EP3390675A1 - Pneu renforcé par un ruban en acier au carbone - Google Patents

Pneu renforcé par un ruban en acier au carbone

Info

Publication number
EP3390675A1
EP3390675A1 EP16825529.7A EP16825529A EP3390675A1 EP 3390675 A1 EP3390675 A1 EP 3390675A1 EP 16825529 A EP16825529 A EP 16825529A EP 3390675 A1 EP3390675 A1 EP 3390675A1
Authority
EP
European Patent Office
Prior art keywords
tire
carbon steel
tire according
carbon
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16825529.7A
Other languages
German (de)
English (en)
Inventor
Arnaud Verleene
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of EP3390675A1 publication Critical patent/EP3390675A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/12Layered products comprising a layer of natural or synthetic rubber comprising natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/552Fatigue strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2002Wires or filaments characterised by their cross-sectional shape
    • D07B2201/2003Wires or filaments characterised by their cross-sectional shape flat
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/201Wires or filaments characterised by a coating
    • D07B2201/2011Wires or filaments characterised by a coating comprising metals
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3039Martensite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3042Ferrite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/305Steel characterised by the carbon content having a low carbon content, e.g. below 0,5 percent respectively NT wires

Definitions

  • the present invention relates to motor vehicle tires, as well as to metal reinforcements used for reinforcing such tires.
  • a tire with a radial carcass reinforcement for a vehicle for example of the touring, light truck or heavy vehicle type, to mention only these examples, comprises, it is known, a tread, two inextensible beads intended to be in contact with a mounting rim. , two flexible flanks reinforced by the carcass reinforcement, connecting the beads to the tread and a rigid crown reinforcement or "belt” arranged circumferentially between the carcass reinforcement and the tread, this belt consisting of various plies (or “layers") of rubber reinforced or not by reinforcing elements (or “reinforcements”) such as cords or monofllaments, metal or textile type.
  • the belt of a tire is generally composed of at least two superimposed belt plies, sometimes called “working plies” or “crossed plies”, whose reinforcing cables, generally metallic, are arranged substantially parallel to each other. to each other within a web, but crossed from one web to another, that is to say inclined, symmetrically or otherwise, with respect to the median circumferential plane, of an angle which is generally between 10 ° and 45 ° depending on the type of tire.
  • a tire belt must satisfy, in known manner, different, often contradictory, requirements, namely: to be as rigid as possible at low deformation, since it contributes in a substantial way to stiffening the top of the tire;
  • the third and fourth requirements are particularly strong, for example for truck tire shells, designed to be retreaded one or more times when the treads they comprise reach a degree of critical wear after prolonged rolling.
  • the object of the present invention is a new tire, reinforced by a carbon steel metal strip with a specific microstructure and high mechanical properties, said tire having, thanks to this ribbon, a substantially improved endurance, particularly with regard to the problem of belt cleavage, compared to the tires reinforced by carbon steel ribbons known from the prior art.
  • This specific tape also provides the tire of the invention with improved resistance to corrosion fatigue.
  • the present invention relates to a tire for a motor vehicle comprising at least one ribbon made of carbon steel with a very low carbon content and high strength in the hardened state, characterized by the following points: carbon a (% by weight) between 0.05% and 0.4% of carbon, between 0.5% and 4% of manganese, between 0.1% and 2.5% of silicon, optionally ) less than 1, 5%) of aluminum, (ii) less than 0.5%> of each of the metals boron, chromium, cobalt, copper, molybdenum, nickel, niobium, titanium, tungsten, vanadium, zirconium, and (iii) less than 0,05%> of each of the elements phosphorus, sulfur, nitrogen, or rare earth, the remainder consisting of iron and unavoidable impurities resulting from the elaboration; the microstructure of hardened carbon steel is mainly martensitic or ferritic-martensitic; the resistance noted Rm ribbon is greater than 1
  • the above ribbon with a specific microstructure, has for remarkable properties a high mechanical strength, despite a very low carbon content, all combined with improved resistance to corrosion and fatigue-corrosion mechanisms.
  • the invention relates to tires both in the raw state (that is to say before cooking or vulcanization of the rubber) and in the cooked state (after baking the rubber).
  • the tires of the invention may be intended in particular for motor vehicles of the tourism, 4x4, "SUV” (Sport Utility Vehicles) type, but also for industrial vehicles chosen from light trucks, "heavy trucks” - ie, metro , buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles -, agricultural or civil engineering machinery, aircraft, other commercial vehicles for transport or handling.
  • FIGS. 1 to 4 relating to these examples which schematize or reproduce: in cross-section, an example of a composite (metal / rubber) usable as reinforcing structure in the tire according to the invention (Fig. 1);
  • FIG. 3 an optical microscope view of a ferritic-martensitic microstructure observed on a low-carbon steel strip of the two-phase type capable of reinforcing the tire of the invention, before (FIG 3) and after work-hardening (FIG. ) of this carbon steel.
  • rubber or "elastomer” (both terms being considered synonymous): any type of elastomer, whether of the diene type or of the non-diene type, for example thermoplastic;
  • rubber composition or “rubber composition” means a composition which comprises at least one rubber and a filler
  • layer means a sheet, strip or other element of relatively small thickness in relation to its other dimensions, preferably having the ratio of the thickness to the most other dimensions is less than 0.5, more preferably less than 0.1
  • axial direction means a direction substantially parallel to the axis of rotation of the tire
  • circumferential direction means a direction that is substantially perpendicular both to the axial direction and to a radius of the tire (in other words, tangent to a circle whose center is on the axis of rotation of the tire);
  • radial direction means a direction along a radius of the tire, that is to say any direction passing through the axis of rotation of the tire and substantially perpendicular to that direction, that is to say with a perpendicular at this direction an angle not diverging by more than 5 degrees;
  • oriented perpendicular to an axis or direction speaking of any element such as a reinforcement, an element that is oriented substantially perpendicular to that axis or direction, that is to say, with a perpendicular at that axis or direction an angle not diverging by more than 5 degrees;
  • M “median circumferential plane” (denoted by M): the plane perpendicular to the Y axis of rotation of the tire which is located halfway between the two beads and passes through the middle of the crown reinforcement or belt;
  • x and / or y means “x” or “y” or both (i.e., “x and y”). Any range of values designated by the expression “between a and b” represents the range of values from more than “a” to less than “b” (i.e., “a” and “b” terminals excluded ) while any range of values referred to as “a to b” means the range of values from “a” to "b” (ie including the strict “a” and “a” limits). "B”).
  • the present invention therefore relates to a tire comprising, as a metal reinforcement, a steel strip with a very low carbon content, precisely between 0.05% and 0.4% of carbon, also comprising between 0.5% and 4%> manganese, between 0.1%> and 2.5%> of silicon, optionally (i) less than 1.5% of aluminum, (ii) less than 0.5% of each of the boron metals, chromium, cobalt, copper, molybdenum, nickel, niobium, titanium, tungsten, vanadium, zirconium, and (iii) less than 0.05% of each of the elements phosphorus, sulfur, nitrogen, or rare earth, the rest being made of iron and unavoidable impurities resulting from the elaboration.
  • the ribbon is made of steel, that is to say that by definition it is mainly (for more than 50%) by mass) or completely (for 100% by weight) of steel.
  • the steel is advantageously as defined in standard NF EN 10020 (September 2000). According to this standard, a steel is a material containing more iron than any other element and whose carbon content is less than 2%. Still in accordance with this standard, the steel optionally includes other alloying elements.
  • the carbon content of the carbon steel is in a range from 0.1 to 0.3%, more preferably in a range from 0.15% to 0.25%.
  • its manganese content is in a range of 1% to 3%, more preferably in a range of 1.5% to 2.5%.
  • its silicon content is between 0.1 and 1.5%, more preferably in a range of 0.2% to 1.0%, in particular in a range of 0.3% to 0%. , 8%.
  • Its optional aluminum content is preferably less than 1.0%, more preferably less than 0.5%.
  • the level of each of the optional metals boron, chromium, cobalt, copper, molybdenum, nickel, niobium, titanium, tungsten, vanadium, zirconium is less than 0.3%, more preferably less than 0.2%.
  • the level of each of the phosphorus and sulfur elements is preferably less than 0.020%, more preferably less than 0.015%.
  • the microstructure of the carbon steel in the hardened state is mainly martensitic or mainly ferritomersitic, that is to say that it constitutes more than 50% by volume either martensite phases (in this case, called “mainly martensitic”), or phases of martensite and ferrite (in this case, called “mainly ferrito -martensitic”).
  • a martensitic or ferrito- martensitic microstructure has, in known manner, martensite slats or martensite slats, respectively, combined with ferrite phases.
  • the volume percentage of martensite is more preferably greater than 90%, in particular greater than 95%.
  • the total volume percentage of martensite and ferrite is more preferably greater than 90%, in particular greater than at 95%. More preferably still, for such a microstructure, the ferrite content itself is greater than 60%.
  • This volume ratio is determined in a known manner by image analysis, by simply measuring the area occupied by the martensitic, or martensitic and ferritic phases and relating them to the total surface of the image.
  • the carbon steel is a type of steel "TRIP” (TRans Formation Induced Plasticity) or “T” (steel plasticity induced by Transformation); In the sense of the NF EN 10338 standard (October 2015), this is a reminder of a mainly ferritic matrix steel containing residual austenite capable of transforming into martensite during the forming process.
  • the carbon steel is a steel of the "two-phase” type, also called “Dual Phase”; in the sense of standard NF EN 10338 (October 2015) above, it is a steel containing mainly ferrite and martensite and possibly bainite as a complementary phase.
  • the carbon steel is a martensitic type steel ("MS"); according to standard NF EN 10338 (October 2015), it is a martensitic matrix steel containing small amounts of ferrite and / or bainite.
  • cold-rolled strip in English “cold-rolled” strip
  • Another essential feature of the carbon steel ribbon suitable for the tire of the invention is that it has a very high tensile strength in the hardened state, making it suitable in the form of ribbon for reinforcing tires. for motor vehicles.
  • Its mechanical resistance Rm is preferably greater than 1500 MPa, more preferably greater than 1800 MPa, even more preferably greater than 1900 MPa.
  • Its total elongation at break At is preferably between 1% and 3%, more preferably within a range of 1.5 to 2.5%.
  • the maximum breaking stress or rupture limit Rm corresponds to the force required to break the wire in traction; the measurements of Rm (in MPa) and At (in% of initial length before traction) are carried out according to ISO 6892 of 1984, at ambient temperature (23 ° C).
  • the thickness denoted "Ts" of the ribbon is preferably less than 2 mm, more preferably less than 1 mm. More preferably still, this thickness Ts is between 0.1 and 0.8 mm, in particular in a range of 0.15 to 0.5 mm, more particularly in a range of 0.2 to 0.5 mm, more particularly in a range of 0.25 to 0.45 mm or in a range of 0.15 to 0.35 mm.
  • the width denoted "Ws" of this ribbon is conventionally less than 50 mm, preferably less than 20 mm. More preferably still, this width Ws is between 1 and 15 mm, more preferably greater than 1 mm and less than or equal to 10 mm, more particularly within a range of 2.5 to 10 mm, more preferably still 2.5. at 5 mm.
  • the ribbon may be coated with a metal layer improving for example its properties of use, such as adhesion properties, corrosion resistance or resistance to aging.
  • the tape is coated with a layer of zinc or more preferably with a layer of brass (copper and zinc alloy), deposited for example electrolytically from brass anodes.
  • the brass coating preferably has a very small thickness, substantially less than one micrometer, for example of the order of 0.10 to 0.30 ⁇ , which is negligible compared to the thickness of the tape.
  • the ribbon could be covered with a metal layer other than brass or zinc, for example having the function of improving the corrosion resistance and / or adhesion to rubber, for example a thin layer of Co , Ni, Al, an alloy of two or more compounds Cu, Zn, Al, Ni, Co, Sn.
  • the ribbon may also be devoid of any metal coating, that is to say so-called "clear" steel.
  • the ribbon described above is typically incorporated with rubber to form a metal / rubber composite (10) having at least one such ribbon (12), preferably several of them aligned in parallel.
  • the total thickness of the composite denoted "Te” can vary widely depending on the particular applications targeted; it is preferably between 0.5 and 3.0 mm, more preferably between 0.5 and 1.5 mm.
  • this composite has a width "Wc" (in the Y direction) and a length (in the X direction) which are respectively greater than 2.5 mm and 10 cm, more preferably greater than 5 mm and 20 cm respectively.
