EP3390278A1 - Doped compositions, method for producing same, and use of same - Google Patents

Doped compositions, method for producing same, and use of same

Info

Publication number
EP3390278A1
EP3390278A1 EP16806103.4A EP16806103A EP3390278A1 EP 3390278 A1 EP3390278 A1 EP 3390278A1 EP 16806103 A EP16806103 A EP 16806103A EP 3390278 A1 EP3390278 A1 EP 3390278A1
Authority
EP
European Patent Office
Prior art keywords
hydridosilane
silicon
formula
composition according
generic formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16806103.4A
Other languages
German (de)
French (fr)
Inventor
Stephan Herrmann
Odo Wunnicke
Matthias Patz
Miriam Deborah MALSCH
Harald STÜGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of EP3390278A1 publication Critical patent/EP3390278A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/16Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • Doped compositions, processes for their preparation and their use The present invention relates to doped compositions, processes for their preparation, and their use.
  • Silicon-containing layers can be deposited from the gas phase in vacuum chambers, for. Via PECVD.
  • gas phase processes are technically complex and often do not lead to layers of desired quality.
  • liquid phase processes for producing silicon-containing layers are often preferred.
  • compositions which can be used to prepare silicon-containing layers by liquid-phase processes are of great interest.
  • liquid phase methods of preparation intrinsic, i. undoped silicon-containing layers of interest.
  • processes for producing doped silicon-containing layers and the compositions used in them are of interest.
  • US Pat. No. 5,866,471 A discloses a method for producing p-doped silicon-containing layers, in which an undoped coating composition is applied to a substrate and converted into a doped silicon-containing layer in the presence of a p-dopant-containing atmosphere.
  • a disadvantage of this method is that it is very expensive, especially from the apparative side.
  • US Pat. No. 5,866,471 A also discloses a pure liquid phase process for producing doped silicon-containing layers, in which a formulation comprising a dopant and a silicon-containing precursor is applied to a substrate and subsequently into a substrate
  • the dopants used are either alkylated / arylated compounds of the dopant (such as BPfi3, BMePh2 or B (i-Bu) 3) or compounds having a bond between a silicon atom and a dopant.
  • EP 1 715 509 B1 and EP 1 085 579 A1 also disclose a method for producing doped silicon-containing layers, in which a summary comprising a compound of the formula SiaXbYc, where Y can stand for a boron atom, is used. However, these compounds must first be synthesized consuming.
  • EP 1 640 342 A1 and EP 1 357 154 A1 disclose silicon-forming compositions which may comprise a silane polymer and an organic solvent and optionally a material containing an element of the 3rd main group, inter alia boron.
  • Exemplary compounds are those mentioned in JP 2000-031066 A, ie B 2 H 6 , ⁇ 4 ⁇ , B5H9, B 6 Hio, B10H14, B (CH 3 ) 3, B (C 2 H 5 ) 3, and B (C 6 H 5 ) 3.
  • the corresponding alkylated or arylated boron compounds lead to disadvantageous carbon-containing layers.
  • the use of said boranes is further disadvantageous because of their high toxicity.
  • US 2008/0022897 A1 discloses, inter alia, silicon-forming compositions containing a
  • the described boron-containing dopants may be boron-containing heterocyclosilane compounds or other compounds having boron-silicon bonds which have the disadvantage already described above of first having to be synthesized in a complex manner.
  • hydrogen-containing, alkylated, arylated or arylalkylated boron compounds which are disadvantageous either because of their toxicity already mentioned or because of their ability to lead to carbon-containing layers.
  • DE 10 2010 040 231 A1 furthermore describes suitable formulations for producing p-doped silicon-containing layers comprising a silicon compound and at least one compound from the group of hydroborating agents, which is a complex of BH3 with a complexing agent selected from the group consisting of THF, NR3 and SR'2 can act. Due to the metastability of the compounds mentioned, however, no controlled addition of the dopants is ensured. It is thus the object of the present invention to avoid the disadvantages of the prior art. In particular, it is the object of the present invention to provide dopants comprising formulations with which readily carbon-free, silicon-containing layers can be prepared from easily accessible, low-toxic and stable compounds.
  • Processes for the preparation of hydridosilanes are known to the person skilled in the art.
  • the hydridosilanes present in the compositions according to the invention furthermore have at least 5 Si atoms, ie n> 5.
  • Hydridosilanes consist of silicon and hydrogen atoms and have opposite
  • carbon-containing organosilanes or hydrogen- and carbon-containing organosilanes have the advantage that, when converted to silicon (with possibly one for the
  • the content of hydridosilane can be from 0.1 to 99% by weight, preferably from 1 to 30% by weight.
  • the hydridosilane according to the invention is a hydridosilane oligomer which can be prepared from at least one hydridosilane of the generic formula SixH2x + 2 with x> 3 or a cyclic hydridosilane of the generic formula SixH2x with x> 5, where from linear or
  • Hydridosilane oligomers are understood to mean hydridosilanes which can be prepared from hydridosilanes having a comparatively lower molecular weight by way of oligomerization.
  • hydridosilane oligomers are also hydridosilanes. From corresponding linear or branched hydridosilanes of the generic formula Si x H2x + 2 with x> 3, hydridosilanes which can be used advantageously in a particularly advantageous manner by thermal means can be produced particularly well.
  • the hydridosilane is particularly preferably obtainable via thermal oligomerization of a composition comprising as hydridosilane essentially at least one hydridosilane of the formula Si x H2x + 2 with x> 3 -20 in the absence of a catalyst at temperatures of less than 235 ° C.
  • a composition comprising as hydridosilane essentially at least one hydridosilane of the formula Si x H2x + 2 with x> 3 -20 in the absence of a catalyst at temperatures of less than 235 ° C.
  • Corresponding processes for the preparation of these compounds are disclosed in WO 201 1/104147 A1. These compounds typically have weight average
  • Particularly suitable hydridosilane oligomers having a weight-average molecular weight of 500-3500 g / mol can be prepared by the process according to the invention for use in the compositions according to the invention.
  • compositions which contain a hydridosilane of the generic formula SinHm, which was prepared thermally from a branched hydridosilane, most preferably from Si (SiH 3) 4 (neo-pentasilane).
