EP3398696A1 - Procédé et équipement de refroidissement - Google Patents
Procédé et équipement de refroidissement Download PDFInfo
- Publication number
- EP3398696A1 EP3398696A1 EP18159076.1A EP18159076A EP3398696A1 EP 3398696 A1 EP3398696 A1 EP 3398696A1 EP 18159076 A EP18159076 A EP 18159076A EP 3398696 A1 EP3398696 A1 EP 3398696A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plate
- cooling
- plateau
- spraying
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000009434 installation Methods 0.000 claims abstract description 21
- 238000005098 hot rolling Methods 0.000 claims abstract description 20
- 238000000265 homogenisation Methods 0.000 claims abstract description 14
- 238000005096 rolling process Methods 0.000 claims abstract description 11
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 238000005507 spraying Methods 0.000 claims description 55
- 239000007921 spray Substances 0.000 claims description 54
- 239000007788 liquid Substances 0.000 claims description 25
- 239000003595 mist Substances 0.000 claims description 19
- 229910045601 alloy Inorganic materials 0.000 claims description 15
- 239000000956 alloy Substances 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 8
- 230000002349 favourable effect Effects 0.000 claims description 7
- 239000002826 coolant Substances 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000010792 warming Methods 0.000 claims description 3
- 230000008033 biological extinction Effects 0.000 claims description 2
- 230000000295 complement effect Effects 0.000 claims description 2
- 230000002045 lasting effect Effects 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- 240000000966 Allium tricoccum Species 0.000 description 11
- 235000021183 entrée Nutrition 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000000110 cooling liquid Substances 0.000 description 3
- 230000002262 irrigation Effects 0.000 description 3
- 238000003973 irrigation Methods 0.000 description 3
- 241000287107 Passer Species 0.000 description 2
- 208000029152 Small face Diseases 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 208000031968 Cadaver Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/004—Heating the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0218—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/667—Quenching devices for spray quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
- C21D11/005—Process control or regulation for heat treatments for cooling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B2001/225—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B2045/0212—Cooling devices, e.g. using gaseous coolants using gaseous coolants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/02—Transverse dimensions
- B21B2261/04—Thickness, gauge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/02—Transverse dimensions
- B21B2261/06—Width
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/12—Length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/20—Temperature
Definitions
- the invention relates to the field of rolling plates or trays made of aluminum alloys. More specifically, the invention relates to a particularly rapid, homogeneous and reproducible cooling process of the plate between the homogenization and hot rolling operations. The invention also relates to the installation or equipment for implementing said method.
- the transformation of the aluminum alloy rolling trays resulting from the casting requires, before hot rolling, a metallurgical homogenization heat treatment.
- This heat treatment is operated at a temperature close to the solvus of the alloy, higher than the hot rolling temperature.
- the difference between the homogenization temperature and the hot rolling temperature is between 30 and 150 ° C, depending on the alloys.
- the plate must therefore be cooled between its exit from the homogenization furnace and its hot rolling.
- This desired plate cooling rate is between 150 and 500 ° C / h.
- the air cooling is particularly slow: the air cooling rate of a 600 mm plate of air thickness is included between 40 ° C / h in calm air or under natural convection, and 100 ° C / h in ventilated air or forced convection. Air cooling therefore does not achieve the desired cooling rates.
- the cooling by means of a liquid or a mist is much faster because the value of the exchange coefficient, known to those skilled in the art as the HTC (Heat Transfer Coefficient), between a liquid or a mist and the hot surface of the metal plate is well above the value of the same coefficient between the air and the plate.
- the liquid chosen alone or in the mist is for example water and, in this case, ideally deionized water.
- the coefficient HTC is between 2000 and 20000 W / (m 2 .K) between water and the hot plate while it is between 10 and 30 W / (m 2 .K) between air and the hot tray.
- the subject of the invention is a method of cooling an aluminum alloy rolling plate of typical dimensions of 250 to 800 mm in thickness, 1000 to 2000 mm in width and 2000 to 8000 mm in length, after the heat treatment.
- metallurgical homogenization of said platen at a temperature typically between 450 to 600 ° C depending on the alloys and before its hot rolling, characterized in that the cooling, a value of 30 to 150 ° C, is carried out at a speed of from 150 to 500 ° C / h, with a thermal difference of less than 40 ° C over the entire cooled plate from its homogenization temperature.
- thermal difference is meant the maximum difference between temperatures recorded over the entire volume of the tray, or DTmax.
- the cooling is carried out in at least two phases: A first spraying phase during which the plate is cooled in an enclosure comprising nozzle or nozzle nozzles for liquid spraying or cooling cooling mist, distributed in the upper and lower parts of said cell, so as to spray the two large faces, upper and lower of said plateau, A complementary phase of thermal uniformization in calm air, in a tunnel with reflective interior walls, lasting from 2 to 30 minutes according to the format of the plate and the value of the cooling. Typically, this time is about 30 minutes for a total cooling of the order of 150 ° C from substantially 500 ° C, and a few minutes for a cooling of the order of 30 ° C.
- the phases of spraying and thermal uniformization are repeated, in the case of very thick trays and for overall average cooling greater than 80 ° C.
- the coolant including in a mist, is water, and preferably deionized water.
- the head and foot of the tray are less cooled than the rest of the tray, so as to maintain a head and a warm foot, a configuration favorable to the plate engagement during reversible hot rolling.
- the cooling of the head and the foot can be modulated either by starting or extinguishing the nozzle or spray nozzles or by the presence of screens preventing or reducing the spray by said nozzles or nozzles.
- the sprinkling phases, and not thermal uniformization can be repeated, and the head and the foot of the tray, is typically 300 to 600 mm at the ends, cooled differently than the rest of the tray at least in a spraying cells.
- the first spraying pass is performed with a zero heel, or a continuous watering of the tray as in figure 14 followed, without first thermal uniformization phase, with a second spraying pass with a bead of a pair of ramps as figure 12 , thereby significantly reducing the duration of the final phase of uniformization necessary for the thermal balancing of the plate.
- the longitudinal thermal uniformity of the plate is improved by a relative movement of the plate with respect to the spraying system: deflected or back and forth from the plate facing a fixed spraying system or vice versa, displacement of the nozzles or nozzles relative to the plate.
- the tray scrolls horizontally in the spray cell and its running speed is greater than or equal to 20 mm / s, ie 1.2 m / min.
- the transverse thermal uniformity of the plate is ensured by modulation of the spray in the width of the plate by ignition / extinction of nozzles or nozzles, or screening of said spray.
- the plate is cooled in an enclosure comprising nozzles or spray nozzles for liquid or mist cooling under pressure, typically water and preferably deionized.
- the nozzles or nozzles are distributed in the upper and lower parts of said cell, so as to spray the two large faces, upper and lower, of the tray.
- the option of a parade method limits the risk of hot spots related to the contacts between the plate and its support, usually consisting of cylindrical or conical rollers.
- the average cooling of the plateau ( ⁇ Tmoy plateau) is controlled by the duration of spray seen by each section of the plateau. During this phase, the plateau is thermally very heterogeneous in its thickness, due to a high value of the Biot number.
- the spraying phase is therefore designed to limit the thermal heterogeneities in the three directions of the plate.
- the invention makes it particularly possible to control the thermal profiles in the cross direction and in the long direction of the plate, which is very appreciable since possible thermal gradients along these two large dimensions would be difficult to absorb in a short time.
- the invention can also be adapted to absolute values of high cooling.
- the average cooling of the desired plateau is greater than typically 80 ° C, it is possible to cycle several times all the phases “spraying” and “uniformization”, reducing each cycle “spraying-standardization” the average temperature of a very thick plate.
- the method thus described ensures rapid and controlled cooling of a thick plate, in particular a rolling plate, made of aluminum alloy. It is also robust and avoids the known risks of local overcooling.
- the machine, or cooling system itself consists of at least one spraying cell, typically horizontal to the parade, on the one hand and, on the other hand, at least one thermal uniformization tunnel.