  • Each constituent rubber composition of the composite is based on at least one elastomer, preferably of the diene type.
  • elastomer elastomer alone or elastomer mixture
  • diene monomers that is to say monomers carrying two carbon-carbon double bonds, whether the latter are conjugated or not.
  • This diene elastomer is preferably chosen from the group consisting of polybutadienes (BR), natural rubber (NR), synthetic polyisoprenes (IR), various butadiene copolymers, the various isoprene copolymers, and mixtures of these elastomers, such copolymers being chosen in particular from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR) and copolymers of isoprene-butadiene-styrene (SBIR).
  • SBR butadiene-styrene copolymers
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • SBIR copolymers of isoprene-butadiene-styrene
  • a particularly preferred embodiment consists of using an "isoprene" elastomer, that is to say a homopolymer or copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of natural rubber (NR ), the synthetic polyisoprenes (IR), the various isoprene copolymers and the mixtures of these elastomers.
  • the isoprene elastomer is preferably natural rubber or synthetic polyisoprene of the cis-1,4 type.
  • polyisoprenes having a content (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%, are preferably used.
  • each layer of rubber composition comprises 50 to 100 phr of natural rubber.
  • the diene elastomer may consist, in whole or in part, of another diene elastomer such as, for example, an SBR elastomer used in or with another elastomer, for example type BR.
  • the rubber composition may contain one or more diene elastomer (s), this last one (s) may be used in combination with any type of synthetic elastomer other than diene, or even with polymers other than elastomers.
  • the rubber composition may also comprise all or part of the additives usually used in rubber matrices for the manufacture of tires, such as, for example, reinforcing fillers such as carbon black or silica, coupling agents, anti-aging agents, antioxidants, plasticizers or oils whether of aromatic or nonaromatic nature, plasticizing resins having a high glass transition temperature, processing agents, tackifying resins, anti-eversion agents, methylene acceptors and donors, resins reinforcing agents, a crosslinking or vulcanization system.
  • reinforcing fillers such as carbon black or silica
  • coupling agents such as carbon black or silica
  • anti-aging agents such as carbon black or silica
  • antioxidants antioxidants, plasticizers or oils whether of aromatic or nonar
  • the crosslinking system of the rubber composition is a so-called vulcanization system, that is to say based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • a vulcanization system may be added various known secondary accelerators or vulcanization activators.
  • the sulfur is used at a preferential rate of between 0.5 and 10 phr
  • the primary vulcanization accelerator for example a sulfenamide
  • the level of reinforcing filler for example carbon black or silica, is preferably greater than 50 phr, especially between 50 and 150 phr.
  • Carbon blacks are suitable for all carbon blacks, in particular blacks of the HAF, ISAF, SAF type conventionally used in tires (so-called pneumatic grade blacks). Among the latter, mention will be made more particularly of carbon blacks of (ASTM) grade 300, 600 or 700 (for example N326, N330, N347, N375, N683, N772).
  • Suitable silicas are in particular precipitated or pyrogenic silicas having a BET surface area of less than 450 m 2 / g, preferably from 30 to 400 m 2 / g.
  • the ribbon is provided with an adhesive layer with respect to the rubber composition with which it is in contact.
  • This composite metal / rubber including improved resistance to corrosion and fatigue-corrosion, can advantageously replace conventional fabrics or plies reinforced son or steel cables with high carbon.
  • this metal / rubber composite suitable for the tire of the invention has demonstrated a significantly improved puncture resistance compared to these same conventional cables-reinforced fabrics: with reinforced reinforcement iso-mass.
  • a reinforced control fabric for example a 4-wire steel cable (of construction 2 + 2)
  • the perforation of the fabric according to the invention by means of an indenter of 5 , 5 mm in diameter, required an increased force of 25%.
  • the rubber compositions used for these composites can be, for example, conventional compositions for calendering metal reinforcements, typically based on natural rubber, carbon black or silica, a vulcanization system and additives. conventional.
  • these rubber compositions have, in the crosslinked (vulcanized) state, a secant modulus in extension, at 10% elongation, which is between 4 and 25 MPa, more preferably between 4.5 and 20 MPa; values especially between 5 and 15 MPa have proved to be particularly suitable for the strengthening and endurance of tires, in particular their belts.
  • the modulus measurements are carried out in tension, unless otherwise indicated according to ASTM D 412 of 1998 (specimen "C”): the secant modulus is measured in second elongation (that is to say after an accommodation cycle). "true” (that is to say, reduced to the actual section of the test piece) at 10% elongation, expressed in MPa (normal temperature and humidity conditions according to ASTM D 1349 of 1999).
  • the tire of the invention, reinforced by the ribbon or the composite (metal / rubber) described above, is intended for all types of vehicles, in particular passenger vehicles or industrial vehicles such as heavy goods vehicles, civil engineering, aircraft, other vehicles. transportation or handling.
  • FIG. 2 shows very diagrammatically (without respecting a specific scale) a radial section of a tire, which may or may not conform to the invention in this general representation, intended for example for a heavy vehicle or a passenger vehicle.
  • This tire 100 defining three perpendicular, circumferential (X), axial (Y) and radial (Z) directions, comprises a vertex 101 reinforced by a crown reinforcement 102, two flexible flanks 103 and two inextensible beads 104 intended to be in contact with a mounting rim, the two sidewalls being reinforced by a carcass reinforcement 106, each of the beads 104 being reinforced with a rod 105.
  • the top 102 is surmounted by a tread (not shown in this schematic figure, for simplification).
  • the carcass reinforcement 106 is wound around the two rods 105 in each bead 104, the upturn 107 of this armature 106 being for example disposed towards the outside of the tire 100 which is shown here mounted on its rim 108.
  • this tire 100 further comprises, in a known manner, a layer of rubber 109, commonly known as a rubber or sealing layer, which defines the radially inner face of the tire and which is intended to protect the carcass ply from the diffusion of air coming from the tire. interior space to the tire.
  • the carcass reinforcement 106 is generally composed of at least one rubber ply reinforced with "radial" textile or metal reinforcements, that is to say that these reinforcements are arranged substantially parallel to one another and extend from one bead to the other so as to form an angle of between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is situated half way between the two beads 104 and goes through the middle of the vertex frame 102).
  • the belt 102 is for example constituted by at least two "working plies", superimposed and crossed, reinforced with metal reinforcements arranged substantially parallel to each other and inclined relative to the median circumferential plane, these working plies can be associated or not to other plies and / or fabrics of rubber.
  • the belt 102 may furthermore comprise, in this example, a rubber sheet called a "hooping sheet" reinforced with so-called “circumferential" reinforcing threads, that is to say that these reinforcing threads are arranged substantially parallel to each other. other and extend substantially circumferentially around the tire so as to form an angle preferably within a range of 0 to 10 ° with the medial circumferential plane.
  • the belt 102 may further comprise in this example a so-called "protective ply” rubber ply, generally positioned between the tread and the two crossed plies.
  • a tire 100 when it is in accordance with the invention, has the preferred characteristic that at least its belt (102) comprises, as a metal reinforcement, the very low-carbon steel strip previously described, embedded in a layer of diene rubber composition, to constitute at least one (ie one or more) belt ply, more preferably at least one belt ply of the working ply type and / or at least one ply of plywood. belt type protective web.
  • the density of the ribbons is preferably between 5 and 40 ribbons per dm (decimetre) of ply, more preferably from 10 to 30 ribbons per dm, the distance (or "not ) Between two adjacent ribbons, axis-to-axis, thus preferably between 3 and 20 mm, more preferably from 4 to 7 mm.
  • the ribbons are preferably arranged in such a way that the width (denoted “Wr” in Fig. 1) of the rubber bridge, between two adjacent ribbons, is between 0.5 and 3 mm, more preferably from 0.9 to 1.6 mm.
  • This width "Wr” represents, in known manner, the difference between the calendering pitch (no laying of the ribbon in the rubber fabric) and the width of the ribbon.
  • the rubber bridge which is too narrow, risks being degraded mechanically during the working of the sheet, in particular during the deformations undergone in its own plane by extension or shearing. Beyond the indicated maximum, one is particularly exposed to risks including penetration of objects, perforation, between the ribbons, not to mention an undesirable decrease in the mechanical strength of the webs.
  • the composite could be used in the tire of the invention in the form of thin rubber strips, the width of which may vary to a large extent depending on the particular applications concerned, for example in the case of belt, about 3 mm to 15 mm wide, arranged side by side, these strips being reinforced by this tape and each strip may comprise a single or several ribbons arranged in parallel.
  • it is the carcass reinforcement (106) that can be reinforced with such a ribbon, or else the bead zone; it is for example the rods (105) which could be made, in whole or in part, of such a ribbon.
  • the three reinforcements above were incorporated, by calendering, between two layers of rubber to form a composite (metal / rubber) based on a known rubber composition to form working webs. heavyweight tire belt.
  • Each of the two layers of rubber had a thickness of 0.50 mm for the reinforcement RI (cable), half less (or 0.25 mm) for the reinforcements R2 and R3 (ribbons).
  • This composition was based on natural rubber and carbon black as a reinforcing filler, further comprising essentially an antioxidant, stearic acid, an extension oil, cobalt naphthenate as adhesion promoter, finally a vulcanization system (sulfur, accelerator, ZnO); its true secant modulus at 10% elongation was of the order of 10.5 MPa.
  • a vulcanization system sulfur, accelerator, ZnO
  • the composite fabrics thus constituted of the rubber composition and respectively the ribbons R1, R2 and R3 had, for each belt working ply, a total thickness equal to about 1.25 mm for RI, about 0.65 mm for R2 and R3.
  • the calendering pitch of the ribbons was equal to about 3.5 mm (mm), the distance "Wr” or width of the rubber bridge between two consecutive ribbons (measured according to the direction Y) is therefore equal to about 0.5 mm.
  • These tapes were arranged substantially parallel to each other and inclined by +21 degrees (radially internal layer) and -21 degrees (radially outer layer). All angles of inclination indicated are measured relative to the median circumferential plane.
  • the calender pitch of the cables was about 1.4 mm, the distance "Wr" or width of the rubber bridge between two consecutive cables (in the Y direction) thus being equal to about 0.55 mm.
  • each tire was mounted on a wheel of suitable size and inflated to nominal pressure. It was rolled at a constant speed of 80 km / h on an appropriate automatic machine (machine type "ground-plane” marketed by the company MTS).
  • the load denoted “Z” was varied at a drift angle of 1 degree, and the rigidity or drifting force denoted “D” (corrected for zero drift thrust) was measured in a known manner, recording at using sensors transverse force on the wheel according to this load Z; the drift thrust is the slope at the origin of the curve D (Z).
  • the endurance of the R2 and R3 ribbons has also been tested in the laboratory.
  • the so-called "wavy traction” test is a fatigue test well known to those skilled in the art (see, for example, applications WO 01/00922 and WO 01/49926), in which the test material is fatigued in pure uni-axial extension. (extension-extension), that is to say without compression constraint. It measures the endurance limit of a given reinforcement, whether it is for example a wire, a cable or a ribbon.
  • two opposing surfaces (about 120x120 mm) of their tread were subjected to about fifty perforations (in the radial direction Z), using a drill of 4 mm in diameter and to a greater depth at 40% of the initial thickness of the tread, this in order to promote the subsequent penetration of a large amount of moisture inside the top of the tire, during the rolling of the latter.
  • the ribbon R4 was manufactured as indicated previously for the ribbon R3, from a commercial strip made of steel with a very low carbon content of the type Dual Phase (denomination "DP 600" of the Arcelor company), of initial thickness of About 2 mm until a final thickness of about 0.2 mm (ie a thickness reduction ratio of 90%) is obtained.
  • FIG. 3 is an optical microscope view of the ferritomensitic microstructure present on the starting strip, FIG.
  • the ribbon R4 also has excellent endurance, still improved compared to the ribbon R3: indeed, under the conditions of the test, no resistance degradation Rm even was observed on the ribbon R4, between the conditions under dry atmosphere and in humid atmosphere.
  • the advantages provided by the ribbons suitable for the tires of the invention are numerous, with in particular improved endurance against cleavage, reduced corrosion sensitivity, compared to tires using conventional metal reinforcements in the form of cables or even high-carbon ribbons and pearlitic microstructure.

