EP3391379B1 - Improved heat dissipation structure for natural convection for transport containers and/or storage containers for radioactive material - Google Patents

Improved heat dissipation structure for natural convection for transport containers and/or storage containers for radioactive material Download PDF

Info

Publication number
EP3391379B1
EP3391379B1 EP16809084.3A EP16809084A EP3391379B1 EP 3391379 B1 EP3391379 B1 EP 3391379B1 EP 16809084 A EP16809084 A EP 16809084A EP 3391379 B1 EP3391379 B1 EP 3391379B1
Authority
EP
European Patent Office
Prior art keywords
height
primary
structures
dissipating heat
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16809084.3A
Other languages
German (de)
French (fr)
Other versions
EP3391379A1 (en
Inventor
Kévin BANCE
Olivier Bardon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TN International SA
Original Assignee
TN International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TN International SA filed Critical TN International SA
Publication of EP3391379A1 publication Critical patent/EP3391379A1/en
Application granted granted Critical
Publication of EP3391379B1 publication Critical patent/EP3391379B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/002Containers for fluid radioactive wastes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/12Closures for containers; Sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal

Definitions

  • the present invention relates to the field of the evacuation of the heat produced by radioactive materials loaded in a packaging for transport and / or storage of radioactive materials.
  • the present invention relates to a structure of heat dissipation by natural convection, intended to equip the periphery of a package for the transport and / or storage of radioactive materials, for example nuclear fuel assemblies or Radioactive waste.
  • This heat removal device is in particular designed so as to limit the temperature reached in service by the various components of the packaging, in particular the seals and the radiological protections, in order to avoid any risk of degradation of these elements.
  • this device is designed so as to be compatible with the constraints of packaging services, such as decontaminability, resistance in the weather, resistance to atmospheric aggressions, resistance to operating conditions such as immersion during loading and unloading, or even confinement of the neutron shielding resin.
  • a known solution for this type of external heat dissipation device is in the form of a covering ferrule enveloping the lateral body of the package, and onto which are welded longitudinal straight fins of appropriate section. These fins are also said to be vertical, because they are oriented in the vertical direction when the packaging itself lies vertically.
  • the document DE 29 10 115 A1 teaches a structure of heat dissipation by natural convection, intended to equip the periphery of a packaging with a height of 5.7m for the transport of radioactive materials.
  • the object of the invention is therefore to at least partially remedy the drawback mentioned above, relating to the embodiments of the prior art.
  • the invention also has at least one of the following optional features, taken individually or in combination.
  • the two adjacent half-structures are arranged in a substantially symmetrical manner.
  • the structure has a possible spacing Ec between the opposite ends of two primary fins jointly forming a fin in the general shape of an inverted V, the two opposite ends forming the point of the V, this spacing Ec meeting the condition Ec / L ⁇ 0 2.
  • the primary fins are straight and inclined by a value between 30 and 60 ° relative to the direction of the height, and preferably inclined by a value of 45 ° relative to this same direction.
  • the width d is constant and identical for all the primary air circulation channels of each half-structure.
  • each half-structure meets the following more precise condition: 0.55 . 0.35 . H 0.5 . h 0.6 / d 0.1 ⁇ The ⁇ 1.8 . 0.35 . H 0.5 . h 0.6 / d 0.1
  • the convective performance of the fins is further increased.
  • the gains in terms of thermal performance are at least of the order of 25% compared to solutions with vertical fins, with identical heat exchange surfaces.
  • the two half-structures are distinct from each other, each having a plate and its own primary fins projecting from the plate. This provides ease of manufacture and assembly.
  • the two half-structures can be produced on the same plate of height H.
  • Each half-structure is substantially planar, which also confers ease of manufacture here.
  • a subject of the invention is also a packaging for the transport and / or storage of radioactive materials comprising a lateral body externally equipped with several heat dissipation structures like that described above, these structures being distributed circumferentially around the lateral body. .
  • a spacing Ec 'between two directly adjacent dissipation structures in the circumferential direction is substantially equal to the spacing Ec.
  • a package 1 for the storage and / or transport of radioactive materials such as nuclear fuel assemblies or radioactive waste (not shown).
  • This package 1 is shown on the figure 1 in the vertical storage position, in which its longitudinal axis 2 is oriented vertically. It rests on a packaging bottom 4, opposite a removable cover 6 in the direction of the height 8, parallel to the longitudinal axis 2. Between the bottom 4 and the cover 6, the packaging 1 has a lateral body s 'extending around the axis 2, and internally defining a cavity 12 for housing the radioactive materials.
  • the lateral body generally comprises an inner ferrule 14 and an outer concentric ferrule 16, defining an annular space centered on the axis 2.
  • the space is filled by thermal conduction means 20 connecting the two ferrules 14, 16, as well as by neutron protection means 22.
  • the aforementioned means 20, 22 are of conventional design and will therefore not be described further.
  • the outer shell 16 is produced using a plurality of heat dissipation structures 30 according to the invention. These structures 30 are distributed circumferentially around the axis 2, and each extend at a height H of between 2 and 5 m according to the direction of the height 8.
  • the structures 30 include bases in the form of rectangular plates, these plates each have two longitudinal edges. These plates are assembled end-to-end by welding at their opposite edges, so as to reconstitute the outer shell 16.
  • two adjacent structures 30 are shown in the circumferential direction 32 of the package. These two structures 30 are identical, and it is preferably the same for all the structures 30 constituting the outer shell 16, their number possibly being between 5 and 40.
  • Each heat dissipation structure 30 comprises two half-structures 30a, 30b of similar designs, and being arranged substantially symmetrically with respect to a radial plane Pr of the package.
  • the half-structure 30a comprises straight and parallel primary fins 40a. They are inclined relative to the direction of the height 8 of the package, also corresponding to the height direction of the structure 30.
  • the angle of inclination Aa of the primary fins 40a relative to the direction 8 is preferably around 45 °.
  • the half-structure 30b comprises primary fins 40b straight and parallel. They are inclined relative to the direction of the height 8 of the packaging, with an angle of inclination Ab preferably of the order of 45 °.
  • the symmetry may not be perfect, for example by providing a small difference in the value of the two angles Aa, Ab, of the order of 10 to 20 °.
  • the primary fins 40a, 40b of the two half-structures form two by two of the fins 44 in the general shape of an inverted V, when the packaging is arranged vertically with its bottom facing downwards, as in the figures 1 and 3 .
  • Each half-structure 30a, 30b can be made in one piece in the direction 8, or segmented in the same direction. In the latter case illustrated on the figure 1 , the half-structure segments are then arranged in continuity with each other, being welded end-to-end.
  • the two half-structures 30a, 30b are distinct from each other, that is to say that they each comprise a plate 46 from which the associated primary fins project, as has been shown for the half-structure 30a on the figure 4 .
  • the two plates 46 are assembled together by welding at their edges facing one another in the circumferential direction, so as to reconstitute a structure 30.
  • the two assembled plates 46 together constitute the abovementioned base in the form of a rectangular plate, participating in reconstitute the outer shell 16.
  • the two half-structures 30a, 30b are of symmetrical design.
  • the primary channels 48a, 48b are also shown, delimited respectively by two fins 40a, 40b directly consecutive, in the direction 8.
  • each half-structure 30a, 30b corresponding to the height H of the structure 30 composed by these two half-structures.
  • the height H is between 2 and 5 m, and preferably close to 4 m.
  • each primary fin 40a, 40b is also the height h of each primary fin 40a, 40b, between 10 and 100 mm, and preferably identical for all the primary fins.
  • each primary air circulation channel 48a, 48b is also one of these important parameters. This width d is between 10 and 50 mm, and is found to be constant and identical for all the channels 48a, 48b, over the entire height H.
  • each primary fin 40a, 40b It is also the thickness Ep of each primary fin 40a, 40b, meeting the condition d / Ep ⁇ 2.5.
  • This thickness Ep is also preferably identical for all the primary fins.
  • each half-structure 30a, 30b is also a key parameter.
  • This width L extending in a transverse direction orthogonal to the direction of the height and comparable to the circumferential direction 32, is identical for the two half-structures and meets the following condition: 0.30 . 0.35 . H 0.5 . h 0.6 / d 0.1 ⁇ The ⁇ 3.5 . 0.35 . H 0.5 . h 0.6 / d 0.1
  • a possible spacing Ec can be provided between the ends opposite two primary fins 40a, 40b, jointly forming a fin in the general shape of an inverted V 44.
  • This spacing arranged at the point of the fin 44, meets the condition Ec / L ⁇ 0.2.
  • the spacings being aligned in direction 8, they together form a sort of vertical air delivery channel 54, at the junction between the two half-structures 30a, 30b of the heat dissipation structure 30.
  • a spacing Ec ' is preferably provided between two directly adjacent dissipation structures 30 in the circumferential direction 32.
  • This spacing Ec' is for example substantially equal to the spacing Ec.
  • the gains in thermal performance can reach up to 90% compared to the conventional solution with vertical straight fins, when the width L approaches the specific value defined by the following product: 0.35. H 0.5 . h 0.6 / d 0.1 .
  • the gains in thermal performance are explained unexpectedly and surprisingly by obtaining a phenomenon of acceleration of the air particles within the primary channels 48a, 48b.
  • This acceleration of the air in the channels results from the interaction between the air suction zones 58 at the inlet of the channels 48a, 48b, and the discharge zones 60 located further downstream of these channels.
  • the air suction zones 58 correspond to the highly grayed-out parts, in the shape of a triangle with the vertex facing upwards. This is explained by the fact that these suction zones 58, within the channels 48a, 48b, are more extensive going downwards.
  • the delivery zones 60 correspond to the less gray parts, in the shape of a triangle with the vertex oriented downwards. This is explained by the fact that these delivery zones are more extensive going upwards.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Packages (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention se rapporte au domaine de l'évacuation de la chaleur produite par des matières radioactives chargées dans un emballage de transport et/ou d'entreposage de matières radioactives.The present invention relates to the field of the evacuation of the heat produced by radioactive materials loaded in a packaging for transport and / or storage of radioactive materials.

