EP3400318B1 - Installation de galvanisation à chaud, procédé de galvanisation à chaud et leur utilisation - Google Patents
Installation de galvanisation à chaud, procédé de galvanisation à chaud et leur utilisation Download PDFInfo
- Publication number
- EP3400318B1 EP3400318B1 EP17701042.8A EP17701042A EP3400318B1 EP 3400318 B1 EP3400318 B1 EP 3400318B1 EP 17701042 A EP17701042 A EP 17701042A EP 3400318 B1 EP3400318 B1 EP 3400318B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- components
- hot
- zinc
- galvanising
- galvanizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 98
- 238000005246 galvanizing Methods 0.000 claims description 194
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 140
- 239000011701 zinc Substances 0.000 claims description 139
- 230000004907 flux Effects 0.000 claims description 68
- 229910000831 Steel Inorganic materials 0.000 claims description 53
- 239000010959 steel Substances 0.000 claims description 53
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 42
- 238000007654 immersion Methods 0.000 claims description 40
- 238000005238 degreasing Methods 0.000 claims description 21
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 20
- 238000004381 surface treatment Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 16
- 229910000838 Al alloy Inorganic materials 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 10
- 238000009434 installation Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 description 122
- 230000008569 process Effects 0.000 description 52
- 239000010410 layer Substances 0.000 description 35
- 238000000576 coating method Methods 0.000 description 23
- 238000005554 pickling Methods 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 20
- 239000000047 product Substances 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 16
- 239000000203 mixture Substances 0.000 description 12
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 9
- 210000001331 nose Anatomy 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000003981 vehicle Substances 0.000 description 8
- 238000005237 degreasing agent Methods 0.000 description 7
- 238000011010 flushing procedure Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012805 post-processing Methods 0.000 description 6
- 229910000640 Fe alloy Inorganic materials 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 235000019270 ammonium chloride Nutrition 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 235000005074 zinc chloride Nutrition 0.000 description 4
- 239000011592 zinc chloride Substances 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000013527 degreasing agent Substances 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910000639 Spring steel Inorganic materials 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- -1 alkaline earth metal salt Chemical class 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 229910001504 inorganic chloride Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0032—Apparatus specially adapted for batch coating of substrate
- C23C2/00322—Details of mechanisms for immersing or removing substrate from molten liquid bath, e.g. basket or lifting mechanism
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0035—Means for continuously moving substrate through, into or out of the bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/30—Fluxes or coverings on molten baths
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/38—Wires; Tubes
- C23C2/385—Tubes of specific length
Definitions
- the present invention relates to the technical field of galvanizing iron-based or iron-containing components, in particular steel-based or steel-containing components (steel components), preferably for the automotive or automotive industry, by means of hot dip galvanizing (hot-dip galvanizing).
- the present invention relates to a system and a method for hot dip galvanizing (hot dip galvanizing) of components (ie iron-based or iron-containing components, especially steel-based or steel-containing components (steel components)), especially for large-scale hot-dip galvanizing a plurality of identical or similar components (eg. B. automotive components), in discontinuous operation (so-called piece galvanizing).
- components ie iron-based or iron-containing components, especially steel-based or steel-containing components (steel components)
- steel-based or steel-containing components steel-based or steel-containing components
- piece galvanizing e. B. automotive components
- the present invention relates to the use of the plant according to the invention or the process according to the invention for hot-dip galvanizing (hot dip galvanizing) in large series.
- components made of steel for motor vehicles such.
- motor vehicles motor vehicles
- galvanizing galvanizing
- the steel is provided with a generally thin layer of zinc to protect the steel from corrosion.
- Various galvanizing can be used to galvanize steel components, ie to coat with a metallic coating of zinc, in particular the hot dip galvanizing (synonymously also referred to as hot dip galvanizing), the spray galvanizing (flame spraying with zinc wire), the diffusion galvanizing (Sherard galvanizing ), galvanizing (electrolytic galvanizing), non-electrolytic galvanizing by means of zinc flake coatings and mechanical galvanizing.
- hot dip galvanizing spray galvanizing
- Sherard galvanizing diffusion galvanizing
- galvanizing electrolytic galvanizing
- non-electrolytic galvanizing non-electrolytic galvanizing by means of zinc flake coatings and mechanical galvanizing.
- hot dip galvanizing steel is continuously immersed (eg strip and wire) or piecewise (eg components) at temperatures of about 450 ° C to 600 ° C in a heated vessel with molten zinc (melting point of zinc: 419.5 ° C), so that forms on the steel surface, a resistant alloy layer of iron and zinc and above a very firmly adhering pure zinc layer.
- strip-galvanized steel is a preliminary or intermediate product (semifinished product), which is further processed after galvanizing, in particular by forming, stamping, cutting, etc., whereas components to be protected by piece galvanizing are first completely manufactured and then hot-dip galvanized (whereby the components all around protected against corrosion).
- Piece galvanizing and strip galvanizing also differ in terms of zinc layer thickness, resulting in different periods of protection.
- the zinc layer thickness of strip-galvanized sheets is usually at most 20 to 25 micrometers, whereas the zinc layer thicknesses of piece-galvanized steel parts are usually in the range of 50 to 200 micrometers and even more.
- Hot dip galvanizing provides both active and passive corrosion protection. Passive protection is provided by the barrier effect of the zinc coating. The active corrosion protection is due to the cathodic effect of the zinc coating. Compared to nobler metals of the electrochemical series, such. As iron, zinc serves as a sacrificial anode, which protects the underlying iron from corrosion until it is completely corroded itself.
- hot-dip galvanizing is carried out on mostly larger steel components and constructions.
- steel-based blanks or finished workpieces (components) are immersed in the molten zinc bath after pretreatment.
- inner surfaces, weld seams and hard-to-reach areas of the workpieces or components to be galvanized can be easily achieved by diving.
- the conventional hot-dip galvanizing is based in particular on the immersion of iron or steel components in a molten zinc to form a zinc coating or a zinc coating on the surface of the components.