  • Suitable compounds are optionally alkylated, arylated, arylalkylated, halogenated and / or hydrogenated boron, boronic or borinic acid esters. It has hitherto not been known that boron, boron or borinic acid esters can be used for doping since it has been assumed that the oxygen contained in them adversely affects the electrical properties of the resulting layers.
  • DE 695 05 268 T2 discloses processes for producing ceramic materials based on silicon carbide from polyalkylhydridosilanes and / or polyarylhydridosilanes in the presence of at least one
  • Boron compound which may also be alkyl-substituted boric acid derivatives.
  • the process described therein and the compositions disclosed for the purpose of producing ceramic materials are not suitable for the production of silicon-containing layers for the semiconductor industry. It has thus surprisingly been found that the stable boron, boron or borinic acid esters are suitable as defined starting compounds for doping silicon-containing layers and lead to good electrical conductivities of corresponding silicon-containing layers suitable for the semiconductor industry.
  • the content of boron, boronic or boric acid ester, based on the total formulation, is advantageously 0.0001 to 20 wt .-%, preferably 0.001 to 10 wt .-% and particularly preferably 0.01 to 5 wt .-%.
  • Corresponding boron, boron or borinic esters of the generic formula H n B (OR) 3- n where R is C 1 -C 10 -alkyl, C 6 -C 10 -aryl, C 1 -C 8 -aralkyl, halogen, n 0, 1, 2 can be purchased commercially or, for example, selectively prepared in situ from suitable precursor compounds.
  • composition of the invention may consist exclusively of the said hydridosilanes and the said boron, boron or borinic acid ester or have further constituents.
  • composition preferably contains further constituents in order to achieve advantageous properties.
  • the composition preferably comprises at least one solvent.
  • Solvents are aliphatic and aromatic hydrocarbons. Further preferred are
  • the proportion of solvent based on the total formulation may be 0, 1 to 99.9% by weight, preferably 25 to 95 wt .-% to achieve advantageous properties.
  • the hydridosilane is obtainable by thermal oligomerization of a composition comprising, as hydridosilane, essentially at least one hydridosilane of the formula SixH2x + 2 at x 3-20, in the absence of a catalyst at temperatures less than 235 ° C., having a weight-average molecular weight of 290 - 5000 g / mol, layers can be achieved with particularly good properties, if the formulation continues a
  • compositions according to the invention are preferably for
  • compositions of the invention are printing inks.
  • present invention further provides a process for the preparation of the compositions according to the invention, in which the at least one hydridosilane, the at least one compound of the generic formula H n B (OR) 3- n and any other constituents are mixed together.
  • composition according to the invention for producing silicon-containing layers.
  • Preference is given to the use of the compositions according to the invention for producing doped silicon layers.
  • compositions for producing p-doped, especially boron-doped silicon layers are particularly preferred.
  • the present invention likewise provides a process for producing doped silicon-containing layers, preferably doped silicon layers, in which at least one composition according to the invention is applied to a substrate and thermally and / or with electromagnetic radiation in a doped silicon-containing layer, preferably a silicon layer is converted.
  • compositions according to the invention are advantageously suitable for the production of silicon-containing layers, preferably doped silicon layers, on a multiplicity of substrates.
  • silicon-containing layers are understood as meaning, in addition to substantially pure silicon layers, also layers which, in addition to silicon, comprise further semiconductor metals, such as, for example, germanium; furthermore also layers which are silicon oxide, silicon carbide or silicon nitride-containing.
  • Preferred substrates consist of glass, quartz glass, graphite, metal, silicon oxide, silicon or a silicon, silicon oxide, indium tin oxide, ZnO: F, ZnO: Al or SnC iF layer located on a heat-compatible support.
  • Preferred metals are aluminum, stainless steel, Cr steel, titanium, chromium or molybdenum.
  • plastic films z. B. from PEEK, PEN, PET or polyimides can be used as substrates.
  • the application of the compositions is preferably carried out via a process selected from printing or coating processes, in particular flexographic / gravure printing, nano-resp. Microimprint, inkjet printing, offset printing, digital offset printing and screen printing, spraying, aerosol assisted chemical vapor deposition, direct liquid injection chemical vapor deposition,
  • Spin-coating method so-called “spin-coating”
  • dipping method so-called “dip-coating” and method selected from Meniscus Coating, Slit Coating, Slot-Die Coating, and Curtain Coating.
  • the coated substrate may be further dried to remove any solvent present.
  • Heating temperature is less than 200 ° C.
  • a pre-crosslinking of the composition can be carried out with UV irradiation on the substrate.
  • the conversion is preferably carried out at temperatures of 200-1000 ° C, preferably 250 to 750 ° C, particularly preferably 300 to 700 ° C. During thermal treatment of the coated substrate, the conversion takes place over a period of 0, 1 ms - 360 min.
  • Conversion time is preferably between 0, 1 ms and 10 minutes, more preferably between 1 s and 120 s.
  • This relatively fast energetic process can be achieved, for example, by using an IR lamp, a hot plate, an oven, a flashlamp, a plasma
  • a conversion can take place by irradiation with UV light.
  • the conversion time can preferably be between 1 s and 360 min.
  • an enrichment of the silicon-containing layers with hydrogen can be carried out, so-called “hydrogen passivation” of defects in the silicon-containing layer as a result of non-saturated bonds, "dangling bonds", e.g. with reactive hydrogen by the hot-wire method, with a hydrogen-containing plasma, remotely or directly, under vacuum or under atmospheric pressure; or by corona treatment with the supply of hydrogen, wherein under corona treatment, a method for
  • drying and / or conversion, as described above, can be carried out in a hydrogen-enriched atmosphere so that the material is hydrogen-rich from the outset.
  • compositions of the invention are suitable for a variety of uses. They are particularly well suited - taken alone or in compositions with further components - for the production of electronic or optoelectronic silicon-containing
  • compositions according to the invention results in a marked improvement in the technical feature of the so-called electrical
  • the electrical dark conductivity in the sense of the present invention is a measure of the quality of the doping due to a lower defect density in the respective coated substrate.
  • Example 2 The importance of boron and borinic acid esters, which are also present simultaneously in addition to the boric acid esters, in Example 2, which were detected by NMR spectroscopic measurement, becomes evident by comparison with Example 1.