Plus précisément, la présente invention se rapporte à une structure de dissipation de chaleur par convection naturelle, destinée à équiper la périphérie d'un emballage pour le transport et/ou l'entreposage de matières radioactives, par exemple des assemblages de combustible nucléaire ou des déchets radioactifs.More specifically, the present invention relates to a structure of heat dissipation by natural convection, intended to equip the periphery of a package for the transport and / or storage of radioactive materials, for example nuclear fuel assemblies or Radioactive waste.

ÉTAT DE LA TECHNIQUE ANTÉRIEUREPRIOR STATE OF THE ART

De l'art antérieur, il est connu d'assembler un dispositif externe d'évacuation de chaleur autour d'une surface extérieure d'un corps latéral d'un emballage, dans le but d'évacuer, vers le milieu ambiant, les calories émises par les matières radioactives contenues dans l'emballage.In the prior art, it is known to assemble an external heat dissipation device around an external surface of a lateral body of a package, with the aim of evacuating the calories to the ambient medium. emitted by radioactive materials contained in the packaging.

Ce dispositif d'évacuation de chaleur est notamment conçu de manière à limiter la température atteinte en service par les différents éléments constitutifs de l'emballage, notamment les joints et les protections radiologiques, afin d'éviter tout risque de dégradation de ces éléments.This heat removal device is in particular designed so as to limit the temperature reached in service by the various components of the packaging, in particular the seals and the radiological protections, in order to avoid any risk of degradation of these elements.

Par ailleurs, outre le fait de pouvoir assurer sa fonction principale d'échangeur de calories avec le milieu ambiant, ce dispositif est conçu de façon à être compatible avec les contraintes de services de l'emballage, telles que la décontaminabilité, la tenue dans le temps, la résistance aux agressions atmosphériques, la résistance aux conditions d'exploitation comme l'immersion lors du chargement et du déchargement, ou encore le confinement de la résine de blindage neutronique.Furthermore, in addition to being able to perform its main function of heat exchanger with the ambient environment, this device is designed so as to be compatible with the constraints of packaging services, such as decontaminability, resistance in the weather, resistance to atmospheric aggressions, resistance to operating conditions such as immersion during loading and unloading, or even confinement of the neutron shielding resin.

Une solution connue pour ce type de dispositif externe d'évacuation de chaleur se présente sous la forme d'une virole d'habillage enveloppant le corps latéral de l'emballage, et sur laquelle sont soudées des ailettes droites longitudinales de section appropriée. Ces ailettes sont également dites verticales, car elles sont orientées selon la direction verticale lorsque l'emballage repose lui-même verticalement.A known solution for this type of external heat dissipation device is in the form of a covering ferrule enveloping the lateral body of the package, and onto which are welded longitudinal straight fins of appropriate section. These fins are also said to be vertical, because they are oriented in the vertical direction when the packaging itself lies vertically.

Cependant, cette solution est perfectible car en pratique, elle conduit à un profil de température qui augmente progressivement en fonction de la hauteur de l'emballage, lorsque celui-ci repose verticalement.However, this solution can be improved because in practice, it leads to a temperature profile which gradually increases as a function of the height of the packaging, when the latter rests vertically.