- the spraying cell allows the implementation of phase 1 of the method described above.
- the plate On leaving the spraying cell, the plate is transferred, for example by means of automatic trolleys, into one or more tunnel (s) of uniformity.
- the aim of the tunnel is to minimize the heat transfer between the plateau and the air, which is favorable to a better thermal uniformity of the plateau.
- This thermal uniformization takes place by diffusion of heat in the tray, the core warming the surfaces of the tray.
- the uniformization tunnel consists of vertical walls and a roof in an ideally reflective material on the inside of the tunnel. It avoids drafts around the tray, ensuring the absence of heat transfer by forced convection. In addition, it reduces natural convection heat transfer and limits radiative transfer if the walls are reflective.
- the machine or cooling system composed of the spraying cell and the uniformization tunnel is controlled by a thermal model coded on the automaton of the machine.
- the thermal model determines the settings of the machine according to the temperature at the start of the spray cell, or inlet temperature, and depending on the target output temperature, usually the rolling temperature.
- Example 1 Uniform cooling of 40 ° C of an alloy plate AA3104 type.
- the plateau surface temperature drops to about 320 ° C, while the core of the plateau remains almost isothermal during the spraying phase. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.
- the thermal gap in the plateau (DTmax) is maximum at the end of the spraying phase, its value is 280 ° C for this configuration. It reduces rapidly when the sprinkling stops: in 6 minutes of waiting (transfer and then uniformization in the tunnel), the thermal deviation DTmax is reduced to less than 40 ° C.
- Example 2 135 ° C uniform cooling of an alloy plate AA6016 type.
- the surface temperature of the tray drops to about 60 ° C.
- the core of the plate remains almost isothermal during the first phase of spraying and then cools during the second phase of spraying. Then, by diffusion of heat between the heart and the surface, the heart gives up heat to the surface, the plate becomes thermally uniform.
- the thermal gap in the plateau (DTmax) is maximum at the end of each of the sprinkling phases, its value is 470 ° C for this configuration. It is reduced rapidly when the sprinkling of the plateau ceases: the temperature difference DTmax plateau is 55 ° C after 13 minutes waiting in the tunnel and becomes less than 40 ° C after 23 minutes spent in the tunnel.
- Example 3 uniform cooling of 125 ° C of an alloy of the AA6016-type tray.
- Example 3 shows that the judicious choice of watering heels makes it possible to significantly reduce the uniformization time after spraying.
- the choice of heels may be different from one pass to another.
- the heel chosen in the first pass wins to be opposite to the heel chosen in the second pass.
- a first pass with a zero heel (continuous watering of the plate) followed by a second pass with a heel of a pair of ramps can significantly reduce the uniformization time required for the thermal balancing of the plate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Metal Rolling (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Continuous Casting (AREA)
- Heat Treatment Of Articles (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Fertilizers (AREA)
Abstract
Description
- L'invention concerne le domaine du laminage des plaques ou plateaux en alliages d'aluminium.
Plus précisément, l'invention concerne un procédé de refroidissement particulièrement rapide, homogène et reproductible du plateau entre les opérations d'homogénéisation et de laminage à chaud.
L'invention concerne également l'installation ou équipement permettant la mise en oeuvre dudit procédé. - La transformation des plateaux de laminage en alliage d'aluminium issus de la coulée exige, avant laminage à chaud, un traitement thermique d'homogénéisation métallurgique. Ce traitement thermique est opéré à une température proche du solvus de l'alliage, plus élevée que la température de laminage à chaud. L'écart entre la température d'homogénéisation et la température de laminage à chaud est compris entre 30 et 150°C, selon les alliages. Le plateau doit donc être refroidi entre sa sortie du four d'homogénéisation et son laminage à chaud. Pour des raisons soit de productivité, soit de structure métallurgique, notamment éviter certains défauts de surface sur la tôle finie, il est très souhaitable de pouvoir réaliser le refroidissement du plateau entre sa sortie du four d'homogénéisation et le laminoir à chaud de manière rapide.
Cette vitesse de refroidissement du plateau souhaitée est comprise entre 150 et 500°C/h. - Compte tenu de la forte épaisseur des plateaux de laminage en alliage d'aluminium, soit entre 250 et 800 mm, le refroidissement à l'air est particulièrement lent : la vitesse de refroidissement à l'air d'un plateau de 600 mm d'épaisseur est comprise entre 40°C/h à l'air calme ou sous convection naturelle, et 100°C/h sous air ventilé ou convection forcée.
Le refroidissement à l'air ne permet donc pas d'atteindre les vitesses de refroidissement souhaitées.
Le refroidissement au moyen d'un liquide ou d'un brouillard (mélange d'air et de liquide) est nettement plus rapide car la valeur du coefficient d'échange, connu de l'homme du métier sous l'appellation HTC (Heat Transfer Coefficient), entre un liquide ou un brouillard et la surface chaude du plateau métallique est nettement supérieure à la valeur de ce même coefficient entre l'air et le plateau.
Le liquide choisi seul ou dans le brouillard est par exemple de l'eau et, dans ce cas, idéalement de l'eau désionisée. Ainsi, le coefficient HTC est compris entre 2000 et 20000 W/(m2.K) entre de l'eau et le plateau chaud tandis qu'il est compris entre 10 et 30 W/(m2.K) entre de l'air et le plateau chaud. - En revanche, le refroidissement au moyen d'un liquide ou brouillard génère habituellement de manière naturelle de forts gradients thermiques dans le plateau :
- Le nombre adimensionnel de Biot illustre l'homogénéité thermique du refroidissement. Il correspond au rapport de la résistance thermique interne d'un corps (transfert de chaleur interne par conduction) à sa résistance thermique de surface (transfert de chaleur par convection et rayonnement).
- HTC étant le coefficient d'échange entre le fluide et le plateau,
- D, la dimension caractéristique du système, ici la demi-épaisseur du plateau,
- λ, la conductivité thermique du métal, par exemple, pour un alliage d'aluminium, 160 W/(m2.K).
- Si Bi << 1, le système est pratiquement isotherme, le refroidissement est uniforme. Si Bi >> 1, le système est thermiquement très hétérogène et le plateau est le siège de forts gradients thermiques.
- Pour un plateau d'épaisseur 600 mm, le nombre de Biot vaut :
- Entre 0.02 et 0.06 pour un refroidissement à l'air calme ou ventilé. Le nombre de Biot est faible devant 1, le plateau est refroidi de manière isotherme.
- Entre 4 et 40 pour un refroidissement à l'eau. Le nombre de Biot est fort devant 1, le plateau est refroidi de manière très hétérogène dans son épaisseur.
- Cette hétérogénéité se traduit également dans la largeur du plateau, en raison des effets de bords et d'arêtes, naturellement plus refroidies que les grandes faces du plateau.
Elle se traduit aussi dans la longueur du plateau, par effet de coin, naturellement refroidi suivant les trois faces le constituant. - L'hétérogénéité thermique est un handicap majeur du refroidissement à l'aide d'un liquide ou brouillard. Elle pose problème non seulement pour le procédé suivant, c'est à dire le laminage à chaud mais elle est aussi potentiellement néfaste pour la qualité finale du produit, à savoir l'alliage d'aluminium vendu sous forme de bobines ou de tôles à hautes caractéristiques mécaniques.
Les dispositifs connus de l'art antérieur ne cherchent pas à limiter cette hétérogénéité du refroidissement.
Les procédés de refroidissement à l'aide d'un liquide de refroidissement connus de l'art antérieur, notamment pour les tôles fortes, opèrent soit par immersion dans un bac, soit par passage dans un caisson d'aspersion mais sans attention particulière portée à la maîtrise de l'équilibre thermique du produit.
Ainsi, ces procédés ne permettent : - Ni d'obtenir un champ thermique uniforme dans le plateau refroidi
- Ni de garantir la reproductibilité du refroidissement d'un plateau à l'autre.
