EP3392509B1 - Vacuum system for generating at least one high vacuum in a recipient - Google Patents
Vacuum system for generating at least one high vacuum in a recipient Download PDFInfo
- Publication number
- EP3392509B1 EP3392509B1 EP18167650.3A EP18167650A EP3392509B1 EP 3392509 B1 EP3392509 B1 EP 3392509B1 EP 18167650 A EP18167650 A EP 18167650A EP 3392509 B1 EP3392509 B1 EP 3392509B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- pump
- vacuum
- recipient
- vacuum system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009423 ventilation Methods 0.000 claims description 23
- 230000007257 malfunction Effects 0.000 claims description 20
- 230000001419 dependent effect Effects 0.000 description 11
- 238000013022 venting Methods 0.000 description 7
- 238000011109 contamination Methods 0.000 description 6
- 239000003595 mist Substances 0.000 description 6
- 238000005273 aeration Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/10—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
- F04B37/14—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/02—Stopping, starting, unloading or idling control
- F04B49/03—Stopping, starting, unloading or idling control by means of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/06—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/046—Combinations of two or more different types of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0292—Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/70—Safety, emergency conditions or requirements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/60—Control system actuates means
- F05D2270/65—Pneumatic actuators
Definitions
- the invention relates to a vacuum system for generating at least one high vacuum in a recipient with at least one final vacuum pump for generating at least the high vacuum and a backing pump for generating at least a fine vacuum and with an operation-dependent controlled valve device for pressure-tight sealing of the recipient in the event of a malfunction, wherein the recipient, final vacuum pump, backing pump and valve means are connected in series with each other via a pressure-tight connection line and wherein the operating-dependent controlled valve device has at least a first valve with a first delay device, to which a time constant is adjustable, to maintain the high vacuum in the recipient during a malfunction, which is arranged between the final vacuum pump and the backing pump.
- the recipient is a vacuum-tight chamber made of glass or, as a rule, stainless steel, in which after evacuation of the gases contained there is a technical vacuum with the aid of vacuum pumps.
- a technical vacuum In contrast to an ideal particle-free vacuum is a technical vacuum with residual particles with technical Means reachable.
- the vacuum chamber can also be heated or deep-frozen.
- the fine vacuum FV (1 to 10 -3 hPa (mbar)) is followed by the high vacuum HV (10 -3 to 10 -7 hPa (mbar)).
- This is followed by ultrahigh vacuum UHV (10 -7 to 10 -12 hPa (mbar)) and extremely high vacuum XHV ( ⁇ 10 -12 hPa (mbar)).
- a common application for a high vacuum recipient is mass spectrometry, a method of mass determination of atoms or molecules for characterizing chemical compounds, such as those needed in biochemistry, geology, and climatology.
- the required for the operation of a mass spectrometer high vacuum is produced today usually by the series connection of a turbomolecular pump with a rotary vane pump.
- the turbomolecular pump generates the end vacuum in the recipient as the final vacuum pump on its suction side and the rotary vane pump as a backing pump on its suction side, the fine vacuum on the discharge side of the turbomolecular pump.
- the rotary vane pump works against the atmospheric pressure.
- the vacuum pump In the event of a power failure, the vacuum pump is vented via the opening solenoid valve and at the same time the recipient is closed by the closing spring valve, so that the high vacuum in the recipient is maintained during malfunction. After the return of the current, the solenoid valve is first closed, so that the ventilation of the vacuum pump is stopped. Only when the vacuum pump has returned to its operating state, the spring valve for the recipient is opened again. Similar is from the DD 271 545 A1 known, which describes the arrangement of a special valve device with a spring valve and its own venting valve between the recipient and rotary vane pump, the pressure-tight manner in a power failure, the recipient and the rotary vane pump is aerated as quickly as possible.
- New high vacuum for CCD camera 2 by HR Sufer (retrieved on the internet on 22.04.2017 under the URL http://www.harpoint-observatory.com/deutsch/publikationen/ippoevakuie-rung.pdf ) is known to evacuate the vacuum chamber of a CCD camera as a recipient again in a laboratory setup, when the factory-implemented high vacuum has subsided.
- the renewed high vacuum is generated in two stages by means of a turbomolecular pump as a final vacuum pump and an oil-lubricated rotary vane pump as a backing pump.
- a simple high-vacuum solenoid valve is located directly behind the recipient, which is immediately closed in the event of a malfunction.
- Recipient, solenoid valve, final vacuum pump and backing pump are connected in series via a branchless pressure-tight connection line.
- the solenoid valve is electrically connected to the alarm output of the control electronics of the turbomolecular pump. Since the turbomolecular pump works almost frictionless in a high vacuum, it needs a certain amount of time in the event of a power failure until it loses its full speed and thus the high vacuum. Therefore, the closing time of the solenoid valve to prevent back diffusion into the recipient is quite sufficient.
- the solenoid valve is first closed and the two vacuum pumps are started up. After approx. 20 min. Operating time, the solenoid valve is then opened and high vacuum generated in the recipient. Since in the prior art is a one-time process for permanently achieving the high vacuum in the CCD camera, such a long delay time to the opening the solenoid valve can be accepted. In addition, contaminants that could penetrate into the turbomolecular pump directly behind the recipient via the rotary vane pump until the solenoid valve opens, could enter the recipient when the solenoid valve opens, which can either increase the pumping time to reach the final vacuum or even lead to contamination ,
- a vacuum system is known in which is determined by a pressure-dependent computing unit, whether the vacuum system can be transferred while maintaining the vacuum in the recipient in a power-saving standby mode in which the final vacuum pump and the backing pump are turned off.
- the arithmetic unit continuously checks its internal pressure via a pressure sensor on the recipient. If this is correct, the arithmetic unit generates a control command for switching off a main switch, whereby at the same time the two pumps are switched off and two valves, which are arranged as seen from the recipient in front of the pumps, are closed.
- the arithmetic unit detects that the pressure in the recipient is in the process of being inadmissible, it generates a second control command for switching on the main switch, which at the same time starts the pumps again and opens the valves. In the event of a power failure during pump operation, the arithmetic unit can not generate a control command to close the valves. The valves remain open, the pumps stop and the vacuum in the recipient breaks down. The valve between the recipient and the final vacuum pump is required to compensate for automatic venting of the final vacuum pump during shutdown, so that the vacuum in the recipient is maintained even in stand-by mode.
- a vacuum system according to the preamble of claim 1 is known, which serves to generate a high vacuum.
- the vacuum system comprises a recipient, a final vacuum pump for generating the final vacuum, a backing pump for Generation of a fine vacuum and an operation-dependent controlled valve device for pressure-tight sealing of the recipient in a malfunction.
- recipient, Endvakuumpumpe, backing pump and valve means are connected via a pressure-tight connection line with each other in series.
- the operating-dependent controlled valve device has a valve with a delay device to which a time constant is adjustable. The valve is disposed between the final vacuum pump and the backing pump.
- the known vacuum system operates as an active system consistently pressure dependent. Pressure-changing malfunctions, such as a mechanical or contamination-related partial or full failure of the backing pump are detected by a capacitive pressure sensor, which is arranged in the connecting line between the Endvakuumpumpe and the valve, and processed in a control device. If an undesired increase in pressure occurs, the valve is already open. Upon reaching an error threshold value, the control device generates a control command which overrides the applied control command for opening the valve and actively closes the valve after the correspondingly adjusting time delay.
- the valve is opened again by a control command after a time delay which is set constant at the deceleration device in which the backing pump evacuates the connection line to the valve.
- the known vacuum system is thus an active system and always requires a power supply for its correct functioning. In the event of a power failure, it can not operate because control commands can not be generated for the valve. The vacuum system remains in its state in the event of a power failure.