Le document DE 29 10 115 A1 enseigne une structure de dissipation de chaleur par convection naturelle, destinée à équiper la périphérie d'une emballage d'une hauteur de 5,7m pour le transport de matières radioactives.The document DE 29 10 115 A1 teaches a structure of heat dissipation by natural convection, intended to equip the periphery of a packaging with a height of 5.7m for the transport of radioactive materials.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

L'invention a donc pour but de remédier au moins partiellement à l'inconvénient mentionné ci-dessus, relatif aux réalisations de l'art antérieur.The object of the invention is therefore to at least partially remedy the drawback mentioned above, relating to the embodiments of the prior art.

Pour ce faire, l'invention a tout d'abord pour objet une structure de dissipation de chaleur par convection naturelle, destinée à équiper la périphérie d'un emballage pour le transport et/ou l'entreposage de matières radioactives, la structure présentant deux demi-structures adjacentes comprenant chacune des ailettes primaires parallèles et inclinées par rapport à une direction de la hauteur de la structure, les ailettes primaires des deux demi-structures formant deux à deux des ailettes en forme générale de V inversé, lorsque l'emballage est agencé verticalement avec son fond orienté vers le bas,
la structure présentant les paramètres suivants :

  • H : la hauteur de chaque demi-structure, dans la direction de la hauteur selon laquelle se succèdent les ailettes primaires inclinées, cette hauteur étant comprise entre 2 et 5 m ;
  • h : la hauteur de chaque ailette primaire, comprise entre 10 et 100 mm ;
  • d : la largeur de chaque canal primaire de circulation d'air défini entre deux ailettes primaires directement consécutives, cette largeur étant comprise entre 10 et 50 mm ;
  • Ep : l'épaisseur de chaque ailette primaire, répondant à la condition d/Ep ≥ 2,5 ;
  • L : la largeur de chaque demi-structure selon une direction transversale orthogonale à la direction de la hauteur, ladite largeur L répondant à la condition suivante : 0,30 . 0,35 . H 0,5 . h 0,6 / d 0,1 L 3,5 . 0,35 . H 0,5 . h 0,6 / d 0,1
    Figure imgb0001
To do this, the invention firstly relates to a structure of heat dissipation by natural convection, intended to equip the periphery of a package for the transport and / or storage of radioactive materials, the structure having two adjacent semi-structures each comprising primary fins parallel and inclined with respect to a direction of the height of the structure, the primary fins of the two half-structures forming two by two of the fins in the general shape of an inverted V, when the packaging is arranged vertically with its bottom facing down,
the structure with the following parameters:
  • H: the height of each half-structure, in the direction of the height along which the inclined primary fins follow one another, this height being between 2 and 5 m;
  • h: the height of each primary fin, between 10 and 100 mm;
  • d: the width of each primary air circulation channel defined between two directly consecutive primary fins, this width being between 10 and 50 mm;
  • Ep: the thickness of each primary fin, meeting the condition d / Ep ≥ 2.5;
  • L: the width of each half-structure in a transverse direction orthogonal to the direction of the height, said width L meeting the following condition: 0.30 . 0.35 . H 0.5 . h 0.6 / d 0.1 The 3.5 . 0.35 . H 0.5 . h 0.6 / d 0.1
    Figure imgb0001

Les conditions géométriques particulières définies ci-dessus permettent d'améliorer sensiblement les performances convectives des ailettes, notamment vis-à-vis des ailettes droites verticales connues de l'art antérieur. De plus, de manière surprenante, il a été constaté qu'avec ces dimensions particulières, il se produit avantageusement un phénomène d'accélération des particules d'air au sein des canaux primaires, ce qui confère des performances thermiques accrues. Ce phénomène résulte de l'interaction entre les zones d'aspiration d'air à l'entrée des canaux primaires, et les zones de refoulement situées plus en aval de ces canaux. Plus précisément, une partie des particules d'air des zones de refoulement est recyclée sous forme d'un tourbillon qui permet d'entraîner davantage d'air frais à l'entrée de ces mêmes canaux. En d'autres termes, ces tourbillonnements créés au-dessus des ailettes et des canaux primaires, favorisent l'accélération de l'air dans ces derniers. Grâce à ce phénomène de tourbillonnement exploité dans la présente invention, les gains en termes de performances thermiques sont au minimum de l'ordre de 10% par rapport aux solutions à ailettes verticales, à surfaces d'échange thermiques identiques.The specific geometrical conditions defined above make it possible to significantly improve the convective performance of the fins, in particular with respect to the straight vertical fins known from the prior art. In addition, surprisingly, it has been found that with these particular dimensions, there is advantageously a phenomenon of acceleration of the air particles within the primary channels, which gives increased thermal performance. This phenomenon results from the interaction between the air suction zones at the inlet of the primary channels, and the discharge zones located further downstream of these channels. More specifically, part of the air particles from the discharge zones is recycled in the form of a vortex which allows more fresh air to be drawn into the inlet of these same channels. In other words, these swirls created above the fins and primary channels, promote the acceleration of the air in the latter. Thanks to this swirling phenomenon exploited in the present invention, the gains in terms of thermal performance are at least of the order of 10% compared to solutions with vertical fins, with identical heat exchange surfaces.

L'invention présente par ailleurs au moins l'une des caractéristiques optionnelles suivantes, prises isolément ou en combinaison.The invention also has at least one of the following optional features, taken individually or in combination.

Les deux demi-structures adjacentes sont agencées de façon sensiblement symétrique.The two adjacent half-structures are arranged in a substantially symmetrical manner.

La structure présente un éventuel écartement Ec entre les extrémités en regard de deux ailettes primaires formant conjointement une ailette en forme générale de V inversé, les deux extrémités en regard formant la pointe du V, cet écartement Ec répondant à la condition Ec/L ≤ 0,2.The structure has a possible spacing Ec between the opposite ends of two primary fins jointly forming a fin in the general shape of an inverted V, the two opposite ends forming the point of the V, this spacing Ec meeting the condition Ec / L ≤ 0 2.

Les ailettes primaires sont droites et inclinées d'une valeur comprise entre 30 et 60° par rapport à la direction de la hauteur, et de préférence inclinées d'une valeur de 45° par rapport à cette même direction.The primary fins are straight and inclined by a value between 30 and 60 ° relative to the direction of the height, and preferably inclined by a value of 45 ° relative to this same direction.

La largeur d est constante et identique pour tous les canaux primaires de circulation d'air de chaque demi-structure.The width d is constant and identical for all the primary air circulation channels of each half-structure.