Abstract

Pneu pour véhicule automobile renforcé par au moins un ruban en acier au carbone à très bas taux de carbone et haute résistance à l'état écroui, caractérisé par les points suivants : l'acier au carbone comprend (% en masse) entre 0,05% et 0,4%> de carbone, entre 0,5%) et 4%o de manganèse, entre 0,1 %> et 2,5%> de silicium, optionnellement (i) moins de 1,5% d'aluminium, (ii) moins de 0,5%> de chacun des métaux bore, chrome, cobalt, cuivre, molybdène, nickel, niobium, titane, tungstène, vanadium, zirconium, et (iii) moins de 0,05%> de chacun des éléments phosphore, soufre, azote, ou de terre rare, le reste étant constitué de fer et d'impuretés inévitables résultant de l'élaboration; la microstructure de l'acier au carbone écroui est principalement martensitique ou ferrito-martensitique; la résistance notée Rm du feuillard est supérieure à 1200 MPa et son allongement à la rupture noté At est compris entre 1% et 5%.

Description

PNEU RENFORCÉ PAR UN RUBAN EN ACIER AU CARBONE
1. DOMAINE DE L'INVENTION La présente invention est relative aux pneus pour véhicules automobiles, ainsi qu'aux renforts métalliques utilisés pour le renforcement de tels pneus.
Elle se rapporte plus particulièrement à l'emploi, comme éléments de renforcement de ces pneus, de rubans métalliques en acier au carbone à microstructure spécifique et hautes propriétés mécaniques.
2. ETAT DE LA TECHNIQUE
Un pneu à armature de carcasse radiale pour véhicule, par exemple du type tourisme, camionnette ou poids-lourd pour ne citer que ces exemples, comporte on le sait une bande de roulement, deux bourrelets inextensibles destinés à être en contact avec une jante de montage, deux flancs souples renforcés par l'armature de carcasse, reliant les bourrelets à la bande de roulement et une armature de sommet rigide ou « ceinture » {"belt") disposée circonférentiellement entre l'armature de carcasse et la bande de roulement, cette ceinture étant constituée de diverses nappes (ou "couches") de caoutchouc renforcées ou non par des éléments de renforcement (ou "renforts") tels que des câblés ou des monofïlaments, du type métalliques ou textiles.
Plus précisément, la ceinture d'un pneu est généralement constituée d'au moins deux nappes de ceinture superposées, dites parfois « nappes de travail » ou « nappes croisées », dont les câbles de renforcement, en général métalliques, sont disposés pratiquement parallèles les uns aux autres à l'intérieur d'une nappe, mais croisés d'une nappe à l'autre, c'est-à-dire inclinés, symétriquement ou non, par rapport au plan circonférentiel médian, d'un angle qui est généralement compris entre 10° et 45° selon le type de pneu considéré.
Ces nappes de travail, on peut le rappeler, ont pour fonction première de donner au pneu une rigidité ou poussée de dérive (en anglais, "drift thrust" ou "cornering") élevée, nécessaire de manière connue pour l'obtention d'un bon comportement routier ("handling") sur les véhicules automobiles. Elles peuvent être complétées par diverses autres nappes ou couches de caoutchouc auxiliaires, de largeurs variables selon les cas, comportant ou non des renforts ; on citera à titre d'exemple de simples coussins de gomme, des nappes dites « de protection » chargées de protéger le reste de la ceinture des agressions externes, des perforations, ou encore des nappes dites « de frettage » comportant des renforts orientés sensiblement selon la direction circonférentielle (nappes dites « à zéro degré » »), qu'elles soient radialement externes ou internes par rapport aux nappes croisées.
Ceci ayant été rappelé, une ceinture de pneu doit satisfaire de manière connue à différentes exigences, souvent contradictoires, notamment : être la plus rigide possible à faible déformation, car elle contribue d'une manière substantielle à rigidifîer le sommet du pneu ;
avoir une hystérèse aussi basse que possible, pour d'une part minimiser réchauffement en roulage de la zone interne du sommet et d'autre part réduire la résistance au roulement du pneu, synonyme d'économie de carburant ;
- posséder une résistance élevée aux mécanismes de fatigue-corrosion liés au risque de pénétration, à travers la bande de roulement, par exemple à la suite de coupures, d'agents corrosifs tels que l'eau ou l'oxygène de l'air, et à leur cheminement jusqu'aux renforts métalliques de la ceinture ;
- posséder enfin une endurance élevée, vis-à-vis en particulier du phénomène de séparation, fissuration des extrémités des nappes croisées dans les zones épaules du pneu, connu sous le terme de "clivage" de ceinture {« belt séparation »), ce qui exige notamment des câbles métalliques qui renforcent les nappes de ceinture de présenter une résistance élevée à la fatigue en compression, le tout dans une atmosphère plus ou moins corrosive.
Les troisième et quatrième exigences sont particulièrement fortes par exemple pour les enveloppes de pneus poids-lourd, conçues pour pouvoir être rechapées une ou plusieurs fois lorsque les bandes de roulement qu'elles comportent atteignent un degré d'usure critique après un roulage prolongé.
Aujourd'hui, la disponibilité en aciers à haut taux de carbone et de plus en plus résistants fait que les manufacturiers de pneus s'orientent, d'une manière générale, de plus en plus vers l'emploi dans les ceintures de petits câbles à construction très simple, notamment à seulement deux ou trois fils, voire même de fils unitaires, afin de diminuer l'épaisseur des nappes de renforcement et ainsi l'hystérèse des pneus, en fin de compte réduire la consommation d'énergie des véhicules équipés de ces pneus. De tels pneus à ceinture d'épaisseur et d'hystérèse réduites renforcée de fils unitaires, notamment pour véhicules tourisme ou camionnette, ont par exemple été décrits dans les demandes de brevet déposées par les Demanderesses WO 2013/117476, WO 2013/117477, WO 2015/014574, WO 2015/014575. Ces efforts visant à réduire la masse des pneus par une réduction d'épaisseur de leur ceinture et des couches de caoutchouc la constituant, se heurtent toutefois, bien naturellement, à certaines limites physiques, en particulier à un diamètre d'encombrement minimal des câbles ou des fils unitaires qui doit rester relativement important pour assurer une résistance mécanique et une rigidité suffisantes au renfort et donc à la ceinture du pneu.
Une alternative à l'utilisation des petits câbles ou fils unitaires ci-dessus pourrait certes résider dans l'emploi de renforts en acier à haut taux de carbone et haute résistance, non plus sous forme de fils mais sous forme de rubans qui, à masse égale, sont comparativement de grande largeur mais d'épaisseur beaucoup plus fine : ainsi pourraient être visées des épaisseurs encore réduites pour les couches de caoutchouc enrobant ces renforts, sans pénaliser de manière rédhibitoire la résistance mécanique et le module des renforts utilisés.
Or, au cours de leurs recherches, les Demanderesses ont constaté toutefois que l'emploi de tels rubans pouvait nuire, de manière inattendue, à l'endurance de la ceinture du pneu, particulièrement vis-à-vis du problème de clivage évoqué ci-dessus. 3. BREVE DESCRIPTION DE L'INVENTION
L'objet de la présente invention est un pneu nouveau, renforcé par un ruban métallique en acier au carbone à microstructure spécifique et hautes propriétés mécaniques, ledit pneu présentant grâce à ce ruban une endurance sensiblement améliorée, particulièrement vis-à- vis du problème de clivage de ceinture, comparativement aux pneus renforcés par les rubans en acier au carbone connus de l'art antérieur. Ce ruban spécifique offre en outre au pneu de l'invention une résistance améliorée à la fatigue-corrosion.
Ainsi, selon un premier objet, la présente invention concerne un pneu pour véhicule automobile comportant au moins un ruban en acier au carbone à très bas taux de carbone et haute résistance à l'état écroui, caractérisé par les points suivants : l'acier au carbone a (% en masse) entre 0,05% et 0,4% de carbone, entre 0,5%> et 4%> de manganèse, entre 0, 1 %> et 2,5% de silicium, facultativement (i) moins de 1 ,5%) d'aluminium, (ii) moins de 0,5%> de chacun des métaux bore, chrome, cobalt, cuivre, molybdène, nickel, niobium, titane, tungstène, vanadium, zirconium, et (iii) moins de 0,05%> de chacun des éléments phosphore, soufre, azote, ou de terre rare, le reste étant constitué de fer et d'impuretés inévitables résultant de l'élaboration ; la microstructure de l'acier au carbone écroui est principalement martensitique ou ferrito -martensitique ; la résistance notée Rm du ruban est supérieure à 1200 MPa et son allongement à la rupture noté At est compris entre 1% et 5%.
Le ruban ci-dessus, à microstructure spécifique, a pour propriétés remarquables une haute résistance mécanique, malgré un très bas taux de carbone, le tout combiné à une résistance améliorée aux mécanismes de corrosion et fatigue-corrosion.
L'invention concerne les pneus tant à l'état cru (c'est-à-dire avant cuisson ou vulcanisation du caoutchouc) qu'à l'état cuit (après cuisson du caoutchouc). Les pneus de l'invention peuvent être destinés en particulier à des véhicules à moteur du type tourisme, 4x4, "SUV" (Sport Utility Vehicles), mais également à des véhicules industriels choisis parmi camionnettes, "poids-lourd" - i.e., métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route -, engins agricoles ou de Génie civil, avions, autres véhicules utilitaires de transport ou de manutention.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description détaillée et des exemples de réalisation qui suivent, ainsi que des figures 1 à 4 relatives à ces exemples qui schématisent ou reproduisent : - en coupe transversale, un exemple de composite (métal/caoutchouc) utilisable comme structure de renforcement dans le pneu selon l'invention (Fig. 1) ;
