EP3405666A1 - Apparatus and method for exhaust gas recirculation - Google Patents

Apparatus and method for exhaust gas recirculation

Info

Publication number
EP3405666A1
EP3405666A1 EP16809741.8A EP16809741A EP3405666A1 EP 3405666 A1 EP3405666 A1 EP 3405666A1 EP 16809741 A EP16809741 A EP 16809741A EP 3405666 A1 EP3405666 A1 EP 3405666A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
combustion engine
cooling stage
internal combustion
gas recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16809741.8A
Other languages
German (de)
French (fr)
Other versions
EP3405666B1 (en
Inventor
Peter Davison
Anton Rudelstorfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP3405666A1 publication Critical patent/EP3405666A1/en
Application granted granted Critical
Publication of EP3405666B1 publication Critical patent/EP3405666B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/69Lift valves, e.g. poppet valves having two or more valve-closing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/71Multi-way valves

Definitions

  • the invention relates to the recirculation of exhaust gas from a combustion chamber of an internal combustion engine, preferably a motor vehicle, back into the combustion chamber.
  • Exhaust gas recirculation systems are used in particular to reduce the emission of nitrogen oxides.
  • environmentally harmful nitrogen oxides are formed, in particular if a high oxygen content is present in the combustion chamber.
  • exhaust gas from a combustion chamber of an internal combustion engine can be diverted through pipelines and added to clean air, which is supplied to the combustion chamber.
  • the nitrogen oxide content in the exhaust gas is reduced.
  • the formation of nitric oxide itself is minimized.
  • devices for cooling clean air and recirculated exhaust gas which are supplied to the combustion chamber. By cooling the clean air and the recirculated exhaust gas, which are supplied to the combustion chamber, the combustion chamber can accommodate more clean air. This increases the performance and efficiency of the internal combustion engine, because more oxygen is available for the combustion of fuel.
  • the known systems often have the disadvantage that the cooling capacity with which the recirculated exhaust gas is cooled in the cooling device is not sufficiently adjustable. This is disadvantageous especially in low-load phases.
  • low load is meant that the internal combustion engine only provides part of its maximum power.
  • Such low-load phases of the internal combustion engine may be present too high a cooling capacity. Too low a temperature of recirculated exhaust gas can lead to component scorching.
  • polluting means that constituents of the exhaust gas condense out when the exhaust gas is too cold. These may be, in particular, steam, unburned hydrocarbons or acids.
  • the device according to the invention is a combustion internal combustion engine with an exhaust gas recirculation device for returning exhaust gases of the internal combustion engine into an intake region of the internal combustion engine.
  • the exhaust gas recirculation device has the following components:
  • At least one exhaust gas cooler through which a first flow path for the recirculation of exhaust gas passes, comprising at least one first cooling stage and at least one additional cooling stage,
  • bypass line through which a second flow path for recirculation of exhaust gas passes, with which the exhaust gas cooler can be bypassed in the recirculation of exhaust gas
  • the internal combustion engine is in a preferred embodiment, a combustion engine with exhaust gas turbocharger.
  • the exhaust gas is usually branched off upstream of an exhaust gas side of the turbocharger and fed to the compressed clean air downstream of a clean air side of the turbocharger. Upstream means in the direction of flow of clean air in front of the compressor. Downstream means in the flow direction of the clean air after the compressor.
  • the internal combustion engine may be intended in particular for a motor vehicle, a working machine, an aircraft or similar machines.
  • the internal combustion engine usually has combustion chambers, which are designed in the manner of cylinders. These combustion chambers can be supplied with clean air via a clean air duct. After the combustion of fuel in the combustion chambers exhaust gas can be removed via an exhaust system.
  • the exhaust system usually knows a AbgasnachbehUUungung device, z. B.
  • An exhaust gas recirculation device is connected to the exhaust gas system.
  • This exhaust gas recirculation device comprises an exhaust gas recirculation line between lines carrying exhaust gas and the clean air duct.
  • the exhaust gas recirculation line may be at least partially formed by a tube or tube of rubber or plastic.
  • Exhaust gas can be supplied to the clean air duct via the exhaust gas recirculation device. As described above, this recirculation of exhaust gas is advantageous in terms of minimizing nitrogen oxide emissions of an internal combustion engine.
  • the exhaust gases can be returned to an intake area of the internal combustion engine.
  • the exhaust gas recirculation device has at least one exhaust gas cooler, through which a first flow path runs, and a bypass line through which a second flow path runs.
  • the exhaust gas cooler is configured such that exhaust gas flowing along the first flow path is cooled. This cooling can take place in that exhaust gas passes through the at least one first cooling stage on the first flow path.
  • the exhaust gas cooler has an additional cooling stage beyond the first cooling stage. Passing several cooling stages means increased cooling capacity.
  • a flow path for exhaust gas through the additional cooling stage is also referred to here as the first flow path or as part of the first flow path.
  • the bypass passage is configured such that exhaust gas flowing along the second flow path is not cooled. This means that exhaust gas is conducted past the exhaust gas cooler, ie the exhaust gas cooler is bypassed.
  • an increased cooling capacity can be switched on via the at least one flap arrangement.
  • a flap arrangement is then provided for each additional cooling stage.
  • the flap arrangement may, for example, be a simple flap which, in a first position, closes off an opening towards the additional cooling stage in a gastight manner, and which releases the opening for the passage of exhaust gas to the additional cooling stage in a second position.
  • the flap arrangement is integrated into the exhaust gas cooler so that when the flap is in the first position, only the at least one first cooling stage for exhaust gas is accessible, and that in the second position of the flap, the at least one additional cooling stage is additionally accessible.
  • an EGR valve which serves to selectively open the first cooling stage or the bypass line or to completely close the exhaust gas recirculation device.
  • the abbreviation "EGR" stands for exhaust gas recirculation
  • the EGR valve is a valve with at least the three possible positions discussed earlier: a rest position, a first position and a second position
  • the EGR valve allows adjustment of the described flow paths the exhaust gas takes.
  • the EGR valve is normally in rest position. This is especially true when no forces act on the EGR valve.
  • the EGR valve for example, is pressed by a spring in the rest position. If the EGR valve is in the rest position, the exhaust gas recirculation device is closed. This means that exhaust gas can neither flow via the first flow path nor via the second flow path.
  • the arrangement described makes it possible to set the cooling capacity of the exhaust gas cooler in at least three stages.
  • the second flow path allows exhaust gas recirculation without any active cooling
  • the first flow path allows Abgasrick entry with cooling, with a different cooling performance depending on the number of accessible cooling stages.
  • the at least one first cooling stage, the at least one additional cooling stage, the bypass line, the EGR valve and the flap arrangement are integrated in a housing of the exhaust gas recirculation device.
  • the EGR valve and the flap arrangement are arranged in such a way that anchoring of the flap to an outer wall of the EGR valve is provided, wherein the outer wall of the EGR valve at the same time represents an inner wall of the at least one first cooling stage and the at least one second cooling stage.
  • the outer wall is meant in particular a portion of a housing of the EGR valve and the cooling stages.
  • the EGR valve can be designed, for example, cylindrical.
  • the outer wall of the EGR valve is a jacket surface or a jacket-shaped section of a housing.
  • the EGR valve may be integrated into the exhaust gas cooler in such a way that the jacket surface is suitable for fastening the valve arrangement to the exhaust gas cooler. This embodiment enables a particularly compact construction of the exhaust gas recirculating means.
  • bypass line is thermally insulated.
  • thermal insulation exists compared with the at least one first cooling stage and the at least one additional cooling stage.
  • a thermally insulating foam or a comparable material may be used, which is usually used for thermal insulation in an internal combustion engine. This material is applied in particular between the at least one additional cooling stage and the bypass line in such a way that thermal contact of the cooling stages with the bypass line is at least minimized.
  • the at least one additional cooling stage is preferably arranged between the first cooling stage and the bypass line.
  • the additional cooling stage is often not controlled by exhaust gas. flows. The additional cooling stage therefore possibly contributes to improving the isolation of the bypass line from the environment.
  • a thermal insulation of the bypass line allows a temperature maintenance of recirculated exhaust gas through the bypass line. Such maintenance of temperature may be useful in low-load phases in order not to reduce the temperature of the recirculated exhaust gases too much and, in particular, to prevent (thermally) condensation of the exhaust gas and the formation of deposits in the bypass line.
  • a thermal insulation takes place not only with respect to the exhaust gas cooler and the cooling stages, but also with respect to the surroundings.
  • the EGR valve is a poppet valve having an inlet, a first outlet, and a second outlet.
  • the two outlets are arranged opposite each other.
  • a first closure element and at the second outlet a second closure element is provided.
  • the two closure elements are braced against each other with the aid of a spring in order to close off the outlets in a rest position.
  • a slider is provided which can be actuated by an actuator to selectively open the closure element at the first outlet or the closure element at the second outlet.
  • This embodiment variant defines a particularly advantageous construction of an EGR valve, which allows the said three possible positions (rest position, first position, second position).
  • the poppet valve is a valve in which the closure elements are dish-shaped.
  • the poppet valve described here is a three-way valve with one inlet and two outlets. Through the inlet, a medium, such. As a gas, enter into the valve and possibly through one of both outlets get out of the valve. In the rest position, the closure elements are pressed by the spring against openings of the outlets.
  • the one spring is used in common for both closure elements. Therefore, the two outlets are arranged opposite each other. This makes it possible to use a (common) spring for both outlets.
  • the valve In the normal position, the valve is completely closed, ie both outlets are closed and the medium can not pass the valve.
  • the fact that one of the outlets of the valve is open means that the closure element of the corresponding outlet is removed from the opening in such a way that an annular gap between the closure element and the opening allows passage of the medium. It is normally only possible in this embodiment that one outlet is opened by itself, and not both outlets at the same time.
  • the slide establishes a connection between the valve and the actuator.
  • the actuator can be used to set the position of both closure elements via the slide. This can take place, for example, electronically controlled.
  • the actuator may, for example, be designed as an electric motor.
  • the slide or the actuator also have a rest position and a deflected position.
  • the slide In the rest position, the slide does not displace either of the two closure elements.
  • a movement out of the rest position of the actuator and slide in a first direction shifts the first closure element at the first outlet.
  • a movement out of the rest position of the actuator and slider out in a second direction shifts the second closure element at the second outlet.
  • the actuator is designed such that the opening widths of the first outlet and the second outlet can be adjusted continuously by means of the slider.
  • the opening width of the first outlet and the opening width of the second outlet are each infinitely variable. are adjustable. It is usually not meant that the first outlet and the second outlet are so separately controllable that both outlets (first outlet and second outlet) can be opened simultaneously. Preferably, only one of the first outlet and the second outlet may always be open.
  • the at least one first cooling stage and the at least one additional cooling stage are arranged parallel to one another.
  • the two cooling stages are designed, for example, in the form of tubes, then a parallel course allows a compact arrangement.
  • the flow density of the exhaust gas through the cooling stages remains approximately constant, regardless of how many cooling stages have been released. This is advantageous because it can be cooled in an energy-efficient manner without losing cooling power at interfaces between the cooling stages.
  • a method for operating an internal combustion engine comprising the following method steps: a) switching off the exhaust gas recirculation by blocking the exhaust gas recirculation device while setting the EGR valve (12) in the rest position,
  • EGR valve (12) takes place in the second position, and d) enabling at least one additional cooling stage (9) by means of the at least one flap arrangement (10) when a high-load operation is present.
  • the process steps a) to d) do not have to be processed one after the other, but can be carried out during the operation of an internal combustion engine in any technically meaningful order.
  • Process step a) makes it possible to operate the internal combustion engine without exhaust gas recirculation.
  • the EGR valve closes both the first outlet and the second outlet. This corresponds to the rest position of the EGR valve already described above.
  • Process step b) can be used to allow exhaust gas recirculation without cooling in a low-load phase.
  • Method step c) is suitable for operation of the internal combustion engine with a higher load than the low load described under method step b).
  • the EGR valve is in the second position, so that the first flow path is released.
  • the at least one first cooling stage of the exhaust gas cooler is accessible. By means of this first cooling stage, the recirculated exhaust gas is cooled.
  • the cooling capacity can be increased.
  • the flap arrangement is brought into the second position.
  • the invention is preferably used in a motor vehicle with a combustion engine with an exhaust gas recirculation device, which is designed according to one of the embodiments described above, and which is operated by the method described.
  • FIGS. show particularly preferred embodiments, to which the invention is not limited.
  • the figures and in particular the illustrated proportions are only schematic. Show it:
  • FIG. 1 shows a schematic representation of a motor vehicle with a combustion engine with an exhaust gas recirculation device according to the invention
  • FIG. 2 shows a schematic representation of an exhaust gas recirculation device for a combustion engine
  • FIG. 3 shows a schematic representation of the exhaust gas intake device from FIG. 2, in which the second flow path is released, FIG.
  • FIG. 4 shows a schematic representation of the exhaust gas recirculation device from FIG. 2, in which the first flow path is released
  • FIG. a schematic representation of the Abgas Wegschreibungs worn of Fig. 2, in which the first flow path is released, and in which an additional cooling stage is switched on.
  • Fig. 1 shows a motor vehicle 1, in which an internal combustion engine 2 is integrated. Through a clean air duct 22, clean air from the environment can be sucked into an intake region 4.2 of the combustion air-conditioning machine 2. In one or more combustion chambers of the internal combustion engine fuel can be burned with the clean air, whereby the motor vehicle 1 can be driven. The resulting exhaust gas can be discharged through an exhaust gas line 23 through an exhaust gas outlet 4.1 from the internal combustion engine 2.
  • exhaust aftertreatment device 25 which comprises a catalytic converter 26.
  • Exhaust gas from the exhaust pipe 23 can be returned to the clean air duct 22 through an exhaust re-flow line 24. It can be cooled in an exhaust gas cooler 5.
  • the flow direction of the clean air and the exhaust gas is indicated in each case by arrows.
  • FIG. 2 shows a schematic representation of an exhaust gas recirculation device 3 with an exhaust gas cooler 5.
  • a first cooling stage 8 is arranged parallel to an additional cooling stage 9. Separated by a thermal insulation 20 of the cooling stages 8 and 9, a bypass line 11 is arranged.
  • the bypass line 11 is preferably also isolated from the environment.
  • an EGR valve 12 is shown. This comprises an inlet 15 through which exhaust gas can enter the exhaust gas cooler 5, a first outlet 16.1 on the bypass line 11, and a second outlet 16.2 on the first cooling stage 8.
  • the EGR valve 12 has a cylindrical design. It has an outer wall 14.
  • a first closure element 17.1 and a second closure element 17.2 are arranged in such a way that the first outlet 16.1 and the second outlet 16.2 can thus be closed.
  • both the first outlet 16.1 and the second outlet 16.2 can be closed with a spring 21 via the closure elements 17.1 and 17.2.
  • a slider 18 enables stepless adjustment of the two locking elements 17.1 and 17.2.
  • the slide 18 is operated via an actuator 19. This is preferably electronically controllable.
  • the first cooling stage 8 and the additional cooling stage 9 can be connected via a flap arrangement 10.
  • the flap arrangement 10 is arranged on the outer wall 14 of the ARG valve 12, whereby exhaust gas which passes via the second outlet 16.2 of the EGR valve 12 into the first cooling stage 8 can pass via the flap arrangement 10 into the second cooling stage 9 so that the additional cooling stage 9 can be traversed at full length.
  • a first flow path 6 extends through the first outlet 16. 1 and the exhaust gas cooler 5.
  • a second flow path 7 extends through the second outlet 16. 2 and the bypass line 11.
  • FIG. 3 shows all the elements and the same detail of the exhaust gas cooler 5 from FIG. 2. For reasons of clarity, not all reference symbols are repeated in FIG. 3. Reference is made to FIG. 2. It is shown that the second flow path 7 is released through the bypass line 11. For this purpose, the first closure element 17. 1 of the EGR valve 12 is in a position which releases the first outlet 16. 1 of the EGR valve 12. This allows exhaust gas, as indicated by the arrows, to flow through the bypass line 11. The first cooling stage 8 and the additional cooling stage 9 are not accessible to exhaust gas.
  • FIG. 4 likewise shows the same detail of the exhaust gas cooler 5 from FIG. 2. Therefore, reference is also made here to FIG. 2. Shown is a situation in which the first flow path 6 is released. Exhaust gas may flow through the EGR valve 12 and through the first cooling stage 8, as indicated by arrows. It is cooled in the first cooling stage 8. The second closure element 17.2 is in a position that the second outlet 16.2 of the EGR valve releases. The flap assembly 10 is closed, whereby the additional cooling stage 9 is not accessible to exhaust. The bypass line 11 is not accessible.
  • FIG. 5 differs from FIG. 4 only insofar as the flap arrangement 10 is opened here. Thus, the additional cooling stage 9 is unlocked.
  • Exhaust gas can, as shown by arrows, not only flow through the first cooling stage 8, but also through the additional cooling stage 9. In this case, it is also cooled in the additional cooling stage 9, and to this end, the first flow path 6 is extended such that it also passes through the additional cooling stage 9. Overall, the cooling performance of the situation illustrated in FIG. 5 is therefore greater than the cooling capacity of the situation illustrated in FIG. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