La largeur L de chaque demi-structure répond à la condition plus précise suivante : 0,55 . 0,35 . H 0,5 . h 0,6 / d 0,1 L 1,8 . 0,35 . H 0,5 . h 0,6 / d 0,1

Figure imgb0002
The width L of each half-structure meets the following more precise condition: 0.55 . 0.35 . H 0.5 . h 0.6 / d 0.1 The 1.8 . 0.35 . H 0.5 . h 0.6 / d 0.1
Figure imgb0002

Dans cet intervalle restreint de valeurs, les performances convectives des ailettes sont encore accrues. Les gains en termes de performances thermiques sont au minimum de l'ordre de 25% par rapport aux solutions à ailettes verticales, à surfaces d'échange thermique identiques.In this limited range of values, the convective performance of the fins is further increased. The gains in terms of thermal performance are at least of the order of 25% compared to solutions with vertical fins, with identical heat exchange surfaces.

Les deux demi-structures sont distinctes l'une de l'autre, chacune présentant une plaque et ses propres ailettes primaires faisant saillie de la plaque. Cela confère une facilité de fabrication et d'assemblage.The two half-structures are distinct from each other, each having a plate and its own primary fins projecting from the plate. This provides ease of manufacture and assembly.

Alternativement, les deux demi-structures peuvent être réalisées sur une même plaque de hauteur H.Alternatively, the two half-structures can be produced on the same plate of height H.

Chaque demi-structure est sensiblement plane, ce qui confère ici aussi une facilité de fabrication.Each half-structure is substantially planar, which also confers ease of manufacture here.

L'invention a également pour objet un emballage pour le transport et/ou l'entreposage de matières radioactives comprenant un corps latéral équipé extérieurement de plusieurs structures de dissipation de chaleur comme celle décrite ci-dessus, ces structures étant réparties circonférentiellement autour du corps latéral.A subject of the invention is also a packaging for the transport and / or storage of radioactive materials comprising a lateral body externally equipped with several heat dissipation structures like that described above, these structures being distributed circumferentially around the lateral body. .

De préférence, un écartement Ec' entre deux structures de dissipation directement adjacentes selon la direction circonférentielle, est sensiblement égal à l'écartement Ec.Preferably, a spacing Ec 'between two directly adjacent dissipation structures in the circumferential direction is substantially equal to the spacing Ec.

D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.Other advantages and characteristics of the invention will appear in the detailed non-limiting description below.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

Cette description sera faite au regard des dessins annexés parmi lesquels ;

  • la figure 1 représente une vue de face d'un emballage pour l'entreposage et/ou le transport de matières radioactives, comportant une structure de dissipation de chaleur selon un mode de réalisation préféré de la présente invention ;
  • la figure 2 représente une vue partielle en coupe prise le long de la ligne II-II de la figure 1 ;
  • la figure 3 est une vue agrandie de face d'une partie de la structure de dissipation de chaleur ;
  • la figure 4 est une vue en coupe prise le long de la ligne IV-IV de la figure 3 ; et
  • la figure 5 est une vue similaire à celle de la figure 3, sur laquelle a été schématisé le principe de tourbillonnement d'air au-dessus des ailettes et des canaux primaires de la structure de dissipation de chaleur.
This description will be made with reference to the accompanying drawings, among which;
  • the figure 1 shows a front view of a package for the storage and / or transport of radioactive materials, comprising a heat dissipation structure according to a preferred embodiment of the present invention;
  • the figure 2 shows a partial sectional view taken along line II-II of the figure 1 ;
  • the figure 3 is an enlarged front view of part of the heat dissipation structure;
  • the figure 4 is a sectional view taken along line IV-IV of the figure 3 ; and
  • the figure 5 is a view similar to that of the figure 3 , on which has been schematized the principle of air swirling above the fins and primary channels of the heat dissipation structure.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉSDETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

En référence tout d'abord aux figures 1 et 2, il est représenté un emballage 1 pour l'entreposage et/ou le transport de matières radioactives, comme des assemblages de combustible nucléaire ou des déchets radioactifs (non représentés).First of all with reference to figures 1 and 2 , there is shown a package 1 for the storage and / or transport of radioactive materials, such as nuclear fuel assemblies or radioactive waste (not shown).

Cet emballage 1 est représenté sur la figure 1 en position verticale d'entreposage, dans laquelle son axe longitudinal 2 est orienté verticalement. Il repose sur un fond d'emballage 4, opposé à un couvercle amovible 6 selon la direction de la hauteur 8, parallèle à l'axe longitudinal 2. Entre le fond 4 et le couvercle 6, l'emballage 1 comporte un corps latéral s'étendant autour de l'axe 2, et définissant intérieurement une cavité 12 pour le logement des matières radioactives.This package 1 is shown on the figure 1 in the vertical storage position, in which its longitudinal axis 2 is oriented vertically. It rests on a packaging bottom 4, opposite a removable cover 6 in the direction of the height 8, parallel to the longitudinal axis 2. Between the bottom 4 and the cover 6, the packaging 1 has a lateral body s 'extending around the axis 2, and internally defining a cavity 12 for housing the radioactive materials.

Le corps latéral comprend généralement une virole intérieure 14 et une virole extérieure 16 concentriques, définissant un espace annulaire centré sur l'axe 2. L'espace est rempli par des moyens de conduction thermique 20 reliant les deux viroles 14, 16, ainsi que par des moyens de protection neutronique 22. Les moyens 20, 22 précités sont de conception classique et ne seront de ce fait pas davantage décrits.The lateral body generally comprises an inner ferrule 14 and an outer concentric ferrule 16, defining an annular space centered on the axis 2. The space is filled by thermal conduction means 20 connecting the two ferrules 14, 16, as well as by neutron protection means 22. The aforementioned means 20, 22 are of conventional design and will therefore not be described further.

La virole extérieure 16 est réalisée à l'aide d'une pluralité de structures 30 de dissipation de chaleur selon l'invention. Ces structures 30 sont réparties circonférentiellement autour de l'axe 2, et s'étendent chacune selon une hauteur H comprise entre 2 et 5 m selon la direction de la hauteur 8. Dans l'exemple montré sur la figure 2, les structures 30 comprennent des bases en forme de plaques rectangulaires, ces plaques comportent chacune deux chants longitudinaux. Ces plaques sont assemblées bout-à-bout par soudage au niveau de leurs chants en regard, de façon à reconstituer la virole externe 16.The outer shell 16 is produced using a plurality of heat dissipation structures 30 according to the invention. These structures 30 are distributed circumferentially around the axis 2, and each extend at a height H of between 2 and 5 m according to the direction of the height 8. In the example shown on the figure 2 , the structures 30 include bases in the form of rectangular plates, these plates each have two longitudinal edges. These plates are assembled end-to-end by welding at their opposite edges, so as to reconstitute the outer shell 16.