- a thorough surface preparation of the components to be galvanized is generally required beforehand, which usually involves degreasing with subsequent rinsing, subsequent acid pickling followed by rinsing and finally fluxing (ie, so-called fluxing ) with subsequent drying process.
- the typical process sequence in conventional piece galvanizing by means of hot-dip galvanizing is usually as follows.
- identical or similar components eg mass production of motor vehicle components
- a common product carrier designed as a crossbeam or frame, for example
- a common holding or fastening device for a plurality of identical or similar components.
- a plurality of components on the goods carrier via holding means, such.
- slings, Anbindehähte or the like attached.
- the components are supplied in the grouped state on the goods carrier the subsequent treatment steps or stages.
- the component surfaces of the grouped components are subjected to degreasing in order to remove residues of fats and oils, wherein the degreasing agents used are usually aqueous alkaline or acid degreasing agents.
- the degreasing agents used are usually aqueous alkaline or acid degreasing agents.
- a rinsing typically by immersion in a water bath to avoid carryover of degreasers with the galvanizing in the subsequent process step of pickling, this being especially in a change from alkaline degreasing to an acidic base of high importance.
- pickling which in particular for the removal of inherent impurities such.
- the pickling is usually carried out in dilute hydrochloric acid, wherein the duration of the pickling process, among other things, the impurity state (eg, degree of rusting) of the zinc and the acid concentration and Temperature of the pickling bath is dependent.
- a rinsing process usually takes place after the pickling treatment.
- the so-called fluxing takes place, whereby the previously degreased and pickled steel surface with a so-called flux, which is typically an aqueous solution of inorganic chlorides, most often with a mixture of zinc chloride (ZnCl 2 ) and ammonium chloride (NH 4 Cl), includes.
- a so-called flux which is typically an aqueous solution of inorganic chlorides, most often with a mixture of zinc chloride (ZnCl 2 ) and ammonium chloride (NH 4 Cl)
- the flux increases the wettability between the steel surface and the molten zinc.
- drying is usually carried out to produce a solid flux film on the steel surface and to remove adhering water so as to subsequently avoid undesirable reactions (especially the formation of water vapor) in the liquid zinc immersion bath.
- the pre-treated in the above manner components are then hot dip galvanized by immersion in the liquid zinc melt.
- the zinc content of the melt in accordance with DIN EN ISO 1461 is at least 98.0% by weight.
- the galvanizing in the molten zinc this remains for a sufficient period of time in the molten zinc bath, in particular until the galvanizing has assumed its temperature and is coated with a zinc layer.
- the surface of the molten zinc is in particular cleaned of oxides, zinc ash, flux residues and the like, before the galvanized material is then withdrawn from the molten zinc.
- the hot dip galvanized component is then subjected to a cooling process (eg in the air or in a water bath).
- the holding means for the component such. As slings, Anbindehähte or the like, away. Following the galvanizing process, a sometimes complicated post-processing or aftertreatment usually takes place. In this case, excess zinc residues, in particular so-called drip noses of the zinc which solidifies on the edges, and oxide or ash residues which adhere to the component are removed as far as possible.
- a criterion for the quality of a hot-dip galvanizing is the thickness of the zinc coating in microns (microns).
- the standard DIN EN ISO 1461 specifies the minimum values of the required coating thicknesses, which, depending on the material thickness, are to be supplied in the case of hot-dip galvanizing. In practice, the layer thicknesses are significantly higher than the minimum layer thicknesses specified in DIN EN ISO 1461. In general, zinc plated zinc plating has a thickness in the range of 50 to 200 microns and even more.
- the zinc melt or the liquid zinc bath additionally add aluminum.
- the zinc melt or the liquid zinc bath additionally add aluminum.
- a zinc / aluminum alloy having a lower melting temperature than pure zinc is produced.
- Hot-dip galvanized components can therefore be easily formed with a zinc / aluminum melt, but nevertheless have improved corrosion protection properties despite the significantly lower layer thickness in comparison with conventional hot-dip galvanizing with a virtually aluminum-free molten zinc melt.
- a zinc / aluminum alloy used in the hot-dip galvanizing bath has improved fluidity properties compared to pure zinc.
- zinc coatings produced by hot dip galvanizing performed using such zinc / aluminum alloys have greater corrosion resistance (which is two to six times better than Reinzink's), improved formability, and better paintability than zinc coatings formed from pure zinc.
- this technology can also produce lead-free zinc coatings.
- Such a galvanizing process using a zinc / aluminum melt or using a zinc / aluminum hot-dip galvanizing bath is known for example from WO 2002/042512 A1 and the related references to this patent family (e.g. EP 1 352 100 B1 . DE 601 24 767 T2 and US 2003/0219543 A1 ). It also discloses suitable fluxes for hot dip galvanizing by means of zinc / aluminum molten baths, since flux compositions for zinc / aluminum hot dip galvanizing baths are different from those for conventional hot dip galvanizing.
- corrosion protection coatings can be produced with very low layer thicknesses (generally well below 50 microns and typically in the range of 2 to 20 microns) and with very low weight with high cost efficiency, which is why the process described therein commercially under the name microZINQ ® method is applied.
- the known piece of fire galvanizing has several disadvantages.
- the components or component regions inevitably do not remain in the molten zinc for the same length. This results in different reaction times between the material of the components and the molten zinc and thus different zinc layer thicknesses on the components.
- high temperature sensitive components especially in high and ultra high strength steels such.
- spring steel, chassis and body components and press-hardened metal parts different residence times in the molten zinc on the mechanical characteristics of the steel.
- the observance of defined process parameters is inevitably required for each individual component.
- the WO 95/04607 A1 relates to a process for hot-dip galvanizing steel components, wherein a flux is applied to the surface of the steel components, wherein a preheating of the components takes place in a non-reducing atmosphere for drying the flux and for introducing additional heat energy.