- L'invention a pour objectif de corriger l'ensemble des défauts majeurs liés aux procédés de refroidissement de plateaux épais de l'art antérieur et d'assurer :
- Un refroidissement rapide, à une vitesse d'au moins 150°C/h, et conséquent, soit de 30 à 150°C de refroidissement à partir d'une température de l'ordre de 450 à 600°C
- Un champ thermique homogène et maitrisé dans l'ensemble du plateau
- L'assurance d'une parfaite reproductibilité d'un plateau épais à l'autre.
- L'invention a pour objet un procédé de refroidissement d'un plateau de laminage en alliage d'aluminium de dimensions typiques de 250 à 800 mm en épaisseur, 1000 à 2000 mm en largeur et 2000 à 8000 mm en longueur, après le traitement thermique d'homogénéisation métallurgique dudit plateau à une température typiquement comprise entre 450 à 600°C selon les alliages et avant son laminage à chaud, caractérisé en ce que le refroidissement, d'une valeur de 30 à 150°C, est effectué à une vitesse de 150 à 500°C/h, avec un écart thermique de moins de 40°C sur l'ensemble du plateau refroidi à partir de sa température d'homogénéisation.
On entend par écart thermique l'écart maximum entre températures relevées sur l'ensemble du volume du plateau, ou encore DTmax.
Avantageusement, le refroidissement est effectué en au moins deux phases :
Une première phase d'aspersion au cours de laquelle le plateau est refroidi dans une enceinte comportant des rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression, réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,
Une phase complémentaire d'uniformisation thermique à l'air calme, dans un tunnel aux parois intérieures réflectives, d'une durée de 2 à 30 minutes selon le format du plateau et la valeur du refroidissement.
Typiquement, cette durée est d'environ 30 min pour un refroidissement total de l'ordre de 150°C à partir de sensiblement 500°C, et de quelques minutes pour un refroidissement de l'ordre de 30°C.
Selon une variante de l'invention, les phases d'aspersion et uniformisation thermique sont répétées, dans le cas de plateaux très épais et pour un refroidissement moyen global supérieur à 80°C.
Le plus couramment, le liquide de refroidissement, y compris dans un brouillard, est de l'eau, et de préférence de l'eau désionisée. - Selon un mode de réalisation particulière, la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, sont moins refroidis que le reste du plateau, de façon à maintenir une tête et un pied chaud, configuration favorable à l'engagement du plateau lors d'un laminage à chaud réversible.
A cette fin, le refroidissement de la tête et du pied peut être modulé soit par la mise en route ou l'extinction des rampes de buses ou tuyères d'aspersion, soit par la présence d'écrans empêchant ou réduisant l'aspersion par lesdites buses ou tuyères. Par ailleurs, les phases d'aspersion, et pas d'uniformisation thermique, peuvent être répétées, et la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, refroidis différemment que le reste du plateau au moins dans une des cellules d'aspersion.
Selon une version conforme à cette dernière option, la première passe d'aspersion est effectuée avec un talon nul, soit un arrosage continu du plateau tel qu'enfigure 14 , suivie, sans première phase d'uniformisation thermique, d'une seconde passe d'aspersion avec un talon d'un couple de rampes tel qu'enfigure 12 , permettant ainsi de réduire notablement la durée de la phase finale d'uniformisation nécessaire à l'équilibrage thermique du plateau.
Selon une variante préférée de l'invention, l'uniformité thermique longitudinale du plateau est améliorée par un mouvement relatif du plateau par rapport au système d'aspersion : défilé ou va et vient du plateau face à un système d'aspersion fixe ou inversement, déplacement des buses ou tuyères par rapport au plateau. Typiquement, le plateau défile horizontalement dans la cellule d'aspersion et sa vitesse de défilement est supérieure ou égale à 20 mm/s, soit 1.2 m/min. Préférentiellement encore, l'uniformité thermique transversale du plateau est assurée par modulation de l'aspersion dans la largeur du plateau par allumage/extinction de buses ou tuyères, ou écrantage de ladite aspersion. - L'invention a également pour objet une installation pour mise en oeuvre du procédé tel que ci-dessus, comportant une cellule d'aspersion munie de rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression disposées en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,
Un tunnel d'uniformisation à l'air calme au sortir de la cellule d'aspersion, dans un tunnel aux parois intérieures et au toit en une matière intérieurement réflective, autorisant une uniformisation thermique du plateau par diffusion de la chaleur dans ledit plateau, le coeur en réchauffant les surfaces.
Selon un mode de réalisation préférentielle :
Les buses de liquide ou brouillard de refroidissement génèrent des sprays ou jets à cône plein dont l'angle est compris entre 45 et 60°
Les axes des buses inférieures sont orientés normalement à la surface inférieure
De préférence, les rampes de buses supérieures sont appariées dans le sens de défilement du plateau. Dans une même paire, les rampes supérieures sont inclinées de telle sorte que : - Les jets des deux rampes de buses supérieures appariées soient orientés en opposition l'un de l'autre.
- Les jets présentent une bordure normale à la surface supérieure du plateau
- Le recouvrement des deux jets soit compris entre le 1/3 et les 2/3 de la largeur de chaque jet, et préférentiellement sensiblement de la moitié
- L'enveloppe des deux jets ainsi formée constitue un profil en M.
- Centrage du plateau, à l'entrée de l'installation
- Mesure de la température de surface supérieure du plateau
- Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température cible d'entrée et de la température cible de sortie, c'est dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes activées, du nombre de buses ouvertes en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, et du temps de maintien dans le tunnel d'uniformisation
- Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate
- Transfert du plateau de la cellule d'aspersion vers le tunnel d'uniformisation
- Maintien du plateau dans le tunnel d'uniformisation pendant une durée déterminée par l'automate.
-
- La
figure 1 représente un schéma de principe du procédé selon l'invention en une passe. Le plateau est défourné du four d'homogénéisation 1 à sa température d'homogénéisation. Il est transféré vers la machine de refroidissement, centré latéralement puis sa température de surface est mesurée (2) par thermocouple de surface, par contact ou à l'aide d'un pyromètre infrarouge mais qui sera moins précis. Le modèle thermique détermine le réglage de la cellule d'aspersion 3 (nombre de couples de rampes activées et vitesse de défilement du plateau). Puis le plateau est traité dans la cellule d'aspersion. A sa sortie, il est sec et transféré (4) vers un tunnel d'uniformisation 5 pour une durée déterminée par modèle thermique ou selon l'amplitude du refroidissement subi. A l'issue, il est transféré vers le laminoir à chaud 6. - La
figure 2 représente un schéma de principe du procédé selon l'invention en deux passes ou plus. Lorsque l'amplitude cible de refroidissement est supérieure à 100°C, un seul passage dans la machine de refroidissement peut être insuffisant. Dans ce cas, le plateau est refroidi une première fois dans la première cellule d'aspersion 3. Puis, avec ou sans passage dans le tunnel d'uniformisation intermédiaire 5, le plateau est transféré dans la seconde machine de refroidissement composée des éléments 6, 7 et 8, où il subit un cycle complet : cellule d'aspersion puis obligatoirement tunnel d'uniformisation 8. La durée de la dernière phase d'uniformisation dépend de la diffusivité thermique du matériau, donc de l'alliage, de l'amplitude cible de refroidissement, et de la sévérité de l'uniformité thermique cible avant laminage à chaud 9.