Plus précisément en référence à la figure 3, il est représenté deux structures 30 adjacentes selon la direction circonférentielle 32 de l'emballage. Ces deux structures 30 sont identiques, et il en est de préférence de même pour toutes les structures 30 constituant la virole externe 16, leur nombre pouvant être compris entre 5 et 40.More specifically with reference to the figure 3 , two adjacent structures 30 are shown in the circumferential direction 32 of the package. These two structures 30 are identical, and it is preferably the same for all the structures 30 constituting the outer shell 16, their number possibly being between 5 and 40.

Chaque structure de dissipation de chaleur 30 comporte deux demi-structures 30a, 30b de conceptions analogues, et étant agencées sensiblement symétriquement par rapport à un plan radial Pr de l'emballage. La demi-structure 30a comprend des ailettes primaires 40a droites et parallèles. Elles sont inclinées par rapport à la direction de la hauteur 8 de l'emballage, correspondant également à la direction de hauteur de la structure 30. L'angle d'inclinaison Aa des ailettes primaires 40a par rapport à la direction 8 est de préférence de l'ordre de 45°. De façon analogue et sensiblement symétrique, la demi-structure 30b comprend des ailettes primaires 40b droites et parallèles. Elles sont inclinées par rapport à la direction de la hauteur 8 de l'emballage, d'un angle d'inclinaison Ab de préférence de l'ordre de 45°. Néanmoins, la symétrie peut ne pas être parfaite, par exemple en prévoyant une faible différence dans la valeur des deux angles Aa, Ab, de l'ordre de 10 à 20°.Each heat dissipation structure 30 comprises two half-structures 30a, 30b of similar designs, and being arranged substantially symmetrically with respect to a radial plane Pr of the package. The half-structure 30a comprises straight and parallel primary fins 40a. They are inclined relative to the direction of the height 8 of the package, also corresponding to the height direction of the structure 30. The angle of inclination Aa of the primary fins 40a relative to the direction 8 is preferably around 45 °. Similarly and substantially symmetrically, the half-structure 30b comprises primary fins 40b straight and parallel. They are inclined relative to the direction of the height 8 of the packaging, with an angle of inclination Ab preferably of the order of 45 °. However, the symmetry may not be perfect, for example by providing a small difference in the value of the two angles Aa, Ab, of the order of 10 to 20 °.

Les ailettes primaires 40a, 40b des deux demi-structures forment deux à deux des ailettes 44 en forme générale de V inversé, lorsque l'emballage est agencé verticalement avec son fond orienté vers le bas, comme sur les figures 1 et 3. Chaque ailette 44 ainsi formée par l'une des ailettes primaires 40a, et l'ailette primaire 40b en regard, adopte donc une forme de chevron.The primary fins 40a, 40b of the two half-structures form two by two of the fins 44 in the general shape of an inverted V, when the packaging is arranged vertically with its bottom facing downwards, as in the figures 1 and 3 . Each fin 44 thus formed by one of the primary fins 40a, and the primary fin 40b facing, therefore adopts a chevron shape.

Chaque demi-structure 30a, 30b peut être réalisée d'une seule pièce selon la direction 8, ou bien segmentée selon cette même direction. Dans ce dernier cas illustré sur la figure 1, les segments de demi-structure sont alors agencés dans la continuité les uns des autres, en étant soudés bout-à-bout.Each half-structure 30a, 30b can be made in one piece in the direction 8, or segmented in the same direction. In the latter case illustrated on the figure 1 , the half-structure segments are then arranged in continuity with each other, being welded end-to-end.

De préférence, les deux demi-structures 30a, 30b sont distinctes l'une de l'autre, à savoir qu'elles comprennent chacune une plaque 46 de laquelle font saillie les ailettes primaires associées, comme cela a été représenté pour la demi-structure 30a sur la figure 4. Les deux plaques 46 sont assemblées entre elles par soudage au niveau de leurs chants en regard dans la direction circonférentielle, de façon à reconstituer une structure 30. Ainsi, les deux plaques assemblées 46 constituent ensemble la base précitée en forme de plaque rectangulaire, participant à reconstituer la virole extérieure 16.Preferably, the two half-structures 30a, 30b are distinct from each other, that is to say that they each comprise a plate 46 from which the associated primary fins project, as has been shown for the half-structure 30a on the figure 4 . The two plates 46 are assembled together by welding at their edges facing one another in the circumferential direction, so as to reconstitute a structure 30. Thus, the two assembled plates 46 together constitute the abovementioned base in the form of a rectangular plate, participating in reconstitute the outer shell 16.

Comme cela est illustré sur la figure 3, les deux demi-structures 30a, 30b sont de conception symétrique. Sur cette même figure 3, il est également représenté les canaux primaires 48a, 48b délimités respectivement par deux ailettes 40a, 40b directement consécutives, selon la direction 8.As illustrated in the figure 3 , the two half-structures 30a, 30b are of symmetrical design. On this same figure 3 , the primary channels 48a, 48b are also shown, delimited respectively by two fins 40a, 40b directly consecutive, in the direction 8.

Sur les figures 3 et 4, il a été identifié des paramètres géométriques déterminants pour l'obtention des performances thermiques inattendues, particulièrement élevées.On the figures 3 and 4 , determining geometric parameters have been identified for obtaining unexpected, particularly high thermal performance.

Il s'agit tout d'abord de la hauteur H de chaque demi-structure 30a, 30b, correspondant à la hauteur H de la structure 30 composé par ces deux demi-structure. Comme indiqué précédemment, la hauteur H est comprise entre 2 et 5 m, et de préférence proche de 4 m.It is first of all the height H of each half-structure 30a, 30b, corresponding to the height H of the structure 30 composed by these two half-structures. As indicated above, the height H is between 2 and 5 m, and preferably close to 4 m.

Il s'agit également de la hauteur h de chaque ailette primaire 40a, 40b, comprise entre 10 et 100 mm, et de préférence identique pour toutes les ailettes primaires.It is also the height h of each primary fin 40a, 40b, between 10 and 100 mm, and preferably identical for all the primary fins.

La largeur d de chaque canal primaire de circulation d'air 48a, 48b fait aussi partie de ces paramètres importants. Cette largeur d est comprise entre 10 et 50 mm, et s'avère constante et identique pour tous les canaux 48a, 48b, sur toute la hauteur H.The width d of each primary air circulation channel 48a, 48b is also one of these important parameters. This width d is between 10 and 50 mm, and is found to be constant and identical for all the channels 48a, 48b, over the entire height H.