  • Example 1 the doping is carried out exclusively by the boric acid ester B (O-n-Bu) 3 and leads to a registered electrical dark conductivity, which is ten times higher than that of the
  • Example 2 Comparative example using the trialkylborane derivative B (Et) 3. Nevertheless, the coated substrate according to Example 2 has a four-powers of ten higher dark conductivity than in Example 1.
  • Diborane (10% in N 2) was introduced into a mixture of 1 g NPS and 0.035 g THF at 30 ° C. and oligomerized over a period of 210 min at 30 ° C.
  • To 0.1 g of the resulting p-doped NPO was added 0.05 g of cyclooctane and 0.452 g of toluene.
  • NMR spectra were measured on a Varian INOVA 300 ( ⁇ : 96.2 MHz) Spectrometer from Varian, Inc. at room temperature. Chemical shifts are indicated compared to an external reference (BF 3 * Et.20).
  • the described formulations were at room temperature set and by means of a PE syringe (including syringe filter: 1 ⁇ ) on the substrate (EagleXG glass from Corning Inc.) abandoned.
  • the wet films were produced using a Spincoat G3P-8 spin coater from SCS Specialty Coating Systems, Inc. at 25 ° C. The conversion of the wet films was carried out on typical laboratory heating plates from HARRY GESTIGKEIT GmbH. Layer thicknesses were measured by means of a SENpro Eilipsometer of the company

Abstract

The invention relates to compositions comprising at least one hydridosilane of generic formula SinHm where n ≥ 5 and m = (2n) and (2n+2), and at least one compound of formula HnB (OR)3-n where R = C1-C10-alkyl, C6-C10-aryl, C7-C14-aralkyl, halogen, and n = 0, 1, 2. The invention also relates to a method for producing same, and to the use of same.

Description

Dotierte Zusammensetzungen, Verfahren zu ihrer Herstellung und ihre Verwendung Die vorliegende Erfindung betrifft dotierte Zusammensetzungen, Verfahren zu ihrer Herstellung , und ihre Verwendung.  Doped compositions, processes for their preparation and their use The present invention relates to doped compositions, processes for their preparation, and their use.
Insbesondere für die Halbleiterindustrie ist die Herstellung Silicium-haltiger Schichten von Especially for the semiconductor industry is the production of silicon-containing layers of
Interesse. Silicium-haltige Schichten können aus der Gasphase in Vakuumkammern abgeschieden werden, z. B. über PECVD. Gasphasenverfahren sind jedoch technisch aufwendig und führen oft nicht zu Schichten gewünschter Qualität. Aus diesem Grund werden Flüssigphasenverfahren zur Herstellung Silicium-haltiger Schichten oft bevorzugt. Interest. Silicon-containing layers can be deposited from the gas phase in vacuum chambers, for. Via PECVD. However, gas phase processes are technically complex and often do not lead to layers of desired quality. For this reason, liquid phase processes for producing silicon-containing layers are often preferred.
Aus diesem Grund sind Zusammensetzungen, mit denen über Flüssigphasenverfahren Silicium- haltige Schichten hergestellt werden können, von großem Interesse. For this reason, compositions which can be used to prepare silicon-containing layers by liquid-phase processes are of great interest.
Dabei sind nicht nur Flüssigphasenverfahren zur Herstellung intrinsischer, d.h. undotierter Silicium- haltiger Schichten von Interesse. Insbesondere für die Herstellung p- bzw. n-dotierter Silicium- haltiger Schichten sind Verfahren zur Herstellung dotierter Silicium-haltiger Schichten und die bei ihnen eingesetzten Zusammensetzungen von Interesse. Not only are liquid phase methods of preparation intrinsic, i. undoped silicon-containing layers of interest. Particularly for the production of p- or n-doped silicon-containing layers, processes for producing doped silicon-containing layers and the compositions used in them are of interest.
Zur Herstellung p-dotierter, insbesondere Bor-dotierter, Silicium-haltiger Schichten gibt es bereits verschiedene Flüssigphasenverfahren und dafür verwendbare Zusammensetzungen. So offenbart US 5,866,471 A ein Verfahren zur Herstellung p-dotierter Silicium-haltiger Schichten, bei dem eine undotierte Beschichtungszusammensetzung auf ein Substrat aufgebracht und in Gegenwart einer p-Dotanden-haltigen Atmosphäre in eine dotierte Silicium-haltige Schicht umgewandelt wird . Nachteilig an diesem Verfahren ist jedoch, dass es insbesondere von apparativer Seite sehr aufwändig ist. US 5,866,471 A offenbart weiterhin auch ein reines Flüssigphasenverfahren zur Herstellung dotierter Silicium-haltiger Schichten, bei dem eine Formulierung umfassend einen Dotanden und einen Silicium-haltigen Precursor auf ein Substrat aufgebracht und nachfolgend in eine For the production of p-doped, in particular boron-doped, silicon-containing layers, there are already various liquid phase processes and compositions which can be used for this purpose. Thus, US Pat. No. 5,866,471 A discloses a method for producing p-doped silicon-containing layers, in which an undoped coating composition is applied to a substrate and converted into a doped silicon-containing layer in the presence of a p-dopant-containing atmosphere. A disadvantage of this method, however, is that it is very expensive, especially from the apparative side. US Pat. No. 5,866,471 A also discloses a pure liquid phase process for producing doped silicon-containing layers, in which a formulation comprising a dopant and a silicon-containing precursor is applied to a substrate and subsequently into a substrate
Halbleiterschicht umgewandelt wird . Bei den eingesetzten Dotanden handelt es sich jedoch um entweder alkylierte/arylierte Verbindungen des Dotanden (wie z.B. BPfi3, BMePh2 oder B(i-Bu)3) oder um Verbindungen mit einer Bindung zwischen einem Silicium-Atom und einem Dotanden-Semiconductor layer is converted. The dopants used, however, are either alkylated / arylated compounds of the dopant (such as BPfi3, BMePh2 or B (i-Bu) 3) or compounds having a bond between a silicon atom and a dopant.