Le refroidissement multi passes peut également être réalisé avec une seule machine, par passages successifs. - La
figure 3 est un plan schématique de la machine d'aspersion, vue de profil, le plateau défilant de gauche à droite. Elle illustre la disposition des jets de liquide ou brouillard aspergé sur le plateau, vue de profil, en face supérieure et en face inférieure. Les rampes d'arrosage supérieures et inférieures sont appariées et en vis à vis par paire, pour garantir une bonne uniformité de refroidissement dans l'épaisseur du plateau. Les rampes supérieures appariées sont orientées en opposition, ce qui garantit une évacuation du liquide ou brouillard aspergé transversalement au plateau. Les axes des buses inférieures sont orientés normalement à la surface inférieure du plateau, le liquide s'écoule par gravité. Des rampes d'air comprimé (1 à 4) encadrent les extrémités de la cellule d'aspersion pour éviter tout ruissellement résiduel de liquide sur le plateau en dehors de ladite cellule. - La
figure 4 illustre l'impact des jets de liquide ou brouillard supérieurs, en vue de dessus du plateau. On note la concentration du débit surfacique de liquide ou brouillard à l'intersection des jets en opposition. Ce schéma d'arrosage est favorable à l'évacuation du liquide le long de cette ligne transverse à fort débit surfacique. - La
figure 5 représente la cinétique thermique d'un plateau de 600 mm, calculée dans le cas d'un refroidissement moyen de 40°C, en une passe dans la machine d'aspersion, pour un alliage du type AA3104 selon les désignations définies par l' « Aluminum Association » dans les « Registration Record Sériés » qu'elle publie régulièrement. Y figurent les évolutions des températures minimum Tmin, maximum Tmax et moyenne Tmoy dans le plateau, ainsi que de l'écart maximum de température dans tout le volume du plateau, au cours du temps (DTmax). - La
figure 6 représente la cinétique thermique d'un plateau de 600 mm, calculée dans le cas d'un refroidissement moyen de 130°C, en deux passes dans la machine d'aspersion, pour un alliage du type AA6016 selon les désignations définies par l'« Aluminum Association » dans les « Registration Record Sériés » qu'elle publie régulièrement. Y figurent de la même façon les évolutions des températures minimum Tmin, maximum Tmax et moyenne Tmoy dans le plateau, ainsi que de l'écart maximum de température dans tout le volume du plateau, au cours du temps (DTmax). - Les
figures 7 à 9 illustrent trois modes ou stratégies d'arrosage en sens travers de la machine d'aspersion, avec représentation de la position des buses sur les rampes d'aspersion, la machine d'aspersion étant vue de face dans tous les cas :-
Figure 7 : Profil thermique uniforme dans la largeur du plateau -
Figure 8 : Profil thermique à rives froides, créé par un surplus d'arrosage sur les rives du plateau -
Figure 9 : Profil thermique à rives chaudes, créé par un déficit d'arrosage sur les rives du plateau.
-
- La
figure 10 présente deux modes ou stratégies de largeur d'arrosage d'un même plateau en alliage d'aluminium de 600 mm d'épaisseur et de 1700 mm de largeur, à gauche un profil thermique dans le sens travers à rives froides avec 11 buses en action, à droite un profil thermique à rives chaudes avec 9 buses en action. - La
figure 11 est la conséquence sur le profil thermique (température en °C en fonction de la position dans le sens travers, à partir de l'axe du plateau, en m) de ces deux modes d'aspersion. - Les
Figures 12 à 14 illustrent trois exemples de modes ou stratégies de déclenchement de l'arrosage.
En effet, le profil thermique dans le sens long du plateau est maitrisé par : L'absence ou le très faible ruissellement dans le sens long du plateau, grâce au montage des rampes supérieures en opposition,
Le déclenchement et l'arrêt de l'arrosage de chaque couple de rampes à une position précise du plateau : c'est la notion de talon d'arrosage.
Lafigure 12 correspond à une gestion du profil thermique dans le sens long à extrémités chaudes, lafigure 13 à extrémités tièdes et lafigure 14 à extrémités froides (avec un ruissellement en 1). - La
Figure 15 illustre les profils thermiques longitudinaux (température en °C en fonction de la position dans la longueur L du plateau en m) pour les trois stratégies de gestion thermique des extrémités du plateau précitées. Dans cet exemple, le plateau est en alliage du type AA6016, d'épaisseur 600 mm, son refroidissement moyen est de 100°C en deux passes, et le temps en caisson d'uniformisation thermique est de 10 min. - Les
Figures 16 à 18 illustrent le champ thermique, en visualisation 3D, du même exemple, en entrée de laminage à chaud, pour les trois stratégies de gestion thermique des extrémités du plateau précitées, lafigure 16 à extrémités chaudes, lafigure 17 à extrémités tièdes et lafigure 18 à extrémités froides.
On voit que la stratégie de déclenchement de l'arrosage permet clairement de maitriser le profil thermique longitudinal du plateau. - La
Figure 19 illustre le champ thermique d'un plateau en alliage du type AA6016, de 600 mm d'épaisseur, refroidi d'environ 50°C en une passe dans la machine d'aspersion réglée avec un talon d'arrosage d'une seule rampe aux extrémités du plateau, conformément à lafigure 13 . Ce réglage conduit à un champ thermique très uniforme avec des extrémités légèrement plus chaudes, ce qui est favorable au laminage. - L'invention consiste essentiellement dans un procédé de refroidissement à l'aide d'un liquide ou brouillard de refroidissement d'une plaque ou d'un plateau de laminage d'alliage d'aluminium, de 30 à 150°C en quelques minutes, c'est-à-dire à une vitesse de refroidissement moyenne comprise entre 150 et 500°C/heure.
Il est constitué principalement de deux phases : - Une première phase d'aspersion du plateau à l'aide d'un liquide ou brouillard de refroidissement, typiquement au défilé
- Une deuxième phase d'uniformisation thermique du plateau.
- Pendant la première phase d'aspersion, le plateau est refroidi dans une enceinte comportant des buses ou tuyères d'aspersion de liquide ou brouillard refroidissant sous pression, typiquement de l'eau et de préférence désionisée.
Les buses ou tuyères sont réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure, du plateau. L'option d'un procédé au défilé permet de limiter les risques de points chauds liés aux contacts entre le plateau et son support, en général constitué de rouleaux cylindriques ou coniques.
Le refroidissement moyen du plateau (ΔTmoy plateau) est contrôlé par la durée d'aspersion vue par chaque section du plateau.
Durant cette phase, le plateau est thermiquement très hétérogène dans son épaisseur, du fait d'une valeur du nombre de Biot élevée. - L'homogénéité de refroidissement dans la largeur du plateau est maitrisée par :
- a) Le contrôle de la largeur d'arrosage dans le sens travers du plateau, par le nombre de buses activées ou l'utilisation d'écrans
- b) Une méthode d'aspersion favorisant l'évacuation latérale de l'eau aspergée en face supérieure. En effet, le liquide de refroidissement est guidé vers les rives du plateau et s'évacue sous forme d'une cascade sans toucher les petites faces dudit plateau. Le refroidissement du plateau est de ce fait très homogène. Cette méthode consiste en fait à apparier deux rampes de buses, placées en opposition, comme le montrent notamment les
figures 3 et 4 . - L'homogénéité de refroidissement dans la longueur du plateau est maitrisée par :
- c) Le contrôle du début et de la fin de l'aspersion par déclenchement des rampes d'aspersion à la position souhaitée sur le plateau ou, à nouveau, par l'utilisation d'écrans. Ainsi la tête et le pied du plateau peuvent ne pas être aspergés. On obtient alors un plateau avec une tête et un pied chaud, ce qui est favorable à son engagement lors du laminage réversible à chaud
- d) La forte réduction du ruissellement dans le sens long du plateau. Ce très faible ruissellement est obtenu grâce à la caractéristique b) ci-dessus de l'invention, favorisant l'évacuation latérale du liquide de refroidissement aspergé en face supérieure du plateau.
- La phase d'aspersion est donc conçue pour limiter les hétérogénéités thermiques dans les trois directions du plateau, L'invention permet tout particulièrement de maîtriser les profils thermiques dans le sens travers et dans le sens long du plateau, ce qui est très appréciable puisque des éventuels gradients thermiques le long de ces deux grandes dimensions seraient difficiles à résorber dans un court délai.