Il s'agit aussi de l'épaisseur Ep de chaque ailette primaire 40a, 40b, répondant à la condition d/Ep ≥ 2,5. Cette épaisseur Ep est également de préférence identique pour toutes les ailettes primaires.It is also the thickness Ep of each primary fin 40a, 40b, meeting the condition d / Ep ≥ 2.5. This thickness Ep is also preferably identical for all the primary fins.

Enfin, la largeur L de chaque demi-structure 30a, 30b est également un paramètre clé. Cette largeur L, s'étendant selon une direction transversale orthogonale à la direction de la hauteur et assimilable à la direction circonférentielle 32, est identique pour les deux demi-structures et répond à la condition suivante : 0,30 . 0,35 . H 0,5 . h 0,6 / d 0,1 L 3,5 . 0,35 . H 0,5 . h 0,6 / d 0,1

Figure imgb0003
Finally, the width L of each half-structure 30a, 30b is also a key parameter. This width L, extending in a transverse direction orthogonal to the direction of the height and comparable to the circumferential direction 32, is identical for the two half-structures and meets the following condition: 0.30 . 0.35 . H 0.5 . h 0.6 / d 0.1 The 3.5 . 0.35 . H 0.5 . h 0.6 / d 0.1
Figure imgb0003

Par ailleurs, un éventuel écartement Ec peut être prévu entre les extrémités en regard de deux ailettes primaires 40a, 40b, formant conjointement une ailette en forme générale de V inversé 44. Cet écartement, agencé au niveau de la pointe de l'ailette 44, répond à la condition Ec/L ≤ 0,2. Les écartements étant alignés selon la direction 8, ils forment ensemble une sorte de canal vertical 54 de refoulement d'air, au niveau de la jonction entre les deux demi-structures 30a, 30b de la structure 30 de dissipation de chaleur.Furthermore, a possible spacing Ec can be provided between the ends opposite two primary fins 40a, 40b, jointly forming a fin in the general shape of an inverted V 44. This spacing, arranged at the point of the fin 44, meets the condition Ec / L ≤ 0.2. The spacings being aligned in direction 8, they together form a sort of vertical air delivery channel 54, at the junction between the two half-structures 30a, 30b of the heat dissipation structure 30.

En outre, il est de préférence prévu un écartement Ec' entre deux structures de dissipation 30 directement adjacentes selon la direction circonférentielle 32. Cet écartement Ec' est par exemple sensiblement égal à l'écartement Ec.In addition, a spacing Ec 'is preferably provided between two directly adjacent dissipation structures 30 in the circumferential direction 32. This spacing Ec' is for example substantially equal to the spacing Ec.

Cette combinaison de paramètres géométriques procure des performances thermiques très élevées, qui sont encore plus importantes lorsque ces paramètres répondent à la condition suivante : 0,55 . 0,35 . H 0,5 . h 0,6 / d 0,1 L 1,8 . 0,35 . H 0,5 . h 0,6 / d 0,1

Figure imgb0004
This combination of geometric parameters provides very high thermal performance, which is even more important when these parameters meet the following condition: 0.55 . 0.35 . H 0.5 . h 0.6 / d 0.1 The 1.8 . 0.35 . H 0.5 . h 0.6 / d 0.1
Figure imgb0004

Encore plus préférentiellement, les gains en performances thermiques peuvent atteindre jusqu'à 90% par rapport à la solution conventionnelle à ailettes droites verticales, lorsque la largeur L se rapproche de la valeur spécifique définie par le produit suivant : 0,35 . H0,5 . h0,6 / d0,1.Even more preferably, the gains in thermal performance can reach up to 90% compared to the conventional solution with vertical straight fins, when the width L approaches the specific value defined by the following product: 0.35. H 0.5 . h 0.6 / d 0.1 .

Dans tous les cas exposés ci-dessus, les gains en performances thermiques s'expliquent de manière inattendue et surprenante par l'obtention d'un phénomène d'accélération des particules d'air au sein des canaux primaires 48a, 48b. Cette accélération de l'air dans les canaux, schématisée par les flèches 56 sur la figure 5, résulte de l'interaction entre les zones d'aspiration d'air 58 à l'entrée des canaux 48a, 48b, et les zones de refoulement 60 situées plus en aval de ces canaux. Sur cette figure 5, les zones d'aspiration d'air 58 correspondent aux parties fortement grisées, en forme de triangle avec le sommet orienté vers le haut. Cela s'explique par le fait que ces zones d'aspiration 58, au sein des canaux 48a, 48b, sont plus étendues en allant vers le bas. A l'inverse, les zones de refoulement 60 correspondent aux parties moins grisées, en forme de triangle avec le sommet orienté vers le bas. Cela s'explique par le fait que ces zones de refoulement sont plus étendues en allant vers le haut.In all the cases described above, the gains in thermal performance are explained unexpectedly and surprisingly by obtaining a phenomenon of acceleration of the air particles within the primary channels 48a, 48b. This acceleration of the air in the channels, shown schematically by the arrows 56 on the figure 5 , results from the interaction between the air suction zones 58 at the inlet of the channels 48a, 48b, and the discharge zones 60 located further downstream of these channels. On this figure 5 , the air suction zones 58 correspond to the highly grayed-out parts, in the shape of a triangle with the vertex facing upwards. This is explained by the fact that these suction zones 58, within the channels 48a, 48b, are more extensive going downwards. Conversely, the delivery zones 60 correspond to the less gray parts, in the shape of a triangle with the vertex oriented downwards. This is explained by the fact that these delivery zones are more extensive going upwards.