- the concerns US 2003/219543 A1 a flux and a flux bath for hot-dip galvanizing and a process and a hot-dip galvanizing bath for hot-dip galvanizing an iron or steel product, wherein the flux composition comprises 60 to 80% by weight zinc chloride, 7 to 20% by weight ammonium chloride, 2 to 20% by weight a flux modifier comprising at least one alkali or alkaline earth metal and 0.1 to 5% by weight of at least one compound of NiCl 2 , CoCl 2 and MnCl 2 , and 0.1 to 1.5% by weight of at least one compound from PbCl 2 , SnCl 2 , BiCl 3 and SbCl 3 .
- the problem underlying the present invention is therefore to provide a system or a method for piece galvanizing iron-based or iron-containing components, in particular steel-based or steel-containing components (steel components) by means of hot dip galvanizing (hot dip galvanizing) in a zinc / aluminum melt (ie a liquid zinc / aluminum bath), preferably for high-volume hot-dip galvanizing of a large number of identical or similar components (eg motor vehicle components), the disadvantages of the prior art described above being at least largely avoided or at least mitigated.
- such a system or such a method should be provided, which (s) compared to conventional hot-dip galvanizing plants or processes allow an improved process economy and a more efficient, in particular more flexible process flow.
- the present invention proposes - according to a first aspect of the present invention - a hot-dip galvanizing plant according to claim 1; Further, in particular special and / or advantageous embodiments of the system according to the invention are the subject of the relevant sub-systems.
- present invention according to a second aspect of the present invention - a method for hot dip galvanizing according to the independent method claim before; Further, in particular special and / or advantageous embodiments of the method according to the invention are the subject of the related sub-claims.
- the present invention - according to a third aspect of the present invention - relates to the use of the installation according to the invention and / or the method according to the invention according to the independent use claim.
- the invention relates to a system for hot-dip galvanizing components for large-series hot-dip galvanizing a plurality of identical or similar components with a conveyor with at least one goods carrier for grouped promotion of a plurality of components to be fastened to the goods carrier, a degreasing device for degreasing the components, a surface treatment device for chemical and / or or mechanical surface treatment of the components, a flux application device for flux application to the surface of the components and a hot-dip galvanizing device for hot-dip galvanizing the components with a galvanized zinc / aluminum alloy galvanizing bath, wherein a separating device is provided for feeding, immersing and dehumidifying a component separated from the goods carrier into the galvanizing bath of the hot-dip galvanizing device, wherein the separating device has at least one separating means, in the singling each component can be precisely manipulated and treated by special turning and steering movements when pulling out of the melt and wherein the separating means is designed such that all isolated from the goods carrier components are
- the invention relates to a process for hot dip galvanizing of components using a molten zinc / aluminum alloy, preferably for high volume hot dip galvanizing a plurality of identical or similar components, especially in discontinuous operation, preferably for piece galvanizing.
- the components are attached to a goods carrier for grouped promotion before hot dip galvanizing.
- the components of a surface treatment preferably a chemical, in particular wet-chemical, and / or mechanical surface treatment, in particular a pickling subjected.
- the components are flux-coated on their surface and then the components provided with the flux on their surface are subjected to hot-dip galvanizing in a galvanized zinc / aluminum alloy galvanizing bath.
- the components are separated from the product carrier and / or fed in the singulated state, preferably automatically, to the galvanizing bath, immersed therein and subsequently emptied therefrom.
- the invention differs from the prior art in that the components are separated from the originally grouped state and supplied in the singulated state to the galvanizing bath of the zinc / aluminum alloy.
- This, at first glance, uneconomical and process-delaying measure has surprisingly been found to be particularly preferred, especially with regard to the production of high-precision hot-dip galvanized components.
- the solution according to the invention has initially been omitted since in the case of the piece galvanizing process known from the prior art, depending on the size and weight, in some cases several hundred components are attached to a product carrier and at the same time galvanized together. A separation of the components from the goods carrier before galvanizing and galvanizing in the isolated state thus initially increases the time of the pure galvanizing process considerably.
- each component in the separation according to the invention each component can be precisely manipulated and treated, for example, by special rotational and steering movements of the component when pulling out of the melt.
- the Nachbearbeitungsaufwand significantly reduced to the part can be completely avoided.
- the invention offers the possibility that zinc ash adhesions can be significantly reduced and sometimes even avoided. This is possible since the process according to the invention can be controlled such that a component to be galvanized in the singulated state moves away from the immersion site after immersion and is moved to a location remote from the immersion site. This is followed by dipping. While the zinc ash rises in the area of the immersion site and is located on the surface of the immersion site, there are few or no zinc ash residues at the place of immersion. Thanks to this special technique, zinc ash adhesions can be significantly reduced or avoided.
- Another advantage of an individual galvanizing plant is that no wider and deeper, but only a narrow galvanizing boiler is necessary. This reduces the surface of the galvanizing bath, which can be better shielded in this way, so that the radiation losses can be significantly reduced.
- the invention with the occasional galvanizing components with higher quality and cleanliness at the surface, the components have been exposed as such in each case identical process conditions and thus have the same component characteristics. Also in economic terms, the invention offers economic advantages over the prior art, since the production time can be reduced by up to 20% taking into account the no longer necessary or sometimes very limited post-processing.
- the separation after the surface treatment or after the flux application is made.
- the separation of the components from the goods carrier via the singling device is then provided following the degreasing or following the surface treatment, in particular pickling, or following the flux application.
- the singulator is thus located between the hot-dip galvanizing and the flux application device.
- the degreasing, the surface treatment and the flux application takes place in the grouped state of the components, while only the galvanizing is performed in the isolated state.
- the separating device has at least one separating means arranged between the flux application device and the hot-dip galvanizing device.
- This separating means is then preferably designed so that it removes one of the components from the group of components and then supplies it to the hot-dip galvanizing device for hot-dip galvanizing.
- the separating means can remove or remove the component directly from the product carrier or remove the component from the component group that has already been parked by the product carrier.
- the separating means is indeed designed such that it removes one of the components from the group of components, but that the removed component does not feed directly to the galvanizing.
- the separating means can take the component removed from the group of components, for example, to a conveyor system belonging to the separating device, for example a conveyor belt. As a goods carrier or a monorail train passed, over which the isolated component is then galvanized in the isolated state.