The invention relates to an internal combustion engine (2) comprising an exhaust gas recirculation system for recirculating exhaust gases from the internal combustion engine into an intake region (4.2) of the internal combustion engine (2), the exhaust gas recirculation system comprising the following components: at least one exhaust gas cooler (5) through which a first flow path (6) for recirculating exhaust gas extends, comprising at least one first cooling stage (8) and at least one additional cooling stage (9), at least one flap arrangement (10) by means of which the at least one additional cooling stage (9) can be connected, a bypass line (11) through which a second flow path (7) for recirculating exhaust gas extends and by means of which the exhaust gas cooler (5) can be bypassed during the recirculation of exhaust gas, and an EGR valve (12) having at least three possible positions.

Description

Vorrichtung und Verfahren zur Abgasrückführung Die Erfindung betrifft die Rückführung von Abgas aus einem Brennraum einer Verbrennungskraftmaschine, vorzugsweise eines Kraftfahrzeugs, zurück in den Brennraum.  The invention relates to the recirculation of exhaust gas from a combustion chamber of an internal combustion engine, preferably a motor vehicle, back into the combustion chamber.
Abgasrückführungssysteme dienen insbesondere der Minderung von Emission von Stickoxiden. Bei einer Verbrennung von Kraftstoff in einem Brennraum einer Verbrennungskraftmaschine entstehen unter anderem umweltschädliche Stickoxide, insbesondere wenn ein hoher Sauerstoff- gehalt im Brennraum vorliegt. Zur Minderung der Emission von Stick- oxiden kann Abgas aus einem Brennraum einer Verbrennungskraftma- schine durch Rohrleitungen umgeleitet werden und zu Reinluft beige- mischt werden, die dem Brennraum zugeführt wird. Durch erneutes Pas- sieren des Brennraums wird der Stickoxidgehalt im Abgas reduziert. Gleichzeitig wird die Bildung von Stickoxid selbst minimiert. Weiterhin bekannt sind Vorrichtungen zum Kühlen von Reinluft und von rückgeführtem Abgas, welche dem Brennraum zugeführt werden. Durch Kühlen der Reinluft und des rückgeführten Abgases, die dem Brennraum zugeführt werden, kann der Brennraum mehr Reinluft aufnehmen. Damit erhöhen sich die Leistung und der Wirkungsgrad der Verbrennungs- kraftmaschine, weil mehr Sauerstoff für die Verbrennung von Kraftstoff zur Verfügung steht. Exhaust gas recirculation systems are used in particular to reduce the emission of nitrogen oxides. In the case of combustion of fuel in a combustion chamber of an internal combustion engine, environmentally harmful nitrogen oxides are formed, in particular if a high oxygen content is present in the combustion chamber. To reduce the emission of nitrogen oxides, exhaust gas from a combustion chamber of an internal combustion engine can be diverted through pipelines and added to clean air, which is supplied to the combustion chamber. By re-passing the combustion chamber, the nitrogen oxide content in the exhaust gas is reduced. At the same time, the formation of nitric oxide itself is minimized. Also known are devices for cooling clean air and recirculated exhaust gas, which are supplied to the combustion chamber. By cooling the clean air and the recirculated exhaust gas, which are supplied to the combustion chamber, the combustion chamber can accommodate more clean air. This increases the performance and efficiency of the internal combustion engine, because more oxygen is available for the combustion of fuel.
Die bekannten Systeme haben häufig den Nachteil, dass die Kühlleistung, mit der das rückgeführte Abgas in der Kühlvorrichtung gekühlt wird, nicht hinreichend einstellbar ist. Dies ist insbesondere in Niedriglast- phasen nachteilig. Unter Niedriglast ist zu verstehen, dass die Verbren- nungskraftmaschine nur einen Teil ihrer maximalen Leistung leistet. In solchen Niedriglastphasen der Verbrennungskraftmaschine kann eine zu große Kühlleistung vorliegen. Eine zu niedrige Temperatur von rück- geführtem Abgas kann zu Bauteilversottung führen. Dabei bedeutet Ver- sottung, dass in zu kaltem Abgas Bestandteile des Abgases auskonden- sieren. Dies können insbesondere Wasserdampf, unverbrannte Kohlen- wasserstoffe oder Säuren sein. The known systems often have the disadvantage that the cooling capacity with which the recirculated exhaust gas is cooled in the cooling device is not sufficiently adjustable. This is disadvantageous especially in low-load phases. By low load is meant that the internal combustion engine only provides part of its maximum power. In Such low-load phases of the internal combustion engine may be present too high a cooling capacity. Too low a temperature of recirculated exhaust gas can lead to component scorching. In this context, polluting means that constituents of the exhaust gas condense out when the exhaust gas is too cold. These may be, in particular, steam, unburned hydrocarbons or acids.
Hiervon ausgehend ist es Aufgabe der hier vorliegenden Erfindung, die im Zusammenhang mit dem Stand der Technik geschilderten technischen Probleme weiterhin zu lösen bzw. zumindest zu lindern. Es soll insbe- sondere eine Verbrermungskraftmaschine mit einer Abgasrückführungs- einrichtung vorgestellt werden, die eine gute Einstellbarkeit der Kühl- leistung ermöglicht, mit der das rückgeführte Abgas gekühlt wird. Diese Aufgaben werden gelöst mit einer Verbrermungskraftmaschine ge- mäß den Merkmalen des Patentanspruchs 1 und mit einem Verfahren gemäß den Merkmalen des Patentanspruchs 8. Weitere vorteilhafte Aus- gestaltungen der Verbrermungskraftmaschine sind in den abhängig for- mulierten Patentansprüchen angegeben. Die in den Patentansprüchen einzeln aufgeführten Merkmale sind in beliebiger, technologisch sinnvol- ler, Weise miteinander kombinierbar und können durch erläuternde Sach- verhalte aus der Beschreibung ergänzt werden, wobei weitere Ausfüh- rungsvarianten der Erfindung aufgezeigt werden. Die erfindungsgemäße Vorrichtung ist eine Verbrermungskraftmaschine- kraftmaschine mit einer Abgasrückfühjimgseinrichtung zur Rückführung von Abgasen der Verbrermungskraftmaschine in einen Ansaugbereich der Verbrennungskraftmaschine. Die Abgasrückfühjimgseinrichtung weist folgende Komponenten auf: On this basis, it is the object of the present invention to continue to solve or at least alleviate the technical problems described in connection with the prior art. In particular, a combustion engine with an exhaust gas recirculation device is to be presented, which allows good adjustability of the cooling power with which the recirculated exhaust gas is cooled. These objects are achieved with a combustion engine according to the features of patent claim 1 and with a method according to the features of claim 8. Further advantageous embodiments of the internal combustion engine are specified in the dependent formulated patent claims. The features listed individually in the patent claims can be combined with one another in any technologically meaningful manner and can be supplemented by explanatory facts from the description, wherein further embodiments of the invention are shown. The device according to the invention is a combustion internal combustion engine with an exhaust gas recirculation device for returning exhaust gases of the internal combustion engine into an intake region of the internal combustion engine. The exhaust gas recirculation device has the following components:
- mindestens einen Abgaskühler, durch welchen ein erster Strö- mungsweg zur Rückführung von Abgas verläuft, aufweisend min- destens eine erste Kühlstufe und mindestens eine zusätzliche Kühlstufe, at least one exhaust gas cooler, through which a first flow path for the recirculation of exhaust gas passes, comprising at least one first cooling stage and at least one additional cooling stage,
- mindestens eine Klappenanordnung, mit welcher die mindestens eine zusätzliche Kühlstufe zuschaltbar ist,  at least one flap arrangement, with which the at least one additional cooling stage can be connected,
- eine Bypassleitung, durch welche ein zweiter Strömungsweg zur Rückführung von Abgas verläuft, mit welcher der Abgaskühler bei der Rückführung von Abgas gebypasst werden kann,  a bypass line through which a second flow path for recirculation of exhaust gas passes, with which the exhaust gas cooler can be bypassed in the recirculation of exhaust gas,
- ein AGR- Ventil mit mindestens drei möglichen Stellungen:  - an EGR valve with at least three possible positions:
o eine Ruhestellung, in welcher die Abgasrückführungseinrich- tung geschlossen ist,  o a rest position in which the exhaust gas recirculation device is closed,
o eine erste Stellung, in welcher der erster Strömungsweg durch den Abgaskühler geöffnet ist, und  o a first position in which the first flow path is opened by the exhaust gas cooler, and
o eine zweite Stellung, in welcher der zweiter Strömungsweg durch die Bypassleitung geöffnet ist.  o a second position in which the second flow path is opened by the bypass line.
Die Verbrermungskraftmaschine ist in einer bevorzugten Ausführungs- variante eine Verbrermungskraftmaschine mit Abgasturbolader. Bei sol- chen Verbrermungskraftmaschinen kann man unterscheiden zwischen Hochdmckabgasrückführung und Niederdmckabgasrückführung. Bei der Hochdmckabgasriickführung wird üblicherweise das Abgas stromauf- wärts einer Abgasseite des Turboladers abgezweigt und stromabwärts einer Reinluftseite des Turboladers der verdichteten Reinluft zugeführt. Stromaufwärts bedeutet in Flussrichtung der Reinluft vor dem Verdichter. Stromabwärts bedeutet in Flussrichtung der Reinluft nach dem Verdich- ter. Bei der Niederdmckabgasiückfübrung wird Abgas stromabwärts der Abgasseite des Turboladers abgezweigt und stromaufwärts der Reinluft- seite des Turboladers der noch nicht verdichteten Reinluft zugeführt. Es sind auch Mischformen und Kombinationen von Hochdruckabgas- rückführung und Niederdmckabgasi^ckführung bekannt und technisch möglich. Die Verbrennungskraftmaschine kann insbesondere für ein Kraftfahr- zeug, eine Arbeitsmaschinen ein Luftfahrzeug oder ähnliche Maschinen gedacht sein. Die Verbrermungskraftmaschine weist üblicherweise Brenn- räume auf, die nach Art von Zylindern ausgeführt sind. Diesen Brenn- räumen kann über eine Reinluftführung Reinluft zugeführt werden. Nach der Verbrennung von Kraftstoff in den Brennräumen kann Abgas über eine Abgasanlage abgeführt werden. Die Abgasanlage weißt üblicherweise eine AbgasnachbehaniUungseinrichtung auf, z. B. aufweisend einen Kata- lysator und/oder einen Partikelfilter zur Abgasreinigung. An die Abgasan- lage ist eine