en coupe radiale (c'est-à-dire selon un plan contenant l'axe de rotation du pneumatique), un exemple de pneu conforme à l'invention incorporant un ruban et un composite métal/caoutchouc convenant à l'invention (Fig. 2) ;
- une vue au microscope optique d'une microstructure ferrito-martensitique observée sur un ruban en acier à bas taux de carbone du type biphasé apte à renforcer le pneu de l'invention, avant (Fig. 3) et après écrouissage (Fig. 4) de cet acier au carbone.
4. DEFINITIONS
Dans la présente demande, on entend par :
"caoutchouc" ou "élastomère" (les deux termes étant considérés comme synonymes) : tout type d'élastomère, qu'il soit du type diénique ou du type non diénique par exemple thermoplastique ;
"composition de caoutchouc" ou "composition caoutchouteuse" : une composition qui comporte au moins un caoutchouc et une charge ;
"couche" : une feuille, bande ou tout autre élément d'épaisseur relativement faible par rapport à ses autres dimensions, de préférence dont le rapport de l'épaisseur sur la plus grande des autres dimensions est inférieur à 0,5, plus préférentiellement inférieur à 0,1
"direction axiale" : une direction sensiblement parallèle à l'axe de rotation du pneu ; "direction circonférentielle" : une direction qui est sensiblement perpendiculaire à la fois à la direction axiale et à un rayon du pneu (en d'autres termes, tangente à un cercle dont le centre est sur l'axe de rotation du pneu) ;
"direction radiale" : une direction selon un rayon du pneu, c'est-à-dire une direction quelconque passant par l'axe de rotation du pneu et sensiblement perpendiculairement à cette direction, c'est-à-dire faisant avec une perpendiculaire à cette direction un angle ne s 'écartant pas de plus de 5 degrés ;
"orienté selon un axe ou une direction" en parlant d'un élément quelconque tel qu'un renfort, un élément qui est orienté sensiblement parallèlement à cet axe ou cette direction, c'est-à-dire faisant avec cet axe ou cette direction un angle ne s 'écartant pas de plus de 5 degrés (donc nul ou au plus égal à 5 degrés) ;
- "orienté perpendiculairement à un axe ou une direction" : en parlant d'un élément quelconque tel qu'un renfort, un élément qui est orienté sensiblement perpendiculairement à cet axe ou cette direction, c'est-à-dire faisant avec une perpendiculaire à cet axe ou cette direction un angle ne s'écartant pas de plus de 5 degrés ;
- "plan circonférentiel médian" (noté M) : le plan perpendiculaire à l'axe Y de rotation du pneu qui est situé à mi-distance des deux bourrelets et passe par le milieu de l'armature de sommet ou ceinture ;
Sauf indication expresse différente, tous les pourcentages (%) indiqués dans la présente demande sont des pourcentages en masse (ou en poids, de manière équivalente).
L'expression « x et/ou y » signifie « x » ou « y » ou les deux (c'est-à-dire « x et y »). Tout intervalle de valeurs désigné par l'expression « entre a et b » représente le domaine de valeurs allant de plus de « a » à moins de « b » (c'est-à-dire bornes « a » et « b » exclues) tandis que tout intervalle de valeurs désigné par l'expression « de a à b » signifie le domaine de valeurs allant de « a » jusqu'à « b » (c'est-à-dire incluant les bornes strictes « a » et « b »).
5. DESCRIPTION DETAILLEE DE L'INVENTION
La présente invention concerne donc un pneu comportant, à titre de renfort métallique, un ruban en acier à très bas taux de carbone, précisément entre 0,05% et 0,4% de carbone, comportant en outre entre 0,5%> et 4%> de manganèse, entre 0,1 %> et 2,5%> de silicium, facultativement (i) moins de 1,5% d'aluminium, (ii) moins de 0,5% de chacun des métaux bore, chrome, cobalt, cuivre, molybdène, nickel, niobium, titane, tungstène, vanadium, zirconium, et (iii) moins de 0,05% de chacun des éléments phosphore, soufre, azote, ou de terre rare, le reste étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. Le ruban est en acier, c'est-à-dire que par définition il est constitué majoritairement (pour plus de 50%) en masse) ou intégralement (pour 100% en masse) d'acier.
L'acier est avantageusement tel que défini dans la norme NF EN 10020 (septembre 2000). Conformément à cette norme, un acier est un matériau contenant plus de fer que tout autre élément et dont la teneur en carbone est inférieure à 2%. Toujours conformément à cette norme, l'acier comprend éventuellement d'autres éléments d'alliages.
Préférentiellement, le taux de carbone de l'acier au carbone est compris dans un domaine de 0,1 à 0,3%o, plus préférentiellement dans un domaine de 0,15% à 0,25%>. De préférence, son taux de manganèse est compris dans un domaine de 1% à 3%, plus préférentiellement dans un domaine de 1,5% à 2,5%. Selon un autre mode préférentiel, son taux de silicium est compris entre 0,1 et 1 ,5%, plus préférentiellement dans un domaine de 0,2% à 1,0%, en particulier dans un domaine de 0,3% à 0,8%. Son taux d'aluminium optionnel est de préférence inférieur à 1,0%, plus préférentiellement inférieur à 0,5%.
De préférence, le taux de chacun des métaux optionnels bore, chrome, cobalt, cuivre, molybdène, nickel, niobium, titane, tungstène, vanadium, zirconium, est inférieur à 0,3%, plus préférentiellement inférieur à 0,2%. Le taux de chacun des éléments phosphore et soufre est de préférence inférieur à 0,020 %, plus préférentiellement inférieur à 0,015 %.
Selon une autre caractéristique essentielle de l'invention, la microstructure de l'acier au carbone à l'état écroui est principalement martensitique ou principalement ferrito- martensitique, c'est-à-dire qu'elle constituée pour plus de 50 % en volume soit de phases de martensite (dans ce cas, dite « principalement martensitique »), soit de phases de martensite et ferrite (dans ce cas, dite « principalement ferrito -martensitique »).
L'homme du métier sait distinguer une microstructure martensitique ou ferrito- martensitique d'une autre microstructure, par observation métallographique. Une microstructure martensitique ou ferrito -martensitique présente de manière connue, respectivement, des lattes de martensite ou des lattes de martensite combinées à des phases de ferrite.
Dans le cas d'une microstructure du type martensitique (constituée préférentiellement pour plus de 80 % en volume de phases de martensite), le pourcentage en volume de martensite est plus préférentiellement supérieur à 90%, en particulier supérieur à 95%. Dans le cas d'une microstructure du type ferrito-martensitique (constituée préférentiellement pour plus de 80 % en volume de phases de martensite et ferrite), le pourcentage total en volume de martensite et ferrite est plus préférentiellement supérieur à 90%, en particulier supérieur à 95%. Plus préférentiellement encore, pour une telle microstructure, le taux de ferrite elle-même est supérieur à 60%.
Ce taux volumique est déterminé de manière connue par analyse d'image, en mesurant simplement la surface occupée par les phases martensitiques, ou martensitiques et ferritiques et en les rapportant à la surface totale de l'image.
Selon un mode de réalisation particulier, l'acier au carbone est un acier du type « TRIP » {TRans formation Induced Plasticity) ou « T » (acier à plasticité induite par Transformation) ; au sens de la norme NF EN 10338 (octobre 2015), il s'agit pour rappel d'un acier à matrice principalement ferritique contenant de l'austénite résiduelle capable de se transformer en martensite durant le processus de formage.
Selon un autre mode de réalisation particulier et préférentiel, l'acier au carbone est un acier du type « biphasé », encore appelé « Dual Phase » ; au sens de la norme NF EN 10338 (octobre 2015) précitée, il s'agit d'un acier contenant principalement de la ferrite et de la martensite et éventuellement de la bainite comme phase complémentaire.
Selon un autre mode de réalisation particulier et particulièrement préférentiel, l'acier au carbone est un acier du type martensitique (« MS ») ; au sens de la norme NF EN 10338(octobre 2015), il s'agit d'un acier à matrice martensitique contenant des faibles quantités de ferrite et/ou bainite.
Par ruban « à l'état écroui » (en anglais « cold-rolled » strip), on entend un ruban qui a été laminé à froid, c'est-à-dire qui n'a subi aucun traitement thermique de régénération de sa microstructure tant au cours du laminage qu'après laminage.
Le ruban en acier au carbone convenant au pneu de l'invention a pour autre caractéristique essentielle, et aussi inattendue, qu'il présente une très haute résistance en traction à l'état écroui, le rendant apte sous forme de ruban à renforcer des pneus pour véhicules automobiles. Sa résistance mécanique Rm est de préférence supérieure à 1500 MPa, plus préférentiellement supérieure à 1800 MPa, encore plus préférentiellement supérieure à 1900 MPa. Son allongement total à la rupture At est de préférence compris entre 1% et 3%, plus préférentiellement compris dans un domaine de 1,5 à 2,5%. La contrainte maximale à la rupture ou limite de rupture Rm correspond à la force nécessaire pour faire rompre le fil en traction ; les mesures de Rm (en MPa) et At (en % de longueur initiale avant traction) sont effectuées selon la norme ISO 6892 de 1984, à la température ambiante (23°C).
Pour obtenir une telle combinaison de microstructure et de propriétés mécaniques, encore fallait-il oser laminer aussi fortement des feuillards de départ ou de rubans à très bas taux de carbone, en les écrouissant sans traitement thermique intermédiaire.