- the claimed vacuum system according to the invention is characterized in that at a power failure as a malfunction, at least the first valve without control automatically closed instantaneously and after elimination of the power failure with the time delay adjustable at the first delay means time constant automatically opens, the Endvakuumpumpe and the backing pump run before the first valve is opened, and that at least the final vacuum pump does not have its own venting valve.
- the connecting line between the recipient, final vacuum pump, backing pump and valve device is designed without branches.
- no pressure sensors are provided which operate only under power supply and generate additional delays. Therefore, the claimed vacuum system can not respond to malfunctions with induced pressure fluctuations, but faster to a power failure.
- the valve closes abruptly automatically, ie automatically without control command, and thus protects not only the recipient, but also the Endvakuumpumpe, which does not have its own ventilation valve in the invention. Both in the recipient and in the final vacuum pump, the prevailing high vacuum is reliably maintained for several hours or during the entire power failure. If the power failure is over, become a recipient and final vacuum pump not released immediately.
- the safety system of the vacuum system according to the invention can be designed as a simple, cost-effective block, which consists only of the valve and a simple timer. Such a block is particularly well suited for retrofitting existing vacuum systems.
- Ventilation of the final vacuum pump and / or the backing pump is not mandatory in the invention.
- the first valve is also designed as a vent valve of Endvakuumpumpe, the ventilation function is suppressed in case of power failure.
- the backing pump is then taken out of operation first, so that when venting the Endvakuumpumpe no contamination from the backing pump can diffuse.
- the operation-dependent controlled valve means comprises a second valve with a second delay means which is arranged on the side remote from the final vacuum pump side of the backing pump and closed in case of power failure without delay and after elimination of the power failure with a time delay Time constant is opened, whereby the backing pump does not have its own vent valve.
- the time delay is set at the second delay device on the second valve. This may also be, for example, a commercially available timer.
- it is ensured that in case of power failure in the backing pump, the pre-vacuum is maintained, so that after power return, the entire vacuum system is ready for use immediately. Aeration of the Pre-vacuum pump is also not mandatory.
- the second valve is also designed as a vent valve of the backing pump, wherein the ventilation function is suppressed in case of power failure. Aeration is thus - as with the final vacuum pump - only outside of a power failure, for example during a maintenance operation possible. During an unwanted power failure, however, the vacuum is kept safe and not ventilated.
- both the final vacuum pump and the backing pump are provided with fast-closing valves and both vacuum pumps do not have their own ventilation valves, the invention can safely guarantee the high vacuum in the recipient in the event of a sudden power failure and thus the fastest possible start of operation after the end of the power failure. This achieves the shortest possible interruption in operation of a current measurement, for example in a mass spectrometer as a recipient, which saves time and costs for the operator of the vacuum system. It is conceivable that the operator of the power failure initially takes no notice.
- the final vacuum pump and finally into the recipient can take place until the vacuum pumps are fully started again, it is provided in the invention to open the valves after the return of the current with a time delay.
- the time constant for the time delay of the first delay device of the first valve and / or the second delay device of the second valve are set in a range between 8s and 12s, in particular 10 s.
- the backing pump is vented in the event of power failure, it makes sense if the two vacuum pumps initially 8s to 12s, in particular 10 s run before the first valve is opened and the connection to the final vacuum pump releases , Pending contamination in the backing pump or on first valve can be sucked so before opening the first valve before the Endvakuumpumpe first from the backing pump. If the backing pump has also been closed by the second valve in the event of a power failure, it will not be possible for any contaminants to enter and to be present before the second valve. So that they are not sucked into the backing pump during the restart, it makes sense here, too, that both vacuum pumps only run for 8 seconds to 12 seconds, in particular 10 seconds, before then both valves are opened.
- time constants for setting the delay time at the two valves are readily possible. These can be longer, but also shorter or even different on both valves. Furthermore, it is preferred and advantageous if both delay devices are integrated in a common control device. Then, for example, with a common timer as part of the valve device, the opening time of the first and the second valve is controlled.
- An occurring interference signal then automatically triggers the first valve. This is closed suddenly and ensures the high vacuum in the recipient. This also applies to the second valve, if this is also connected to the alarm output of the final vacuum pump and / or the backing pump.
- the pneumatic support can ensure a particularly rapid closure of the valves in the event of a sudden power failure and thus a particularly good preservation of the high vacuum in the recipient.
- the solenoid valves are kept open by the current flow.
- the final vacuum pump is formed by a turbomolecular pump.
- a turbomolecular pump In a molecular pump, the effect is exploited that particles impinging on a wall remain for a short time between adsorption and desorption on the wall.
- the turbomolecular pump is a dry-running gas transfer pump, which consists of a single or multi-stage alternating arrangement of inclined baffles as stators, between which run rotors with inclined rotor blades. The speed of the rotor blades is approximately on the order of the average thermal velocity of the gas molecules to be evacuated.
- the pumping action results from the fact that pulses of an axial component are added to the atoms and particles present while they are being maintained on the inclined surfaces.
- the backing pump is designed as a wet-running rotary vane pump, in particular oil-sealed.
- This is a wet-running displacement pump, which consists of a hollow cylinder as a stator in which rotates a further cylinder as a rotor, which is guided by an eccentric along the housing wall.
- the piston is connected to a hollow slide, which is pivotally mounted in the housing and divides the crescent-shaped working space into a suction side and a pressure side.
- the vacuum pump is filled with oil, which ensures its lubrication and serves to seal the pump chamber and the pressure valve. In the event of a power failure, however, oil mist may diffuse into the vacuum area and lead to undesirable contamination. Further explanations on the execution of the vacuum system and its components claimed with the invention can be found in the exemplary embodiments explained below.
- a two-stage vacuum system 01 which serves to generate a high vacuum P vac in a recipient 02 .
- the recipient 02 vacuum chamber
- the recipient 02 is part of a mass spectrometer, not shown, with which the composition of ice cores is to be analyzed.
- a final vacuum pump 03 is connected, for example, a turbomolecular pump 04 .
- the end vacuum pump 03 On its suction side, the end vacuum pump 03 generates the high vacuum P vac , which prevails in the interior of the recipient 02 .
- On its discharge side is a pressure P before a fine vacuum (pre-vacuum), which is generated by an upstream roughing pump 05 .
- pre-vacuum fine vacuum
- this is an oil-sealed rotary vane pump 06 .
- This operates between the pressures P before on its suction side and the ambient pressure P a on its ejection side.
- an operation-dependent controlled valve device 07 is arranged for the pressure-tight closing of the recipient 02 in the event of a power failure. All components Recipient 02, final vacuum pump 03 , backing pump 05 and valve device 07 are over a branchless pressure-tight connection line 08 connected in series with each other.
- the prevailing pressure gradient is indicated by the arrows (pumping direction).
- connection line 08 ensures that the high vacuum P vac is reliably maintained in the event of a power failure and is not ventilated via branching connection lines, for example to further pressure chambers with lock functions.
- Other vacuum systems 01 can also be configured in three or more stages, depending on the application and the performance of the vacuum pumps 03 , 05 used.
- the operation-dependent controlled valve device 07 has at least a first valve 09 with a first delay device 10 .
- This first valve 09 is arranged in the unbranched connection line 08 between the Endvakuumpumpe 03 and the backing pump 05 .
- This first valve 09 serves to protect the recipient 02 during a power failure by, for example, in a power failure, the recipient 02 is closed pressure-tight and thus prevents the high vacuum P vac is destroyed in its interior. This is in fact normally the case during a power failure and thus when the pumping operation ceases: the final vacuum pump 03 is slowly vented via a special venting valve to prevent oil mist from backing off from the backing pump 05 .
- the Endvakuumpumpe 03 does not have its own vent valve. Existing ventilation valves can be easily replaced by blind plugs.
- the pressure-tight sealed first valve 09 ensures that no oil mist can penetrate into the final vacuum pump 03 .
- the first valve 09 is automatically closed.