Abgasrüclcführungseinrichtung angeschlossen. Diese Abgas- rückfühmngseinrichtung umfasst eine Abgasrückführungsleitung zwi- schen Abgas führenden Leitungen und der Reinluftführung. Die Abgas- rückführungsleitung kann zumindest teilweise von einem Schlauch oder einem Rohr aus Gummi oder Plastik gebildet sein. Über die Abgasrück- führungseinrichtung kann Abgas der Reinluftführung zugeführt werden. Wie oben beschrieben, ist diese Rückführung von Abgas vorteilhaft in Bezug auf die Minimierung von Stickoxidemissionen einer Verbrennungs- kraftmaschine. Die Abgase können in einen Ansaugbereich der Verbren- nungskraftmaschine rückgeführt werden. The internal combustion engine is in a preferred embodiment, a combustion engine with exhaust gas turbocharger. In such internal combustion engines, a distinction can be made between high-pressure exhaust gas recirculation and low-pressure exhaust gas recirculation. In the case of high-pressure exhaust gas recirculation, the exhaust gas is usually branched off upstream of an exhaust gas side of the turbocharger and fed to the compressed clean air downstream of a clean air side of the turbocharger. Upstream means in the direction of flow of clean air in front of the compressor. Downstream means in the flow direction of the clean air after the compressor. In the Niederdmckabgasiückfübrung exhaust gas is branched off downstream of the exhaust side of the turbocharger and fed upstream of the clean air side of the turbocharger of the not yet compressed clean air. Mixed forms and combinations of high pressure exhaust gas recirculation and low pressure exhaust gas recirculation are also known and technically possible. The internal combustion engine may be intended in particular for a motor vehicle, a working machine, an aircraft or similar machines. The internal combustion engine usually has combustion chambers, which are designed in the manner of cylinders. These combustion chambers can be supplied with clean air via a clean air duct. After the combustion of fuel in the combustion chambers exhaust gas can be removed via an exhaust system. The exhaust system usually knows a AbgasnachbehUUungung device, z. B. having a catalyst and / or a particulate filter for exhaust gas purification. An exhaust gas recirculation device is connected to the exhaust gas system. This exhaust gas recirculation device comprises an exhaust gas recirculation line between lines carrying exhaust gas and the clean air duct. The exhaust gas recirculation line may be at least partially formed by a tube or tube of rubber or plastic. Exhaust gas can be supplied to the clean air duct via the exhaust gas recirculation device. As described above, this recirculation of exhaust gas is advantageous in terms of minimizing nitrogen oxide emissions of an internal combustion engine. The exhaust gases can be returned to an intake area of the internal combustion engine.
In der hier beschriebenen Ausführungsform weist die Abgasrück- führungseinrichtung mindestens einen Abgaskühler auf, durch welchen ein erster Strömungsweg verläuft, und eine Bypassleitung, durch welche ein zweiter Strömungsweg verläuft. In the embodiment described here, the exhaust gas recirculation device has at least one exhaust gas cooler, through which a first flow path runs, and a bypass line through which a second flow path runs.
Der Abgaskühler ist derart aufgebaut, dass Abgas, das entlang des ersten Strömungswegs strömt, gekühlt wird. Diese Kühlung kann dadurch statt- finden, dass Abgas auf dem ersten Strömungsweg die mindestens eine erste Kühlstufe passiert. Der Abgaskühler weist über die erste Kühlstufe hinaus eine zusätzliche Kühlstufe auf. Das Passieren mehrerer Kühlstufen bedeutet eine erhöhte Kühlleistung. Ein Strömungsweg für Abgas durch die zusätzliche Kühl- stufe wird hier auch als erster Strömungsweg bzw. als Teil des ersten Strömungswegs bezeichnet. The exhaust gas cooler is configured such that exhaust gas flowing along the first flow path is cooled. This cooling can take place in that exhaust gas passes through the at least one first cooling stage on the first flow path. The exhaust gas cooler has an additional cooling stage beyond the first cooling stage. Passing several cooling stages means increased cooling capacity. A flow path for exhaust gas through the additional cooling stage is also referred to here as the first flow path or as part of the first flow path.
Die Bypassleitung ist derart aufgebaut, dass Abgas, das entlang des zwei- ten Strömungswegs strömt, nicht gekühlt wird. Dies bedeutet, dass Abgas an dem Abgaskühler vorbeigeleitet wird, also der Abgaskühler gebypasst wird. The bypass passage is configured such that exhaust gas flowing along the second flow path is not cooled. This means that exhaust gas is conducted past the exhaust gas cooler, ie the exhaust gas cooler is bypassed.
In dem Abgaskühler kann eine erhöhte Kühlleistung über die mindestens eine Klappenanordnung zugeschaltet werden. Es können auch mehrere zusätzliche Kühlstufen existieren. Vorzugsweise ist dann pro zusätz- licher Kühlstufe eine Klappenanordnung vorgesehen. Die Klappenanord- nung kann bspw. eine einfache Klappe sein, die in einer ersten Stellung eine Öffnung hin zu der zusätzlichen Kühlstufe gasdicht verschließt, und die in einer zweiten Stellung die Öffnung für den Durchtritt von Abgas hin zur zusätzlichen Kühlstufe freigibt. Die Klappenanordnung ist derart in den Abgaskühler integriert, dass bei Stellung der Klappe in der ersten Stellung lediglich die mindestens eine erste Kühlstufe für Abgas zugäng- lich ist, und dass in der zweiten Stellung der Klappe zusätzlich auch die mindestens eine zusätzliche Kühlstufe zugänglich ist. Außerdem ist ein AGR-Ventü vorgesehen, welches dazu dient, wahlweise die erste Kühlstufe oder die Bypassleitung zu öffnen oder die Abgasrück- fühnmgseinrichtung vollständig zu verschließen. Dabei steht die Abkür- zung„AGR" für Abgasiückführung. Das AGR-Ventü ist ein Ventil mit mindestens den drei weiter vorne besprochenen möglichen Stellungen: eine Ruhestellung, eine erste Stellung und eine zweite Stellung. Es kann sich bei dem AGR-Ventü um ein Mehrwegeventü handeln. Das AGR-Ventü ermöglicht eine Einstellung, welche der beschriebenen Strömungswege das Abgas nimmt. Das AGR-Ventil befindet sich normalerweise in der Ru- hestellung. Dies gilt insbesondere, wenn keine Kräfte auf das AGR-Ventil wirken. Das AGR-Ventil wird beispielsweise durch eine Feder in die Ruhe- stellung gedrückt. Ist das AGR-Ventil in der Ruhestellung, so ist die Ab- gasrückfühixingseinrichtung geschlossen. Dies bedeutet, dass Abgas we- der über den ersten Strömungsweg noch über den zweiten Strömungsweg strömen kann. Es gelangt also kein Abgas aus den Abgas führenden Lei- tungen in die Reinluftführung der Verbrermungskraftmaschine. Wird das AGR-Ventil in die erste Stellung gebracht, so kann Abgas über den ersten Strömungsweg strömen. Dabei passiert das Abgas den Abgaskühler. Je nach Stellung der Klappenanordnung passiert es dabei die mindestens eine erste Kühlstufe und ggf. auch eine zusätzliche Kühlstufe (der min- destens einen zusätzlichen Kühlstufe). Wird das AGR-Ventil in die zweite Stellung gebracht, ist der zweite Strömungsweg freigegeben. Das bedeu- tet, dass Abgas an den Kühlstufen vorbei durch die Bypassleitung strömt. Dabei wird das Abgas nicht aktiv gekühlt. In the exhaust gas cooler, an increased cooling capacity can be switched on via the at least one flap arrangement. There may also be several additional cooling stages. Preferably, a flap arrangement is then provided for each additional cooling stage. The flap arrangement may, for example, be a simple flap which, in a first position, closes off an opening towards the additional cooling stage in a gastight manner, and which releases the opening for the passage of exhaust gas to the additional cooling stage in a second position. The flap arrangement is integrated into the exhaust gas cooler so that when the flap is in the first position, only the at least one first cooling stage for exhaust gas is accessible, and that in the second position of the flap, the at least one additional cooling stage is additionally accessible. In addition, an EGR valve is provided which serves to selectively open the first cooling stage or the bypass line or to completely close the exhaust gas recirculation device. The abbreviation "EGR" stands for exhaust gas recirculation The EGR valve is a valve with at least the three possible positions discussed earlier: a rest position, a first position and a second position The EGR valve allows adjustment of the described flow paths the exhaust gas takes. The EGR valve is normally in rest position. This is especially true when no forces act on the EGR valve. The EGR valve, for example, is pressed by a spring in the rest position. If the EGR valve is in the rest position, the exhaust gas recirculation device is closed. This means that exhaust gas can neither flow via the first flow path nor via the second flow path. Thus, no exhaust gas from the exhaust gas leading lines enters the clean air duct of the internal combustion engine. If the EGR valve is brought into the first position, then exhaust gas can flow over the first flow path. The exhaust gas passes through the exhaust gas cooler. Depending on the position of the flap arrangement, it passes through the at least one first cooling stage and possibly also an additional cooling stage (the at least one additional cooling stage). If the EGR valve is brought into the second position, the second flow path is released. This means that exhaust gas flows past the cooling stages through the bypass line. The exhaust gas is not actively cooled.
Die beschriebene Anordnung ermöglicht es, die Kühlleistung des Abgas- kühlers in mindestens drei Stufen einzustellen. Der zweite Strömungsweg ermöglicht eine Abgasrückführung ohne jede aktive Kühlung, der erste Strömungsweg ermöglicht eine Abgasriickführung mit Kühlung, wobei je nach Anzahl der zugänglichen Kühlstufen eine unterschiedliche Kühlleis- tung vorliegt. Entsprechend einer weiteren Ausführungsform der beschriebenen Ver- brennungskraftmaschine sind die mindestens eine erste Kühlstufe, die mindestens eine zusätzliche Kühlstufe, die Bypassleitung, das AGR-Ventil und die Klappenanordnung in einem Gehäuse der Abgasrückführungs- einrichtung integriert. The arrangement described makes it possible to set the cooling capacity of the exhaust gas cooler in at least three stages. The second flow path allows exhaust gas recirculation without any active cooling, the first flow path allows Abgasrickführung with cooling, with a different cooling performance depending on the number of accessible cooling stages. According to a further embodiment of the described combustion engine, the at least one first cooling stage, the at least one additional cooling stage, the bypass line, the EGR valve and the flap arrangement are integrated in a housing of the exhaust gas recirculation device.