- Suit la phase d'uniformisation thermique du plateau :
Après aspersion, le plateau est maintenu quelques minutes dans une configuration de faible échange de chaleur avec son environnement. Ces conditions thermiques permettent l'uniformisation thermique du plateau, en quelques minutes pour les refroidissements de moins de 30°C et en environ 30 minutes maximum pour des refroidissements de 150°C. Cette phase est essentielle à l'atteinte des spécifications d'uniformité thermique demandées. Elle permet d'atteindre un écart thermique DTmax de moins de 40°C sur un plateau de grandes dimensions. - L'invention peut également être adaptée à des valeurs absolues de refroidissements élevées. Ainsi, lorsque le refroidissement moyen du plateau souhaité est supérieur à typiquement 80°C, il est possible de cycler plusieurs fois l'ensemble des phases «aspersion» et «uniformisation», en réduisant à chaque cycle d'« aspersion-uniformisation » la température moyenne d'un plateau très épais.
- Le procédé ainsi décrit assure un refroidissement rapide et maîtrisé d'une plaque épaisse, notamment un plateau de laminage, en alliage d'aluminium. Il est par ailleurs robuste et évite les risques connus de sur-refroidissements locaux.
- La machine, ou installation de refroidissement, elle-même est constituée d'au moins une cellule d'aspersion, typiquement horizontale au défilé, d'une part et, d'autre part, d'au moins un tunnel d'uniformisation thermique.
- La cellule d'aspersion permet la mise en oeuvre de la phase 1 du procédé décrit plus haut.
- Les étapes de traitement du plateau dans cette machine ou installation sont les suivantes :
- 1) Centrage du plateau, à l'entrée de la machine
- 2) Mesure de la température de surface supérieure du plateau
- 3) Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température d'entrée et de la température cible de sortie, c'est à dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes de buses activées, du nombre de buses ouvertes en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, du temps de maintien dans le tunnel d'uniformisation
- 4) Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate.
- La cellule d'aspersion est constituée de rampes munies de buses ou tuyères de distribution sous pression du liquide ou brouillard de refroidissement.
Dans le cas où ce dernier est de l'eau, celle-ci est idéalement desionisée ou du moins très propre et très peu minéralisée, afin d'éviter l'encrassement des buses et pour assurer la stabilité du transfert de chaleur entre l'eau et le plateau. La machine d'aspersion peut avantageusement, pour des raisons d'économie notamment, fonctionner en cycle fermé, avec par exemple un bassin récupérateur placé sous la machine d'aspersion.
Les buses de liquide ou brouillard de refroidissement choisies génèrent des sprays ou jets à cône plein, dont l'angle est compris entre 45 et 60° (dans l'exemple : buses à cône plein à 60° d'angle, de marque LECHLER). Les axes des buses des rampes inférieures sont orientés normalement à la surface inférieure. Les rampes supérieures sont appariées. Dans une même paire de rampes supérieures, les rampes sont inclinées de telle sorte que : - Les jets des deux rampes soient orientés en opposition l'un de l'autre
- Les jets présentent une bordure normale à la surface supérieure du plateau
- Le recouvrement des deux jets soit compris entre le 1/3 et les 2/3 de la largeur du jet, et préférentiellement sensiblement de la moitié
- L'enveloppe des deux jets ainsi formée constitue donc un profil en M
- Les paires de rampes de buses supérieures et inférieures sont placées sensiblement en vis-à-vis, de façon à ce que les longueurs d'aspersion supérieures et inférieures soient sensiblement égales et en vis-à-vis.
- Au sortir de la cellule d'aspersion, le plateau est transféré, par exemple à l'aide de chariots automatiques, dans un ou plusieurs tunnel(s) d'uniformisation. L'objectif du tunnel est de réduire au maximum les transferts thermiques entre le plateau et l'air, ce qui est favorable à une meilleure uniformisation thermique du plateau. Cette uniformisation thermique a lieu par diffusion de la chaleur dans le plateau, le coeur réchauffant les surfaces du plateau.
Le tunnel d'uniformisation est constitué de parois verticales et d'un toit dans une matière idéalement réflective côté intérieur du tunnel.
Il évite les courants d'air autour du plateau, assurant l'absence de transfert de chaleur par convection forcée. Par ailleurs, il réduit les transferts de chaleur par convection naturelle et limite les transferts radiatifs si les parois sont réflectives. - Enfin, la machine ou installation de refroidissement composée de la cellule d'aspersion et du tunnel d'uniformisation, est pilotée par un modèle thermique codé sur l'automate de la machine. Le modèle thermique détermine les réglages de la machine en fonction de la température en début de cellule d'aspersion, ou température d'entrée, et en fonction de la température cible de sortie, en général la température de laminage.
- La
figure 5 illustre le refroidissement de 40°C d'un plateau en alliage du type AA3104 selon les désignations définies par l'« Aluminum Association » dans les « Registration Record Sériés » qu'elle publie régulièrement. L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 600°C.
Le procédé de refroidissement du plateau est le procédé à une passe, décrit enfigure 1 .
Le plateau est transféré vers la machine de refroidissement en 180 s. Ce temps de transfert comprend : - le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
- le centrage latéral du plateau
- la mesure de la température de surface supérieure du plateau
- le temps de calcul par l'automate des réglages de la machine de refroidissement (cellule d'aspersion et tunnel).
- La température de surface du plateau descend à environ 320°C, tandis que le coeur du plateau reste quasiment isotherme durant la phase d'aspersion. Puis, par diffusion de la chaleur entre le coeur et la surface, le coeur cède de la chaleur à la surface, le plateau s'uniformise thermiquement.
- L'écart thermique dans le plateau (DTmax) est maximal à la fin de la phase d'aspersion, sa valeur est de 280°C environ pour cette configuration. Il se réduit rapidement dès lors que l'aspersion du plateau cesse : en 6 minutes d'attente (transfert puis uniformisation dans le tunnel), l'écart thermique DTmax est réduit à moins de 40°C.
- La
figure 6 illustre le refroidissement de 135°C d'un plateau en alliage du type AA6016. L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 530°C.
Le procédé de refroidissement du plateau est le procédé à deux passes, décrit enfigure 2 .
Le plateau est transféré vers la machine de refroidissement en 100 s. Ce temps de transfert comprend : - le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
- le centrage latéral du plateau
- la mesure de la température de surface supérieure du plateau
- le temps de calcul par l'automate des réglages des machines de refroidissement.
- La température de surface du plateau descend à environ 60°C. Le coeur du plateau reste quasiment isotherme durant la première phase d'aspersion puis refroidit au cours de la seconde phase d'aspersion. Puis, par diffusion de la chaleur entre le coeur et la surface, le coeur cède de la chaleur à la surface, le plateau s'uniformise thermiquement.
- L'écart thermique dans le plateau (DTmax) est maximal à la fin de chacune des phases d'aspersion, sa valeur est de 470°C environ pour cette configuration. Il se réduit rapidement dès lors que l'aspersion du plateau cesse : l'écart thermique DTmax du plateau est de 55°C après 13 minutes d'attente dans le tunnel et devient inférieur à 40°C après 23 minutes passées dans le tunnel.
- L'épaisseur du plateau est de 600 mm, sa largeur de 1850 mm et sa longueur de 4100 mm. Le plateau sort du four d'homogénéisation à 530°C.
Le procédé de refroidissement du plateau est le procédé à deux passes, décrit enfigure 2 .
Le plateau est transféré vers la machine de refroidissement en 100 s. Ce temps de transfert comprend : - le déplacement du plateau entre la sortie du four et l'entrée de la machine de refroidissement
- le centrage latéral du plateau
- la mesure de la température de surface supérieure du plateau
- le temps de calcul par l'automate des réglages des machines de refroidissement.