- it is for example electrically connected via an electrical line 11 to the alarm output 24 of the end vacuum pump 03 .
- a warning signal is generated at the alarm output of the final vacuum pump because the pump is running due to a power failure slows down to the style, this signal leads to the immediate closing of the first valve 09.
- a second electrical line 12 indicated by dashed lines that a triggering alarm signal can also come from the backing pump 05 .
- both vacuum pumps 03 , 05 are observed in their respective operating state.
- the first valve 09 can also receive its closing command directly from the power failure.
- the first valve 09 is a first electro-pneumatically operated solenoid valve 13 which is open under power during operation. In the event of a power failure, an electromagnetically attracted circuit board automatically drops and generates a pneumatic pulse which causes the solenoid valve 13 to close immediately.
- the operation-dependent controlled valve device 07 has a second valve 14 with a second delay means 15 , which is arranged on the side remote from the Endvakuumpumpe 03 side of the backing pump 05 .
- This second valve 14 can be seen in complete analogy to the first valve 09 described above, wherein now also the backing pump 05 does not have its own venting valve. Existing ventilation valves can be easily replaced by blind plugs.
- the second valve 14 fulfills the same function as the first valve 09 , but it is assigned to the backing pump 05 . In this embodiment, therefore, additionally prevents the fine vacuum P before at a power failure fails. After power return so also the backing pump 05 can go back into operation faster.
- the second valve 14 is then opened again via the second delay device 15 after a delay time T VZ2 .
- the second delay time T VZ2 is again in a range of 10 s and is thus synchronous with the delay time T VZ1 of the first valve 09.
- it can also be larger or smaller, as required.
- the second valve 14 is controlled via a third electrical line 16 , which is connected to the alarm output 25 of the backing pump 05 . Indicated is an (additional or alternative) activation via a fourth electrical line 17 , which in turn comes from the alarm output of Endvakuumpumpe 03 . Likewise, however, can be done again direct control.
- the second valve 14 is a second electro-pneumatic solenoid valve 18.
- the Fig. 3 shows a further embodiment of the invention, in which the first valve 09 is formed as a first vent valve 19 for the Endvakuumpumpe 03 and the second valve 14 as a second vent valve 20 for the backing pump 05 .
- the first vent valve 19 is pressure-tightly connected via a first vent line 21 to the end vacuum pump 03 .
- the second vent valve 20 is pressure-tightly connected via a second vent line 22 to the backing pump 05 .
- first valve 09 is formed as a first vent valve 19 and the backing pump 05 has its own vent valve.
- the function of the ventilation is activated in the two valves 09 , 14 but only for purposes in which deliberately the fine vacuum or the pre-vacuum is to be abandoned, for example, for replacement purposes of the two vacuum pumps 03 , 05 or for opening purposes of the recipient 02.
- an operation-dependent controlled valve device 07 which includes both the first and second valves 09 , 14 in the additional Function as aeration valves 19 , 20 and the two delay devices 10 , 15 includes.
- a central control unit 23 all signals can be detected and corresponding control commands can be generated easily, quickly and reliably.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
Die Erfindung bezieht sich auf ein Vakuumsystem zur Erzeugung von zumindest einem Hochvakuum in einem Rezipienten mit zumindest einer Endvakuumpumpe zur Erzeugung von zumindest dem Hochvakuum und einer Vorvakuumpumpe zur Erzeugung von zumindest einem Feinvakuum und mit einer betriebsabhängig gesteuerten Ventileinrichtung zum druckdichten Verschließen des Rezipienten bei einer Betriebsstörung, wobei Rezipient, Endvakuumpumpe, Vorvakuumpumpe und Ventileinrichtung über eine druckdichte Verbindungsleitung miteinander in Reihe geschaltet sind und wobei zur Erhaltung des Hochvakuums im Rezipienten während einer Betriebsstörung die betriebsabhängig gesteuerte Ventileinrichtung zumindest ein erstes Ventil mit einer ersten Verzögerungseinrichtung, an der eine Zeitkonstante einstellbar ist, aufweist, das zwischen der Endvakuumpumpe und der Vorvakuumpumpe angeordnet ist.The invention relates to a vacuum system for generating at least one high vacuum in a recipient with at least one final vacuum pump for generating at least the high vacuum and a backing pump for generating at least a fine vacuum and with an operation-dependent controlled valve device for pressure-tight sealing of the recipient in the event of a malfunction, wherein the recipient, final vacuum pump, backing pump and valve means are connected in series with each other via a pressure-tight connection line and wherein the operating-dependent controlled valve device has at least a first valve with a first delay device, to which a time constant is adjustable, to maintain the high vacuum in the recipient during a malfunction, which is arranged between the final vacuum pump and the backing pump.
In der Vakuumtechnik ist der Rezipient eine vakuumdichte Kammer aus Glas oder in der Regel Edelstahl, in der nach Absaugen der enthaltenen Gase mit Hilfe von Vakuumpumpen ein technisches Vakuum herrscht. Im Gegensatz zu einem idealen partikelfreien Vakuum ist ein technisches Vakuum mit Restpartikeln mit technischen Mittel erreichbar. Zur Erzeugung extremer technischer Vakua kann die Vakuumkammer auch hochgeheizt oder tiefgekühlt werden. An das Feinvakuum FV (1 bis 10-3 hPa (mbar)) schließt sich das Hochvakuum HV (10-3 bis 10-7 hPa (mbar)) an. Es folgen Ultrahochvakuum UHV (10-7 bis 10-12 hPa (mbar)) und extrem hohes Vakuum XHV (< 10-12 hPa (mbar)). Eine häufige Anwendung für einen Rezipienten mit einem Hochvakuum ist die Massenspektrometrie, ein Verfahren zur Massebestimmung von Atomen oder Molekülen zur Charakterisierung von chemischen Verbindungen, wie sie beispielsweise in der Biochemie, Geologie und Klimatologie benötigt wird. Das zum Betrieb eines Massenspektrometers erforderliche Hochvakuum wird heute in der Regel durch die Reihenschaltung einer Turbomolekularpumpe mit einer Drehschieberpumpe erzeugt. Dabei erzeugt die Turbomolekularpumpe als Endvakuumpumpe auf ihrer Ansaugseite das Endvakuum im Rezipienten und die Drehschieberpumpe als Vorvakuumpumpe auf ihrer Ansaugseite das Feinvakuum auf der Ausstoßseite der Turbomolekularpumpe. Auf ihrer Ausstoßseite arbeitet die Drehschieberpumpe gegen den Atmosphärendruck.In vacuum technology, the recipient is a vacuum-tight chamber made of glass or, as a rule, stainless steel, in which after evacuation of the gases contained there is a technical vacuum with the aid of vacuum pumps. In contrast to an ideal particle-free vacuum is a technical vacuum with residual particles with technical Means reachable. To generate extreme technical vacuums, the vacuum chamber can also be heated or deep-frozen. The fine vacuum FV (1 to 10 -3 hPa (mbar)) is followed by the high vacuum HV (10 -3 to 10 -7 hPa (mbar)). This is followed by ultrahigh vacuum UHV (10 -7 to 10 -12 hPa (mbar)) and extremely high vacuum XHV (<10 -12 hPa (mbar)). A common application for a high vacuum recipient is mass spectrometry, a method of mass determination of atoms or molecules for characterizing chemical compounds, such as those needed in biochemistry, geology, and climatology. The required for the operation of a mass spectrometer high vacuum is produced today usually by the series connection of a turbomolecular pump with a rotary vane pump. In this case, the turbomolecular pump generates the end vacuum in the recipient as the final vacuum pump on its suction side and the rotary vane pump as a backing pump on its suction side, the fine vacuum on the discharge side of the turbomolecular pump. On its discharge side, the rotary vane pump works against the atmospheric pressure.