Die genannten Elemente in ein Gehäuse zu integrieren, bedeutet, dass eine kompakte Bauweise möglich ist. Es ist besonders vorteilhaft, wenn entsprechend einer weiteren Ausfüh- rungsform der beschriebenen Verbrermungskraftmaschine das AGR- Ventil und die Klappenanordnung derart angeordnet sind, dass eine Ver- ankerung der Klappe an einer Außenwand des AGR- Ventils vorgesehen ist, wobei die Außenwand des AGR- Ventils zugleich eine Innenwand der mindestens einen ersten Kühlstufe und der mindestens einen zweiten Kühlstufe darstellt. Mit der Außenwand ist hier insbesondere ein Abschnitt eines Gehäuses des AGR-Ventils und der Kühlstufen gemeint. Das AGR-Ventil kann bei- spielsweise zylinderförmig ausgeführt sein. In dem Fall ist die Außen- wand des AGR-Ventils eine Mantelfläche bzw. ein mantelförmiger Ab- schnitt eines Gehäuses. Das AGR-Ventil kann derart in den Abgaskühler integriert sein, dass die Mantelfläche geeignet ist, um die Klappenanord- nung an dieser zu befestigen. Diese Ausgestaltung ermöglicht eine be- sonders kompakte Bauweise der Abgasrückfühixingseinrichtung. To integrate the mentioned elements into a housing means that a compact design is possible. It is particularly advantageous if, according to a further embodiment of the internal combustion engine described, the EGR valve and the flap arrangement are arranged in such a way that anchoring of the flap to an outer wall of the EGR valve is provided, wherein the outer wall of the EGR valve at the same time represents an inner wall of the at least one first cooling stage and the at least one second cooling stage. With the outer wall is meant in particular a portion of a housing of the EGR valve and the cooling stages. The EGR valve can be designed, for example, cylindrical. In this case, the outer wall of the EGR valve is a jacket surface or a jacket-shaped section of a housing. The EGR valve may be integrated into the exhaust gas cooler in such a way that the jacket surface is suitable for fastening the valve arrangement to the exhaust gas cooler. This embodiment enables a particularly compact construction of the exhaust gas recirculating means.
In einer weiteren Ausführungsform der beschriebenen Verbrennungs- kraftmaschine ist die Bypassleitung thermisch isoliert. In a further embodiment of the internal combustion engine described, the bypass line is thermally insulated.
Insbesondere existiert eine thermische Isolation gegenüber der mindes- tens einen ersten Kühlstufe und der mindestens einen zusätzlichen Kühl- stufe. Zur thermischen Isolation kann bspw. ein thermisch isolierender Schaumstoff oder ein vergleichbares Material verwendet werden, das üb- licherweise zur thermischen Isolation in einer Verbrennungskraftmaschi- ne eingesetzt wird. Dieses Material wird insbesondere zwischen die min- destens eine zusätzliche Kühlstufe und die Bypassleitung derart ange- bracht, dass ein thermischer Kontakt der Kühlstufen zur Bypassleitung zumindest minimiert wird. Die mindestens eine zusätzliche Kühlstufe ist vorzugsweise zwischen der ersten Kühlstufe und der Bypassleitung ange- ordnet. Die zusätzliche Kühlstufe wird häufig nicht von Abgas durch- strömt. Die zusätzliche Kühlstufe trägt daher ggf. zur Verbesserung der Isolation der Bypassleitung gegenüber der Umgebung bei. In particular, thermal insulation exists compared with the at least one first cooling stage and the at least one additional cooling stage. For thermal insulation, for example, a thermally insulating foam or a comparable material may be used, which is usually used for thermal insulation in an internal combustion engine. This material is applied in particular between the at least one additional cooling stage and the bypass line in such a way that thermal contact of the cooling stages with the bypass line is at least minimized. The at least one additional cooling stage is preferably arranged between the first cooling stage and the bypass line. The additional cooling stage is often not controlled by exhaust gas. flows. The additional cooling stage therefore possibly contributes to improving the isolation of the bypass line from the environment.
Eine thermische Isolation der Bypassleitung ermöglicht eine Temperatur- erhaltung von durch die Bypassleitung rückgeführtem Abgas. Eine solche Temperaturerhaltung ist in Niedriglastphasen ggf. sinnvoll, um die Tem- peratur der rückgeführten Abgase nicht zu weit zu reduzieren und ins- besondere auch, um ein Auskondensieren des Abgases und die Bildung von Ablagerungen in der Bypassleitung (thermisch) zu verhindern. Vor- zugsweise erfolgt eine thermische Isolation aber nicht nur gegenüber dem Abgaskühler und den Kühlstufen, sondern auch gegenüber der Umge- bung. A thermal insulation of the bypass line allows a temperature maintenance of recirculated exhaust gas through the bypass line. Such maintenance of temperature may be useful in low-load phases in order not to reduce the temperature of the recirculated exhaust gases too much and, in particular, to prevent (thermally) condensation of the exhaust gas and the formation of deposits in the bypass line. Preferably, however, a thermal insulation takes place not only with respect to the exhaust gas cooler and the cooling stages, but also with respect to the surroundings.
In einer weiteren Ausführungsform der beschriebenen Verbrennungs- kraftmaschine ist das AGR-Ventil ein Tellerventil, welches einen Einlass, einen ersten Auslass und einen zweiten Auslass aufweist. Die beiden Aus- lässe sind dabei gegenüberliegend zueinander angeordnet. An dem ersten Auslass ist ein erstes Verschlusselement und an dem zweiten Auslass ist ein zweites Verschlusselement vorgesehen. Die beiden Verschluss- elemente sind mit Hilfe einer Feder gegeneinander verspannt, um die Auslässe in einer Ruhestellung zu verschließen. Weiter ist ein Schieber vorhanden, der von einem Aktor betätigt werden kann, um wahlweise das Verschlusselement an dem ersten Auslass oder das Verschlusselement an dem zweiten Auslass zu öffnen. In another embodiment of the described internal combustion engine, the EGR valve is a poppet valve having an inlet, a first outlet, and a second outlet. The two outlets are arranged opposite each other. At the first outlet, a first closure element and at the second outlet, a second closure element is provided. The two closure elements are braced against each other with the aid of a spring in order to close off the outlets in a rest position. Further, a slider is provided which can be actuated by an actuator to selectively open the closure element at the first outlet or the closure element at the second outlet.
Diese Ausführungsvariante definiert einen besonders vorteilhaften Auf- bau eines AGR-Ventils, welcher die genannten drei möglichen Stellungen (Ruhestellung, erste Stellung, zweite Stellung) ermöglicht. Das Tellerventil ist ein Ventil, bei welchem die Verschlusselemente tellerförmig ausge- prägt sind. Das hier beschriebene Tellerventil ist ein Dreiwegeventil mit einem Einlass und zwei Auslässen. Durch den Einlass kann ein Medium, wie z. B. ein Gas, in das Ventil hinein gelangen und ggf. durch einen der beiden Auslässe aus dem Ventil hinaus gelangen. In der Ruhestellung werden die Verschlusselemente durch die Feder gegen Öffnungen der Auslässe gedrückt. Bevorzugt wird für beide Verschlusselemente die eine Feder gemeinsam verwendet. Daher sind die beiden Auslässe gegenüber- liegend voneinander angeordnet. So ist die Verwendung einer (gemeinsa- men) Feder für beide Auslässe möglich. In der Ruhestellung ist das Ventil vollständig geschlossen, d. h. dass beide Auslässe verschlossen sind und das Medium das Ventil nicht passieren kann. Dass einer der Auslässe des Ventils geöffnet ist, bedeutet, dass das Verschlusselement des entspre- chenden Auslasses von der Öffnung derart entfernt wird, dass ein Ring- spalt zwischen Verschlusselement und Öffnung einen Durchtritt des Me- diums ermöglicht. Es ist bei dieser Ausführungsvariante normalerweise nur möglich, dass ein Auslass allein geöffnet ist, und nicht beide Auslässe zur gleichen Zeit. Der Schieber stellt eine Verbindung zwischen dem Ven- til und dem Aktor her. Über den Schieber kann durch den Aktor die Stel- lung beider Verschlusselemente eingestellt werden. Dies kann bspw. elektronisch gesteuert stattfinden. Dazu kann der Aktor bspw. als Elekt- romotor ausgeführt sein. Der Schieber bzw. der Aktor haben ebenfalls eine Ruhestellung und eine ausgelenkte Stellung. In der Ruhestellung ver- schiebt der Schieber keines der beiden Verschlusselement. Eine Bewegung aus der Ruhestellung von Aktor und Schieber heraus in eine erste Rich- tung verschiebt das erste Verschlusselement am ersten Auslass. Eine Be- wegung aus der Ruhestellung von Aktor und Schieber heraus in eine zweite Richtung verschiebt das zweite Verschlusselement am zweiten Auslass. This embodiment variant defines a particularly advantageous construction of an EGR valve, which allows the said three possible positions (rest position, first position, second position). The poppet valve is a valve in which the closure elements are dish-shaped. The poppet valve described here is a three-way valve with one inlet and two outlets. Through the inlet, a medium, such. As a gas, enter into the valve and possibly through one of both outlets get out of the valve. In the rest position, the closure elements are pressed by the spring against openings of the outlets. Preferably, the one spring is used in common for both closure elements. Therefore, the two outlets are arranged opposite each other. This makes it possible to use a (common) spring for both outlets. In the normal position, the valve is completely closed, ie both outlets are closed and the medium can not pass the valve. The fact that one of the outlets of the valve is open means that the closure element of the corresponding outlet is removed from the opening in such a way that an annular gap between the closure element and the opening allows passage of the medium. It is normally only possible in this embodiment that one outlet is opened by itself, and not both outlets at the same time. The slide establishes a connection between the valve and the actuator. The actuator can be used to set the position of both closure elements via the slide. This can take place, for example, electronically controlled. For this purpose, the actuator may, for example, be designed as an electric motor. The slide or the actuator also have a rest position and a deflected position. In the rest position, the slide does not displace either of the two closure elements. A movement out of the rest position of the actuator and slide in a first direction shifts the first closure element at the first outlet. A movement out of the rest position of the actuator and slider out in a second direction shifts the second closure element at the second outlet.