- L'exemple 3 montre que le choix judicieux des talons d'arrosage permet de réduire notablement la durée d'uniformisation après aspersion. Pour un procédé de refroidissement à plusieurs passes, le choix des talons peut être différent d'une passe à l'autre. Pour un procédé de refroidissement en 2 passes, le talon choisi en première passe gagne à être contraire au talon choisi en seconde passe. De manière optimisée et pour un refroidissement à 2 passes, une première passe avec un talon nul (arrosage continu du plateau) suivie d'une seconde passe avec un talon d'un couple de rampes permet de réduire notablement la durée d'uniformisation nécessaire à l'équilibrage thermique du plateau.
Du fait de l'appariement des buses supérieures en opposition et du profil en M des jets, la longueur d'aspersion est contrôlée de façon à favoriser l'évacuation latérale du liquide ou brouillard aspergé en face supérieure, en le guidant vers les rives du plateau où il s'évacue sous forme d'une cascade sans toucher les petites faces du plateau autorisant ainsi un refroidissement très homogène en température dans les sens longitudinal et transversal du plateau.
Quant au liquide seul ou contenu dans le brouillard de refroidissement, il peut être récupéré, typiquement dans un conteneur situé sous l'installation, recyclé et thermiquement contrôlé.
Selon un mode de mise en oeuvre perfectionnée, l'ensemble de l'installation, cellule d'aspersion et tunnel d'uniformisation, est piloté par un modèle thermique codé sur automate, le modèle thermique déterminant les réglages de l'installation en fonction de la température estimée par mesure thermique en début de cellule d'aspersion et en fonction de la température cible de sortie, en général la température de début de laminage à chaud.
Selon un mode de réalisation avantageux, la mise en oeuvre de l'installation, comporte les étapes suivantes :
Claims (17)
- Procédé de refroidissement d'un plateau de laminage en alliage d'aluminium de dimensions typiques de 250 à 800 mm en épaisseur, 1000 à 2000 mm en largeur et 2000 à 8000 mm en longueur, après le traitement thermique d'homogénéisation métallurgique dudit plateau à une température typiquement comprise entre 450 à 600°C selon les alliages et avant son laminage à chaud, caractérisé en ce que le refroidissement, d'une valeur de 30 à 150°C, est effectué à une vitesse de 150 à 500°C/h, avec un écart thermique de moins de 40°C sur l'ensemble du plateau refroidi à partir de sa température d'homogénéisation.
- Procédé selon la revendication 1 caractérisé en ce que le refroidissement est effectué en au moins deux phases :Une première phase d'aspersion au cours de laquelle le plateau est refroidi dans une enceinte comportant des rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression, réparties en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,Une phase complémentaire d'uniformisation thermique à l'air calme, dans un tunnel aux parois intérieures réflectives, d'une durée de 2 à 30 minutes selon le format du plateau et la valeur du refroidissement.
- Procédé selon la revendication 2, caractérisé en ce que les phases d'aspersion et uniformisation thermique sont répétées, dans le cas de plateaux très épais et pour un refroidissement moyen global supérieur à 80°C.
- Procédé selon l'une des revendications 2 ou 3, caractérisé en ce que le liquide, y compris dans un brouillard, de refroidissement est de l'eau, et de préférence de l'eau désionisée.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, sont moins refroidis que le reste du plateau de façon à maintenir une tête et un pied chaud, configuration favorable à l'engagement du plateau lors d'un laminage à chaud réversible.
- Procédé selon l'une des revendications 2 à 5, caractérisé en ce que le refroidissement de la tête et du pied est modulé par la mise en route ou l'extinction des rampes de buses ou tuyères d'aspersion.
- Procédé selon l'une des revendications 2 à 5, caractérisé en ce que le refroidissement de la tête et du pied est modulé par la présence d'écrans.
- Procédé selon l'une des revendications 2 à 7, caractérisé en ce que les phases d'aspersion, et pas d'uniformisation thermique, sont répétées, et en ce que la tête et le pied du plateau, soit typiquement les 300 à 600 mm aux extrémités, sont refroidis différemment que le reste du plateau au moins dans une des cellules d'aspersion.
- Procédé selon la revendication 8, caractérisé en ce que la première passe d'aspersion est effectuée avec un talon nul, soit un arrosage continu du plateau, suivie, sans première phase d'uniformisation thermique, d'une seconde passe d'aspersion avec un talon d'un couple de rampes tel qu'en figure 12, permettant ainsi de réduire notablement la durée de la phase finale d'uniformisation nécessaire à l'équilibrage thermique du plateau.
- Procédé selon l'une des revendications 2 à 9, caractérisé en ce que l'uniformité thermique longitudinale du plateau est améliorée par un mouvement relatif du plateau par rapport au système d'aspersion : défilé ou va et vient du plateau face à un système d'aspersion fixe ou inversement.
- Procédé selon la revendication 10, caractérisé en ce que le plateau défile horizontalement dans la cellule d'aspersion et sa vitesse de défilement est supérieure ou égale à 20 mm/s, soit 1.2 m/min.
- Procédé selon l'une des revendications 2 à 11, caractérisé en ce que l'uniformité thermique transversale du plateau est assurée par modulation de l'aspersion dans la largeur du plateau par allumage/extinction de buses ou tuyères, ou écrantage de ladite aspersion,
- Installation pour mise en oeuvre du procédé selon l'une des revendications 1 à 12, caractérisée en ce qu'elle comporte :Une cellule d'aspersion munie de rampes de buses ou tuyères d'aspersion de liquide ou brouillard de refroidissement sous pression disposées en parties haute et basse de ladite cellule, de façon à asperger les deux grandes faces, supérieure et inférieure dudit plateau,Un tunnel d'uniformisation à l'air calme au sortir de la cellule d'aspersion, dans un tunnel aux parois intérieures et au toit en une matière intérieurement réflective, autorisant une uniformisation thermique du plateau par diffusion de la chaleur dans ledit plateau, le coeur en réchauffant les surfaces.
- Installation selon la revendication 13, caractérisée en ce que :Les buses de liquide ou brouillard de refroidissement de la cellule d'aspersion génèrent des jets à cône plein dont l'angle est compris entre 45 et 60°Les axes des buses inférieures sont orientés normalement à la surface inférieure Les rampes de buses supérieures sont appariées dans le sens de défilement du plateau. Dans une même paire, les rampes supérieures sont inclinées de telle sorte que :- Les jets des deux rampes de buses appariées soient orientés en opposition l'un de l'autre.- Les jets présentent une bordure normale à la surface supérieure du plateau- Le recouvrement des jets des deux rampes appariées soit compris entre le 1/3 et les 2/3 de la largeur de chaque jet, et préférentiellement sensiblement de la moitié.- L'enveloppe des deux jets ainsi formée constitue un profil en M.Les paires de rampes de buses supérieures et inférieures sont placées sensiblement en vis-à-vis, de façon à ce que les longueurs d'aspersion supérieures et inférieures soient sensiblement égales et en vis-à-vis.
- Installation selon l'une des revendications 13 ou 14, caractérisée en ce que le liquide de refroidissement est récupéré après aspersion, typiquement dans un conteneur situé sous l'installation, recyclé et thermiquement contrôlé.
- Mise en oeuvre de l'installation selon l'une des revendications 13 à 15, caractérisée en ce que l'ensemble de l'installation, cellule d'aspersion et tunnel d'uniformisation, est piloté par un modèle thermique codé sur automate, le modèle thermique déterminant les réglages de l'installation en fonction de la température estimée par mesure thermique en début de cellule d'aspersion et en fonction de la température cible de sortie, en général la température de début de laminage à chaud.