Atom (wie z.B. B(SiMe3)3, PhB(SiMe3)2 oder Cl2B(SiMe3). Die erstgenannten Verbindungen führen jedoch aufgrund des Alkyl-/Arylrestes der Verbindungen zu nachteiligen, Kohlenstoff-haltigen Schichten. Die an zweiter Stelle genannten Verbindungen sind nicht kommerziell erhältlich und müssen somit erst aufwändig synthetisiert werden. Weiterhin sind sie aus den bereits genannten Gründen nachteilig , falls sie alkyliert/aryliert sind. Auch EP 1 715 509 B1 und EP 1 085 579 A1 offenbaren ein Verfahren zur Herstellung dotierter Silicium-haltiger Schichten, bei dem eine Zusammenfassung umfassend eine Verbindung der Formel SiaXbYc, wobei Y für ein Bor-Atom stehen kann, eingesetzt wird. Auch diese Verbindungen müssen jedoch erst aufwändig synthetisiert werden. Atom (such as B (SiMe3) 3, PhB (SiMe3) 2 or Cl2B (SiMe3).) However, the first-mentioned compounds lead to disadvantageous, carbon-containing layers due to the alkyl / aryl radical of the compounds Thus, they are disadvantageous for the reasons already mentioned, if they are alkylated / arylated. EP 1 715 509 B1 and EP 1 085 579 A1 also disclose a method for producing doped silicon-containing layers, in which a summary comprising a compound of the formula SiaXbYc, where Y can stand for a boron atom, is used. However, these compounds must first be synthesized consuming.
EP 1 640 342 A1 und EP 1 357 154 A1 offenbaren Silicium-bildende Zusammensetzungen, die ein Silanpolymer und ein organisches Lösemittel sowie ggf. ein Material enthaltend ein Element der 3. Hauptgruppe, u.a. Bor, aufweisen können. Beispielhafte Verbindungen sind die in JP 2000-031066 A genannten, d.h. B2H6, Β4Ηιο, B5H9, B6Hio, B10H14, B(CH3)3, B(C2H5)3, und B(C6H5)3. Die entsprechenden alkylierten bzw. arylierten Borverbindungen führen jedoch, wie bereits ausgeführt, zu nachteiligen Kohlenstoff-haltigen Schichten. Der Einsatz der genannten Borane ist weiterhin aufgrund ihrer hohen Toxizität nachteilig. Auch US 2008/0022897 A1 offenbart u.a. Silicium-bildende Zusammensetzungen, die eineEP 1 640 342 A1 and EP 1 357 154 A1 disclose silicon-forming compositions which may comprise a silane polymer and an organic solvent and optionally a material containing an element of the 3rd main group, inter alia boron. Exemplary compounds are those mentioned in JP 2000-031066 A, ie B 2 H 6 , Β 4 Ηιο, B5H9, B 6 Hio, B10H14, B (CH 3 ) 3, B (C 2 H 5 ) 3, and B (C 6 H 5 ) 3. However, as already stated, the corresponding alkylated or arylated boron compounds lead to disadvantageous carbon-containing layers. The use of said boranes is further disadvantageous because of their high toxicity. US 2008/0022897 A1 discloses, inter alia, silicon-forming compositions containing a
Dotandenquelle aufweisen können. Bei den beschriebenen Bor-haltigen Dotanden kann es sich um borhaltige Heterocyclosilan-Verbindungen oder andere Verbindungen mit Bor-Silicium-Bindungen handeln, die den bereits zuvor beschriebenen Nachteil aufweisen, erst aufwändig synthetisiert werden zu müssen. Ebenfalls offenbart werden Wasserstoff-haltige, alkylierte, arylierte oder arylalkylierte Borverbindungen, die entweder aufgrund ihrer bereits erwähnten Toxizität oder aufgrund ihrer Eigenschaft, zu Kohlenstoff-haltigen Schichten zu führen, nachteilig sind. May have dopant source. The described boron-containing dopants may be boron-containing heterocyclosilane compounds or other compounds having boron-silicon bonds which have the disadvantage already described above of first having to be synthesized in a complex manner. Also disclosed are hydrogen-containing, alkylated, arylated or arylalkylated boron compounds, which are disadvantageous either because of their toxicity already mentioned or because of their ability to lead to carbon-containing layers.
DE 10 2010 040 231 A1 beschreibt weiterhin zur Herstellung p-dotierter Silicium-haltiger Schichten geeignete Formulierungen umfassend eine Silicium-Verbindung und mindestens eine Verbindung aus der Gruppe der Hydroborierungsmittel, bei dem es sich um einen Komplex von BH3 mit einem Komplexbildner ausgewählt aus der Gruppe bestehend aus THF, NR3 und SR'2 handeln kann. Aufgrund der Metastabilität der genannten Verbindungen ist jedoch keine kontrollierte Zugabe der Dotanden gewährleistet. Es ist somit die Aufgabe der vorliegenden Erfindung, die Nachteile des Standes der Technik zu vermeiden. Insbesondere ist es die Aufgabe der vorliegenden Erfindung, Dotanden umfassende Formulierungen bereitzustellen, mit denen aus leicht zugänglichen, wenig toxischen und stabilen Verbindungen gut auch kohlenstoff-freie Silicium-haltige Schichten hergestellt werden können. Die sich somit stellende Aufgabe wird überraschenderweise gelöst durch die erfindungsgemäßen Zusammensetzungen umfassend mindestens ein Hydridosilan der generischen Formel SinHm mit n > 5 und m = (2n) bis (2n+2) und mindestens eine Verbindung der Formel HnB (OR)3-n mit R = C1- Cio-Alkyl, C6-Cio-Aryl, Cz-Cw-Aralkyl, Halogen, n = 0, 1 , 2, entsprechend als Derivate von Bor-, Boron- oder Borinsäureestern, in der Literatur manchmal auch als Mono-, Di-, oder DE 10 2010 040 231 A1 furthermore describes suitable formulations for producing p-doped silicon-containing layers comprising a silicon compound and at least one compound from the group of hydroborating agents, which is a complex of BH3 with a complexing agent selected from the group consisting of THF, NR3 and SR'2 can act. Due to the metastability of the compounds mentioned, however, no controlled addition of the dopants is ensured. It is thus the object of the present invention to avoid the disadvantages of the prior art. In particular, it is the object of the present invention to provide dopants comprising formulations with which readily carbon-free, silicon-containing layers can be prepared from easily accessible, low-toxic and stable compounds. The problem thus posed is surprisingly achieved by the compositions according to the invention comprising at least one hydridosilane of the generic formula Si n H m with n> 5 and m = (2n) to (2n + 2) and at least one compound of the formula H n B (OR ) 3- n with R = C1-Cio-alkyl, C6-Cio-aryl, Cz-Cw-aralkyl, halogen, n = 0, 1, 2, corresponding to derivatives of boron, boronic or borinic, in the literature sometimes as mono, di, or
Trialkoxyborane oder Borate bezeichnet. Bei dem Hydridosilan der generischen Formel SinHm handelt es sich im Falle von m = 2n um ein cyclisches Hydridosilan und im Falle von m = 2n+2 um ein lineares bzw. verzweigtes Hydridosilan. Verfahren zur Herstellung von Hydridosilanen sind dem Fachmann bekannt. Die in den erfindungsgemäßen Zusammensetzungen enthaltenen Hydridosilane weisen weiterhin mindestens 5 Si-Atome auf, d.h. n > 5. Trialkoxyborane or borates. In the case of m = 2n, the hydridosilane of the generic formula Si n H m is a cyclic hydridosilane and in the case of m = 2n + 2 is a linear or branched hydridosilane. Processes for the preparation of hydridosilanes are known to the person skilled in the art. The hydridosilanes present in the compositions according to the invention furthermore have at least 5 Si atoms, ie n> 5.