Es ist außerdem vorteilhaft, wenn der Aktor derart ausgeführt ist, dass die öffnungsweiten des ersten Auslasses und des zweiten Auslasses mit Hilfe des Schiebers stufenlos eingestellt werden können. It is also advantageous if the actuator is designed such that the opening widths of the first outlet and the second outlet can be adjusted continuously by means of the slider.
Hiermit ist insbesondere gemeint, dass die öffnungsweite des ersten Aus- lasses und die öffnungsweite des zweiten Auslasses jeweils stufenlos ein- stellbar sind. Es ist üblicherweise nicht gemeint, dass der erste Auslass und der zweite Auslass derart getrennt voneinander ansteuerbar sind, dass beide Auslässe (erster Auslass und zweiter Auslass) gleichzeitig ge- öffnet sein können. Vorzugsweise kann immer nur entweder der erste Auslass oder der zweite Auslass geöffnet sein. This means, in particular, that the opening width of the first outlet and the opening width of the second outlet are each infinitely variable. are adjustable. It is usually not meant that the first outlet and the second outlet are so separately controllable that both outlets (first outlet and second outlet) can be opened simultaneously. Preferably, only one of the first outlet and the second outlet may always be open.
In einer weiteren Ausführungsform der beschriebenen Verbrennungs- kraftmaschine sind die mindestens eine erste Kühlstufe und die mindes- ten eine zusätzliche Kühlstufe parallel zueinander angeordnet. In a further embodiment of the internal combustion engine described, the at least one first cooling stage and the at least one additional cooling stage are arranged parallel to one another.
Sind die beiden Kühlstufen bspw. in Form von Rohren ausgeführt, so er- laubt ein paralleler Verlauf eine kompakte Anordnung. Außerdem bleibt die Strömungsdichte des Abgases durch die Kühlstufen annähernd kon- stant, unabhängig davon, wie viele Kühlstufen freigeschaltet wurden. Dies ist vorteilhaft, da so energieeffizient gekühlt werden kann, ohne dass Kühlleistung an Grenzflächen zwischen den Kühlstufen verlorengeht. If the two cooling stages are designed, for example, in the form of tubes, then a parallel course allows a compact arrangement. In addition, the flow density of the exhaust gas through the cooling stages remains approximately constant, regardless of how many cooling stages have been released. This is advantageous because it can be cooled in an energy-efficient manner without losing cooling power at interfaces between the cooling stages.
Weiterhin wird ein Verfahren zum Betrieb einer Verbrennungskraft- maschine entsprechend einer der beschriebenen Ausführungsformen vorgestellt, aufweisend die folgenden Verfahrensschritte: a) Abschaltung der Abgasrückführung durch Absperrung der Abgas- rückführungseinrichtung unter Einstellung des AGR-Ventils (12) in der Ruhestellung, Furthermore, a method for operating an internal combustion engine according to one of the described embodiments is presented, comprising the following method steps: a) switching off the exhaust gas recirculation by blocking the exhaust gas recirculation device while setting the EGR valve (12) in the rest position,
b) Abgasrückführung während einer Niedriglastphase, wobei die Ab- gasrückführung durch die Bypassleitung (11) unter Einstellung des AGR-Ventils (12) in der zweiten Stellung erfolgt, wobei keine Küh- lung des rückgeführten Abgases stattfindet,  b) Exhaust gas recirculation during a low load phase, the exhaust gas recirculation through the bypass line (11) taking place of the EGR valve (12) in the second position, with no recirculated exhaust gas cooling taking place,
c) Abgasrüclcführung während eines Lastbetriebs, wobei die Abgas- i^ckführung durch den Abgaskühler (5) durch Einstellung des c) Abgasrüclcführung during a load operation, wherein the exhaust gas recirculation through the exhaust gas cooler (5) by adjusting the
AGR-Ventils (12) in der zweiten Stellung erfolgt, und d) Freischalten mindestens einer zusätzlicher Kühlstufe (9) mit Hilfe der mindestens einen Klappenanordnung (10), wenn ein Hochlast- betrieb vorliegt. Die Verfahrensschritte a) bis d) müssen nicht nacheinander abgearbeitet werden, sondern können während des Betriebs einer Verbrennungs- kraftmaschine in beliebiger, technisch sinnvoller Reihenfolge ausgeführt werden. Verfahrensschritt a) ermöglicht es, die Verbrermungskraftmaschine ohne Abgasrückführung zu betreiben. Dabei verschließt das AGR- Ventil sowohl den ersten Auslass als auch den zweiten Auslass. Dies entspricht der oben bereits beschriebenen Ruhestellung des AGR-Ventils. Verfahrensschritt b) kann genutzt werden, um in einer Niedriglastphase eine Abgasrückführung ohne Kühlung zu ermöglichen. Wie oben be- schrieben, wird durch Einstellen des AGR-Ventils in die zweite Stellung der zweite Strömungsweg durch die Bypassleitung für Abgas zugänglich. Verfahrensschritt c) ist geeignet für einen Betrieb der Verbrennungs- kraftmaschine mit einer höheren Last als der unter Verfahrensschritt b) beschriebenen Niedriglast. Dabei befindet sich das AGR-Ventil in der zweiten Stellung, so dass der erste Strömungsweg freigegeben ist. Dabei ist die mindestens eine erste Kühlstufe des Abgaskühlers zugänglich. Durch diese erste Kühlstufe erfolgt eine Kühlung des rückgeführten Ab- gases. EGR valve (12) takes place in the second position, and d) enabling at least one additional cooling stage (9) by means of the at least one flap arrangement (10) when a high-load operation is present. The process steps a) to d) do not have to be processed one after the other, but can be carried out during the operation of an internal combustion engine in any technically meaningful order. Process step a) makes it possible to operate the internal combustion engine without exhaust gas recirculation. The EGR valve closes both the first outlet and the second outlet. This corresponds to the rest position of the EGR valve already described above. Process step b) can be used to allow exhaust gas recirculation without cooling in a low-load phase. As described above, by adjusting the EGR valve to the second position, the second flow path becomes accessible through the exhaust gas bypass passage. Method step c) is suitable for operation of the internal combustion engine with a higher load than the low load described under method step b). In this case, the EGR valve is in the second position, so that the first flow path is released. In this case, the at least one first cooling stage of the exhaust gas cooler is accessible. By means of this first cooling stage, the recirculated exhaust gas is cooled.
Wird zusätzlich entsprechend Verfahrensschritt d) die mindestens eine zusätzliche Kühlstufe hinzugeschaltet, kann die Kühlleistung erhöht werden. Dazu wird die Klappenanordnung in die zweite Stellung ge- bracht. Die für die beschriebene Verbrermungskraftmaschine dargestellten be- sonderen Vorteile und Ausgestaltungsmerkmale sind in beliebiger, tech- nologisch sinnvoller Weise auf das beschriebene Verfahren anwendbar und übertragbar. Gleiches gilt für die für das beschriebene Verfahren ge- schilderten besonderen Vorteile und Ausgestaltungsmerkmale, die auf die beschriebene Vorrichtung anwendbar und übertragbar sind. If, in addition, according to method step d), the at least one additional cooling stage is connected, the cooling capacity can be increased. For this purpose, the flap arrangement is brought into the second position. The particular advantages and design features illustrated for the described internal combustion engine can be applied and transferred to the described method in any technologically sensible manner. The same applies to the particular advantages and design features described for the described method, which can be applied and transferred to the device described.
Die Erfindung findet vorzugsweise Einsatz in einem Kraftfahrzeug mit einer Verbrermungskraftmaschine mit einer Abgasrückführungs- einrichtung, die entsprechend einer der oben beschriebenen Ausfüh- rungsformen ausgeführt ist, und die mit dem beschriebenen Verfahren betrieben wird. The invention is preferably used in a motor vehicle with a combustion engine with an exhaust gas recirculation device, which is designed according to one of the embodiments described above, and which is operated by the method described.
Die Erfindung und das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele, auf die die Erfindung jedoch nicht begrenzt ist. Insbesondere ist darauf hinzuweisen, dass die Figuren und insbesondere die dargestellten Größenverhältnisse nur schematisch sind. Es zeigen: The invention and the technical environment will be explained in more detail with reference to FIGS. The figures show particularly preferred embodiments, to which the invention is not limited. In particular, it should be noted that the figures and in particular the illustrated proportions are only schematic. Show it:
Fig. 1: eine schematische Darstellung eines Kraftfahrzeugs mit einer Verbrermungskraftmaschine mit einer Abgasrückführungs- einrichtung entsprechend der Erfindung, 1 shows a schematic representation of a motor vehicle with a combustion engine with an exhaust gas recirculation device according to the invention,
Fig. 2: eine schematische Darstellung einer Abgasriickführungs- einrichtung für eine Verbrermungskraftmaschine, 2 shows a schematic representation of an exhaust gas recirculation device for a combustion engine,
Fig. 3: eine schematische Darstellung der Abgasi^ckfühjimgseinrichtung aus Fig. 2, bei welcher der zweite Strömungsweg freigegeben ist, 3 shows a schematic representation of the exhaust gas intake device from FIG. 2, in which the second flow path is released, FIG.