L'épaisseur notée « Ts » du ruban est préférentiellement inférieure à 2 mm, plus préférentiellement inférieure à 1 mm. Plus préférentiellement encore, cette épaisseur Ts est comprise entre 0,1 et 0,8 mm, en particulier dans un domaine de 0,15 à 0,5 mm, plus particulièrement encore dans un domaine de 0,2 à 0,5 mm, plus particulièrement encore dans un domaine de 0,25 à 0,45 mm ou dans un domaine de 0,15 à 0,35 mm. La largeur notée « Ws » de ce ruban est par convention inférieure à 50 mm, de préférence inférieure à 20 mm. Plus préférentiellement encore, cette largeur Ws est comprise entre 1 et 15 mm, plus préférentiellement supérieure à 1 mm et inférieure ou égale à 10 mm, plus particulièrement comprise dans un domaine de 2,5 à 10 mm, plus préférentiellement encore de 2,5 à 5 mm.
Bien entendu, le ruban peut être revêtu d'une couche métallique améliorant par exemple ses propriétés d'usage, telles que les propriétés d'adhésion, de résistance à la corrosion ou encore de résistance au vieillissement.
C'est ainsi que, de préférence, le ruban est revêtu d'une couche de zinc ou plus préférentiellement d'une couche de laiton (alliage de cuivre et zinc), déposée par exemple par voie électrolytique à partir d'anodes en laiton. Le revêtement de laiton a de préférence une épaisseur très faible, nettement inférieure au micromètre, par exemple de l'ordre de 0,10 à 0,30 μιη, ce qui est négligeable par rapport à l'épaisseur du ruban.
En variante, le ruban pourrait être recouvert d'une couche métallique autre que du laiton ou du zinc, ayant par exemple pour fonction d'améliorer la résistance à la corrosion et/ou l'adhésion au caoutchouc, par exemple une fine couche de Co, Ni, Al, d'un alliage de deux ou plus des composés Cu, Zn, Al, Ni, Co, Sn. Le ruban peut être également dépourvu de tout revêtement métallique, c'est-à-dire en acier dit « clair ». Dans le pneu de l'invention, le ruban décrit ci-dessus est typiquement incorporé à du caoutchouc pour constituer un composite métal/caoutchouc (10) comportant au moins un tel ruban (12), de préférence plusieurs d'entre eux alignés en parallèle (12a, 12b, 12c, 12d, ...), enrobé(s) dans au moins une couche (14) de composition de caoutchouc, notamment diénique, un tel composite étant représenté par exemple à la figure 1. L'épaisseur totale du composite notée « Te » (mesurée selon la direction Z) peut varier largement en fonction des applications particulières visées ; elle est de préférence comprise entre 0,5 et 3,0 mm, plus préférentiellement entre 0,5 et 1,5 mm. De préférence, notamment lorsqu'il est destiné à être utilisé comme structure de renforcement dans la ceinture du pneu de l'invention, ce composite présente une largeur « Wc » (selon la direction Y) et une longueur (selon la direction X) qui sont respectivement supérieures à 2,5 mm et à 10 cm, plus préférentiellement respectivement supérieures à 5 mm et à 20 cm.
Chaque composition de caoutchouc constitutive du composite (métal/caoutchouc) est à base d'au moins un élastomère, de préférence du type diénique. Par caoutchouc "diénique", on entend de manière connue tout élastomère (élastomère seul ou mélange d'élastomères) qui est issu, au moins en partie (i.e., un homopolymère ou un copolymère), de monomères diènes c'est-à-dire de monomères porteurs de deux doubles liaisons carbone-carbone, que ces dernières soient conjuguées ou non.
Cet élastomère diénique est de préférence choisi dans le groupe constitué par les polybutadiènes (BR), le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères de butadiène, les différents copolymères d'isoprène, et les mélanges de ces élastomères, de tels copolymères étant notamment choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène-styrène (SIR) et les copolymères d'isoprène-butadiène- styrène (SBIR).
Un mode de réalisation particulièrement préférentiel consiste à utiliser un élastomère "isoprénique", c'est-à-dire un homopolymère ou un copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène et les mélanges de ces élastomères. L'élastomère isoprénique est de préférence du caoutchouc naturel ou un polyisoprène de synthèse du type cis-1,4. Parmi ces polyisoprènes de synthèse, sont utilisés de préférence des polyisoprènes ayant un taux (% molaire) de liaisons cis-1,4 supérieur à 90%, plus préférentiellement encore supérieur à 98%. Selon un mode de réalisation préférentiel, chaque couche de composition de caoutchouc comporte 50 à 100 pce de caoutchouc naturel. Selon d'autres modes de réalisation préférentiels, l'élastomère diénique peut être constitué, en tout ou partie, d'un autre élastomère diénique tel que, par exemple, un élastomère SBR utilisé en coupage ou non avec un autre élastomère, par exemple du type BR.
La composition de caoutchouc peut contenir un seul ou plusieurs élastomère(s) diénique(s), ce(s) dernier(s) pouvant être utilisé(s) en association avec tout type d'élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères. La composition de caoutchouc peut comporter également tout ou partie des additifs habituellement utilisés dans les matrices de caoutchouc destinées à la fabrication de pneumatiques, tels que par exemple des charges renforçantes comme le noir de carbone ou la silice, des agents de couplage, des agents anti-vieillissement, des antioxydants, des agents plastifiants ou des huiles d'extension, que ces derniers soient de nature aromatique ou non-aromatique, des résines plastifiantes à haute température de transition vitreuse, des agents de mise en œuvre, des résines tackifïantes, des agents antiréversion, des accepteurs et donneurs de méthylène, des résines renforçantes, un système de réticulation ou de vulcanisation. De préférence, le système de réticulation de la composition de caoutchouc est un système dit de vulcanisation, c'est-à-dire à base de soufre (ou d'un agent donneur de soufre) et d'un accélérateur primaire de vulcanisation. A ce système de vulcanisation de base peuvent s'ajouter divers accélérateurs secondaires ou activateurs de vulcanisation connus. Le soufre est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, l'accélérateur primaire de vulcanisation, par exemple un sulfénamide, est utilisé à un taux préférentiel compris entre 0,5 et 10 pce. Le taux de charge renforçante, par exemple du noir de carbone ou de la silice, est de préférence supérieur à 50 pce, notamment compris entre 50 et 150 pce.
Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs du type HAF, ISAF, SAF conventionnellement utilisés dans les pneumatiques (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone de grade (ASTM) 300, 600 ou 700 (par exemple N326, N330, N347, N375, N683, N772). Comme silices conviennent notamment les silices précipitées ou pyrogénées présentant une surface BET inférieure à 450 m2/g, de préférence de 30 à 400 m2/g.
L'homme de l'art saura, à la lumière de la présente description, ajuster la formulation de la composition de caoutchouc afin d'atteindre les niveaux de propriétés (notamment module d'élasticité) souhaités, et adapter la formulation à l'application spécifique envisagée. Selon un mode de réalisation préférentiel, dans le composite métal/caoutchouc convenant au pneu de l'invention, le ruban est pourvu d'une couche adhésive au regard de la composition de caoutchouc avec laquelle il est au contact.
A titre d'exemples de couches adhésives autres que des revêtements métalliques tels que décrits précédemment, on pourra citer notamment les systèmes adhésifs métal/caoutchouc du type polymériques tels que décrits notamment dans les demandes WO 2015/118040, WO 2015/118041, WO 2015/118042, WO 2015/118044. Bien entendu, l'invention s'applique également aux cas où aucune couche adhésive n'est utilisée, le ruban lui-même et/ou la composition de caoutchouc pouvant posséder une propriété auto-adhésive due à leur formulation propre. L'homme du métier comprendra aisément que la connexion entre le ruban et le caoutchouc avec lequel il est au contact sera être assurée définitivement lors de la cuisson (réticulation) finale du pneu de l'invention.
Ce composite métal/caoutchouc, présentant notamment une résistance améliorée à la corrosion et fatigue-corrosion, permet de remplacer avantageusement les tissus ou nappes conventionnels renforcés de fils ou câbles en acier à fort taux de carbone.
Il présente en outre, grâce à la faible épaisseur possible des rubans le constituant, l'avantage d'être faiblement hystérétique comparativement à ces tissus conventionnels, ce qui permet de réduire encore la résistance au roulement des pneumatiques.
Enfin, ce qui n'est pas le moindre, ce composite métal/caoutchouc convenant au pneu de l'invention a démontré une résistance à la perforation notablement améliorée par rapport à ces mêmes tissus conventionnels renforcés de câbles : à iso-masse de renfort en acier, comparativement à un tissu témoin renforcé par exemple d'un câble en acier à 4 fils (de construction 2+2), on a observé que la perforation du tissu selon l'invention, à l'aide d'un indenteur de 5,5 mm de diamètre, nécessitait une force augmentée de 25%.
Les compositions de caoutchouc utilisées pour ces composites (métal/caoutchouc) peuvent être par exemple des compositions conventionnelles pour calandrage de renforts métalliques, typiquement à base de caoutchouc naturel, de noir de carbone ou de silice, d'un système de vulcanisation et des additifs usuels.
De préférence, ces compositions de caoutchouc présentent, à l'état réticulé (vulcanisé), un module sécant en extension, à 10% d'allongement, qui est compris entre 4 et 25 MPa, plus préférentiellement entre 4,5 et 20 MPa ; des valeurs comprises notamment entre 5 et 15 MPa se sont révélées convenir particulièrement pour le renforcement et l'endurance des pneus, en particulier de leurs ceintures. Les mesures de module sont effectuées en traction, sauf indication différente selon la norme ASTM D 412 de 1998 (éprouvette "C") : on mesure en seconde élongation (c'est-à-dire après un cycle d'accommodation) le module sécant "vrai" (c'est-à-dire ramené à la section réelle de l'éprouvette) à 10% d'allongement, exprimé en MPa (conditions normales de température et d'hygrométrie selon la norme ASTM D 1349 de 1999). Le pneu de l'invention, renforcé par le ruban ou le composite (métal/caoutchouc) décrits précédemment, est destiné à tous types de véhicules, en particulier véhicules tourisme ou véhicules industriels tels que poids-lourd, génie civil, avions, autres véhicules de transport ou de manutention.