- the separating means comprises at least two separating means, namely a first separating means which performs the separation of the components from the group of components, and at least a second separating means, for example in the manner of a conveyor system, then the isolated component through the galvanizing bath.
- the separating means is designed such that a separated component is immersed in a dip area of the bath, then moved from the immersion area to an adjacent immersion area and subsequently immersed in the replacement area.
- zinc ash is produced on the surface of the immersion area as a reaction product of the flux with the molten zinc. Due to the movement of the component immersed in the molten zinc from the immersion area to the immersion area, there is no or hardly any zinc ash at the surface of the immersion area. In this way, the surface of the immersed galvanized component remains free or at least substantially free of zinc ash adhesions.
- the immersion region is adjacent to the exchange region, so it is spatially spaced apart and in particular not overlapping areas of the galvanizing bath.
- the component remains after immersion at least as long in the immersion region of the galvanizing bath until the reaction time between the component surface and the zinc / aluminum alloy of the galvanizing completed. In this way it is ensured that the zinc ash, which moves upwards within the melt, spreads only on the surface of the immersion area. Subsequently, the component can then be moved into the immersion region, which is essentially free of zinc ash, and dipped out there.
- the component remains between 20% to 80%, preferably at least 50%, of the galvanizing time in the region of the immersion region and only then moves into the immersion region becomes.
- the separating means is designed in such a way that all components separated from the product carrier are identically arranged, in particular with identical movement, and / or or with identical time, passed through the galvanizing bath. This can ultimately be realized without further ado by a corresponding control of the separating device or of the at least one associated separating means. Due to the identical handling identical components, ie components that consist of the same material and each have the same shape, each have identical product properties. These include not only identical zinc layer thicknesses but also identical characteristics of the galvanized components, since these have each been passed through the galvanizing bath in an identical manner.
- the invention provides system and process according to the separation advantage that zinc noses can be easily avoided.
- a stripping device is provided following the immersion region, wherein in a preferred embodiment of this inventive idea the separating means is designed such that all isolated from the goods carrier components are passed after emptying of the stripping means for stripping liquid zinc in an identical manner.
- all components separated from the product carrier are moved in an identical manner after emptying in such a way that dripping noses of liquid zinc are removed, in particular drip off and / or uniformly be distributed to the component surfaces.
- the invention makes it possible to guide each individual component not only through the galvanizing bath, but also either in a specific positioning, for example an inclination of the component, and move past one or more scrapers and / or the component by special Rotary and / or steering movements to move after the immersion so that zinc noses are at least substantially avoided.
- the system according to the invention preferably has a plurality of flushing devices, optionally with a plurality of flushing stages.
- a rinsing device is preferably provided after the degreasing device and / or after the surface treatment device. The individual flushing devices ultimately ensure that the degreasing agents used in the degreasing device or the surface treatment agents used in the surface treatment device are not introduced into the next process step.
- the system according to the invention preferably has a drying device following the flux application device, so that the flux is dried after application to the surface of the components. In this way it is prevented that a liquid entry from the flux solution takes place in the galvanizing bath.
- a cooling device in particular a quenching device, is provided following the hot-dip galvanizing device, at which the component is cooled or quenched after the hot-dip galvanizing.
- an after-treatment device can be provided in particular following the cooling device.
- the aftertreatment device is used in particular for a passivation, sealing or coloring of the galvanized components.
- the post-treatment stage may also include, for example, the post-processing, in particular the removal of impurities and / or the removal of zinc noses. As has been stated above, however, the post-processing step in the invention is considerably reduced and sometimes even unnecessary in comparison with the method known in the prior art.
- the flux application device in particular the Flußstoffbad the flux application device containing flux in preferably aqueous solution, in particular in amounts and / or concentrations of the flux in the range of 200 to 700 g / l, in particular 350 to 550 g / l , preferably 500 to 550 g / l, and / or that the flux is used as a preferably aqueous solution, in particular with amounts and / or concentrations of the flux in the range of 200 to 700 g / l, in particular 350 to 550 g / l, preferably 500 to 550 g / l.
- the present invention relates to the use of a plant as defined above and / or the process as defined above for large-scale hot-dip galvanizing of a plurality of identical or similar components. It is particularly preferred if the large-scale hot-dip galvanizing in discontinuous operation, preferably in the form of a piece galvanizing, is performed.
- Fig. 1 a sequence of the method according to the invention in a system 1 according to the invention is shown schematically.
- the flowchart shown is a method which is possible according to the invention, but individual method steps may also be omitted or provided in a different order than shown and described below. Also, further method steps may be provided.
- the level A refers to the delivery and the placement of parts to be galvanized 2 at a junction.
- the components 2 are already mechanically surface-treated in the present example, in particular sandblasted. This may or may not be foreseen.
- stage B the components 2 are connected to a goods carrier 7 of a conveyor 3 to form a group of components 2.
- the components 2 are also connected to each other and thus only indirectly with the goods carrier 7.
- the goods carrier 7 has a basket, a frame or the like, in which or in which the components 2 are inserted.
- stage C the components 2 are degreased.
- alkaline or acid degreasing agents 11 are used to remove residues of fats and oils on the components 2.
- stage D a rinse, in particular with water, of the degreased components 2 is provided.
- the residues of degreasing agent 11 are rinsed off from the components 2.
- a pickling of the surfaces of the components 2, so a wet-chemical surface treatment is usually carried out in dilute hydrochloric acid.
- Stage E is followed by stage F, which in turn is a rinse, in particular with water, in order to prevent the pickling agent from being carried over into the subsequent process stages.
- stage F which in turn is a rinse, in particular with water, in order to prevent the pickling agent from being carried over into the subsequent process stages.
- the correspondingly cleaned and pickled, to be galvanized components 2 are then, still grouped together as a group on the product carrier 4, floated, namely subjected to a flux treatment.
- the flux treatment in stage H is likewise carried out in an aqueous flux solution.
- the product carrier 7 with the components 2 in stage I is subjected to drying in order to produce a solid flux film on the surface of the components 2 and to remove adhering water.