- Mise en oeuvre de l'installation selon la revendication 16, caractérisée en ce qu'elle comporte les étapes suivantes :- Centrage du plateau, à l'entrée de l'installation- Mesure de la température de surface supérieure du plateau- Calcul par l'automate, à l'aide du modèle thermique, des réglages de la cellule d'aspersion en fonction de la température d'entrée et de la température cible de sortie, c'est à dire du refroidissement cible du plateau, incluant la détermination du nombre de rampes activées, du nombre de buses activées en rives, de la vitesse de défilement du plateau dans la cellule d'aspersion, des démarrages et arrêts des rampes d'aspersion, et du temps de maintien dans le tunnel d'uniformisation- Défilement du plateau dans la cellule d'aspersion, arrosage supérieur et inférieur suivant les calculs de l'automate- Transfert du plateau de la cellule d'aspersion vers le tunnel d'uniformisation- Maintien du plateau dans le tunnel d'uniformisation pendant une durée déterminée par l'automate.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1401679A FR3024058B1 (fr) | 2014-07-23 | 2014-07-23 | Procede et equipement de refroidissement |
PCT/FR2015/051915 WO2016012691A1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
EP15753101.3A EP3171996B1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2015/051915 Previously-Filed-Application WO2016012691A1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
EP15753101.3A Division-Into EP3171996B1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
EP15753101.3A Division EP3171996B1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3398696A1 true EP3398696A1 (fr) | 2018-11-07 |
EP3398696B1 EP3398696B1 (fr) | 2021-05-12 |
Family
ID=51610169
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18159076.1A Active EP3398696B1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
EP15753101.3A Active EP3171996B1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15753101.3A Active EP3171996B1 (fr) | 2014-07-23 | 2015-07-10 | Procédé et équipement de refroidissement |
Country Status (14)
Country | Link |
---|---|
US (2) | US10130980B2 (fr) |
EP (2) | EP3398696B1 (fr) |
JP (1) | JP6585155B2 (fr) |
KR (1) | KR102336948B1 (fr) |
CN (1) | CN106661648B (fr) |
BR (1) | BR112017000205B1 (fr) |
CA (1) | CA2954711C (fr) |
DE (1) | DE15753101T1 (fr) |
FR (1) | FR3024058B1 (fr) |
MX (1) | MX2017000483A (fr) |
RU (1) | RU2676272C2 (fr) |
SA (1) | SA517380746B1 (fr) |
TW (1) | TWI593476B (fr) |
WO (1) | WO2016012691A1 (fr) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6208389B1 (ja) * | 2016-07-14 | 2017-10-04 | 株式会社Uacj | 曲げ加工性及び耐リジング性に優れたアルミニウム合金からなる成形加工用アルミニウム合金圧延材の製造方法 |
EP3363552B1 (fr) * | 2016-10-19 | 2022-07-13 | Nippon Steel Corporation | Procédé et appareil de refroidissement d'une feuille d'acier laminée à chaud |
CN108237182A (zh) * | 2016-12-27 | 2018-07-03 | 天津市升发科技股份有限公司 | 一种铝型材冷却装置 |
DE102017127470A1 (de) * | 2017-11-21 | 2019-05-23 | Sms Group Gmbh | Kühlbalken und Kühlprozess mit variabler Abkühlrate für Stahlbleche |
CN108225031A (zh) * | 2017-12-30 | 2018-06-29 | 苏州博能炉窑科技有限公司 | 一种大型均热炉的汽化冷却设备 |
FR3076837B1 (fr) | 2018-01-16 | 2020-01-03 | Constellium Neuf-Brisach | Procede de fabrication de toles minces en alliage d'aluminium 6xxx a haute qualite de surface |
CA3093126C (fr) | 2018-05-15 | 2023-07-18 | Novelis Inc. | Produits d'alliage d'aluminium a trempe f* et w et procedes de fabrication associes |
KR102479197B1 (ko) * | 2018-06-13 | 2022-12-20 | 노벨리스 인크. | 압연 후에 금속 스트립을 담금질하는 시스템 및 방법 |
JP6699808B1 (ja) | 2018-09-19 | 2020-05-27 | 日本製鉄株式会社 | 熱延鋼板の冷却装置および熱延鋼板の冷却方法 |
EP3666915A1 (fr) | 2018-12-11 | 2020-06-17 | Constellium Neuf Brisach | Methode de fabrication de toles en alliages 6000 avec une qualite de surface elevee |
EP3808466A1 (fr) * | 2019-10-16 | 2021-04-21 | Primetals Technologies Germany GmbH | Dispositif de refroidissement à rayonnement de refroidissement pourvu de section transversale creuse |
EP3842561B1 (fr) | 2019-12-23 | 2022-08-17 | Novelis Koblenz GmbH | Procédé de fabrication d'un produit laminé en alliage d'aluminium |
FR3112297B1 (fr) | 2020-07-07 | 2024-02-09 | Constellium Neuf Brisach | Procédé et équipement de refroidissement sur un Laminoir réversible à chaud |
KR20230020447A (ko) | 2020-06-04 | 2023-02-10 | 콩스텔리움 뇌프-브리작 | 가역 열간 압연기에서의 냉각을 위한 방법 및 장비 |
FR3124196B1 (fr) | 2021-06-17 | 2023-09-22 | Constellium Neuf Brisach | Bande en alliage 6xxx et procédé de fabrication |
CN113432439B (zh) * | 2021-07-29 | 2022-09-06 | 东北大学 | 一种铝电解槽停止运作后的冷却方法 |
FR3129408A1 (fr) | 2021-11-25 | 2023-05-26 | Constellium Muscle Shoals Llc | Bande en alliage 6xxx et procédé de fabrication |
FR3134119A1 (fr) | 2022-04-02 | 2023-10-06 | Constellium Neuf-Brisach | Tôle en alliage 6xxx de recyclage et procédé de fabrication |
CN116042969A (zh) * | 2022-12-29 | 2023-05-02 | 东北轻合金有限责任公司 | 一种用于铝合金铸锭的冷却装置及其使用方法 |
FR3144624A1 (fr) | 2022-12-31 | 2024-07-05 | Constellium Neuf-Brisach | Procédé de fabrication d’une tôle en alliage 6xxx avec une excellente qualité de surface. |
FR3147572A1 (fr) | 2023-04-07 | 2024-10-11 | Constellium Neuf-Brisach | Echangeur de chaleur à base d’un alliage d’aluminium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60243226A (ja) * | 1984-05-15 | 1985-12-03 | Kawasaki Steel Corp | 熱間圧延材の材質制御方法および装置 |
DE19823790A1 (de) * | 1998-05-28 | 1999-12-02 | Vaw Ver Aluminium Werke Ag | Lithoband, Druckplattenträger und Verfahren zur Herstellung eines Lithobandes, eines Druckplattenträgers oder einer Offset-Druckplatte |
EP2656932A1 (fr) * | 2012-04-26 | 2013-10-30 | Siemens Aktiengesellschaft | Laminage thermomécanique d'une plaque d'aluminium |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53142954A (en) * | 1977-05-19 | 1978-12-13 | Kobe Steel Ltd | Hot rolling method for slab of aluminum alloy |
JPH0787928B2 (ja) * | 1987-07-03 | 1995-09-27 | 古河電気工業株式会社 | アルミニウム箔地の製造方法 |
ZA908728B (en) * | 1989-11-23 | 1991-08-28 | Alusuisse Lonza Services Ag | Cooling of cast billets |
US6159312A (en) * | 1997-12-19 | 2000-12-12 | Exxonmobil Upstream Research Company | Ultra-high strength triple phase steels with excellent cryogenic temperature toughness |
CA2712316C (fr) | 2001-03-28 | 2013-05-14 | Sumitomo Light Metal Industries, Ltd. | Feuille en alliage aluminium a aptitude au formage et durcissabilite excellentes au cours de la cuisson de revetement, et procede de production |
JP4200082B2 (ja) * | 2003-11-18 | 2008-12-24 | 古河スカイ株式会社 | 成形加工用アルミニウム合金板およびその製造方法 |
CN100437076C (zh) | 2005-08-24 | 2008-11-26 | 东北大学 | 一种在金属板带试样热处理试验中消除温度梯度的方法 |
FI20070622L (fi) | 2007-08-17 | 2009-04-15 | Outokumpu Oy | Menetelmä ja laitteisto tasaisuuden kontrolloimiseksi ruostumatonta terästä olevan nauhan jäähdytyksessä |
EP2028290A1 (fr) * | 2007-08-21 | 2009-02-25 | ArcelorMittal France | Procédé et équipement de décalaminage secondaire des bandes métalliques par projection d'eau à basse pression hydraulique |
CN202786334U (zh) * | 2012-09-10 | 2013-03-13 | 苏州明特威机械设备有限公司 | 淬火冷却装置 |
-
2014
- 2014-07-23 FR FR1401679A patent/FR3024058B1/fr active Active
-
2015
- 2015-07-10 MX MX2017000483A patent/MX2017000483A/es unknown
- 2015-07-10 JP JP2017503588A patent/JP6585155B2/ja active Active