Hydridosilane bestehen aus Silicium- und Wasserstoffatomen und haben gegenüber Hydridosilanes consist of silicon and hydrogen atoms and have opposite
kohlenstoffhaltigen Organosilanen oder Wasserstoff- und kohlenstoffhaltigen Organosilanen den Vorteil, dass sie bei Konvertierung zu abgeschiedenem Silicium (mit ggf. einem für die carbon-containing organosilanes or hydrogen- and carbon-containing organosilanes have the advantage that, when converted to silicon (with possibly one for the
elektronischen Eigenschaften förderlichen Rest-Wasserstoffanteil) und gasförmigem Wasserstoff ohne Kohlenstoffanteil reagieren. electronic properties conducive residual hydrogen content) and gaseous hydrogen react without carbon content.
Der Gehalt an Hydridosilan, bezogen auf die Gesamtformulierung, kann 0, 1 bis 99 Gew.-% betragen, bevorzugt 1 bis 30 Gew.-%. The content of hydridosilane, based on the total formulation, can be from 0.1 to 99% by weight, preferably from 1 to 30% by weight.
Vorteilhaft ist das erfindungsgemäße Hydridosilan ein Hydridosilan-Oligomer, das herstellbar ist aus mindestens einem Hydridosilan der generischen Formel SixH2x+2 mit x > 3 oder einem cyclischen Hydridosilan der generischen Formel SixH2x mit x > 5, wobei aus linearen bzw. Advantageously, the hydridosilane according to the invention is a hydridosilane oligomer which can be prepared from at least one hydridosilane of the generic formula SixH2x + 2 with x> 3 or a cyclic hydridosilane of the generic formula SixH2x with x> 5, where from linear or
verzweigten Hydridosilanen herstellbare Hydridosilan-Oligomere bevorzugt sind. Unter branched Hydridosilanen producible Hydridosilan oligomers are preferred. Under
Hydridosilan-Oligomeren sind dabei Hydridosilane zu verstehen, die aus Hydridosilanen mit einem vergleichsweise geringeren Molekulargewicht über eine Oligomerisierung herstellbar sind. Somit handelt es sich auch bei Hydridosilan-Oligomeren um Hydridosilane. Aus entsprechenden linearen oder verzweigten Hydridosilanen der generischen Formel SixH2x+2 mit x > 3 können dabei besonders gut auf thermischem Wege vorteilhaft einsetzbare Hydridosilane hergestellt werden. Besonders bevorzugt ist das Hydridosilan über thermische Oligomerisierung einer Zusammensetzung umfassend als Hydridosilan im Wesentlichen mindestens ein Hydridosilan der Formel SixH2x+2 mit x > 3 -20 in Abwesenheit eines Katalysators bei Temperaturen von kleiner 235 °C erhältlich. Entsprechende Verfahren zur Herstellung dieser Verbindungen sind in WO 201 1/104147 A1 offenbart. Diese Verbindungen weisen typischerweise gewichtsmittlere Hydridosilane oligomers are understood to mean hydridosilanes which can be prepared from hydridosilanes having a comparatively lower molecular weight by way of oligomerization. Thus, hydridosilane oligomers are also hydridosilanes. From corresponding linear or branched hydridosilanes of the generic formula Si x H2x + 2 with x> 3, hydridosilanes which can be used advantageously in a particularly advantageous manner by thermal means can be produced particularly well. The hydridosilane is particularly preferably obtainable via thermal oligomerization of a composition comprising as hydridosilane essentially at least one hydridosilane of the formula Si x H2x + 2 with x> 3 -20 in the absence of a catalyst at temperatures of less than 235 ° C. Corresponding processes for the preparation of these compounds are disclosed in WO 201 1/104147 A1. These compounds typically have weight average
Molekulargewichte von 290 bis 5000 g/mol auf (gemessen über GPC gegen einen Molecular weights of 290 to 5000 g / mol (measured by GPC against a
Polystyrolstandard). Besonders gut lassen sich mit dem erfindungsgemäßen Verfahren für den Einsatz in den erfindungsgemäßen Zusammensetzungen besonders geeignete Hydridosilan- Oligomere mit einem gewichtsmittleren Molekulargewicht von 500 - 3500 g/mol herstellen. Polystyrene standard). Particularly suitable hydridosilane oligomers having a weight-average molecular weight of 500-3500 g / mol can be prepared by the process according to the invention for use in the compositions according to the invention.