A titre d'exemple, la figure 2 annexée représente de manière très schématique (sans respect d'une échelle spécifique), une coupe radiale d'un pneu, conforme ou non à l'invention dans cette représentation générale, destiné par exemple à un véhicule poids-lourd ou à un véhicule tourisme.
Ce pneu 100, définissant trois directions perpendiculaires, circonférentielle (X), axiale (Y) et radiale (Z), comporte un sommet 101 renforcé par une armature de sommet ou ceinture 102, deux flancs souples 103 et deux bourrelets inextensibles 104 destinés à être en contact avec une jante de montage, les deux flancs étant renforcés par une armature de carcasse 106, chacun des bourrelets 104 étant renforcé avec une tringle 105. Le sommet 102 est surmonté d'une bande de roulement (non représentée sur cette figure schématique, pour simplification). L'armature de carcasse 106 est enroulée autour des deux tringles 105 dans chaque bourrelet 104, le retournement 107 de cette armature 106 étant par exemple disposé vers l'extérieur du pneu 100 qui est ici représenté monté sur sa jante 108. Bien entendu, ce pneu 100 comporte en outre de manière connue une couche de gomme 109, communément appelée gomme ou couche d'étanchéité, qui définit la face radialement interne du pneu et qui est destinée à protéger la nappe de carcasse de la diffusion d'air provenant de l'espace intérieur au pneu. L'armature de carcasse 106 est généralement constituée d'au moins une nappe de caoutchouc renforcée par des renforts textiles ou métalliques dits "radiaux", c'est-à-dire que ces renforts sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneu qui est situé à mi- distance des deux bourrelets 104 et passe par le milieu de l'armature de sommet 102).
La ceinture 102 est par exemple constituée par au moins deux « nappes de travail », superposées et croisées, renforcées de renforts métalliques disposés sensiblement parallèlement les uns par rapport aux autres et inclinés par rapport au plan circonférentiel médian, ces nappes de travail pouvant être associées ou non à d'autres nappes et/ou tissus de caoutchouc. La ceinture 102 peut comporter en outre dans cet exemple une nappe de caoutchouc dite "nappe de frettage" renforcée par des fils de renforcement dits "circonférentiels", c'est-à-dire que ces fils de renforcement sont disposés pratiquement parallèles les uns aux autres et s'étendent sensiblement circonférentiellement autour du pneu de manière à former un angle préférentiellement compris dans un domaine de 0 à 10° avec le plan circonférentiel médian. Ces fils de renforcement circonférentiels ont notamment pour fonction de résister à la centrifugation du sommet à haute vitesse. La ceinture 102 peut comporter en outre dans cet exemple une nappe de caoutchouc dite "nappe de protection", généralement positionnée entre la bande de roulement et les deux nappes de travail croisées.
Un pneu 100, lorsqu'il est conforme à l'invention, a pour caractéristique préférentielle qu'au moins sa ceinture (102) comporte, à titre de renfort métallique, le ruban en acier à très bas taux de carbone précédemment décrit, enrobé dans une couche de composition de caoutchouc diénique, pour constituer au moins une (c'est-à-dire une ou plusieurs) nappe de ceinture, plus préférentiellement au moins une nappe de ceinture du type nappe de travail et/ou au moins une nappe de ceinture du type nappe de protection.
L'utilisation de rubans, donc renforts plats, en lieu et place de câbles voire même de fils unitaires métalliques, permet d'augmenter la densité de renfort dans les nappes de ceinture. On peut ainsi réduire l'épaisseur de la couche de caoutchouc et de l'ensemble du sommet du pneu ; ainsi, la masse globale du pneu peut être encore réduite.
Dans ces nappes de ceinture, en particulier ces nappes de travail, la densité des rubans est de préférence comprise entre 5 et 40 rubans par dm (décimètre) de nappe, plus préférentiellement de 10 à 30 rubans par dm, la distance (ou « pas ») entre deux rubans adjacents, d'axe en axe, étant ainsi de préférence comprise entre 3 et 20 mm, plus préférentiellement de 4 à 7 mm. Les rubans sont de préférence disposés de telle manière que la largeur (notée « Wr » sur la Fig. 1) du pont de caoutchouc, entre deux rubans adjacents, est comprise entre 0,5 et 3 mm, plus préférentiellement de 0,9 à 1,6 mm. Cette largeur « Wr » représente de manière connue la différence entre le pas de calandrage (pas de pose du ruban dans le tissu de caoutchouc) et la largeur du ruban. En dessous de la valeur minimale indiquée, le pont de caoutchouc, trop étroit, risque de se dégrader mécaniquement lors du travail de la nappe, notamment au cours des déformations subies dans son propre plan par extension ou cisaillement. Au-delà du maximum indiqué, on s'expose notamment à des risques notamment de pénétration d'objets, par perforation, entre les rubans, sans compter une diminution non souhaitable de la résistance mécanique des nappes. Selon un autre mode de réalisation, le composite pourrait être utilisé dans le pneu de l'invention sous forme de fines bandelettes de caoutchouc, de largeur pouvant varier dans une large mesure en fonction des applications particulières visées, par exemple dans le cas de nappes de ceinture, d'environ 3 mm à 15 mm de large, disposées côte à côte, ces bandelettes étant renforcées par ce ruban et chaque bandelette pouvant comporter un seul ou plusieurs rubans disposés en parallèle. Selon un autre exemple de réalisation possible de l'invention, c'est l'armature de carcasse (106) qui peut être renforcée d'un tel ruban, ou encore la zone bourrelet ; ce sont par exemple les tringles (105) qui pourraient être constituées, en tout ou partie, d'un tel ruban.
6. EXEMPLES DE REALISATION DE L'INVENTION
On décrit ci-après des exemples de fabrication de feuillards et rubans, ainsi que l'utilisation de tels rubans comme renforts dans une ceinture de pneu.
6.1. - Fabrication de feuillard et ruban
Pour ce premier essai, on est parti d'un feuillard commercial en acier à très bas taux de carbone du type martensitique (dénomination « Docol 1400M » de la société SSAB) dont la composition chimique principale était la suivante : 0.169% C ; 1.17% Mn ; 0.23%> Si ; 0.04%) Cr. Ce feuillard de départ, de largeur 40 cm et d'épaisseur 0,5 mm, avait les propriétés mécaniques initiales suivantes : résistance à la traction (Rm) égale à 1513 MPa, allongement total à la rupture (At) égal à 4%. Sa microstructure était donc martensitique. Ce feuillard a été très fortement écroui à travers un laminoir du type « Sendzimir » à 20 cylindres, en six passes successives conduites à une vitesse de 120 m/min, sous refroidissement continu à l'huile, tout ceci sans aucun traitement thermique intermédiaire de régénération de la microstructure entre ces passes, jusqu'à obtention d'une épaisseur finale d'environ 0,2 mm (soit un taux de réduction d'épaisseur de 60%>).
On a abouti ainsi à un feuillard en acier écroui, convenant à l'invention, à microstructure martensitique, et ayant les propriétés mécaniques suivantes : Rm égale à 1925 MPa, At égal 1 %. Ce feuillard a été ensuite laitonné (laiton à 65,5% de cuivre), par dépôt de 115 mg de laiton pour 100 g d'acier. Puis il a été cisaillé en un ruban de largeur égale à 3 mm, épaisseur 0,20 mm et longueur 500 m, utilisable tel quel comme renfort de ceinture de pneu.
6.2. - Tests de roulage en pneus (poussée de dérive et endurance clivage) Le renfort ainsi obtenu sous forme de ruban (noté ci-après R3) a été ensuite comparé d'une part à un câble témoin (renfort noté RI) conventionnel pour ceinture de pneu, d'autre part à un autre ruban témoin (renfort témoin noté R2) de largeur et épaisseur identiques à celles du ruban convenant au pneu de l'invention. Les deux renforts témoins RI et R2 étant tous deux en acier à fort taux de carbone (0,8%>) et présentant une microstructure conventionnelle (perlite écrouie). Les propriétés mécaniques du câble témoin RI (4 fils de diamètre 0,32 mm assemblés selon un pas de 1,4 mm) étaient les suivantes : Rm égale à 2820 MPa, At égal à 1,5 %. Celles du ruban témoin R2 étaient les suivantes : Rm égale à 2300 MPa, At égal à 1,6 %, pour un taux de réduction d'épaisseur de 87%.
Les trois renforts ci-dessus (RI, R2 et R3) ont été incorporés, par calandrage, entre deux couches de caoutchouc pour former un composite (métal/caoutchouc) à base d'une composition de caoutchouc connue pour constituer des nappes de travail de ceinture de pneus poids-lourd. Chacune des deux couches de caoutchouc avait une épaisseur de 0,50 mm pour le renfort RI (câble), moitié moins (soit 0,25 mm) pour les renforts R2 et R3 (rubans). Cette composition était à base de caoutchouc naturel et de noir de carbone à titre de charge renforçante, comportant en outre essentiellement un antioxydant, de l'acide stéarique, une huile d'extension, du naphténate de cobalt en tant que promoteur d'adhésion, enfin un système de vulcanisation (soufre, accélérateur, ZnO) ; son module sécant vrai à 10% d'allongement était de l'ordre de 10,5 MPa. Pour rappel, l'adhésion entre les rubans et la composition de caoutchouc qui les enrobe a été assurée par le dépôt préalable de la fine couche de laiton telle que décrite précédemment.
Les tissus composites ainsi constitués de la composition de caoutchouc et respectivement des rubans RI, R2 et R3 présentaient, pour chaque nappe de travail de ceinture, une épaisseur totale égale à environ 1 ,25 mm pour RI , environ 0,65 mm pour R2 et R3.