Bei einem Hochvakuum befinden sich nur noch sehr wenige, nämlich 1013 bis 109 Moleküle in 1 cm3 Volumen. Daher ist es technisch sehr aufwändig und zeitlich sehr langwierig, ein derart qualitativ hochwertiges Vakuum zu erzeugen. Der Normalfall bei einer Betriebsstörung des Vakuumsystems, insbesondere bei einem Funktionsausfall der Vakuumpumpen durch einen Stromausfall oder durch eine Verschmutzung oder Beschädigung, besteht in der Auflösung des Vakuums durch langsames vollständiges oder teilweises Belüften der Vakuumkammer. Nach Behebung der Betriebsstörung muss aber der zeitaufwändige Prozess zur Erreichung eines erneuten Vakuums in der Vakuumkammer durchfahren werden. Gegebenenfalls müssen auch die Vakuumkammer und ihre Peripherie zunächst gereinigt werden, wenn Materiepartikel aus den Pumpen oder der Umgebung in den Rezipient rückdiffundiert sind. Dies alles sind extrem unerwünschte Störungen in einem Messbetrieb. Dementsprechend ist es erstrebenswert und von großem Vorteil, ein erzeugtes Vakuum in einer Vakuumkammer auch bei einer Betriebsstörung des Vakuumsystems aufrechtzuerhalten. Dafür werden im Stand der Technik verschiedene Lösungen angeboten.In a high vacuum, there are only very few, namely 10 13 to 10 9 molecules in 1 cm 3 volume. Therefore, it is technically very complex and time-consuming to produce such a high-quality vacuum. The normal case of a malfunction of the vacuum system, in particular in a malfunction of the vacuum pumps by a power failure or by contamination or damage, consists in the resolution of the vacuum by slow complete or partial venting of the vacuum chamber. After the malfunction has been remedied, however, the time-consuming process to achieve a new vacuum in the vacuum chamber must be passed through. Optionally, the vacuum chamber and its periphery must first be cleaned when matter particles from the pump or the environment are backdiffused into the recipient. These are all extremely undesirable disturbances in a measuring operation. Accordingly, it is desirable and of great advantage to maintain a generated vacuum in a vacuum chamber even in a malfunction of the vacuum system. This will be in the state of Technique different solutions offered.
Als Alternative zur vollständigen oder auch teilweisen Belüftung des Rezipienten bei einer Betriebsstörung wird im Stand der Technik unter anderem vorgeschlagen, die Vakuumpumpen zu belüften. Erreichen diese Umgebungs- bzw. Atmosphärendruck, können dann Wasser- oder Ölnebel oder -dämpfe bei nasslaufenden Vakuumpumpen und Gase bei mit Gasballast arbeitenden Vakuumpumpen nicht in den Rezipienten eingesogen werden. Ohne Vorsehen weiterer Ventile wird dabei zwangsläufig dann aber auch der Rezipient belüftet. Eine Belüftung des Rezipienten wird vermieden gemäß der
Weiterhin ist es beispielsweise aus der
Weiterhin ist es aus der Veröffentlichung. "
Aus der
Der der Erfindung nächstliegende Stand der Technik wird in der
Ausgehend von dem zuvor erläuterten nächstliegenden Stand der Technik ist die Aufgabe für die vorliegende Erfindung darin zu sehen, das eingangs beschriebene gattungsgemäße Vakuumsystem so weiterzubilden, dass es für einen professionellen Messaufbau mit dauerhaften Messkampagnen geeignet ist und die druckdichte Aufrechterhaltung von einem im Rezipienten herrschenden Hochvakuum bei einem Stromausfall als Betriebsstörung mit einem Ausfall der Vakuumpumpen sicher gewährleistet. Dabei sollen einfache und handelsübliche Mittel eingesetzt werden. Die Lösung für diese Aufgabe ist dem Hauptanspruch zu entnehmen. Vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen aufgezeigt und im Folgenden im Zusammenhang mit der Erfindung näher erläutert.Starting from the above-described closest prior art, the object of the present invention is to be seen in the above-described generic vacuum system so educate that it is suitable for a professional measurement setup with permanent measurement campaigns and the pressure-tight maintenance of a prevailing in the recipient high vacuum in case of power failure as a malfunction guaranteed with a failure of the vacuum pump safely. It should be used simple and commercially available means. The solution to this problem can be found in the main claim. Advantageous developments of the invention are set forth in the subclaims and explained in more detail below in connection with the invention.
Das beanspruchte Vakuumsystem ist erfindungsgemäß dadurch gekennzeichnet, dass bei einem Stromausfall als Betriebsstörung zumindest das erste Ventil ohne Steuerbefehl unverzögert automatisch geschlossen und nach Behebung des Stromausfalls zeitverzögert mit der an der ersten Verzögerungseinrichtung einstellbaren Zeitkonstante automatisch geöffnet wird, wobei die Endvakuumpumpe und die Vorvakuumpumpe laufen, bevor das erste Ventil geöffnet wird, und dass zumindest die Endvakuumpumpe kein eigenes Belüftungsventil aufweist.The claimed vacuum system according to the invention is characterized in that at a power failure as a malfunction, at least the first valve without control automatically closed instantaneously and after elimination of the power failure with the time delay adjustable at the first delay means time constant automatically opens, the Endvakuumpumpe and the backing pump run before the first valve is opened, and that at least the final vacuum pump does not have its own venting valve.
Bei dem erfindungsgemäßen Vakuumsystem ist die Verbindungsleitung zwischen Rezipient, Endvakuumpumpe, Vorvakuumpumpe und Ventileinrichtung abzweiglos ausgebildet. Insbesondere sind keine Drucksensoren vorgesehen, die nur unter Stromzufuhr arbeiten und zusätzliche Verzögerungen erzeugen. Deshalb kann das beanspruchte Vakuumsystem zwar nicht auf Betriebsstörungen mit hervorgerufenen Druckschwankungen reagieren, dafür aber umso schneller auf einen Stromausfall. Dabei schließt das Ventil schlagartig automatisch, d.h. ohne Steuerbefehl selbsttätig, und schützt damit nicht nur den Rezipienten, sondern auch die Endvakuumpumpe, die bei der Erfindung kein eigenes Belüftungsventil aufweist. Sowohl im Rezipienten als auch in der Endvakuumpumpe wird zuverlässig über mehrere Stunden bzw. während des gesamten Stromausfalls das herrschende Hochvakuum aufrechterhalten. Ist der Stromausfall beendet, werden Rezipient und Endvakuumpumpe nicht sofort wieder freigegeben. Dies erfolgt erst nach einer vorgegebenen Zeitverzögerung, sodass sichergestellt ist, dass sich die Vorvakuumpumpe bereits wieder im Betriebszustand befindet. Die Zeitverzögerung wird an der ersten Verzögerungseinrichtung am ersten Ventil eingestellt. Hierbei kann es sich beispielsweise um eine handelsübliche Zeitschaltuhr handeln. Somit kann das Sicherheitssystem des erfindungsgemäßen Vakuumsystems als einfacher, kostengünstiger Block ausgebildet sein, der lediglich aus dem Ventil und einer einfachen Zeitschaltuhr besteht. Ein derartiger Block eignet sich besonders gut für die Nachrüstung von bestehenden Vakuumsystemen.In the case of the vacuum system according to the invention, the connecting line between the recipient, final vacuum pump, backing pump and valve device is designed without branches. In particular, no pressure sensors are provided which operate only under power supply and generate additional delays. Therefore, the claimed vacuum system can not respond to malfunctions with induced pressure fluctuations, but faster to a power failure. The valve closes abruptly automatically, ie automatically without control command, and thus protects not only the recipient, but also the Endvakuumpumpe, which does not have its own ventilation valve in the invention. Both in the recipient and in the final vacuum pump, the prevailing high vacuum is reliably maintained for several hours or during the entire power failure. If the power failure is over, become a recipient and final vacuum pump not released immediately. This is done only after a predetermined time delay, so that it is ensured that the backing pump is already back in the operating state. The time delay is set on the first delay device on the first valve. This may be, for example, a commercially available timer. Thus, the safety system of the vacuum system according to the invention can be designed as a simple, cost-effective block, which consists only of the valve and a simple timer. Such a block is particularly well suited for retrofitting existing vacuum systems.