Besonders gut geeignete Zusammensetzungen sind solche, die ein Hydridosilan der generischen Formel SinHm enthalten, das thermisch aus einem verzweigten Hydridosilan, ganz besonders bevorzugt aus Si(SiH3)4 (Neopentasilan), hergestellt wurde. Vorteilhaft einsetzbare Hydridosilane der generischen Formel SinHm können jedoch auch aus einem cyclischen Hydridosilan der generischen Formel Sixhbx mit x = 5 (Cyclopentasilan) herstellbar sein. Die Zusammensetzung umfasst weiterhin mindestens eine Verbindung der Formel HnB (OR)3-n mit R = Ci-Cio-Alkyl, C6-Cio-Aryl, Cz-Cw-Arylalkyl, Halogen; n = 0, 1 , 2. Bei entsprechenden Verbindungen handelt es sich um ggf. alkylierte, arylierte, arylalkylierte, halogenhaltige und/oder wasserstoffhaltige Bor-, Boron- oder Borinsäureester. Bisher war nicht bekannt, dass Bor-, Boron- oder Borinsäureester zur Dotierung verwendet werden können, da davon ausgegangen wurde, dass sich der in ihnen enthaltene Sauerstoff negativ auf die elektrischen Eigenschaften der resultierenden Schichten auswirkt. DE 695 05 268 T2 offenbart zwar Verfahren zur Herstellung keramischer Materialien auf der Basis von Siliciumcarbid aus Polyalkylhydridosilanen und/oder Polyarylhydridosilanen in Gegenwart mindestens einer Particularly suitable compositions are those which contain a hydridosilane of the generic formula SinHm, which was prepared thermally from a branched hydridosilane, most preferably from Si (SiH 3) 4 (neo-pentasilane). However, advantageously usable hydridosilanes of the generic formula Si n H m can also be prepared from a cyclic hydridosilane of the generic formula Sixhbx with x = 5 (cyclopentasilane). The composition further comprises at least one compound of the formula H n B (OR) 3- n with R = C 1 -C 10 -alkyl, C 6 -C 10 -aryl, C 1 -C 8 -arylalkyl, halogen; n = 0, 1, 2. Suitable compounds are optionally alkylated, arylated, arylalkylated, halogenated and / or hydrogenated boron, boronic or borinic acid esters. It has hitherto not been known that boron, boron or borinic acid esters can be used for doping since it has been assumed that the oxygen contained in them adversely affects the electrical properties of the resulting layers. Although DE 695 05 268 T2 discloses processes for producing ceramic materials based on silicon carbide from polyalkylhydridosilanes and / or polyarylhydridosilanes in the presence of at least one
Borverbindung, bei der es sich auch um alkyl-substituierte Borsäurederivate handeln kann. Das dort beschriebene Verfahren und die zum Zwecke der Herstellung keramischer Materialien offenbarten Zusammensetzungen eignen sich jedoch nicht zur Herstellung Silicium-haltiger Schichten für die Halbleiterindustrie. Es wurde somit überraschenderweise festgestellt, dass sich die stabilen Bor-, Boron- oder Borinsäureester als definierte Ausgangsverbindungen zur Dotierung Silicium-haltiger Schichten eignen und zu guten elektrischen Leitfähigkeiten entsprechender für die Halbleiterindustrie geeigneter Silicium-haltigen Schichten führen. Boron compound, which may also be alkyl-substituted boric acid derivatives. However, the process described therein and the compositions disclosed for the purpose of producing ceramic materials are not suitable for the production of silicon-containing layers for the semiconductor industry. It has thus surprisingly been found that the stable boron, boron or borinic acid esters are suitable as defined starting compounds for doping silicon-containing layers and lead to good electrical conductivities of corresponding silicon-containing layers suitable for the semiconductor industry.
Der Gehalt an Bor-, Boron- oder Borinsäureester, bezogen auf die Gesamtformulierung, beträgt vorteilhafterweise 0.0001 bis 20 Gew.-%, bevorzugt 0.001 bis 10 Gew.-% und besonders bevorzugt 0.01 bis 5 Gew.-%. The content of boron, boronic or boric acid ester, based on the total formulation, is advantageously 0.0001 to 20 wt .-%, preferably 0.001 to 10 wt .-% and particularly preferably 0.01 to 5 wt .-%.
Ganz besonders bevorzugte Verbindungen der generischen Formel HnB(OR)3-n sind die Very particularly preferred compounds of the generic formula H n B (OR) 3- n are the
Verbindungen HnB(0(n-Bu))3-n mit n = 1 , 2. Diese Verbindungen führen zu ganz besonders guten elektrischen Eigenschaften der mit den jeweiligen Zusammensetzungen herstellbaren Silicium- haltigen Schichten. Compounds H n B (O (n-Bu)) 3- n where n = 1, 2. These compounds lead to very good electrical properties of the silicon-containing layers which can be prepared with the respective compositions.
Entsprechende Bor-, Boron- oder Borinsäureester der generischen Formel HnB (OR)3-n mit R = Ci- Cio-Alkyl, C6-Cio-Aryl, Cz-Cw-Aralkyl, Halogen, n = 0, 1 , 2 können kommerziell erworben werden oder z.B. in-situ aus geeigneten Vorläuferverbindungen gezielt hergestellt werden. Corresponding boron, boron or borinic esters of the generic formula H n B (OR) 3- n where R is C 1 -C 10 -alkyl, C 6 -C 10 -aryl, C 1 -C 8 -aralkyl, halogen, n = 0, 1, 2 can be purchased commercially or, for example, selectively prepared in situ from suitable precursor compounds.
Geeignete Vorläuferverbindungen für die in-situ Herstellung von Bor-, Boron- oder Borinsäureester sind BH3, B2H6 in Kombination mit Aldehyden der generischen Formel RHC=0, Ketonen der generischen Formel RR'C=0, Ethern der generischen Formel R-O-R' mit R, R' = Ci-Cio-Alkyl, C6- Cio-Aryl, Cz-Cw-Arylalkyl oder vicinale bzw. 1 ,2-Diole auf Basis eines Alkyl- oder aromatischen Grundkörpers, wie z.B. 2,3-Dimethylbutan-2,3-diol, Brenzcatechin; bevorzugt mit cyclischen Ethern der generischen Formel (CH2)nO (n = 2 - 10) und ganz besonders bevorzugt mit Tetrahydrofuran (CH2)40. Suitable precursor compounds for the in-situ preparation of boron, boron or borinic esters BH3, B2H6 in combination with aldehydes of the generic formula RHC = 0, ketones of the generic formula RR'C = 0, ethers of the generic formula ROR 'with R, R '= Ci-Cio-alkyl, C6-Cio-aryl, Cz-Cw-arylalkyl or vicinal or 1, 2-diols based on an alkyl or aromatic body, such as 2,3-dimethylbutane-2,3- diol, catechol; preferably with cyclic ethers of the generic formula (CH 2 ) n O (n = 2 - 10) and most preferably with tetrahydrofuran (CH 2 ) 4 0.