Fig. 4: eine schematische Darstellung der Abgasriickfühixingseinrichtung aus Fig. 2, bei welcher der erste Strömungsweg freigegeben ist, eine schematische Darstellung der Abgasrückfuhrungseinrichtung aus Fig. 2, bei welcher der erste Strömungsweg freigegeben ist, und bei welcher eine zusätzliche Kühlstufe zugeschaltet ist. Fig. 1 zeigt ein Kraftfahrzeug 1, in das eine Verbrennungskraftmaschine 2 integriert ist. Durch eine Reinluftführung 22 kann Reinluft aus der Umge- bung in einen Ansaugbereich 4.2 der Verbrermungsla-aftmaschine 2 ange- saugt werden. In einem oder mehreren Brennräumen der Verbrennungs- kraftmaschine kann Kraftstoff mit der Reinluft verbrannt werden, wodurch das Kraftfahrzeug 1 angetrieben werden kann. Dabei entstehen- des Abgas kann durch eine Abgasleitung 23 durch einen Abgasaustritt 4.1 aus der Verbrermungskraftmaschine 2 abgeführt werden. Dabei passiert es eine Abgasnachbehandlungsvorrichtung 25, die einen Katalysator 26 umfasst. Durch eine Abgasriickführungsleitung 24 kann Abgas aus der Abgasleitung 23 in die Reinluftführung 22 rückgeführt werden. Dabei kann es in einem Abgaskühler 5 gekühlt werden. Die Flussrichtung der Reinluft und des Abgases ist jeweils durch Pfeile angedeutet. 4 shows a schematic representation of the exhaust gas recirculation device from FIG. 2, in which the first flow path is released, FIG. a schematic representation of the Abgasrückfuhrungseinrichtung of Fig. 2, in which the first flow path is released, and in which an additional cooling stage is switched on. Fig. 1 shows a motor vehicle 1, in which an internal combustion engine 2 is integrated. Through a clean air duct 22, clean air from the environment can be sucked into an intake region 4.2 of the combustion air-conditioning machine 2. In one or more combustion chambers of the internal combustion engine fuel can be burned with the clean air, whereby the motor vehicle 1 can be driven. The resulting exhaust gas can be discharged through an exhaust gas line 23 through an exhaust gas outlet 4.1 from the internal combustion engine 2. In this case, it passes through an exhaust aftertreatment device 25, which comprises a catalytic converter 26. Exhaust gas from the exhaust pipe 23 can be returned to the clean air duct 22 through an exhaust re-flow line 24. It can be cooled in an exhaust gas cooler 5. The flow direction of the clean air and the exhaust gas is indicated in each case by arrows.
Fig. 2 zeigt eine schematische Darstellung einer Abgasrüclcführungs- einrichtung 3 mit einem Abgaskühler 5. In der gezeigten Darstellung ist eine erste Kühlstufe 8 parallel zu einer zusätzlichen Kühlstufe 9 ange- ordnet. Durch eine thermische Isolation 20 von den Kühlstufen 8 und 9 getrennt ist eine Bypassleitung 11 angeordnet. Die Bypassleitung 11 ist vorzugsweise auch gegenüber der Umgebung isoliert. Weiterhin ist ein AGR- Ventil 12 gezeigt. Dieses umfasst einen Einlass 15, durch den Abgas in den Abgaskühler 5 eintreten kann, einen ersten Auslass 16.1 an der Bypassleitung 11 sowie einen zweiten Auslass 16.2 an der ersten Kühlstu- fe 8. Das AGR-Ventil 12 ist zylinderförmig ausgeführt. Es weist eine Au- ßenwand 14 auf. Im Inneren des AGR- Ventils 12 sind ein erstes Ver- Schlusselement 17.1 und ein zweites Verschlusselement 17.2 derart an- geordnet, dass der erste Auslass 16.1 bzw. der zweite Auslass 16.2 damit verschlossen werden können. Durch die gegenüberliegende Anordnung des ersten Auslasses 16.1 und des zweiten Auslasses 16.2 kann mit einer Feder 21 über die Verschlusselemente 17.1 und 17.2 sowohl der erste Auslass 16.1 als auch der zweite Auslass 16.2 verschlossen werden. Ein Schieber 18 ermöglicht ein stufenloses Einstellen der beiden Verschlus- selemente 17.1 und 17.2. Der Schieber 18 wird über einen Aktor 19 be- trieben. Dieser ist vorzugsweise elektronisch steuerbar. Die erste Kühlstu- fe 8 und die zusätzliche Kühlstufe 9 sind über eine Klappenanordnung 10 verbindbar. Dabei ist die Klappenanordnung 10 an der Außenwand 14 des ARG- Ventils 12 angeordnet, wodurch Abgas, das über den zweiten Aus- lass 16.2 des AGR-Ventils 12 in die erste Kühlstufe 8 gelangt, über die Klappenanordnung 10 in die zweite Kühlstufe 9 gelangen kann, sodass die zusätzliche Kühlstufe 9 auf voller Länge durchlaufen werden kann. Ein erster Strömungsweg 6 verläuft durch den ersten Auslass 16.1 und den Abgaskühler 5. Ein zweiter Strömungsweg 7 verläuft durch den zwei- ten Auslass 16.2 und die Bypassleitung 11. 2 shows a schematic representation of an exhaust gas recirculation device 3 with an exhaust gas cooler 5. In the illustration shown, a first cooling stage 8 is arranged parallel to an additional cooling stage 9. Separated by a thermal insulation 20 of the cooling stages 8 and 9, a bypass line 11 is arranged. The bypass line 11 is preferably also isolated from the environment. Furthermore, an EGR valve 12 is shown. This comprises an inlet 15 through which exhaust gas can enter the exhaust gas cooler 5, a first outlet 16.1 on the bypass line 11, and a second outlet 16.2 on the first cooling stage 8. The EGR valve 12 has a cylindrical design. It has an outer wall 14. Inside the EGR valve 12, a first closure element 17.1 and a second closure element 17.2 are arranged in such a way that the first outlet 16.1 and the second outlet 16.2 can thus be closed. By the opposite arrangement of the first outlet 16.1 and the second outlet 16.2, both the first outlet 16.1 and the second outlet 16.2 can be closed with a spring 21 via the closure elements 17.1 and 17.2. A slider 18 enables stepless adjustment of the two locking elements 17.1 and 17.2. The slide 18 is operated via an actuator 19. This is preferably electronically controllable. The first cooling stage 8 and the additional cooling stage 9 can be connected via a flap arrangement 10. In this case, the flap arrangement 10 is arranged on the outer wall 14 of the ARG valve 12, whereby exhaust gas which passes via the second outlet 16.2 of the EGR valve 12 into the first cooling stage 8 can pass via the flap arrangement 10 into the second cooling stage 9 so that the additional cooling stage 9 can be traversed at full length. A first flow path 6 extends through the first outlet 16. 1 and the exhaust gas cooler 5. A second flow path 7 extends through the second outlet 16. 2 and the bypass line 11.
Fig. 3 zeigt alle Elemente und den gleichen Ausschnitt des Abgaskühlers 5 aus Fig. 2. Aus Gründen der Übersichtlichkeit sind in Fig. 3 nicht alle Be- zugszeichen wiederholt. Es wird auf Fig. 2 verwiesen. Dargestellt ist, dass der zweite Strömungsweg 7 durch die Bypassleitung 11 freigegeben ist. Dazu ist das erste Verschlusselement 17.1 des AGR-Ventils 12 in einer Stellung, die den ersten Auslass 16.1 des AGR-Ventils 12 freigibt. Damit kann Abgas, wie durch die Pfeile angedeutet, durch die Bypassleitung 11 strömen. Die erste Kühlstufe 8 und die zusätzliche Kühlstufe 9 sind für Abgas nicht zugänglich. FIG. 3 shows all the elements and the same detail of the exhaust gas cooler 5 from FIG. 2. For reasons of clarity, not all reference symbols are repeated in FIG. 3. Reference is made to FIG. 2. It is shown that the second flow path 7 is released through the bypass line 11. For this purpose, the first closure element 17. 1 of the EGR valve 12 is in a position which releases the first outlet 16. 1 of the EGR valve 12. This allows exhaust gas, as indicated by the arrows, to flow through the bypass line 11. The first cooling stage 8 and the additional cooling stage 9 are not accessible to exhaust gas.
Fig. 4 zeigt ebenfalls den gleichen Ausschnitt des Abgaskühlers 5 aus Fig. 2. Daher wird auch hier auf Fig. 2 verwiesen. Dargestellt ist eine Situation, in der der erste Strömungsweg 6 freigegeben ist. Abgas kann, wie durch Pfeile angedeutet, durch das AGR- Ventil 12 und durch die erste Kühlstufe 8 strömen. Dabei wird es in der ersten Kühlstufe 8 gekühlt. Das zweite Verschlusselement 17.2 ist in einer Position, die den zweiten Auslass 16.2 des AGR-Ventils freigibt. Die Klappenanordnung 10 ist geschlossen, wodurch die zusätzliche Kühlstufe 9 für Abgas nicht zugänglich ist. Auch die Bypassleitung 11 ist nicht zugänglich. Fig. 5 unterscheidet sich von Fig. 4 lediglich insoweit, als dass die Klap- penanordnung 10 hier geöffnet ist. Damit ist die zusätzliche Kühlstufe 9 freigeschaltet. Abgas kann, wie durch Pfeile dargestellt, nicht nur durch die erste Kühlstufe 8, sondern auch durch die zusätzliche Kühlstufe 9 strömen. Dabei wird es auch in der zusätzlichen Kühlstufe 9 gekühlt, und dazu wird der erste Strömungsweg 6 derart erweitert, dass dieser auch durch die zusätzliche Kühlstufe 9 verläuft. Insgesamt ist damit die Kühl- leistung der in Fig. 5 dargestellten Situation stärker als die Kühlleistung der in Fig. 4 dargestellten Situation. FIG. 4 likewise shows the same detail of the exhaust gas cooler 5 from FIG. 2. Therefore, reference is also made here to FIG. 2. Shown is a situation in which the first flow path 6 is released. Exhaust gas may flow through the EGR valve 12 and through the first cooling stage 8, as indicated by arrows. It is cooled in the first cooling stage 8. The second closure element 17.2 is in a position that the second outlet 16.2 of the EGR valve releases. The flap assembly 10 is closed, whereby the additional cooling stage 9 is not accessible to exhaust. The bypass line 11 is not accessible. FIG. 5 differs from FIG. 4 only insofar as the flap arrangement 10 is opened here. Thus, the additional cooling stage 9 is unlocked. Exhaust gas can, as shown by arrows, not only flow through the first cooling stage 8, but also through the additional cooling stage 9. In this case, it is also cooled in the additional cooling stage 9, and to this end, the first flow path 6 is extended such that it also passes through the additional cooling stage 9. Overall, the cooling performance of the situation illustrated in FIG. 5 is therefore greater than the cooling capacity of the situation illustrated in FIG. 4.
Bezugszelchenliste Bezugszelchenliste
1 Kraftfahrzeug 1 motor vehicle
2 Verbrennungskraftmaschine 2 internal combustion engine
3 Abgasriickführungseinrichtiing3 exhaust gas recirculation device
4 Abgasaustritt 4 exhaust gas outlet
4.2 Ansaugbereich  4.2 Intake area
5 Abgaskühler  5 exhaust gas cooler
6 erster Strömungsweg 6 first flow path
7 zweiter Strömungsweg7 second flow path
8 erste Kühlstufe 8 first cooling stage
9 zusätzliche Kühlstufe 9 additional cooling stage
10 Klappenanordnung 10 flap arrangement
11 Bypassleitung  11 bypass line
12 AGR-Ventü  12 EGR vent
13 Gehäuse  13 housing
14 Außenwand  14 outer wall
15 Einlass  15 inlet
16.1 erster Auslass  16.1 first outlet
16.2 zweiter Auslass  16.2 second outlet
17.1 erstes Verschlusselement 17.1 first closure element
17.2 zweites Verschlusselement17.2 second closure element
18 Schieber 18 slides
19 Aktor  19 actor
20 thermische Isolation 21 Feder 22 Reinluftführung 20 thermal insulation 21 spring 22 clean air duct
23 Abgasleitung  23 exhaust pipe
24 Abgasrückführungsleitung  24 exhaust gas recirculation line
25 Abgasnachbehandlungsvorrichtung 25 exhaust aftertreatment device
26 Katalysator 26 catalyst