Le pas de calandrage des rubans (pas de pose des rubans dans le tissu de caoutchouc) était égal à environ 3,5 mm (millimètre), la distance « Wr » ou largeur du pont de caoutchouc entre deux rubans consécutifs (mesurée selon la direction Y) étant donc égale à environ 0,5 mm. Ces rubans étaient disposés sensiblement parallèlement les uns par rapport aux autres et inclinés de +21 degrés (nappe radialement interne) et -21 degrés (nappe radialement externe). Tous les angles d'inclinaison indiqués sont mesurés par rapport au plan circonférentiel médian. Le pas de calandrage des câbles était égal à environ 1,4 mm, la distance « Wr » ou largeur du pont de caoutchouc entre deux câbles consécutifs (dans la direction Y) étant donc égale à environ 0,55 mm. Ces câbles étaient disposés sensiblement parallèlement les uns par rapport aux autres et inclinés de +26 degrés (nappe radialement interne) et -26 degrés (nappe radialement externe). Les pneus testés (témoins et selon l'invention, respectivement notés Tl, T2 et T3), de dimensions 225/75 RI 6 « AGILIS », étaient des pneus pour véhicule petit poids-lourd, bien entendu fabriqués en tous points de manière identique, hormis la nature des renforts métalliques (RI, R2 et R3) utilisés pour le renforcement de leur ceinture.
On a tout d'abord mesuré leur poussée de dérive : chaque pneu a été monté sur une roue de dimension adaptée et gonflé à pression nominale. On l'a fait rouler à une vitesse constante de 80 km/h sur une machine automatique appropriée (machine type "sol-plan" commercialisée par la société MTS). On a fait varier la charge notée "Z", sous un angle de dérive de 1 degré, et on a mesuré de manière connue la rigidité ou poussée de dérive notée "D" (corrigée de la poussée à dérive nulle), en enregistrant à l'aide de capteurs l'effort transversal sur la roue en fonction de cette charge Z ; la poussée de dérive est la pente à l'origine de la courbe D(Z). Puis on leur a fait subir un essai de roulage particulièrement sévère, en surcharge, destiné à tester leur résistance au clivage (séparation des extrémités des nappes sommet), en soumettant les pneus, sur une machine de roulage automatique, à des séquences de très forte dérive et mise en compression sévère de leur bloc sommet dans la zone d'épaule. Le test a été conduit jusqu'à la destruction forcée des pneus.
Les résultats obtenus sont résumés dans le tableau 1 , la base 100 ayant été retenue pour les pneus témoins (Tl) utilisant des câbles comme renfort de ceinture. Une valeur supérieure à 100 indique un résultat amélioré.
Tableau 1
A la lecture de ce tableau, on constate tout d'abord que la poussée de dérive (D) dans le cas des rubans (pneus T2 et T3) n'est pas dégradée ; elle est même améliorée (+ 17%) par rapport à l'utilisation conventionnelle de câbles, ce qui constitue déjà un résultat inattendu.
Enfin et surtout, on note que le remplacement de câbles (renfort RI) par des rubans se traduit, dans le cas d'un acier conventionnel (renfort R2) à fort taux de carbone et microstructure perlitique, par une perte notable de l'endurance clivage, d'environ 30%, alors que, de manière surprenante, l'endurance n'est que peu affectée comparativement, d'environ 10% seulement dans le cas du pneu de l'invention (renfort R3) renforcé par le ruban à faible taux de carbone et microstructure ferrito-martensitique. 6.3. - Tests laboratoire (traction ondulée)
L'endurance des rubans R2 et R3 a été également testée au laboratoire. Le test dit de « traction ondulée » est un test de fatigue bien connu de l'homme du métier (voir par exemple demandes WO 01/00922 et WO 01/49926), dans lequel le matériau testé est fatigué en extension uni-axiale pure (extension-extension), c'est-à-dire sans contrainte de compression. Il permet de mesurer la limite d'endurance d'un renfort donné, qu'il s'agisse par exemple d'un fil, d'un câble ou d'un ruban.
Son principe est le suivant : au cours du test, on soumet le renfort à une variation de tension entre deux extremums définissant une amplitude, et ce pendant un nombre de cycles prédéterminé, ici 105 cycles. Si le renfort rompt, on recommence le test avec une amplitude moins élevée et si le renfort ne rompt pas, on recommence le test avec une amplitude plus élevée. On détermine ainsi de proche en proche, par exemple par la méthode dite de l'escalier, la valeur de la limite d'endurance. On a réalisé ce test sous deux conditions différentes : sous atmosphère sèche (moins de 8% d'humidité relative) et sous atmosphère humide (60% d'humidité relative).
Pour les conditions ci-dessus et les deux types de ruban, on a pu déterminer la limite d'endurance notée « T » (sous atmosphère sèche sans stockage préalable) et « T* » (sous atmosphère humide sans stockage préalable). On a également calculé la déchéance notée « D* » de la limite d'endurance due à la présence de l'atmosphère humide (D*=(T-T*)/T).
Les résultats obtenus sont donnés dans le tableau 1 ci-dessous.
Tableau 2
Ruban en acier testé : R2 (témoin) R3 (invention)
Taux de C (%) 0,8 0, 17
Section droite du ruban 0,2 x 3 mm 0,2 x 3 mm
Rm (MPa) 2300 1925
T (MPa) 482 404
T* (MPa) 266 334
D* - 45% - 17% On note là encore que, de manière surprenante, le ruban (R3) à très faible taux de carbone utilisé dans le pneu de l'invention révèle une déchéance très nettement réduite, de 2,5 fois moins environ, comparativement au ruban témoin (R2) en acier à fort taux (0,8%) de carbone conventionnel.
Ceci laisse clairement présager une performance améliorée en pneu, en particulier sous conditions de vieillissement corrosif, comme confirmé dans les tests de roulage qui suivent. 6.4. - Autres tests de roulage (fatigue-corrosion)
Tous les processus de dégradation connus sous le terme générique de fatigue-corrosion sont à l'origine, par rapport à une utilisation en atmosphère sèche, d'une dégénérescence progressive des propriétés mécaniques des renforts métalliques, de leur adhésion au caoutchouc, et peuvent affecter, pour les conditions de roulage les plus sévères, la durée de vie de ces derniers. Bien entendu, tout ceci est préjudiciable au bon fonctionnement du pneu, en particulier de sa ceinture, au bout du compte à la performance et l'endurance globale du pneu. La résistance à la fatigue-corrosion des pneus T2 (témoins) et T3 (selon l'invention) a été évaluée lors de tests de roulage complémentaires conduits comme expliqué ci-après.
Avant roulage, deux surfaces opposées (environ 120x120 mm) de leur bande de roulement ont été soumises à une cinquantaine de perforations (selon la direction radiale Z), à l'aide d'un foret de 4 mm de diamètre et sur une profondeur supérieure à 40% de l'épaisseur initiale de la bande de roulement, ceci afin de favoriser la pénétration ultérieure d'une forte quantité d'humidité à l'intérieur du sommet du pneu, au cours du roulage de ce dernier.
Puis on a monté les pneus ainsi traités sur un véhicule petit poids-lourd type « Scania » (R164LB) et on les a fait rouler à une vitesse constante de 70 km/h, dans de l'eau salée, ceci jusqu'à leur destruction par éclatement ou perte de pression.
A l'issue de ce test de roulage extrêmement sévère, les pneus témoins avaient parcouru en moyenne 2500 km, tandis que les pneus de l'invention ont résisté durant 4000 km, soit un gain final d'endurance de 60% enregistré grâce aux rubans à faible taux de carbone et microstructure spécifique.
6.5. - Autres tests laboratoire (traction ondulée) Enfin, au cours de nouveaux essais laboratoire, on a comparé l'endurance sous traction ondulée du ruban précédent (R3) à un autre ruban (noté R4) lui aussi convenant à l'invention, cette fois en acier à bas taux de carbone du type biphasé (ou Dual Phase) et microstructure ferrito-martensitique (majoritairement ferritique) à l'état écroui.
Le ruban R4 a été fabriqué comme indiqué précédemment pour le ruban R3, à partir d'un feuillard commercial en acier à très bas taux de carbone du type Dual Phase (dénomination « DP 600 » de la société Arcelor), d'épaisseur initiale de 2 mm environ, jusqu'à obtention d'une épaisseur finale d'environ 0,2 mm (soit un taux de réduction d'épaisseur de 90%). Le feuillard de départ avait les propriétés mécaniques initiales suivantes : Rm égale à 650 MPa, At égal à 25% ; sa composition chimique principale était la suivante : 0.086% C, 1.49% Mn, 0.26% Si, 0.002% S, 0.02% P ; sa microstructure était donc ferrito- martensitique du type Dual Phase. La figure 3 est une vue au microscope optique de la microstructure ferrito-martensitique présente sur le feuillard de départ, la figure 4 montre la même microstructure ferrito- martensitique après écrouissage : on y voit clairement une matrice ferritique majoritaire contenant des lattes de martensite orientées selon la direction (notée D) d' écrouissage. Les résultats de ces tests d'endurance ont été résumés dans le tableau 3 ci-dessous.
Tableau 3
On constate, confirmant ainsi les premiers résultats obtenus sur le ruban R3, que le ruban R4 présente lui aussi une excellente endurance, encore améliorée comparativement au ruban R3 : en effet, dans les conditions du test, aucune dégradation de résistance Rm n'a même été observée sur le ruban R4, entre les conditions sous atmosphère sèche et sous atmosphère humide. En conclusion, comme démontré par les nombreux essais qui précèdent, les avantages procurés par les rubans convenant aux pneus de l'invention sont nombreux, avec notamment une endurance améliorée vis-à-vis du clivage, une sensibilité à la corrosion réduite, comparativement à des pneus utilisant des renforts métalliques conventionnels sous forme de câbles ou même de rubans à fort taux de carbone et microstructure perlitique.