Die erfindungsgemäße Zusammensetzung kann ausschließlich aus den genannten Hydridosilanen und den genannten Bor-, Boron- oder Borinsäureester bestehen oder noch weitere Bestandteile aufweisen. The composition of the invention may consist exclusively of the said hydridosilanes and the said boron, boron or borinic acid ester or have further constituents.
Bevorzugt enthält sie zur Erzielung vorteilhafter Eigenschaften weitere Bestandteile. So weist die Zusammensetzung vorzugsweise mindestens ein Lösemittel auf. Bevorzugte It preferably contains further constituents in order to achieve advantageous properties. Thus, the composition preferably comprises at least one solvent. preferred
Lösemittel sind aliphatische und aromatische Kohlenwasserstoffe. Weiter bevorzugt sind Solvents are aliphatic and aromatic hydrocarbons. Further preferred are
Lösemittel aus der Gruppe bestehend aus linearen, verzweigten oder cyclischen gesättigten, ungesättigten oder aromatischen Kohlenwasserstoffen mit einem bis 12 Kohlenstoffatomen (ggf. partiell oder vollständig halogeniert), Alkoholen, Ethern, Carbonsäuren, Estern, Nitrilen, Aminen, Amiden, Sulfoxiden und Wasser. Besonders bevorzugt sind n-Pentan, n-Hexan, n-Heptan, n-Solvents from the group consisting of linear, branched or cyclic saturated, unsaturated or aromatic hydrocarbons having one to 12 carbon atoms (optionally partially or fully halogenated), alcohols, ethers, carboxylic acids, esters, nitriles, amines, amides, sulfoxides and water. Particularly preferred are n-pentane, n-hexane, n-heptane, n-
Oktan, n-Dekan, Dodekan, Cyclohexan, Cyclooctan, Cyclodekan, Dicyclopentan, Benzol, Toluol, m-Xylol, p-Xylol, Mesitylen, Indan, Inden, Tetrahydronaphtalin, Decahydronaphtalin, Diethylether, Dipropylether, Ethylenglycoldimethylether, Ethylenglycoldiethylether, Ethylenglycol-methyl- ethylether, Diethylenglycoldimethylether, Diethylenglycol-diethylether, Diethylenglycol- methylethylether, Tetrahydrofuran, p-Dioxan, Acetonitril, Dimethylformamid, Dimethylsulfoxid, Dichlormethan und Chloroform. Octane, n-decane, dodecane, cyclohexane, cyclooctane, cyclodecane, dicyclopentane, benzene, toluene, m-xylene, p-xylene, mesitylene, indane, indene, tetrahydronaphthalene, decahydronaphthalene, diethyl ether, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, p-dioxane, acetonitrile, dimethylformamide, dimethyl sulfoxide, dichloromethane and chloroform.
Der Anteil an Lösungsmittel bezogen auf die Gesamtformulierung kann dabei zur Erzielung vorteilhafter Eigenschaften 0, 1 bis 99,9 Gew.- %, bevorzugt 25 bis 95 Gew.-% betragen. The proportion of solvent based on the total formulation may be 0, 1 to 99.9% by weight, preferably 25 to 95 wt .-% to achieve advantageous properties.
Insbesondere, wenn das Hydridosilan über thermische Oligomerisierung einer Zusammensetzung, umfassend als Hydridosilan im Wesentlichen mindestens ein Hydridosilan der Formel SixH2x+2 mit x 3 - 20, in Abwesenheit eines Katalysators bei Temperaturen von kleiner 235 °C erhältlich ist, welches ein gewichtsmittleres Molekulargewicht von 290 - 5000 g/mol aufweist, können Schichten mit besonders guten Eigenschaften erzielt werden, wenn die Formulierung weiterhin ein In particular, when the hydridosilane is obtainable by thermal oligomerization of a composition comprising, as hydridosilane, essentially at least one hydridosilane of the formula SixH2x + 2 at x 3-20, in the absence of a catalyst at temperatures less than 235 ° C., having a weight-average molecular weight of 290 - 5000 g / mol, layers can be achieved with particularly good properties, if the formulation continues a
Hydridosilan der generischen Formel SinH2n+2 mit n = 5 - 9 aufweist. Hydridosilane of the generic formula Si n H2n + 2 with n = 5 - 9 has.
Der Anteil an Hydridosilan der generischen Formel SinH2n+2 mit n = 5 - 9 beträgt dabei, bezogen auf die Masse an anwesendem Hydridosilan, bevorzugt von 0, 1 bis 90 Gew.-%, besonders bevorzugt 1 bis 30 Gew.-%. The proportion of hydridosilane of the generic formula Si n H2n + 2 with n = 5-9 is, based on the mass of hydridosilane present, preferably from 0.1 to 90% by weight, particularly preferably from 1 to 30% by weight. ,
Bei den erfindungsgemäßen Zusammensetzungen handelt es sich bevorzugt um für The compositions according to the invention are preferably for
Flüssigphasenverfahren geeignete Beschichtungszusammensetzungen. Ganz besonders bevorzugt handelt es sich bei den erfindungsgemäßen Zusammensetzungen um Drucktinten. Gegenstand der vorliegenden Erfindung ist weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Zusammensetzungen, bei dem das mindestens eine Hydridosilan, die mindestens eine Verbindung der generischen Formel HnB(OR)3-n und etwaige weitere Bestandteile miteinander vermischt werden. Liquid phase process suitable coating compositions. Most preferably, the compositions of the invention are printing inks. The present invention further provides a process for the preparation of the compositions according to the invention, in which the at least one hydridosilane, the at least one compound of the generic formula H n B (OR) 3- n and any other constituents are mixed together.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Zusammensetzung zur Erzeugung Silizium-haltiger Schichten. Bevorzugt ist die Verwendung der erfindungsgemäßen Zusammensetzungen zur Erzeugung dotierter Siliziumschichten. Likewise provided by the present invention is the use of the composition according to the invention for producing silicon-containing layers. Preference is given to the use of the compositions according to the invention for producing doped silicon layers.