- 2015-07-10 KR KR1020177002831A patent/KR102336948B1/ko active IP Right Grant
- 2015-07-10 RU RU2017105464A patent/RU2676272C2/ru active
- 2015-07-10 WO PCT/FR2015/051915 patent/WO2016012691A1/fr active Application Filing
- 2015-07-10 BR BR112017000205-1A patent/BR112017000205B1/pt active IP Right Grant
- 2015-07-10 CA CA2954711A patent/CA2954711C/fr active Active
- 2015-07-10 DE DE15753101.3T patent/DE15753101T1/de active Pending
- 2015-07-10 US US15/326,753 patent/US10130980B2/en active Active
- 2015-07-10 EP EP18159076.1A patent/EP3398696B1/fr active Active
- 2015-07-10 EP EP15753101.3A patent/EP3171996B1/fr active Active
- 2015-07-10 CN CN201580040948.2A patent/CN106661648B/zh active Active
- 2015-07-21 TW TW104123584A patent/TWI593476B/zh active
-
2017
- 2017-01-19 SA SA517380746A patent/SA517380746B1/ar unknown
-
2018
- 2018-04-25 US US15/962,657 patent/US20180236514A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60243226A (ja) * | 1984-05-15 | 1985-12-03 | Kawasaki Steel Corp | 熱間圧延材の材質制御方法および装置 |
DE19823790A1 (de) * | 1998-05-28 | 1999-12-02 | Vaw Ver Aluminium Werke Ag | Lithoband, Druckplattenträger und Verfahren zur Herstellung eines Lithobandes, eines Druckplattenträgers oder einer Offset-Druckplatte |
EP2656932A1 (fr) * | 2012-04-26 | 2013-10-30 | Siemens Aktiengesellschaft | Laminage thermomécanique d'une plaque d'aluminium |
Also Published As
Publication number | Publication date |
---|---|
FR3024058A1 (fr) | 2016-01-29 |
CN106661648B (zh) | 2020-01-07 |
CA2954711C (fr) | 2023-04-04 |
KR20170039166A (ko) | 2017-04-10 |
WO2016012691A1 (fr) | 2016-01-28 |
RU2017105464A3 (fr) | 2018-11-29 |
EP3171996A1 (fr) | 2017-05-31 |
RU2676272C2 (ru) | 2018-12-27 |
CN106661648A (zh) | 2017-05-10 |
FR3024058B1 (fr) | 2016-07-15 |
JP6585155B2 (ja) | 2019-10-02 |
DE15753101T1 (de) | 2017-07-27 |
TWI593476B (zh) | 2017-08-01 |
EP3171996B1 (fr) | 2018-04-11 |
US10130980B2 (en) | 2018-11-20 |
US20170189949A1 (en) | 2017-07-06 |
KR102336948B1 (ko) | 2021-12-09 |
RU2017105464A (ru) | 2018-08-27 |
EP3398696B1 (fr) | 2021-05-12 |
SA517380746B1 (ar) | 2021-04-15 |
BR112017000205A2 (pt) | 2017-10-31 |
TW201622843A (zh) | 2016-07-01 |
CA2954711A1 (fr) | 2016-01-28 |
BR112017000205B1 (pt) | 2023-03-14 |
US20180236514A1 (en) | 2018-08-23 |
MX2017000483A (es) | 2017-07-28 |
JP2017521260A (ja) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3171996B1 (fr) | Procédé et équipement de refroidissement | |
EP3046703B1 (fr) | Procédé de contrôle de la densité d'énergie d'un faisceau laser par analyse d'image et dispositif correspondant | |
WO2014083292A1 (fr) | Procédé de fusion de poudre avec chauffage de la zone adjacente au bain | |
EP0170542B1 (fr) | Procédé de protection d'un métal solide contre l'oxydation - application au laminage | |
FR2985443A1 (fr) | Dispositif de refroidissement a double jet pour moule de coulee semi-continue verticale | |
EP4034370B1 (fr) | Procédé de détermination de trajectoire suivie par un faisceau laser de fabrication additive sélective d'un objet tridimensionnel | |
CA2013855A1 (fr) | Procede et installation de coulee de produits metalliques minces a reduction d'epaisseur sous la lingotiere | |
EP0620061A1 (fr) | Dispositif de changement rapide et de maintien d'une paroi latérale d'une machine de coulée continue d'un produit métallique entre cylindres | |
EP3601624B1 (fr) | Section et procédé de refroidissement d'une ligne continue combinant un refroidissement sec et un refroidissement humide. | |
FR2833871A1 (fr) | Procede et installation de fabrication de bandes metalliques a partir de bandes coulees directement a partir de metal liquide | |
EP1133666B1 (fr) | Dispositif pour le traitement thermique a haute temperature d'une matiere ligneuse | |
EP1687455A1 (fr) | Procede et dispositif de refroidissement d'une bande d'acier | |
FR2500849A1 (fr) | Dispositif de refroidissement rapide de tubes metalliques | |
EP1062065B1 (fr) | Procede et dispositif de controle du profil d'epaisseur d'une bande metallique mince obtenue par coulee continue entre moules mobiles | |
EP0393005A2 (fr) | Procédé et dispositif de refroidissement d'un produit métallique coulé en continu | |
Garg et al. | Laser induced damage studies in mercury cadmium telluride | |
EP0407323A1 (fr) | Procédé et dispositif de coulée continue entre cylindres de produits métalliques minces aptes au laminage à froid direct | |
BE738234A (fr) | ||
FR2781395A1 (fr) | Dispositif pour couler des lingots d'un metal liquide non ferreux, notamment du magnesium liquide, selon de grandes cadences de production sans diminution de la qualite | |
LU87677A1 (fr) | Dispositif pour solidifier du laitier metallurgique en fusion | |
WO1990007999A1 (fr) | Entretoise arriere d'un moule de coulee sous pression de produits plats metalliques tels que des brames | |
BE1018999A5 (fr) | Procede et dispositif pour la fabrication d'une cible de pulverisation cathodique magnetron. | |
BE1016113A3 (fr) | Procede pour le refroidissement secondaire d'une brame coulee en continu et dispositif pour sa mise en oeuvre. | |
BE351423A (fr) | ||
FR2821774A1 (fr) | Procede de rechauffage de brames et installation de mise en oeuvre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3171996 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190502 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191126 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201207 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3171996 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015069351 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1391835 Country of ref document: AT Kind code of ref document: T Effective date: 20210615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210812 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210721 Year of fee payment: 7 Ref country code: AT Payment date: 20210621 Year of fee payment: 7 Ref country code: FR Payment date: 20210726 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210813 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210913 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210812 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210727 Year of fee payment: 7 Ref country code: CH Payment date: 20210804 Year of fee payment: 7 Ref country code: DE Payment date: 20210728 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015069351 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
26N | No opposition filed |
Effective date: 20220215 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210912 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210710 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210710 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210812 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015069351 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1391835 Country of ref document: AT Kind code of ref document: T Effective date: 20210512 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1391835 Country of ref document: AT Kind code of ref document: T Effective date: 20220710 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230201 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220710 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210512 |