Avec l'agencement proposé, lorsque les demi-structures sont chauffées, il se produit une convection naturelle conduisant l'air à entrer dans les canaux primaires 48a, 48b, puis à se propager vers le haut au sein de ces canaux, avant de rencontrer l'air provenant des canaux en regard appartenant à l'autre demi-structure. Cet impact en sortie des canaux primaires 48a, 48b, au niveau de la pointe des V inversés, conduit l'air à s'évacuer verticalement vers le haut. Mais simultanément, grâce à la proportion maîtrisée entre l'étendue des zones d'aspiration 58 et l'étendue des zones de refoulement 60 découlant des paramètre géométriques spécifiques mis en œuvre dans l'invention, il se crée des tourbillonnements et recirculations d'air au-dessus des ailettes et des canaux primaires 48a, 48b, favorisant l'accélération de l'air dans ces canaux. Ces tourbillonnements, schématisés par les flèches 62 sur la figure 5, sont obtenus du fait qu'une partie des particules d'air des zones de refoulement 60 est ré-aspirée dans les canaux primaires 48a, 48b en étant entraînées par les zones d'aspiration 58, tandis que des particules d'air des zones d'aspiration 58 sont entraînées par les zones de refoulement 60.With the proposed arrangement, when the half-structures are heated, there is a natural convection leading the air to enter the primary channels 48a, 48b, then to propagate upward within these channels, before meeting the air coming from the opposite channels belonging to the other half-structure. This impact at the outlet of the primary channels 48a, 48b, at the point of the inverted Vs, causes the air to be evacuated vertically upwards. But simultaneously, thanks to the controlled proportion between the extent of the suction zones 58 and the extent of the discharge zones 60 resulting from the specific geometric parameters implemented in the invention, air swirls and recirculations are created. above the fins and primary channels 48a, 48b, promoting the acceleration of the air in these channels. These swirls, shown schematically by the arrows 62 on the figure 5 , are obtained from the fact that part of the air particles from the discharge zones 60 is re-aspirated in the primary channels 48a, 48b while being entrained by the suction zones 58, while air particles from the zones suction 58 are driven by the discharge zones 60.

Claims (10)

  1. Structure (30) for dissipating heat by natural convection, intended to be provided on the periphery of packaging (1) for the transportation and/or storage of radioactive materials,
    the structure being characterised in that it has two adjacent half-structures (30a, 30b) each comprising primary fins (40a, 40b) that are parallel and inclined with respect to a direction of the height (8) of the structure, the primary fins (40a, 40b) of the two half-structures (30a, 30b) forming, two by two, fins (44) having the overall shape of an inverted V, when the packaging is arranged vertically with its bottom (4) oriented downwards,
    the structure having the following parameters:
    - H: the height of each half-structure (30a, 30b), in the direction of the height (8) along which the inclined primary fins (40a, 40b) are successively arranged, this height being between 2 and 5m;
    - h: the height of each primary fin (40a, 40b), between 10 and 100mm;
    - d: the width of each primary channel (48a, 48b) for circulation of air defined between two directly consecutive primary fins, this width being between 10 and 50mm;
    - Ep: the thickness of each primary fin (40a, 40b), satisfying the condition d/Ep ≥ 2.5;
    - L: the width of each half-structure (30a, 30b) in a transverse direction orthogonal to the direction of the height (8), said width L satisfying the following condition: 0.30 . 0.35 . H 0.5 . h 0.6 / d 0.1 L 3.5 . 0.35 . H 0.5 . h 0.6 / d 0.1
    Figure imgb0009
  2. Structure for dissipating heat according to claim 1, characterised in that the two adjacent half-structures (30a, 30b) are arranged in a substantially symmetrical manner.
  3. Structure for dissipating heat according to claim 1 or claim 2, characterised in that the primary fins (40a, 40b) are straight and inclined by a value between 30 and 60° with respect to the direction of the height (8), and preferably inclined by a value of 45° with respect to this same direction.
  4. Structure for dissipating heat according to any one of the previous claims, characterised in that the width d is constant and identical for all the primary channels (40a, 40b) for circulation of air of each half-structure (30a, 30b).
  5. Structure for dissipating heat according to any one of the previous claims, characterised in that width L of each half-structure (30a, 30b) satisfies the following condition: 0.55 . 0.35 . H 0.5 . h 0.6 / d 0.1 L 1.8 . 0.35 . H 0.5 . h 0.6 / d 0.1
    Figure imgb0010
  6. Structure for dissipating heat according to any one of the previous claims, characterised in that the two half-structures (30a, 30b) are distinct from each other, each having a plate (46) and its own primary fins that protrude from the plate.
  7. Structure for dissipating heat according to any one of claims 1 to 5, characterised in that the two half-structures (30a, 30b) are made on the same plate having a height H.
  8. Structure for dissipating heat according to any one of the previous claims, characterised in that each half-structure (30a, 30b) is substantially flat.
  9. Packaging (1) for the transportation and/or the storage of radioactive materials, comprising a lateral body (10) provided on the outside with a plurality of structures for dissipating heat (30) according to any one of the previous claims, distributed circumferentially around the lateral body (10).
  10. Packaging according to the previous claim, characterised in that a spacing Ec' between two dissipation structures (30) directly adjacent in the circumferential direction (32), is substantially equal to the spacing Ec.
EP16809084.3A 2015-12-14 2016-12-13 Improved heat dissipation structure for natural convection for transport containers and/or storage containers for radioactive material Active EP3391379B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562301A FR3045143B1 (en) 2015-12-14 2015-12-14 IMPROVED NATURAL CONVECTION HEAT DISSIPATION STRUCTURE FOR THE PACKAGING OF TRANSPORT AND / OR STORAGE OF RADIOACTIVE MATERIALS
PCT/EP2016/080801 WO2017102729A1 (en) 2015-12-14 2016-12-13 Improved structure for dissipating heat by natural convection, for packaging for transporting and/or storing radioactive materials

Publications (2)

Publication Number Publication Date
EP3391379A1 EP3391379A1 (en) 2018-10-24
EP3391379B1 true EP3391379B1 (en) 2020-01-08

Family

ID=55948881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16809084.3A Active EP3391379B1 (en) 2015-12-14 2016-12-13 Improved heat dissipation structure for natural convection for transport containers and/or storage containers for radioactive material

Country Status (8)

Country Link
US (1) US10381120B2 (en)
EP (1) EP3391379B1 (en)
JP (1) JP6944454B2 (en)
KR (1) KR102604785B1 (en)
CN (1) CN108369829B (en)
FR (1) FR3045143B1 (en)
UA (1) UA122810C2 (en)
WO (1) WO2017102729A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118714B (en) * 2020-09-30 2022-06-17 杭州华宏通信设备有限公司 Outdoor integrated power box for 5G equipment
US11605886B1 (en) * 2020-12-23 2023-03-14 Xilinx, Inc. Radome with integrated passive cooling