Eine Belüftung der Endvakuumpumpe und/oder der Vorvakuumpumpe ist bei der Erfindung nicht zwingend erforderlich. Für bestimmte Betriebszustände unabhängig vom Normalbetrieb, beispielsweise einer Wartung mit einer Belüftung des Rezipienten, ist es gemäß einer ersten Fortbildung der Erfindung aber bevorzugt und vorteilhaft, wenn das erste Ventil auch als Belüftungsventil der Endvakuumpumpe ausgebildet ist, wobei die Belüftungsfunktion bei Stromausfall unterdrückt ist. Bei solchen Betriebszuständen wird dann zunächst die Vorvakuumpumpe aus dem Betrieb genommen, sodass beim Belüften der Endvakuumpumpe keine Verschmutzungen von der Vorvakuumpumpe eindiffundieren können.Ventilation of the final vacuum pump and / or the backing pump is not mandatory in the invention. For certain operating conditions independent of normal operation, such as maintenance with aeration of the recipient, it is preferred and advantageous according to a first development of the invention, if the first valve is also designed as a vent valve of Endvakuumpumpe, the ventilation function is suppressed in case of power failure. In such operating conditions, the backing pump is then taken out of operation first, so that when venting the Endvakuumpumpe no contamination from the backing pump can diffuse.
Gemäß einer nächsten vorteilhaften Ausbildung der Erfindung ist vorgesehen, dass die betriebsabhängig gesteuerte Ventileinrichtung ein zweites Ventil mit einer zweiten Verzögerungseinrichtung aufweist, das auf der von der Endvakuumpumpe abgewandten Seite der Vorvakuumpumpe angeordnet ist und bei Stromausfall unverzögert geschlossen und nach Behebung des Stromausfalls zeitverzögert mit einer einstellbaren Zeitkonstante geöffnet wird, wobei auch die Vorvakuumpumpe kein eigenes Belüftungsventil aufweist. Die Zeitverzögerung wird an der zweiten Verzögerungseinrichtung am zweiten Ventil eingestellt. Hierbei kann es sich ebenfalls beispielsweise um eine handelsübliche Zeitschaltuhr handeln. Bei dieser Ausgestaltung wird sichergestellt, dass bei Stromausfall auch in der Vorvakuumpumpe das Vorvakuum erhalten bleibt, sodass nach Stromrückkehr das gesamte Vakuumsystem sofort wieder betriebsbereit ist. Eine Belüftung der Vorvakuumpumpe ist ebenfalls nicht zwingend erforderlich. Um aber auch bei dieser Variante die Belüftung der Vorvakuumpumpe für spezielle Betriebszustände ermöglichen zu können, ist es gemäß einer nächsten Erfindungsausgestaltung vorteilhaft und bevorzugt, wenn das zweite Ventil auch als Belüftungsventil der Vorvakuumpumpe ausgebildet ist, wobei die Belüftungsfunktion bei Stromausfall unterdrückt ist. Eine Belüftung ist damit - wie bei der Endvakuumpumpe - nur außerhalb eines Stromausfalls, beispielsweise bei einem Wartungsvorgang möglich. Während eines unerwünschten Stromausfalls hingegen wird das Vakuum sicher gehalten und nicht belüftet.According to a next advantageous embodiment of the invention, it is provided that the operation-dependent controlled valve means comprises a second valve with a second delay means which is arranged on the side remote from the final vacuum pump side of the backing pump and closed in case of power failure without delay and after elimination of the power failure with a time delay Time constant is opened, whereby the backing pump does not have its own vent valve. The time delay is set at the second delay device on the second valve. This may also be, for example, a commercially available timer. In this embodiment, it is ensured that in case of power failure in the backing pump, the pre-vacuum is maintained, so that after power return, the entire vacuum system is ready for use immediately. Aeration of the Pre-vacuum pump is also not mandatory. However, in order to enable the ventilation of the backing pump for special operating conditions also in this variant, it is advantageous and preferred according to a next embodiment of the invention, if the second valve is also designed as a vent valve of the backing pump, wherein the ventilation function is suppressed in case of power failure. Aeration is thus - as with the final vacuum pump - only outside of a power failure, for example during a maintenance operation possible. During an unwanted power failure, however, the vacuum is kept safe and not ventilated.
Werden sowohl die Endvakuumpumpe als auch die Vorvakuumpumpe mit schnell schließenden Ventilen versehen und besitzen beide Vakuumpumpen keine eigenen Belüftungsventile, so kann mit der Erfindung bei einem plötzlichen Stromausfall das Hochvakuum im Rezipienten und damit die schnellstmögliche Betriebsaufnahme nach Beendigung des Stromausfalls sicher garantiert werden. Damit wird die kürzestmögliche Betriebsunterbrechung einer laufenden Messung beispielsweise in einem Massenspektrometer als Rezipienten erreicht, was für den Betreiber des Vakuumsystems Zeit und Kosten spart. Dabei ist es denkbar, dass der Betreiber von dem Stromausfall zunächst überhaupt keine Kenntnis nimmt. Um nach Stromrückkehr automatisch zu gewährleisten ist, dass keine Rückdiffusion in die Vorvakuumpumpe, die Endvakuumpumpe und schlussendlich in den Rezipienten erfolgen kann, bis die Vakuumpumpen wieder vollständig angelaufen sind, ist bei der Erfindung vorgesehen, die Ventile nach Rückkehr des Stroms zeitverzögert zu öffnen. Dabei ist es gemäß einer weiteren Erfindungsausgestaltung bevorzugt und vorteilhaft, wenn die Zeitkonstante bei der Zeitverzögerung der ersten Verzögerungseinrichtung des ersten Ventils und/oder der zweiten Verzögerungseinrichtung des zweiten Ventils in einem Bereich zwischen 8s und 12s, insbesondere 10 s, eingestellt sind. Wenn nur die Endvakuumpumpe durch das erste Ventil abgedichtet ist, die Vorvakuumpumpe bei Stromausfall aber belüftet wird, ist es sinnvoll, wenn die beide Vakuumpumpen zunächst 8s bis 12s, insbesondere 10 s, laufen, bevor das erste Ventil geöffnet wird und die Verbindung zur Endvakuumpumpe freigibt. Anstehende Verschmutzungen in der Vorvakuumpumpe oder am ersten Ventil können so vor Öffnen des ersten Ventils vor der Endvakuumpumpe zunächst von der Vorvakuumpumpe abgesaugt werden. Wenn auch die Vorvakuumpumpe durch das zweite Ventil bei Stromausfall geschlossen wurde, können keine Verschmutzungen eindringen und maximal vor dem zweiten Ventil anstehen. Damit diese beim Wiederanlauf aber nicht in die Vorvakuumpumpe eingesogen werden, ist es auch hier sinnvoll, dass beide Vakuumpumpen erst 8s bis 12s, insbesondere 10 s, laufen, bevor dann beide Ventile geöffnet werden. Andere Zeitkonstanten zur Einstellung der Verzögerungszeit an den beiden Ventilen sind ohne weiteres möglich. Diese können länger, aber auch kürzer oder auch an beiden Ventilen unterschiedlich sein. Weiterhin ist es bevorzugt und vorteilhaft, wenn beide Verzögerungseinrichtungen in einer gemeinsamen Steuereinrichtung integriert sind. Dann wird beispielswiese mit einer gemeinsamen Zeitschaltuhr als Teil der Ventileinrichtung die Öffnungszeit des ersten und des zweiten Ventils gesteuert.If both the final vacuum pump and the backing pump are provided with fast-closing valves and both vacuum pumps do not have their own ventilation valves, the invention can safely guarantee the high vacuum in the recipient in the event of a sudden power failure and thus the fastest possible start of operation after the end of the power failure. This achieves the shortest possible interruption in operation of a current measurement, for example in a mass spectrometer as a recipient, which saves time and costs for the operator of the vacuum system. It is conceivable that the operator of the power failure initially takes no notice. In order to automatically ensure after power return that no back diffusion into the roughing pump, the final vacuum pump and finally into the recipient can take place until the vacuum pumps are fully started again, it is provided in the invention to open the valves after the return of the current with a time delay. In this case, according to a further embodiment of the invention, it is preferable and advantageous if the time constant for the time delay of the first delay device of the first valve and / or the second delay device of the second valve are set in a range between 8s and 12s, in particular 10 s. If only the final vacuum pump is sealed by the first valve, but the backing pump is vented in the event of power failure, it makes sense if the two vacuum pumps initially 8s to 12s, in particular 10 s run before the first valve is opened and the connection to the final vacuum pump releases , Pending contamination in the backing pump or on first valve can be sucked so before opening the first valve before the Endvakuumpumpe first from the backing pump. If the backing pump has also been closed by the second valve in the event of a power failure, it will not be possible for any contaminants to enter and to be present before the second valve. So that they are not sucked into the backing pump during the restart, it makes sense here, too, that both vacuum pumps only run for 8 seconds to 12 seconds, in particular 10 seconds, before then both valves are opened. Other time constants for setting the delay time at the two valves are readily possible. These can be longer, but also shorter or even different on both valves. Furthermore, it is preferred and advantageous if both delay devices are integrated in a common control device. Then, for example, with a common timer as part of the valve device, the opening time of the first and the second valve is controlled.