- the components 2 previously combined as a group are singulated, ie removed from the group, and subsequently further treated in the singulated state.
- the separation can take place in that the components 2 are removed individually from the product carrier 7 or also in that the product carrier 7 first deposits the group of components 2 and the components 2 are then removed individually from the group.
- the components 2 are now hot-dip galvanized in the stage K.
- the components 2 are each immersed in a galvanizing bath 28 and dipped again after a predetermined residence time.
- the galvanizing in method step K is followed by dripping of the still liquid zinc in stage L.
- the dripping takes place, for example, by traversing the galvanized in isolated state component 2 on one or more scrapers of a stripping or by predetermined pivoting and rotational movements of the component 2, which leads either to drip or even distribution of the zinc on the component surface.
- step M the galvanized component is quenched in step M.
- the quenching in method step M is followed by a post-treatment in stage N, which may be, for example, a passivation, sealing or organic or inorganic coating of the galvanized component 2.
- a post-treatment in stage N which may be, for example, a passivation, sealing or organic or inorganic coating of the galvanized component 2.
- the aftertreatment also includes a possible post-processing of the component 2 which may be required.
- FIG. 2 to 4 an embodiment of a system 1 according to the invention is shown schematically.
- Fig. 2 to 4 is a schematic representation of an embodiment of a system 1 according to the invention for hot or hot dip galvanizing of components 2 shown.
- the plant 1 is provided for hot dip galvanizing a plurality of identical components 2 in the discontinuous operation, the so-called piece galvanizing.
- the plant 1 is designed and suitable for hot dip galvanizing of components 2 in large series.
- the large-scale galvanizing refers to galvanizing, in which successively more than 100, in particular more than 1000 and preferably more than 10,000 identical components 2 are galvanized, without in between components 2 of different shape and size are galvanized.
- the system 1 has a conveyor 3 for conveying or for the simultaneous transport of a plurality of components 2, which are combined to form a group.
- the conveyor device 3 is a crane track with a rail guide 4, on which a trolley 5 with a lifting mechanism can be moved.
- a goods carrier 7 is connected to the trolley 5.
- the goods carrier 7 is used to hold and secure the components 2.
- the connection of the components 2 with the goods carrier 7 is usually carried out at a connection point 8 of the system, to which the components 2 are grouped for connection to the goods carrier 7.
- a degreasing device 9 connects.
- the degreasing device 9 has a degreasing basin 10 in which a degreasing agent 11 is located.
- the degreasing agent 11 may be acidic or basic.
- the degreasing device 9 is adjoined by a flushing device 12, which has a sink 13 with flushing agent 14 located therein.
- the rinsing agent 14 in the present case is water.
- Downstream of the rinsing device 12, that is to say in the process direction, is a surface treatment device designed as a pickling device 15 for wet-chemical surface treatment of the components 2.
- the pickling device 15 has a pickling tank 16 with a pickling means 17 located therein.
- the mordant 17 in the present case is dilute hydrochloric acid.
- a rinsing device 18 with a rinsing basin 19 and rinsing agent 20 located therein is again provided.
- the rinsing agent 20 is again water.
- a flux applicator 21 In the process direction behind the rinsing device 18 is a flux applicator 21 with a flux pool 22 and therein flux 23.
- the flux contains in a preferred embodiment, zinc chloride (ZnCl 2 ) in an amount of 58 to 80 wt .-% and ammonium chloride (NH 4 Cl ) in the amount of 7 to 42% by weight.
- ZnCl 2 zinc chloride
- NH 4 Cl ammonium chloride
- a small amount of alkali metal and / or alkaline earth metal salts and, if appropriate, a further heavy metal chloride are provided in a further reduced amount.
- a wetting agent is also provided in small quantities.
- the above weight data are based on the flux 23 and make up in the sum of all components of the composition 100 wt .-%.
- the flux 23 is in aqueous solution, in a concentration in the range of 500 to 550 g / l.
- the aforementioned devices 9, 12, 15, 18 and 21 can each basically have a plurality of cymbals. These individual basins, but also the basins described above, are arranged in cascade behind one another.
- the flux applicator 21 is followed by a drying device 24 to remove adhering water from the flux film, which is located on the surface of the components 2.
- the system 1 has a hot-dip galvanizing device 25, in which the components 2 are hot-dip galvanized.
- the hot-dip galvanizing device 25 has a galvanizing tank 26, optionally with a housing 27 provided on the upper side.
- a galvanizing bath 28 which contains a zinc / aluminum alloy.
- the galvanizing bath has 60 to 98% by weight of zinc and 2 to 40% by weight of aluminum.
- small amounts of silicon and optionally in further reduced proportions a small amount of alkali and / or alkaline earth metals and heavy metals are provided. It is understood that the aforementioned weights are based on the galvanizing 28 and make up in the sum of all components of the composition 100 wt .-%.
- a cooling device 29 In the process direction after the hot-dip galvanizing device 25 is a cooling device 29, which is provided for quenching of the components 2 after hot-dip galvanizing. Finally, after the cooling device 29 is an aftertreatment device 30 provided, in which the hot-dip galvanized components 2 can be post-treated and / or reworked.
- a separating device 31 which is provided for automated feeding, immersing and dehumidifying a separated from the goods carrier 7 component 2 in the galvanizing 28 of the hot-dip galvanizing device 25.
- the separating device 31 has in the illustrated embodiment, a separating means 32 for handling the components 2, namely for removal of a component 2 from the group of components 2 and to remove the grouped components 2 from the goods carrier 7 and for feeding, dipping and Ausflect of isolated component 2 is provided in the galvanizing bath 28.
- a transfer point 33 at which the components 2 are either stored or in particular in the hanging state of the goods carrier 7 and thus removed from the group or can be singled.
- the separating means 32 is preferably designed such that it is movable in the direction of the transfer point 33 and away from it and / or is movable in the direction of the galvanizing device 25 and away from it.
- the separating means 32 is designed in such a way that it moves a component 2 immersed in the galvanizing bath 28 occasionally from the immersion region to an adjacent immersion region and then emerges in the region of exchange.