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1266684A (en) * 1968-07-08 1972-03-15
US3727059A (en) * 1971-01-26 1973-04-10 S Reese Container for transporting radioactive materials
CA1026471A (en) * 1973-01-26 1978-02-14 Stanton L. Reese Radioactive materials transporting container and vehicle
DE2910115A1 (en) * 1979-03-15 1980-09-18 Siempelkamp Gmbh & Co Radioactive waste screening container - with herringbone cooling ribs of specified pattern outside cast metal cylinder
JPS5910291U (en) * 1982-07-12 1984-01-23 株式会社神戸製鋼所 Pyrogen storage container
EP0175140B1 (en) * 1984-09-04 1989-04-26 Westinghouse Electric Corporation Spent fuel storage cask having continuous grid basket assembly
US4590383A (en) * 1984-10-22 1986-05-20 Westinghouse Electric Corp. Spent fuel storage cask having improved fins
JP3978210B2 (en) * 2002-07-23 2007-09-19 三菱重工業株式会社 Cask
JP4291588B2 (en) * 2003-01-31 2009-07-08 株式会社神戸製鋼所 Concrete cask and manufacturing method thereof
DE10338845B3 (en) 2003-08-20 2005-06-09 Steag Encotec Gmbh Holder, for transporting and storage of burner elements, e.g. used nuclear fuel elements, has surface ribs forming streaming channel for cool air
JP2006170795A (en) * 2004-12-15 2006-06-29 Mitsubishi Heavy Ind Ltd Radioactive material storage vessel, and radioactive material storage method
CN102222531A (en) * 2010-12-01 2011-10-19 中国核电工程有限公司 Multifunctional heat-radiating structure of radioactive substance transport container
CN104221092B (en) * 2012-01-19 2018-05-01 阿海珐有限公司 System for storing and transporting spentnuclear fuel
WO2014110318A1 (en) * 2013-01-10 2014-07-17 Holtec International High-density subterranean storage system for nuclear fuel and radioactive waste
US9167723B1 (en) * 2013-04-02 2015-10-20 Gerald Ho Kim Silicon-based heat-dissipation device for heat-generating devices
JP6310244B2 (en) * 2013-12-06 2018-04-11 日立造船株式会社 Manufacturing method of cask for storing radioactive material
CN104089498B (en) * 2014-07-31 2016-03-09 杭州沈氏节能科技股份有限公司 A kind of novel micro-channel heat exchanger
US20160035446A1 (en) * 2014-07-31 2016-02-04 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Novel Vertical Concrete Cask Design Used for Storing Nuclear Spent Fuel Dry Storage Canister
FR3034246B1 (en) 2015-03-25 2017-04-28 Tn Int DEVICE FOR SUPPORTING A TRANSPORT / STORAGE PACKAGING OF RADIOACTIVE MATERIALS, COMPRISING A COOLING AIR GUIDE DENING OF THE PACKAGING BY NATURAL CONVECTION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10381120B2 (en) 2019-08-13
KR102604785B1 (en) 2023-11-21
EP3391379A1 (en) 2018-10-24
CN108369829A (en) 2018-08-03
FR3045143B1 (en) 2017-12-22
UA122810C2 (en) 2021-01-06
KR20180092985A (en) 2018-08-20
WO2017102729A1 (en) 2017-06-22
JP6944454B2 (en) 2021-10-06
US20180374592A1 (en) 2018-12-27
JP2019502912A (en) 2019-01-31
CN108369829B (en) 2021-12-31
FR3045143A1 (en) 2017-06-16

Similar Documents

Publication Publication Date Title
EP2697574B1 (en) Panel supporting device
EP1166279B1 (en) Installation for very long term storage of heat-generating products such as nuclear waste
EP3011247B1 (en) Tube having a container of phase change material for a heat exchange bundle, in particular for an evaporator of an air conditioning system of a vehicle
EP3391379B1 (en) Improved heat dissipation structure for natural convection for transport containers and/or storage containers for radioactive material
EP0596786A1 (en) Spacer grid provided with vanes for nuclear fuel assembly
CA2577595C (en) Transverse separator for combustion chamber with multiperforation holes
EP0176407B1 (en) Header box for a heat exchanger and heat exchanger comprising this header box
EP0087350B1 (en) Neutron shielding device for radio-active material
EP2320429A1 (en) Packaging for transporting and/or storing radioactive materials including radially stacked radiation protection elements
FR3064809B1 (en) PACKAGING OF TRANSPORT AND / OR STORAGE OF RADIOACTIVE MATERIALS WITH IMPROVED CONVICTIVE EXCHANGES
FR3034246A1 (en) DEVICE FOR SUPPORTING A TRANSPORT / STORAGE PACKAGING OF RADIOACTIVE MATERIALS, COMPRISING A COOLING AIR GUIDE DENING OF THE PACKAGING BY NATURAL CONVECTION
EP2320432B1 (en) Packaging for transporting and/or storing radioactive materials providing a reinforced heat transfer
EP4327395A1 (en) Sealed electric battery housing
WO2017064174A1 (en) Cooling element with base for discharging heat from a package
FR3059090B1 (en) COLLECTOR BOX AND THERMAL EXCHANGER CORRESPONDING
WO2006016082A1 (en) External heat-removal device for packaging designed for storing and/or transporting nuclear materials
FR2935532A1 (en) PROCESS FOR MANUFACTURING PACKAGING FOR THE TRANSPORT AND / OR STORAGE OF NUCLEAR MATERIALS USING THE WELDING REMOVAL PHENOMENON
EP3577408B1 (en) Heat exchanger header
EP3482148B1 (en) Heat exchanger and vehicle comprising said exchanger
EP3766082B1 (en) Packaging for the transport and/or storage of radioactive materials, permitting easier production and improved heat conductivity
EP3743928B1 (en) Storage basket for radioactive materials, having an optimised space requirement and housings with more accurate geometry
EP3144628B1 (en) Armored louver
FR3109210A1 (en) HEAT EXCHANGER, ESPECIALLY FOR MOTOR VEHICLES
FR3135517A1 (en) Plate for heat exchanger with fluid flow disruptors
FR3109240A1 (en) STORAGE DEVICE FOR THE STORAGE AND / OR TRANSPORT OF NUCLEAR FUEL ASSEMBLIES, WITH A LOW COST DESIGN

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G21F 5/005 20060101ALI20190716BHEP

Ipc: G21F 5/12 20060101ALI20190716BHEP

Ipc: G21F 5/10 20060101ALI20190716BHEP

Ipc: G21F 5/008 20060101ALI20190716BHEP

Ipc: G21F 5/002 20060101AFI20190716BHEP

Ipc: F28D 9/00 20060101ALI20190716BHEP

INTG Intention to grant announced

Effective date: 20190812

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016028027

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1223698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016028027

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1223698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200108

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231221

Year of fee payment: 8

Ref country code: NL

Payment date: 20231220

Year of fee payment: 8

Ref country code: FR

Payment date: 20231227

Year of fee payment: 8

Ref country code: FI

Payment date: 20231227

Year of fee payment: 8

Ref country code: DE

Payment date: 20231220

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 8