Aus dem Stand der Technik sind verschiedene Ventile mit speziellen Konstruktionen zur Umsetzung ihrer besonderen Funktionen, beispielsweise Vakuumpumpe belüften und Rezipient abdichten, bekannt. Bei der Erfindung hingegen können besonders vorteilhaft und bevorzugt einfache Magnetventile eingesetzt werden, die elektropneumatisch betrieben werden. Bei Magnetventilen handelt es sich um kommerziell beziehbare Ventile ohne Sonderkonstruktionen. Bei einer elektropneumatischen Betätigung wird ein elektrisches Signal in ein pneumatisches Signal umgewandelt. Diese Ventile besitzen ein direkt betätigtes Ventil, das nach Eingang eines elektrischen Signals eine pneumatische Betätigung ansteuert. Der große Vorteil bei einer pneumatischen Betätigung ist die extrem kurze Schließzeit solcher Ventile. Im Falle eines Stromausfalls ist es bei der Erfindung bevorzugt und vorteilhaft, wenn zumindest das erste Ventil elektrisch mit einem Alarmausgang der Endvakuumpumpe und/oder der Vorvakuumpumpe verbunden ist. Ein auftretendes Störsignal löst dann automatisch das erste Ventil aus. Dieses wird schlagartig geschlossen und sichert das Hochvakuum im Rezipienten. Dies gilt auch für das zweite Ventil, wenn dieses auch mit dem Alarmausgang der Endvakuumpumpe und/oder der Vorvakuumpumpe verbunden ist. Dadurch und durch die pneumatische Unterstützung kann eine besonders schnelle Schließung der Ventile bei einem plötzlichen Stromausfall und damit eine besonders gute Erhaltung des Hochvakuums im Rezipienten gewährleistet werden. Im Betriebsfall werden die Magnetventile durch den Stromfluss offengehalten.From the state of the art, various valves with special constructions for implementing their special functions, for example, ventilating the vacuum pump and sealing the recipient, are known. In the invention, however, can be particularly advantageous and preferably simple solenoid valves are used, which are operated electropneumatically. Solenoid valves are commercially available valves without special designs. Electropneumatic actuation converts an electrical signal into a pneumatic signal. These valves have a directly operated valve which activates a pneumatic actuator upon receipt of an electrical signal. The big advantage of pneumatic actuation is the extremely short closing time of such valves. In the case of a power failure, it is preferred and advantageous in the invention if at least the first valve is electrically connected to an alarm output of the final vacuum pump and / or the backing pump. An occurring interference signal then automatically triggers the first valve. This is closed suddenly and ensures the high vacuum in the recipient. This also applies to the second valve, if this is also connected to the alarm output of the final vacuum pump and / or the backing pump. Through and through The pneumatic support can ensure a particularly rapid closure of the valves in the event of a sudden power failure and thus a particularly good preservation of the high vacuum in the recipient. In operation, the solenoid valves are kept open by the current flow.
Weiterhin ist es bei der Erfindung bevorzugt und vorteilhaft, wenn die Endvakuumpumpe von einer Turbomolekularpumpe gebildet ist. Bei einer Molekularpumpe wird der Effekt ausgenutzt, dass auf eine Wandung auftreffende Teilchen eine kurze Zeit zwischen Adsorption und Desorption an der Wandung verharren. Bei der Turbomolekularpumpe handelt es sich um eine trockenlaufende Gastransferpumpe, die aus einer ein- oder mehrstufig abwechselnden Anordnung von schrägstehenden Leitblechen als Statoren besteht, zwischen denen Rotoren mit schrägstehenden Rotorblättern laufen. Die Geschwindigkeit der Rotorblätter liegt ungefähr in der Größenordnung der mittleren thermischen Geschwindigkeit der zu evakuierenden Gasmoleküle. Die Pumpwirkung resultiert nun daraus, dass den vorhandenen Atomen und Teilchen während ihres Verharrens auf den schrägen Flächen Impulse mit einer axialen Komponente zugefügt werden. Dadurch werden sie durch den Pumpenraum und damit aus dem Rezipienten herausbefördert. Weiterhin ist es bei der vorliegenden Erfindung bevorzugt und vorteilhaft, wenn die Vorvakuumpumpe als nasslaufende Drehschieberpumpe, insbesondere ölgedichtet, ausgebildet ist. Hierbei handelt es sich nasslaufende Verdrängerpumpe, die aus einem Hohlzylinder als Stator besteht, in dem ein weiterer Zylinder als Rotor rotiert, der von einem Exzenter entlang der Gehäusewand geführt wird. Der Kolben ist mit einem hohlen Schieber verbunden, welcher schwenkbar im Gehäuse gelagert ist und den sichelförmigen Arbeitsraum in eine Saugseite und eine Druckseite aufteilt. Die Vakuumpumpe ist mit Öl gefüllt, das deren Schmierung gewährleistet und zur Abdichtung des Pumpenraums und des Druckventils dient. Bei Stromausfall kann es aber dazu kommen, dass Ölnebel in den Vakuumbereich diffundieren und zu unerwünschten Verschmutzungen führen. Nähere Erläuterungen zur Ausführung des mit der Erfindung beanspruchten Vakuumsystems und seinen Komponenten sind den nachfolgend erläuterten Ausführungsbeispielen zu entnehmen.Furthermore, it is preferred and advantageous in the invention if the final vacuum pump is formed by a turbomolecular pump. In a molecular pump, the effect is exploited that particles impinging on a wall remain for a short time between adsorption and desorption on the wall. The turbomolecular pump is a dry-running gas transfer pump, which consists of a single or multi-stage alternating arrangement of inclined baffles as stators, between which run rotors with inclined rotor blades. The speed of the rotor blades is approximately on the order of the average thermal velocity of the gas molecules to be evacuated. The pumping action results from the fact that pulses of an axial component are added to the atoms and particles present while they are being maintained on the inclined surfaces. As a result, they are transported out through the pump room and thus out of the recipient. Furthermore, it is preferred and advantageous in the present invention, when the backing pump is designed as a wet-running rotary vane pump, in particular oil-sealed. This is a wet-running displacement pump, which consists of a hollow cylinder as a stator in which rotates a further cylinder as a rotor, which is guided by an eccentric along the housing wall. The piston is connected to a hollow slide, which is pivotally mounted in the housing and divides the crescent-shaped working space into a suction side and a pressure side. The vacuum pump is filled with oil, which ensures its lubrication and serves to seal the pump chamber and the pressure valve. In the event of a power failure, however, oil mist may diffuse into the vacuum area and lead to undesirable contamination. Further explanations on the execution of the vacuum system and its components claimed with the invention can be found in the exemplary embodiments explained below.