Claims

Patentansprüche claims
1. Verbrennungskraftmaschine (2) mit einer Abgasrückfübrungsein- richtung (3) zur Rückführung von Abgasen der Verbrennungskraft- maschine in einen Ansaugbereich (4.2) der Verbrennungskraftma- schine (2), wobei die Abgasrückfühixingseinrichtung (3) folgende Komponenten aufweist: 1. Internal combustion engine (2) with an exhaust gas recirculation device (3) for recirculating exhaust gases of the internal combustion engine into an intake region (4.2) of the internal combustion engine (2), wherein the exhaust gas recirculation device (3) comprises the following components:
- mindestens einen Abgaskühler (5), durch welchen ein erster Strömungsweg (6) zur Rückführung von Abgas verläuft, auf- weisend mindestens eine erste Kühlstufe (8) und mindestens eine zusätzliche Kühlstufe (9),  at least one exhaust gas cooler (5), through which a first flow path (6) extends for the recirculation of exhaust gas, comprising at least one first cooling stage (8) and at least one additional cooling stage (9),
- mindestens eine Klappenanordnung (10), mit welcher die min- destens eine zusätzliche Kühlstufe (9) zuschaltbar ist, at least one flap arrangement (10), with which the at least one additional cooling stage (9) can be connected,
- eine Bypassleitung (11), durch welche ein zweiter Strömungs- weg (7) zur Rückführung von Abgas verläuft, mit welcher der Abgaskühler (5) bei der Rückführung von Abgas gebypasst werden kann, - A bypass line (11) through which a second flow path (7) for recirculation of exhaust gas passes, with which the exhaust gas cooler (5) can be bypassed in the recirculation of exhaust gas,
- ein AGR-Ventil (12) mit mindestens drei möglichen Stellungen:  - An EGR valve (12) with at least three possible positions:
o eine Ruhestellung, in welcher die Abgasrückführungsein- richtung geschlossen ist,  o a rest position in which the exhaust gas recirculation device is closed,
o eine erste Stellung, in welcher der erste Strömungsweg (6) durch den Abgaskühler geöffnet ist, und  o a first position in which the first flow path (6) is opened by the exhaust gas cooler, and
o eine zweite Stellung, in welcher der zweite Strömungsweg (7) durch die Bypassleitung (11) geöffnet ist.  o a second position in which the second flow path (7) through the bypass line (11) is opened.
2. Verbrermungskraftmaschine (2) nach Anspruch 1, wobei die mindes- tens eine erste Kühlstufe (8), die mindestens eine zusätzliche Kühl- stufe (9), die Bypassleitung (11), das AGR-Ventil (12) und die Klap- penanordnung (10) in einem Gehäuse (13) der Abgasrückführungs- einrichtung (3) integriert sind. 2. The internal combustion engine according to claim 1, wherein the at least one first cooling stage, the at least one additional cooling stage, the bypass line, the EGR valve and penanordnung (10) in a housing (13) of the exhaust gas recirculation device (3) are integrated.
3. Verbrermungskraftmaschine (2) nach Anspruch 2, wobei das AGR- Ventil (12) und die Klappenanordnung (10) derart angeordnet sind, dass eine Verankerung der Klappe an einer Außenwand (14) des AGR- Ventils (12) vorgesehen ist, wobei die Außenwand (14) des AGR- Ventils (12) zugleich eine Innenwand der mindestens einen ers- ten Kühlstufe (8) und der mindestens einen zweiten Kühlstufe (9) darstellt. 3. internal combustion engine (2) according to claim 2, wherein the EGR valve (12) and the flap assembly (10) are arranged such that an anchoring of the flap on an outer wall (14) of the EGR valve (12) is provided the outer wall (14) of the EGR valve (12) at the same time constitutes an inner wall of the at least one first cooling stage (8) and the at least one second cooling stage (9).
4. Verbrermungskraftmaschine (2) nach einem der vorhergehenden Ansprüche, wobei die Bypassleitung (11) thermisch isoliert ist. 4. internal combustion engine (2) according to any one of the preceding claims, wherein the bypass line (11) is thermally insulated.
5. Verbrermungskraftmaschine (2) nach einem der vorhergehenden Ansprüche, wobei das AGR-Ventil (12) ein Tellerventil ist, welches einen Einlass (15), einen ersten Auslass (16.1) und einen zweiten Auslass (16.2) aufweist, wobei die beiden Auslässe (16.1, 16.2) ge- genüberliegend zueinander angeordnet sind und an dem ersten Auslass (16.1) ein erstes Verschlusselement (17.1) und an dem zwei- ten Auslass (16.2) ein zweites Verschlusselement (17.2) vorgesehen sind, wobei beide Verschlusselemente (17.1, 17.2) mit Hilfe einer Fe- der (21) gegeneinander verspannt sind, um die Auslässe (16.1, 16.2) in einer Ruhestellung zu verschließen, und wobei weiter ein Schieber (18) vorhanden ist, der von einem Aktor (19) betätigt werden kann, um wahlweise das erste Verschlusselement (17.1) an dem ersten Auslass (16.1) oder das zweite Verschlusselement (17.2) an dem zweiten Auslass (16.2) zu öffnen. 5. internal combustion engine (2) according to any one of the preceding claims, wherein the EGR valve (12) is a poppet valve having an inlet (15), a first outlet (16.1) and a second outlet (16.2), wherein the two outlets (16.1, 16.2) are arranged opposite one another and at the first outlet (16.1) a first closure element (17.1) and at the second outlet (16.2) a second closure element (17.2) are provided, both closure elements (17.1, 17.2) are braced against each other with the aid of a spring (21) in order to close off the outlets (16.1, 16.2) in a rest position, and wherein there is further a slide (18) which can be actuated by an actuator (19) for selectively opening the first closure element (17.1) at the first outlet (16.1) or the second closure element (17.2) at the second outlet (16.2).
6. Verbrermungskraftmaschine (2) nach Anspruch 5, wobei der Aktor (19) derart ausgeführt ist, dass die öffnungsweiten des ersten Aus- lasses (16.1) und des zweiten Auslasses (16.2) mit Hilfe des Schie- bers (18) stufenlos eingestellt werden können. 6. internal combustion engine (2) according to claim 5, wherein the actuator (19) is designed such that the opening widths of the first Lasses (16.1) and the second outlet (16.2) by means of the slide (18) can be adjusted continuously.
7. Verbrermungskraftmaschine (2) nach einem der vorhergehenden Ansprüche, wobei die mindestens eine erste Kühlstufe (8) und die mindestens eine zusätzliche Kühlstufe (9) parallel zueinander ange- ordnet sind. 7. Internal combustion engine (2) according to one of the preceding claims, wherein the at least one first cooling stage (8) and the at least one additional cooling stage (9) are arranged parallel to each other.
8. Verfahren zum Betrieb einer Verbrermungskraftmaschine (2) nach einem der vorherigen Ansprüche, aufweisend die folgenden Verfah- rensschritte: 8. A method for operating a combustion engine (2) according to one of the preceding claims, comprising the following procedural steps:
a) Betrieb der Verbrennungskraftmaschine (2) ohne Abgasrück- führung durch Absperrung der Abgasrückführungseinrichtung (3) unter Einstellung des AGR- Ventils (12) in der Ruhestellung, b) Abgasriickführung während einer Niedriglastphase, wobei die Abgasrückführung durch die Bypassleitung (11) unter Einstel- lung des AGR-Ventils (12) in der zweiten Stellung erfolgt, wobei keine Kühlung des rückgeführten Abgases stattfindet, c) Abgasrückführung während eines Lastbetriebs, wobei die Ab- gasrückführung durch den Abgaskühler (5) durch Einstellung des AGR-Ventils (12) in der zweiten Stellung erfolgt, und d) Freischalten mindestens einer zusätzlicher Kühlstufe (9) mit Hilfe der mindestens einen Klappenanordnung (10), wenn ein Hochlastbetrieb vorliegt.  a) operation of the internal combustion engine (2) without exhaust gas recirculation by shut-off of the exhaust gas recirculation device (3) with adjustment of the EGR valve (12) in the rest position, b) exhaust gas recirculation during a low-load phase, the exhaust gas recirculation through the bypass line (11) under setting c) Exhaust gas recirculation during a load operation, wherein the exhaust gas recirculation through the exhaust gas cooler (5) by adjustment of the EGR valve (12) in the second position, and d) releasing at least one additional cooling stage (9) by means of the at least one flap assembly (10) when a high load operation is present.
9. Kraftfahrzeug (1) mit einer Verbrermungskraftmaschine (2) mit einer Abgasrückfühixmgseinrichtung (3), die entsprechend einem der An- sprüche 1 bis 7 ausgeführt ist und mit einem Verfahren entspre- chend Anspruch 8 betrieben wird. 9. Motor vehicle (1) with a combustion engine (2) with an exhaust gas recirculation means (3), which is designed according to one of claims to 1 to 7 and is operated by a method according to claim 8.
EP16809741.8A 2016-01-18 2016-12-07 Apparatus and method for exhaust gas recirculation Active EP3405666B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016200510.3A DE102016200510A1 (en) 2016-01-18 2016-01-18 Device and method for exhaust gas recirculation
PCT/EP2016/079990 WO2017125197A1 (en) 2016-01-18 2016-12-07 Apparatus and method for exhaust gas recirculation

