanger for molten salt steam generator in concentrated solar power plant
CL2019003253A CL2019003253A1 (es) 2017-05-24 2019-11-13 Intercambiador de calor para generador de vapor de sal fundida en central de energía solar concentrada (ii).

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17172695.3A EP3406998B1 (de) 2017-05-24 2017-05-24 Wärmetauscher für salzschmelzedampferzeuger in kraftwerk mit konzentrierter solarkraft

Publications (2)

Publication Number Publication Date
EP3406998A1 EP3406998A1 (de) 2018-11-28
EP3406998B1 true EP3406998B1 (de) 2020-11-04

Family

ID=58772740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17172695.3A Active EP3406998B1 (de) 2017-05-24 2017-05-24 Wärmetauscher für salzschmelzedampferzeuger in kraftwerk mit konzentrierter solarkraft

Country Status (12)

Country Link
US (1) US20200141568A1 (de)
EP (1) EP3406998B1 (de)
KR (1) KR20200010318A (de)
CN (1) CN110691953B (de)
AU (1) AU2018274073A1 (de)
CL (1) CL2019003253A1 (de)
ES (1) ES2844382T3 (de)
IL (1) IL270461B (de)
MX (1) MX2019013991A (de)
PE (1) PE20200088A1 (de)
WO (1) WO2018215239A1 (de)
ZA (1) ZA201907258B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3804100A1 (de) * 2018-07-09 2021-04-14 Siemens Energy, Inc. Überkritische co2-gekühlte elektrische maschine
CN116062825B (zh) * 2023-04-06 2023-06-23 山西清凯环保工程有限公司 一种高盐废水提盐装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1782409A (en) 1927-12-19 1930-11-25 Griscom Russell Co Heat exchanger
US2384714A (en) 1943-04-12 1945-09-11 Tech Studien Ag Tubular heat exchanger
DE839945C (de) * 1948-12-13 1952-05-26 Escher Wyss Ag Roehrenwaermeaustauscher
US2693942A (en) 1952-06-09 1954-11-09 Gulf Oil Corp Heat transfer apparatus
US3168136A (en) * 1955-03-17 1965-02-02 Babcock & Wilcox Co Shell and tube-type heat exchanger
US3400758A (en) 1966-05-16 1968-09-10 United Aircraft Prod Helical baffle means in a tubular heat exchanger
NO148573C (no) 1981-06-22 1983-11-02 Norsk Hydro As Varmeveksler
JPS604790A (ja) * 1983-06-24 1985-01-11 Babcock Hitachi Kk 熱交換装置
DD276521A1 (de) * 1988-10-25 1990-02-28 Brennstoffinstitut Freiberg,Dd Ringwaermetauscher
US6827138B1 (en) 2003-08-20 2004-12-07 Abb Lummus Global Inc. Heat exchanger
CN101029787A (zh) * 2006-12-08 2007-09-05 于奎明 换热器
US7740057B2 (en) * 2007-02-09 2010-06-22 Xi'an Jiaotong University Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles
CN100453951C (zh) * 2007-02-09 2009-01-21 西安交通大学 组合螺旋折流板管壳式换热器
US20090301699A1 (en) 2008-06-05 2009-12-10 Lummus Novolent Gmbh/Lummus Technology Inc. Vertical combined feed/effluent heat exchanger with variable baffle angle
CN101382277B (zh) * 2008-09-10 2010-09-15 东莞理工学院 太阳能熔盐套管式蒸汽发生方法及其装置
DE102011075930A1 (de) * 2011-05-16 2012-11-22 Siemens Aktiengesellschaft Dampferzeuger, insbesondere für ein solarthermisches Kraftwerk
CN103105075B (zh) * 2013-01-24 2014-09-10 东南大学 一种立式螺旋折流板u型管式冷凝器
EP3159649B1 (de) * 2015-10-23 2020-03-04 Hamilton Sundstrand Corporation Wärmetauscher
CN205919715U (zh) * 2016-08-27 2017-02-01 哈尔滨锅炉厂有限责任公司 一种用于太阳能热发电系统的新型热交换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2844382T3 (es) 2021-07-22
MX2019013991A (es) 2020-02-05
AU2018274073A1 (en) 2019-11-21
CN110691953B (zh) 2021-05-18
IL270461B (en) 2021-05-31
US20200141568A1 (en) 2020-05-07
ZA201907258B (en) 2020-11-25
WO2018215239A1 (en) 2018-11-29
CL2019003253A1 (es) 2020-02-14
EP3406998A1 (de) 2018-11-28
CN110691953A (zh) 2020-01-14
PE20200088A1 (es) 2020-01-15
KR20200010318A (ko) 2020-01-30

Similar Documents

Publication Publication Date Title
AU2018382368B2 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
JP5951396B2 (ja) 太陽熱ボイラ用集熱装置及びこれを備えたタワー式太陽熱ボイラ
RU2690308C1 (ru) Теплообменный аппарат
US20130112156A1 (en) Heat exchanger for generating steam for solar power plants
US4084546A (en) Heat exchanger
US3841271A (en) Heat exchanger having a plurality of modular tube bundles
EP3406998B1 (de) Wärmetauscher für salzschmelzedampferzeuger in kraftwerk mit konzentrierter solarkraft
US4284134A (en) Helically coiled tube heat exchanger
US3915224A (en) Process gas cooler
EP3502608B1 (de) Wärmetauscher für salzschmelzedampferzeuger in einem kraftwerk mit konzentrierter solarkraft (iii)
CN208059636U (zh) 换热器和包括至少一个换热器系列的熔盐蒸汽生成器
US3116790A (en) Tube heat exchanger
KR102514159B1 (ko) 집광형 태양열 발전소 (ⅲ) 의 용융 염 증기 발생기용 열교환기
CN109959275B (zh) 换热器以及包括至少一个换热器系列的熔盐蒸汽生成器
US4073267A (en) Vapor generator
US3354869A (en) Heat exchangers
RU2781598C1 (ru) Теплообменник
RU2775748C1 (ru) Пароперегреватель турбоустановки
US20200393123A1 (en) Helical Baffle for Once-Through Steam Generator
JP2006200789A (ja) 加熱器
RU2383814C1 (ru) Парогенератор
EP2600092A1 (de) Vertikaler Wärmetauscher
JPS6086394A (ja) 熱交換器
RU2101609C1 (ru) Экономайзер
RU2380610C1 (ru) Способ передачи тепла

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190510

RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20190510

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602017026646

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28D0007060000

Ipc: F28D0021000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 21/00 20060101AFI20200428BHEP

Ipc: F01K 25/00 20060101ALI20200428BHEP

Ipc: F28F 9/22 20060101ALI20200428BHEP

Ipc: F22B 1/06 20060101ALI20200428BHEP

Ipc: F28D 7/06 20060101ALI20200428BHEP

Ipc: F22B 17/02 20060101ALI20200428BHEP

Ipc: F22B 1/00 20060101ALI20200428BHEP

INTG Intention to grant announced

Effective date: 20200529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1331380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017026646

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: MA

Ref legal event code: VAGR

Ref document number: 45908

Country of ref document: MA

Kind code of ref document: B1

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1331380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2844382

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210525

Year of fee payment: 5

Ref country code: IT

Payment date: 20210531

Year of fee payment: 5

Ref country code: FR

Payment date: 20210521

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017026646

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210525

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210524

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017026646

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220524

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220524

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230517

Year of fee payment: 7