Nachfolgend werden das Vakuumsystem zur Erzeugung von zumindest einem Hochvakuum in einem Rezipienten nach der Erfindung und seine vorteilhaften Modifikationen anhand der schematischen Figuren zum besseren Verständnis der Erfindung noch weitergehend erläutert. Dabei zeigt die
- Fig. 1
- den schematischen Aufbau eines zweistufigen Vakuumsystems mit einem Ventil,
- Fig. 2
- den schematischen Aufbau eines zweistufigen Vakuumsystems mit zwei Ventilen und
- Fig. 3
- den schematischen Aufbau eines zweistufigen Vakuumsystems mit zwei Ventilen, die gleichzeitig als Belüftungsventile fungieren.
- Fig. 1
- the schematic structure of a two-stage vacuum system with a valve,
- Fig . 2
- the schematic structure of a two-stage vacuum system with two valves and
- Fig . 3
- the schematic structure of a two-stage vacuum system with two valves, which also act as ventilation valves.
In der
In der
Bei einem Stromausfall wird das erste Ventil 09 automatisch geschlossen. Dazu ist es beispielsweise über eine elektrische Leitung 11 mit dem Alarmausgang 24 der Endvakuumpumpe 03 elektrisch verbunden. Wird am Alarmausgang der Endvakuumpumpe ein Warnsignal generiert, weil sich der Pumpenlauf durch Stromausfall bis zum Stilstand verlangsamt, führt dieses Signal zum sofortigen Schließen des ersten Ventils 09. Weiterhin ist durch eine zweite elektrische Leitung 12 gestrichelt angedeutet, dass ein auslösendes Alarmsignal auch von der Vorvakuumpumpe 05 kommen kann. Dadurch werden beide Vakuumpumpen 03, 05 in ihrem jeweiligen Betriebszustand beobachtet. Das erste Ventil 09 kann seinen Schließbefehl aber auch direkt durch den Stromausfall erhalten. Im gezeigten Ausführungsbeispiel handelt es sich bei dem ersten Ventil 09 um ein erstes elektropneumatisch betriebenes Magnetventil 13, das im Betriebsfall unter Strom offen ist. Bei einem Stromausfall fällt eine elektromagnetisch angezogene Schaltplatte automatisch ab und erzeugt einen pneumatischen Impuls, der zum sofortigen Schließen des Magnetventils 13 führt.In the event of a power failure, the first valve 09 is automatically closed. For this purpose, it is for example electrically connected via an electrical line 11 to the
Nach Behebung der Betriebsstörung, also nach Rückkehr des Stroms, tritt die Verzögerungseinrichtung 10 in Aktion. Sie ist mit einer Verzögerungszeit TVZ1 eingestellt und bestimmt den Zeitpunkt, wann das Ventil 09 wieder öffnen darf. In der Regel reicht ein Zeitraum von 8s bis 12s aus, um sicher zu gewährleisten, dass die Vakuumpumpen 03, 05 wieder ordnungsgemäß arbeiten. Wird das Ventil 09 also wieder bei TVZ1 = 10s geöffnet, ist sicher gewährleistet, dass keine Ölnebel aus der Vorvakuumpumpe 05 in die Endvakuumpumpe 03 gelangen, weil die Vorkauumpumpe 05 die Ölnebel wieder bereits in Richtung Umgebungsdruck Pa abpumpt.After removal of the malfunction, ie after return of the current, the
In der
Angesteuert wird das zweite Ventil 14 über eine dritte elektrische Leitung 16, die mit dem Alarmausgang 25 der Vorvakuumpumpe 05 verbunden ist. Angedeutet ist eine (zusätzliche oder alternative) Aktivierung über eine vierte elektrische Leitung 17, die wiederum vom Alarmausgang der Endvakuumpumpe 03 kommt. Ebenso kann aber wiederum eine direkte Ansteuerung erfolgen. Bei dem zweiten Ventil 14 handelt es sich im gezeigten Ausführungsbeispiel um ein zweites elektropneumatisches Magnetventil 18. The second valve 14 is controlled via a third
Die
Desweiteren ist in der
- 0101
- Vakuumsystemvacuum system
- 0202
- Rezipientrecipient
- 0303
- EndvakuumpumpeEndvakuumpumpe
- 0404
- TurbomolekularpumpeTurbo molecular pump
- 0505
- Vorvakuumpumpebacking pump
- 0606
- DrehschieberpumpeRotary vane pump
- 0707
- Ventileinrichtungvalve means
- 0808
- Verbindungsleitungconnecting line
- 0909
- erstes Ventilfirst valve
- 1010
- erste Verzögerungseinrichtungfirst delay device
- 1111
- erste elektrische Leitungfirst electrical line
- 1212
- zweite elektrische Leitungsecond electrical line
- 1313
- erstes Magnetventilfirst solenoid valve
- 1414
- zweites Ventilsecond valve
- 1515
- zweite Verzögerungseinrichtungsecond delay device
- 1616
- dritte elektrische Leitungthird electrical line
- 1717
- vierte elektrische Leitungfourth electrical line
- 1818
- zweites Magnetventilsecond solenoid valve
- 1919
- erstes Belüftungsventilfirst ventilation valve
- 2020
- zweites Belüftungsventilsecond ventilation valve
- 2121
- erste Belüftungsleitungfirst ventilation line
- 2222
- zweite Belüftungsleitungsecond ventilation line
- 2323
- zentrale Steuereinheitcentral control unit
- 2424
- Alarmausgang von 03Alarm output from 03
- 2525
- Alarmausgang von 05Alarm output from 05
- Pvac P vac
- Hochvakuumhigh vacuum
- Pvor P before
- Feinvakuumfine vacuum
- Pa P a
- Atmosphärendruckatmospheric pressure
- TVZ1 T VZ1
- Zeitkonstante von 10Time constant of 10
- TVZ2 T VZ2
- Zeitkonstante von 15Time constant of 15
Claims (12)
- A vacuum system (01) for generating at least one high vacuum (Pvac) in a recipient (02), comprising at least one final vacuum pump (03) for generating at least one high vacuum (Pvac), a backing pump (05) for generating at least one backing pressure (Pvor) and a valve unit (07), which is controlled in dependence on the operation and serves for closing the recipient (02) in a pressure-tight manner when a malfunction occurs, wherein the recipient (02), the final vacuum pump (03), the backing pump (05) and the valve unit (07) are connected to one another in series by means of a pressure-tight connecting line (08), wherein the valve unit (07), which is controlled in dependence on the operation, comprises at least one first valve (09) with a first delay device (10), at which a time constant (TVZ1) can be adjusted, in order to maintain the high vacuum (Pvac) in the recipient (02) during a malfunction, wherein said first valve is arranged between the final vacuum pump (03) and the backing pump (05), and wherein the connecting line (08) is realized without junctions,
characterized in that
at least the final vacuum pump (03) does not comprise its own ventilation valve, and in that the vacuum system (01) is adjusted in such a way that at least the first valve (09) is automatically closed at once without control command when a malfunction in the form of a power failure occurs and automatically opened in a time-delayed manner with the time constant (TVZ1) adjustable on the first delay device (10) after the power failure has been repaired, wherein the final vacuum pump (03) and the backing pump (05) are running before the first valve (09) is opened. - The vacuum system (01) according to claim 1,
characterized in that
the first valve (09) is also realized in the form of a ventilation valve (19) of the final vacuum pump (03), wherein the ventilation function is suppressed when a power failure occurs. - The vacuum system (01) according to claim 1 or 2,
characterized in that
the valve unit (07), which is controlled in dependence on the operation, comprises a second valve (14) with a second delay device (15), wherein said second valve is arranged on the side of the backing pump (05) that faces away from the final vacuum pump (03), wherein the second valve is closed at once when a power failure occurs and opened in a time-delayed manner with a time constant (TVZ2) adjustable on the second delay device (15) after the power failure has been repaired, and wherein the backing pump (05) also does not comprise its own ventilation valve. - The vacuum system (01) according to claim 3,
characterized in that
the second valve (09) is also realized in the form of a ventilation valve (20) of the backing pump (05), wherein the ventilation function is suppressed when a power failure occurs. - The vacuum system (01) according to one of preceding claims 1 to 4,