- the immersion area and the immersion area are spaced apart from each other, so do not correspond to each other. In particular, the two areas do not overlap. In this case, the movement from the immersion region to the immersion region does not take place until a predetermined period of time has elapsed, namely after completion of the reaction time of the flux 23 with the surface of the respective components 2 to be galvanized.
- the separating device 31 has centrally and / or the separating means 32 locally via a control device, according to which the movement of the separating means 32 takes place in such a way that all components 2 separated from the goods carrier 7 move with identical movement, in identical arrangement and with identical time through the galvanizing bath 28 be guided.
- separating means 32 can also be controlled via the associated control device so that an already galvanized component 2 is still moved within the housing 27, for example by corresponding rotational movements such that excess zinc drips and / or alternatively is evenly distributed on the component surface.
- Fig. 2 shows a state in which at the junction 8 a plurality of components to be galvanized 2 are stored. Above the group of components 2 is the goods carrier 7. After lowering the goods carrier 7, the components 2 are attached to the goods carrier 7. In the illustrated embodiment, the components 2 are arranged in layers. In this case, all components 7 can each be connected to the goods carrier 7. But it is also possible that only the upper layer of components 2 is connected to the goods carrier 7, while the following position is connected to the respective overlying layer. It is also possible that the group of components 2 is arranged in a basket-like frame or the like.
- Fig. 3 is the group of components 2 above the pickling means 15.
- Fig. 4 the group of components 2 has been deposited at the transfer point 33.
- the trolley 5 is on the way back to the connection point 8, at which are already new to be galvanized components 2 as a group. From the deposited at the transfer point 33 group of components 2 has already been removed via the separating means 32, a component 2, which is just before feeding into the hot-dip galvanizing 25.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
Claims (15)
- Installation (1) de galvanisation à chaud de pièces (2) pour la galvanisation à chaud en grande série d'un grand nombre de pièces (2) identiques ou de même type comprenant un dispositif de transport (3) avec au moins un support de marchandises (7) pour le transport groupé d'un grand nombre de pièces à fixer au support de marchandises (7) un dispositif de dégraissage (9) pour dégraisser les pièces (2), un dispositif de traitement de surface pour le traitement de surface chimique et/ou mécanique des pièces (2), un dispositif d'application de fondant (21) pour l'application de fondant à la surface des pièces (2) et un dispositif de galvanisation à chaud (25) pour galvaniser à chaud les pièces (2) avec un bain de galvanisation (28) constitué d'un alliage de zinc/aluminium fondu,
caractérisée
en ce qu'un dispositif de séparation (31) est prévu pour introduire, immerger et ressortir une pièce (2) isolée du support de marchandises (7) dans le bain de galvanisation (28) du dispositif de galvanisation à chaud (27),
dans lequel le dispositif de séparation (31) comporte au moins un moyen de séparation (32),
dans lequel, pendant la séparation, chaque pièce (2) peut être manipulée et traitée par des mouvements spéciaux de rotation et de direction lors de l'extraction hors de la masse fondue de manière précise et
dans lequel le moyen de séparation (32) est conçu de manière à ce que toutes les pièces (2) isolées du support de marchandises (7) soient déplacées de manière identique après la sortie, de manière à éliminer les gouttes qui tombent. - Installation selon la revendication 1,
caractérisée en ce que la séparation des pièces (2) du support de marchandises (7) via le dispositif de séparation (31) est effectuée après le dégraissage ou après le traitement de surface ou après l'application du fondant. - Installation selon la revendication 1 ou 2,
caractérisée en ce que le dispositif de séparation (31) comporte au moins un moyen de séparation (32) disposé entre le dispositif d'application de fondant (21) et le dispositif de galvanisation à chaud (25). - Installation selon l'une quelconque des revendications précédentes,
caractérisée
en ce que le moyen de séparation (32) est conçu de sorte qu'une pièce isolée (2) soit immergée dans une région d'immersion du bain de galvanisation (28), puis déplacée de la région d'immersion vers une région de sortie adjacente et ensuite immergée dans la région de sortie; et/ou
en ce que le moyen de séparation (32) est conçu de manière à ce que toutes les pièces (2) isolées du support de marchandises (7) soient guidées de manière identique à travers le bain de galvanisation (28). - Installation selon l'une des revendications précédentes,
caractérisée en ce qu'un dispositif de raclage est prévu à la suite de la zone de sortie du bain de galvanisation (28). - Installation selon l'une quelconque des revendications précédentes,
caractérisée
en ce qu'au moins un dispositif de rinçage (12, 18) est prévu; et/ou en ce qu'un dispositif de séchage (24) est prévu à la suite du dispositif d'application de fondant (21). - Installation selon l'une quelconque des revendications précédentes,
caractérisée
en ce qu'un dispositif de refroidissement (29) est prévu à la suite du dispositif de galvanisation à chaud (25); et/ou
en ce qu'après le dispositif de galvanisation à chaud (25) et éventuellement le dispositif de refroidissement (29) en option, un dispositif de post-traitement (30) est prévu. - Procédé de galvanisation à chaud de pièces (2) en utilisant un alliage de zinc/aluminium fondu pour la galvanisation à chaud en grande série d'un grand nombre de pièces identiques ou de même type (2),