Claims

REVENDICATIONS
1. Pneu pour véhicule automobile comportant au moins un ruban en acier au carbone à très bas taux de carbone et haute résistance à l'état écroui, caractérisé par les points suivants : l'acier au carbone a (% en masse) entre 0,05% et 0,4% de carbone, entre 0,5%> et 4%> de manganèse, entre 0, 1 %> et 2,5% de silicium, optionnellement (i) moins de 1 ,5%) d'aluminium, (ii) moins de 0,5%> de chacun des métaux bore, chrome, cobalt, cuivre, molybdène, nickel, niobium, titane, tungstène, vanadium, zirconium, et (iii) moins de 0,05%> de chacun des éléments phosphore, soufre, azote, ou de terre rare, le reste étant constitué de fer et d'impuretés inévitables résultant de l'élaboration ; la microstructure de l'acier au carbone écroui est principalement martensitique ou ferrito-martensitique ;
la résistance notée Rm du ruban est supérieure à 1200 MPa et son allongement à la rupture noté At est compris entre 1%> et 5%>.
2. Pneu selon la revendication 1 , le taux de carbone de l'acier au carbone étant compris dans un domaine de 0, 1 à 0,3%>, de préférence dans un domaine de 0,15% à 0,25%>.
3. Pneu selon l'une quelconque des revendications 1 ou 2, le taux de manganèse de l'acier au carbone étant compris dans un domaine de 1%> à 3%>, de préférence dans un domaine de 1 ,5% à 2,5%.
4. Pneu selon l'une quelconque des revendications 1 à 3, le taux de silicium de l'acier au carbone étant compris entre 0, 1 et 1 ,5%, de préférence dans un domaine de 0,2%> à 1 ,0%.
5. Pneu selon l'une quelconque des revendications 1 à 4, le taux d'aluminium optionnel de l'acier au carbone étant inférieur à 1 ,0%, de préférence à 0,5%>.
6. Pneu selon l'une quelconque des revendications 1 à 5, le taux dans l'acier au carbone de chacun des métaux optionnels bore, chrome, cobalt, cuivre, molybdène, nickel, niobium, titane, tungstène, vanadium, zirconium, étant inférieur à 0,3%>, de préférence inférieur à 0,2%>.
7. Pneu selon l'une quelconque des revendications 1 à 6, l'acier au carbone étant un acier TRIP au sens de la norme NF EN 10338 (octobre 2015).
8. Pneu selon l'une quelconque des revendications 1 à 6, l'acier au carbone étant un acier biphasé au sens de la norme NF EN 10338 (octobre 2015).
9. Pneu selon l'une quelconque des revendications 1 à 6, l'acier au carbone étant un acier martensitique au sens de la norme NF EN 10338 (octobre 2015).
10. Pneu selon l'une quelconque des revendications 1 à 9, la résistance Rm du ruban étant supérieure à 1500 MPa, de préférence supérieure à 1800 MPa.
11. Pneu selon l'une quelconque des revendications 1 à 10, l'allongement At du ruban étant compris entre 1% et 3%, de préférence compris dans un domaine de 1,5 à 2,5%.
12. Pneu selon l'une quelconque des revendications 1 à 11, l'épaisseur du ruban étant comprise entre 0,1 et 0,8 mm, de préférence dans un domaine de 0,2 à 0,5 mm.
13. Pneu selon l'une quelconque des revendications 1 à 12, la largeur du ruban étant comprise entre 1 et 15 mm, de préférence dans un domaine de 2,5 à 10 mm.
14. Pneu selon l'une quelconque des revendications 1 à 13, le ruban étant présent dans la ceinture de ce pneu.
EP16825529.7A 2015-12-16 2016-12-16 Pneu renforcé par un ruban en acier au carbone Withdrawn EP3390675A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562495A FR3045671B1 (fr) 2015-12-16 2015-12-16 Pneu renforce par un ruban en acier au carbone
PCT/FR2016/053484 WO2017103515A1 (fr) 2015-12-16 2016-12-16 Pneu renforcé par un ruban en acier au carbone

Publications (1)

Publication Number Publication Date
EP3390675A1 true EP3390675A1 (fr) 2018-10-24

Family

ID=55361782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16825529.7A Withdrawn EP3390675A1 (fr) 2015-12-16 2016-12-16 Pneu renforcé par un ruban en acier au carbone

Country Status (4)

Country Link
US (1) US20200290401A1 (fr)
EP (1) EP3390675A1 (fr)
FR (1) FR3045671B1 (fr)
WO (1) WO2017103515A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005494A (zh) * 2021-03-03 2021-06-22 无锡益联机械有限公司 一种含表面镀层的子午线轮胎胎圈钢丝及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA851091B (en) * 1984-02-27 1985-09-25 Goodyear Tire & Rubber The use of flat wire as a reinforcement in the belt package and carcass of a passenger tie
US4619714A (en) * 1984-08-06 1986-10-28 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
FR2672827A1 (fr) * 1991-02-14 1992-08-21 Michelin & Cie Fil metallique comportant un substrat en acier ayant une structure de type martensite revenue ecrouie, et un revetement; procede pour obtenir ce fil.
FR2743573A1 (fr) * 1996-01-16 1997-07-18 Michelin & Cie Fil metallique pret a l'emploi et procede pour obtenir ce fil
US20040149362A1 (en) * 2002-11-19 2004-08-05 Mmfx Technologies Corporation, A Corporation Of The State Of California Cold-worked steels with packet-lath martensite/austenite microstructure

Also Published As

Publication number Publication date
FR3045671A1 (fr) 2017-06-23
FR3045671B1 (fr) 2017-12-08
WO2017103515A1 (fr) 2017-06-22
US20200290401A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
EP1747103B1 (fr) Pneumatique
EP1756356B1 (fr) Pneumatique comprenant un cable metallique
EP2812195B1 (fr) Pneumatique a structure de ceinture allegee
EP3027429B1 (fr) Pneu radial à structure de ceinture allégée
EP2788201B1 (fr) Pneumatique comportant une couche d'elements de renforcement circonferentiels
FR2981297A1 (fr) Pneumatique comportant une couche d'elements de renforcement circonferentiels
EP2892665B1 (fr) Procédé de tréfilage
WO2012038397A1 (fr) Pneumatique comportant une armature de protection
EP2619020A1 (fr) Pneumatique comportant une armature de protection
EP3071715A1 (fr) Procédé de tréfilage et fil obtenu par ce procédé de tréfilage
WO2017153654A1 (fr) Pneu radial avec structure de ceinture améliorée
EP2893075B1 (fr) Fil d'acier à haute tréfilabilité comprenant un taux de carbone en masse compris entre 0,4 % et 0,5 % bornes incluses
EP3390675A1 (fr) Pneu renforcé par un ruban en acier au carbone
WO2017103516A1 (fr) Ruban en acier au carbone, son utilisation pour le renforcement d'articles en caoutchouc
EP3658388A1 (fr) Bandage à structure de ceinture amelioree
WO2019020888A1 (fr) Bandage à structure de ceinture amelioree
EP3071748B1 (fr) Fil d'acier à haute tréfilabilité comprenant un taux de carbone en masse compris entre 0,05 % inclu et 0,4 % exclu
WO2012038393A1 (fr) Pneumatique comportant une armature de protection
EP2893074B1 (fr) Fil d'acier à haute tréfilabilité comprenant un taux de carbone en masse compris entre 0,6 % et 0,74 % bornes incluses
EP2893076B1 (fr) Fil d'acier à haute tréfilabilité comprenant un taux de carbone en masse compris entre 0,5 % et 0,6 % bornes incluses
WO2016170062A1 (fr) Procédé de tréfilage et fil obtenu par ce procédé de tréfilage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190326