characterized in that
the time constant (TVZ1) of the first delay device (10) of the first valve (09) is adjusted in a range between 8s and 12s. - The vacuum system (01) according to one of preceding claims 3 to 5,
characterized in that
the time constant (TVZ2) of the second delay device (15) of the second valve (14) is adjusted in a range between 8s and 12s. - The vacuum system (01) according to one of preceding claims 3 to 6,
characterized in that
the first delay device (10) and the second delay device (15) are combined in a common control unit (23) . - The vacuum system (01) according to one of preceding claims 1 to 7,
characterized in that
at least the first valve (09) is realized in the form of a pneumatically controlled solenoid valve (13). - The vacuum system (01) according to one of preceding claims 1 to 8,
characterized in that
at least the first valve (09) is electrically connected to an alarm output (24) of the final vacuum pump (03) and/or to an alarm output (25) of the backing pump (05). - The vacuum system (01) according to one of preceding claims 1 to 9,
characterized in that
the final vacuum pump (03) is realized in the form of a dry-running turbomolecular pump (04). - The vacuum system (01) according to one of preceding claims 1 to 10,
characterized in that
the backing pump (05) is realized in the form of a wet-running sliding vane rotary pump (06). - The vacuum system (01) according to claim 11,
characterized in that
the wet-running sliding vane rotary pump (06) is sealed with oil.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017004066.4A DE102017004066A1 (en) | 2017-04-23 | 2017-04-23 | Vacuum system for generating at least one high vacuum in a recipient |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3392509A1 EP3392509A1 (en) | 2018-10-24 |
EP3392509B1 true EP3392509B1 (en) | 2019-10-02 |
Family
ID=62017183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18167650.3A Active EP3392509B1 (en) | 2017-04-23 | 2018-04-17 | Vacuum system for generating at least one high vacuum in a recipient |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3392509B1 (en) |
DE (1) | DE102017004066A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111043007B (en) * | 2019-12-30 | 2024-06-21 | 东莞市天美新自动化设备有限公司 | Tracking stepping type multistage vacuumizing system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4785851A (en) | 1987-07-20 | 1988-11-22 | Mks Instruments Inc. | Vacuum security valve having a buffer volume |
DD271545A1 (en) | 1988-03-31 | 1989-09-06 | Hochvakuum Dresden Veb | DEVICE FOR DISCONNECTING AND VENTILATING VACUUM PUMPS |
US5944049A (en) * | 1997-07-15 | 1999-08-31 | Applied Materials, Inc. | Apparatus and method for regulating a pressure in a chamber |
DE19913593B4 (en) * | 1999-03-24 | 2004-09-23 | Ilmvac Gmbh | Controlled pumping station |
DE19929519A1 (en) | 1999-06-28 | 2001-01-04 | Pfeiffer Vacuum Gmbh | Method for operating a multi-chamber vacuum system |
DE10048210B4 (en) | 2000-09-28 | 2007-02-15 | Singulus Technologies Ag | Device and method for introducing a workpiece via a Vorvakuumkammer in a high vacuum chamber and their use |
JP5512106B2 (en) * | 2008-08-27 | 2014-06-04 | 株式会社アールデック | Power saving method for saving power consumption of vacuum exhaust unit and vacuum exhaust unit |
-
2017
- 2017-04-23 DE DE102017004066.4A patent/DE102017004066A1/en not_active Withdrawn
-
2018
- 2018-04-17 EP EP18167650.3A patent/EP3392509B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3392509A1 (en) | 2018-10-24 |
DE102017004066A1 (en) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68913351T2 (en) | Device and method for generating a vacuum. | |
DE60317659T2 (en) | VACUUM PUMP AND METHOD FOR PRODUCING UNDERPRESSURE | |
EP1803508B1 (en) | Device for generating a reduced pressure in an enclosed space of a tabletting press and/or an isolator | |
EP0344345A1 (en) | Pumpsystem for a leak detecting apparatus | |
DE102007061820B4 (en) | Vacuum generator device | |
EP2821650B1 (en) | Membrane vacuum pump | |
WO2016207106A1 (en) | Vacuum pump system | |
DE112012001192B4 (en) | Vacuum pump, vacuum pumping device and method of operating a vacuum pump | |
EP3392509B1 (en) | Vacuum system for generating at least one high vacuum in a recipient | |
DE202015003927U1 (en) | Control electronics for a vacuum pump and vacuum pump | |
EP0266657B1 (en) | Control device | |
EP2005002B1 (en) | Screw compressor comprising a relief valve | |
EP3472471A1 (en) | Mass-spectrometry leak detector having a turbomolecular pump and a booster pump on a common shaft | |
EP0269784B1 (en) | Arrangement for controlling a reversible electric motor for a pump of a pneumatic cetral locking system of a motor vehicle | |
DE19913593B4 (en) | Controlled pumping station | |
EP0541989B1 (en) | Multi-stage vacuum pumping system | |
EP2960520B1 (en) | Method and device for venting a vacuum chamber | |
DE102017119596A1 (en) | Hermetic vacuum pump shut-off valve | |
EP3438460B1 (en) | Vacuum pump | |
DE102013104375A1 (en) | vacuum pump | |
DE10255792A1 (en) | Vacuum pump control method in which a gas ballast valve is controlled in a manner dependent on the detected formation of condensation within the container being pumped down | |
DE112017002027T5 (en) | protection valve | |
WO2019034256A1 (en) | Motor vehicle vacuum pump arrangement | |
DE102008032242B4 (en) | Device for generating and providing a negative pressure, and ventilation valve | |
EP0284654B1 (en) | Closing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190404 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502018000265 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F04D0019040000 Ipc: F04C0018344000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190603 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04C 25/02 20060101ALI20190521BHEP Ipc: F04D 27/02 20060101ALI20190521BHEP Ipc: F04B 37/14 20060101ALI20190521BHEP Ipc: F04C 18/344 20060101AFI20190521BHEP Ipc: F04D 19/04 20060101ALI20190521BHEP Ipc: F04C 28/06 20060101ALI20190521BHEP Ipc: F04B 49/03 20060101ALI20190521BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1186475 Country of ref document: AT Kind code of ref document: T Effective date: 20191015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018000265 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200103 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200203 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018000265 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200202 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
26N | No opposition filed |
Effective date: 20200703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200417 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200417 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220301 Year of fee payment: 5 Ref country code: CH Payment date: 20220310 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220303 Year of fee payment: 5 Ref country code: IT Payment date: 20220303 Year of fee payment: 5 Ref country code: FR Payment date: 20220301 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220303 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502018000265 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230501 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230417 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230417 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1186475 Country of ref document: AT Kind code of ref document: T Effective date: 20230417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230417 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230417 |