les pièces (2) étant fixées à un support de marchandises (7) avant la galvanisation à chaud pour un transport groupé, ensuite les pièces (2) sont soumises à un traitement de surface chimique et/ou mécanique, puis les pièces (2) sont dotées au niveau de leur surface d'un fondant (23), puis les pièces (2) munies au niveau de leur surface du fondant (23) sont soumises à une galvanisation à chaud dans un bain de galvanisation (28) constitué d'un alliage de zinc/aluminium fondu,
caractérisé
en ce que, dans le cas d'une galvanisation à chaud, les pièces (2) sont acheminées du support de marchandises (7) à l'état isolé vers le bain de galvanisation (28), puis immergées dans celui-ci et ensuite extraites de celui-ci,
en ce que, pendant la séparation de chaque pièce (2), elle est manipulée avec précision et traitée par des mouvements spéciaux de rotation et de direction lors de l'extraction de la masse fondue et
en ce que toutes les pièces (2) isolées du support de marchandises (7) sont déplacées de manière identique après la sortie afin d'éliminer les gouttes qui tombent de l'alliage de zinc/aluminium liquide. - Procédé selon la revendication 8,
caractérisé en ce que les pièces (2) sont isolées du support de marchandises (7) après le traitement de surface ou après l'application du fondant. - Procédé selon la revendication 8 ou 9,
caractérisé en ce qu'une pièce isolée (2) est immergée dans une région d'immersion du bain de galvanisation (28), puis déplacée de la région d'immersion vers une région de sortie adjacente et ensuite sortie dans la région de sortie. - Procédé selon l'une quelconque des revendications précédentes,
caractérisé en ce que
toutes les pièces (2) isolées du support de marchandises (7) sont guidées de manière identique à travers le bain de galvanisation (28); et/ou
en ce que toutes les pièces (2) isolées du support de marchandises (7) sont passées après la sortie dans un dispositif de raclage pour extraire l'alliage de zinc/aluminium liquide de manière identique. - Procédé selon l'une quelconque des revendications précédentes,
caractérisé
en ce que les pièces (2) sont rincées après dégraissage et/ou après traitement de surface; et/ou
en ce que le fondant (23) est séché après l'application sur la surface des pièces (2) et/ou
en ce que les pièces (2) sont séchées après l'application du fondant (23). - Procédé selon l'une quelconque des revendications précédentes,
caractérisé
en ce que la pièce (2) est refroidie après galvanisation à chaud et/ou la pièce (2) est post-traitée après galvanisation à chaud. - Procédé selon l'une quelconque des revendications précédentes,
caractérisé en ce que les pièces (2) sont des pièces (2) à base de fer et/ou contenant du fer, en particulier des pièces (2) à base d'acier et/ou contenant de l'acier, de préférence des pièces automobiles ou des pièces (2) pour le secteur automobile. - Utilisation de l'installation (1) selon l'une quelconque des revendications 1 à 7 et/ou du procédé selon l'une quelconque des revendications 8 à 14 pour la galvanisation à chaud en grande série d'un grand nombre de pièces identiques ou de même type (2), en particulier en fonctionnement discontinu, de préférence pour la galvanisation pièce par pièce.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201730143T SI3400318T1 (sl) | 2016-03-09 | 2017-01-09 | Postroj za plamensko pocinkanje, postopek plamenskega pocinkanja in uporaba le-tega |
PL17701042T PL3400318T3 (pl) | 2016-03-09 | 2017-01-09 | Instalacja do cynkowania ogniowego, sposób cynkowania ogniowego oraz ich zastosowanie |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016002782 | 2016-03-09 | ||
DE102016104854 | 2016-03-16 | ||
DE102016106660.5A DE102016106660A1 (de) | 2016-03-09 | 2016-04-12 | Anlage zur Feuerverzinkung und Feuerverzinkungsverfahren |
PCT/EP2017/050307 WO2017153062A1 (fr) | 2016-03-09 | 2017-01-09 | Installation de galvanisation à chaud et procédé de galvanisation à chaud |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3400318A1 EP3400318A1 (fr) | 2018-11-14 |
EP3400318B1 true EP3400318B1 (fr) | 2019-10-02 |
Family
ID=59700774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17701042.8A Active EP3400318B1 (fr) | 2016-03-09 | 2017-01-09 | Installation de galvanisation à chaud, procédé de galvanisation à chaud et leur utilisation |
Country Status (13)
Country | Link |
---|---|
US (1) | US11549166B2 (fr) |
EP (1) | EP3400318B1 (fr) |
CN (1) | CN108884543B (fr) |
BR (1) | BR112018068229B1 (fr) |
CA (1) | CA3015539C (fr) |
DE (1) | DE102016106660A1 (fr) |
DK (1) | DK3400318T3 (fr) |
ES (1) | ES2758519T3 (fr) |
HU (1) | HUE047635T2 (fr) |
MX (1) | MX2018010835A (fr) |
PL (1) | PL3400318T3 (fr) |
SI (1) | SI3400318T1 (fr) |
WO (1) | WO2017153062A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016106617A1 (de) * | 2016-03-21 | 2017-09-21 | Fontaine Holdings Nv | Feuerverzinkungsanlage sowie Feuerverzinkungsverfahren |
DE102017220102A1 (de) | 2017-11-10 | 2019-05-16 | Wiegel Verwaltung Gmbh & Co Kg | Anlage und Verfahren zum Feuerverzinken von Halbzeugen |
CN107761031B (zh) * | 2017-12-06 | 2023-11-03 | 唐山东冶实业有限公司 | 热浸镀锌设备 |
DE102019108033A1 (de) * | 2019-02-25 | 2020-08-27 | Fontaine Holdings Nv | Verfahren zur Verzinkung, insbesondere Feuerverzinkung, von Eisen- und Stahlerzeugnissen |
CN113637935B (zh) * | 2021-07-30 | 2023-03-21 | 舟山市驰宇机械制造有限公司 | 一种主轴镀层加工装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1935087A (en) * | 1930-09-20 | 1933-11-14 | Jones & Laughlin Steel Corp | Galvanizing machine |
US2940870A (en) * | 1959-02-19 | 1960-06-14 | Hanson Van Winkle Munning Co | Method of hot dip galvanizing a ferrous metal |
US3639142A (en) * | 1968-06-10 | 1972-02-01 | Bethlehem Steel Corp | Method of galvanizing |
US3701336A (en) * | 1970-03-16 | 1972-10-31 | Taylor Wilson Mfg Co | Pipe coating apparatus |
DE2014600A1 (en) * | 1970-03-26 | 1971-10-14 | Koerner Kg Walter | Hot dip galvanising plant |
US3978816A (en) * | 1974-10-15 | 1976-09-07 | Wheatland Tube Company | U-shaped screw transfer means in immersion coating apparatus |
WO1995004607A1 (fr) * | 1993-08-05 | 1995-02-16 | Ferro Technologies, Inc. | Technique de galvanisation sans plomb |
DE19537664A1 (de) * | 1995-10-10 | 1997-04-17 | Miele & Cie | Warenträger für eine Beschichtungsanlage |