Publications (2)

Publication Number Publication Date
EP3405666A1 true EP3405666A1 (en) 2018-11-28
EP3405666B1 EP3405666B1 (en) 2021-01-13

Family

ID=57543002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16809741.8A Active EP3405666B1 (en) 2016-01-18 2016-12-07 Apparatus and method for exhaust gas recirculation

Country Status (5)

Country Link
US (1) US10458370B2 (en)
EP (1) EP3405666B1 (en)
CN (1) CN108138704B (en)
DE (1) DE102016200510A1 (en)
WO (1) WO2017125197A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10273910B1 (en) * 2018-01-17 2019-04-30 Denso International America, Inc. Exhaust gas distribution valve
DE102018212663B3 (en) * 2018-07-30 2019-11-28 Hanon Systems Combined EGR and exhaust gas cooler valve
CN109869243B (en) * 2019-04-04 2023-09-08 无锡同益汽车动力技术有限公司 Clean low-pressure exhaust gas recirculation system capable of discharging condensed water and use method thereof
WO2021037367A1 (en) * 2019-08-29 2021-03-04 Pierburg Gmbh Exhaust gas recirculation system for an internal combustion engine, and method for regulating an exhaust gas recirculation system of this type
JP2022147445A (en) * 2021-03-23 2022-10-06 株式会社デンソーウェーブ Gas combustor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732688A (en) 1996-12-11 1998-03-31 Cummins Engine Company, Inc. System for controlling recirculated exhaust gas temperature in an internal combustion engine
DE19733964B4 (en) * 1997-08-06 2010-04-29 Volkswagen Ag Valve arrangement for controlling a recirculated exhaust gas flow
DE19812702A1 (en) * 1998-03-23 1999-09-30 Volkswagen Ag Valve device for controlling exhaust feedback for an internal combustion engine
DE50115663D1 (en) * 2001-07-11 2010-11-25 Cooper Standard Automotive D Exhaust gas recirculation system
FR2879669B1 (en) * 2004-12-20 2007-03-09 Renault Sas MOTOR POWERTRAIN COMPRISING MEANS FOR CONTROLLING THE FLOW AND REGULATING THE EXHAUST GAS TEMPERATURE IN RECIRCULATION
DE102005040612A1 (en) * 2005-08-27 2007-03-01 Behr Gmbh & Co. Kg Exhaust gas heat exchanger for exhaust gas recirculation system of internal combustion system, has bypass pipe, designed as high-grade steel pipe having jacket made of high temperature stable plastic, arranged in coolant flowing housing
WO2007064949A1 (en) * 2005-12-02 2007-06-07 Borgwarner Inc. Combined egr valve and cooler by-pass
US7757679B2 (en) * 2006-03-22 2010-07-20 Borgwarner, Inc. Integrated charge air and EGR valve
DE102006052972A1 (en) * 2006-11-10 2008-05-15 Audi Ag Exhaust gas cooler of exhaust gas recycling of internal combustion engine, comprises two heat transferring channels that serve for exhaust gas cooling and flown parallel by exhaust gas with channel cross section
DE102008033823B4 (en) * 2008-07-19 2013-03-07 Pierburg Gmbh Exhaust gas recirculation device for an internal combustion engine
GB2473821A (en) * 2009-09-23 2011-03-30 Gm Global Tech Operations Inc Exhaust gas recirculation system with multiple coolers
US20110108013A1 (en) * 2009-11-09 2011-05-12 International Engine Intellectual Property Company, Llc Exhaust gas recirculation valve with bypass capability and method
DE102011050263C5 (en) 2011-05-11 2018-11-15 Pierburg Gmbh Valve device for an internal combustion engine
KR101583889B1 (en) * 2013-12-20 2016-01-21 현대자동차주식회사 Oil temperature control apparatus and control method thereof

Also Published As

Publication number Publication date
EP3405666B1 (en) 2021-01-13
US10458370B2 (en) 2019-10-29
US20180258887A1 (en) 2018-09-13
WO2017125197A1 (en) 2017-07-27
CN108138704B (en) 2020-05-05
DE102016200510A1 (en) 2017-07-20
CN108138704A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
EP3405666B1 (en) Apparatus and method for exhaust gas recirculation
EP2018472B1 (en) Valve arrangement for an exhaust gas recirculation device
DE10303777A1 (en) Internal combustion engine with exhaust gas turbocharger has valve body with 2 separate different openings for communicating with exhaust gas line blow-out opening in first and second open positions
DE112014000854T5 (en) Low pressure Abgasrezirkulationsmodul
WO2015091268A1 (en) Tuning adjuster for at least one compressor and internal combustion engine
DE102019206448A1 (en) Engine system
DE10132672A1 (en) Exhaust gas turbocharger for internal combustion engine enables different flow rates through exhaust gas openings to be set by altering valve body position
DE102010060060A1 (en) 3-way throttle valve
WO2016005152A1 (en) Exhaust gas recirculation system for an internal combustion engine and method for operating such an exhaust gas recirculation system
EP2905435B1 (en) Combustion engine
DE102012216756B4 (en) Exhaust gas recirculation cooling module, exhaust gas recirculation system and method for operating an exhaust gas recirculation system
EP1727976B1 (en) Internal combustion engine having a humidifying device and a heat exchanger
DE102007019089A1 (en) Exhaust gas heat exchanger, exhaust gas heat exchanger system, internal combustion engine and method for treating exhaust gases of an internal combustion engine
DE102011016630A1 (en) Positioning device for use in exhaust line of diesel engine for motor car, has adjustable valve element arranged within housing to connect exhaust gas inlet and first outlet and close second and third outlets in operating position
EP2737195B1 (en) Supercharged internal combustion engine
EP1926906A1 (en) Device for controlling an exhaust gas stream
DE102015206898A1 (en) Exhaust gas recirculation module with controllable bypass and cylinder head with such an exhaust gas recirculation module
EP2278148A1 (en) Internal combustion engine with exhaust gas recirculation and method to operate such an internal combustion engine
DE102017126218A1 (en) Engine system with an integrated intercooler
DE102009036284A1 (en) Valve device for internal combustion engine, has channel, which is subdivided into two channels, two passages and two stroke valves which control passages and are connected firmly with moving transmission element
DE102016205753A1 (en) Exhaust gas recirculation cooler
DE102021116217A1 (en) Exhaust gas cooler for cooling exhaust gas from an internal combustion engine and a drive device with an internal combustion engine and a method for operating a drive device
DE102016200361B4 (en) Reduction of condensate in an exhaust gas recirculation system
DE102015206551B4 (en) Internal combustion engine with low-pressure exhaust gas recirculation and operating method for this
EP3583309A1 (en) Exhaust gas cooler for an internal combustion engine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016012216

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0026260000

Ipc: F02M0026240000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 26/71 20160101ALI20200723BHEP

Ipc: F02M 26/30 20160101ALI20200723BHEP

Ipc: F02M 26/28 20160101ALI20200723BHEP

Ipc: F02M 26/24 20160101AFI20200723BHEP

Ipc: F02M 26/25 20160101ALI20200723BHEP

Ipc: F02M 26/33 20160101ALI20200723BHEP

Ipc: F02M 26/26 20160101ALI20200723BHEP

Ipc: F02M 26/69 20160101ALI20200723BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012216

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1354739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012216

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

26N No opposition filed

Effective date: 20211014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211207

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1354739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211207

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113