US6277443B1 (en) * | 1998-06-30 | 2001-08-21 | John Maneely Company | Low lead or no lead batch galvanization process |
EP1209245A1 (fr) | 2000-11-23 | 2002-05-29 | Galvapower Group N.V. | Flux et son utilisation dans un procédé de galvanisation par immersion à chaud |
IT1391905B1 (it) * | 2008-10-28 | 2012-02-02 | Zimetal S R L | Perfezionamento nella preparazione della superficie di componentistica in acciaio da zincare a caldo |
GB2507310B (en) * | 2012-10-25 | 2018-08-29 | Fontaine Holdings Nv | Flux compositions for hot dip galvanization |
-
2016
- 2016-04-12 DE DE102016106660.5A patent/DE102016106660A1/de active Pending
-
2017
- 2017-01-09 ES ES17701042T patent/ES2758519T3/es active Active
- 2017-01-09 EP EP17701042.8A patent/EP3400318B1/fr active Active
- 2017-01-09 US US16/083,632 patent/US11549166B2/en active Active
- 2017-01-09 CN CN201780016319.5A patent/CN108884543B/zh active Active
- 2017-01-09 SI SI201730143T patent/SI3400318T1/sl unknown
- 2017-01-09 DK DK17701042.8T patent/DK3400318T3/da active
- 2017-01-09 BR BR112018068229-2A patent/BR112018068229B1/pt active IP Right Grant
- 2017-01-09 WO PCT/EP2017/050307 patent/WO2017153062A1/fr active Application Filing
- 2017-01-09 HU HUE17701042A patent/HUE047635T2/hu unknown
- 2017-01-09 PL PL17701042T patent/PL3400318T3/pl unknown
- 2017-01-09 MX MX2018010835A patent/MX2018010835A/es unknown
- 2017-01-09 CA CA3015539A patent/CA3015539C/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CA3015539C (fr) | 2020-03-24 |
US11549166B2 (en) | 2023-01-10 |
WO2017153062A1 (fr) | 2017-09-14 |
EP3400318A1 (fr) | 2018-11-14 |
CN108884543A (zh) | 2018-11-23 |
PL3400318T3 (pl) | 2020-04-30 |
MX2018010835A (es) | 2019-02-07 |
HUE047635T2 (hu) | 2020-05-28 |
SI3400318T1 (sl) | 2020-02-28 |
BR112018068229A2 (pt) | 2019-01-29 |
DE102016106660A1 (de) | 2017-09-14 |
ES2758519T3 (es) | 2020-05-05 |
DK3400318T3 (da) | 2020-01-13 |
CA3015539A1 (fr) | 2017-09-14 |
US20190048452A1 (en) | 2019-02-14 |
CN108884543B (zh) | 2020-06-30 |
BR112018068229B1 (pt) | 2023-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3411510B1 (fr) | Installation de galvanisation à chaud et procédé de galvanisation à chaud | |
EP3400317B1 (fr) | Installation de galvanisation à chaud et procédé de galvanisation à chaud pour la production en grande série | |
EP3400318B1 (fr) | Installation de galvanisation à chaud, procédé de galvanisation à chaud et leur utilisation | |
EP3663429B1 (fr) | Dispositif de galvanisation à chaud | |
DE3201475C2 (fr) | ||
EP2683848A1 (fr) | Produit d'acier plat, procédé de fabrication d'un produit d'acier plat et procédé de fabrication d'une pièce structurale | |
EP3880860B1 (fr) | Procédé pour le zingage, en particulier la galvanisation à chaud, de produits en fer et en acier | |
EP3363576B1 (fr) | Procede et systeme d'identification et/ou de marquage de composants galvanises a chaud et de composants fabriqués avec eux | |
EP2821520B1 (fr) | Procédé de revêtement de produits plats en acier avec une couche de protection métallique | |
EP3592878B1 (fr) | Procédé de galvanisation à chaud, moyens de support et/ou de fixation pour la galvanisation à chaud, ainsi que procédé de dépôt des moyens de support et/ou de fixation | |
DE102023113671B3 (de) | Verfahren zum Feuerverzinken und feuerverzinktes Bauteil | |
EP1350865A2 (fr) | Tôle en acier zingué et phosphaté et procédé de fabrication | |
EP4110972B1 (fr) | Procédé de fabrication de composants en acier durci doté d'une couche de protection contre la corrosion en alliage de zinc conditionnée |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180809 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190709 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1186245 Country of ref document: AT Kind code of ref document: T Effective date: 20191015 Ref country code: CH Ref legal event code: NV Representative=s name: DENNEMEYER AG, CH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017002460 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200107 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 32829 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200203 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200103 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2758519 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200505 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E047635 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017002460 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200202 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
VS25 | Lapsed in a validation state [announced via postgrant information from nat. office to epo] |
Ref country code: MD Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
26N | No opposition filed |
Effective date: 20200703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200109 |
|
VS25 | Lapsed in a validation state [announced via postgrant information from nat. office to epo] |
Ref country code: MA Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230613 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20231228 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231228 Year of fee payment: 8 Ref country code: NL Payment date: 20240119 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240119 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240227 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240122 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240123 Year of fee payment: 8 Ref country code: DE Payment date: 20240129 Year of fee payment: 8 Ref country code: CZ Payment date: 20231229 Year of fee payment: 8 Ref country code: GB Payment date: 20240119 Year of fee payment: 8 Ref country code: SK Payment date: 20240104 Year of fee payment: 8 Ref country code: CH Payment date: 20240202 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20231228 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240108 Year of fee payment: 8 Ref country code: IT Payment date: 20240129 Year of fee payment: 8 Ref country code: FR Payment date: 20240124 Year of fee payment: 8 Ref country code: DK Payment date: 20240124 Year of fee payment: 8 Ref country code: BE Payment date: 20240119 Year of fee payment: 8 |