Insbesondere bevorzugt ist die Verwendung der erfindungsgemäßen Zusammensetzungen zur Erzeugung p-dotierter, speziell Bor-dotierter Siliziumschichten. Particularly preferred is the use of the inventive compositions for producing p-doped, especially boron-doped silicon layers.
Entsprechend ist Gegenstand der vorliegenden Erfindung ebenfalls ein Verfahren zur Erzeugung dotierter Silizium-haltiger Schichten, bevorzugt dotierter Siliziumschichten, bei dem mindestens eine erfindungsgemäße Zusammensetzung auf ein Substrat aufgebracht und thermisch und/oder mit elektromagnetischer Strahlung in eine dotierte Silizium-haltige Schicht, bevorzugt eine Siliziumschicht umgewandelt wird. Accordingly, the present invention likewise provides a process for producing doped silicon-containing layers, preferably doped silicon layers, in which at least one composition according to the invention is applied to a substrate and thermally and / or with electromagnetic radiation in a doped silicon-containing layer, preferably a silicon layer is converted.
Die erfindungsgemäßen Zusammensetzungen eignen sich vorteilhaft für die Erzeugung Silizium- haltiger Schichten, bevorzugt dotierter Siliziumschichten auf einer Vielzahl von Substraten. Unter Silizium-haltigen Schichten werden im Sinne der vorliegenden Erfindung neben im Wesentlichen reinen Siliziumschichten auch Schichten verstanden, die neben Silizium weitere Halbleitermetalle, wie beispielsweise Germanium aufweisen; des weiteren auch Schichten, die Siliziumoxid-, Siliziumcarbid- oder Siliziumnitrid-haltig sind. The compositions according to the invention are advantageously suitable for the production of silicon-containing layers, preferably doped silicon layers, on a multiplicity of substrates. In the context of the present invention, silicon-containing layers are understood as meaning, in addition to substantially pure silicon layers, also layers which, in addition to silicon, comprise further semiconductor metals, such as, for example, germanium; furthermore also layers which are silicon oxide, silicon carbide or silicon nitride-containing.
Bevorzugte Substrate bestehen aus Glas, Quarzglas, Graphit, Metall, Siliziumoxid, Silizium oder einer auf einem hitzeverträglichen Träger befindlichen Silizium-, Siliziumoxid-, Indiumzinnoxid-, ZnO:F-, ZnO:AI- oder SnC iF-Schicht. Bevorzugte Metalle sind Aluminium, Edelstahl, Cr-Stahl, Titan, Chrom bzw. Molybdän. Ferner können Kunststofffolien z. B. aus PEEK, PEN, PET oder Polyimiden als Substrate eingesetzt werden. Das Aufbringen der Zusammensetzungen erfolgt bevorzugt über ein Verfahren ausgewählt aus Druck bzw. Beschichtungsverfahren, insbesondere Flexo/Gravur-Druck, Nano-bzw. Mikroimprint, Inkjet-Druck, Offset-Druck, digitalem Offset-Druck und Siebdruck, Sprühverfahren, aerosol assisted chemical vapour deposition, direct liquid injection chemical vapour deposition,  Preferred substrates consist of glass, quartz glass, graphite, metal, silicon oxide, silicon or a silicon, silicon oxide, indium tin oxide, ZnO: F, ZnO: Al or SnC iF layer located on a heat-compatible support. Preferred metals are aluminum, stainless steel, Cr steel, titanium, chromium or molybdenum. Furthermore, plastic films z. B. from PEEK, PEN, PET or polyimides can be used as substrates. The application of the compositions is preferably carried out via a process selected from printing or coating processes, in particular flexographic / gravure printing, nano-resp. Microimprint, inkjet printing, offset printing, digital offset printing and screen printing, spraying, aerosol assisted chemical vapor deposition, direct liquid injection chemical vapor deposition,
Rotationsbeschichtungsverfahren, sogenanntes„Spin-coating", Tauch-verfahren, sogenanntes „Dip-coating" und Verfahren ausgewählt aus Meniscus Coating, Slit Coating, Slot-Die Coating, und Curtain Coating. Spin-coating method, so-called "spin-coating", dipping method, so-called "dip-coating" and method selected from Meniscus Coating, Slit Coating, Slot-Die Coating, and Curtain Coating.
Nach der Aufbringung der Zusammensetzungen und vor der Konvertierung kann das beschichtete Substrat weiterhin getrocknet werden, um ggf. anwesendes Lösemittel zu entfernen. After application of the compositions and prior to conversion, the coated substrate may be further dried to remove any solvent present.
Entsprechende Maßnahmen und Bedingungen hierfür sind dem Fachmann bekannt. Um ausschließlich Lösemittel zu entfernen, sollte im Falle einer thermischen Trocknung die Corresponding measures and conditions for this are known to the person skilled in the art. Around Solvents should be removed in case of thermal drying
Heiztemperatur weniger als 200°C betragen. Heating temperature is less than 200 ° C.
Weiterhin kann eine Vorvernetzung der Zusammensetzung mit UV-Bestrahlung auf dem Substrat durchgeführt werden. Furthermore, a pre-crosslinking of the composition can be carried out with UV irradiation on the substrate.
Die Konvertierung erfolgt bevorzugt bei Temperaturen von 200-1000 °C, vorzugsweise 250 bis 750 °C, insbesondere bevorzugt 300 bis 700°C. Beim thermischen Behandeln des beschichteten Substrates erfolgt die Konvertierung über einen Zeitraum von 0, 1 ms - 360 min. Die The conversion is preferably carried out at temperatures of 200-1000 ° C, preferably 250 to 750 ° C, particularly preferably 300 to 700 ° C. During thermal treatment of the coated substrate, the conversion takes place over a period of 0, 1 ms - 360 min. The
Konvertierungszeit beträgt bevorzugt zwischen 0, 1 ms und 10 min, besonders bevorzugt zwischen 1 s und 120 s. Conversion time is preferably between 0, 1 ms and 10 minutes, more preferably between 1 s and 120 s.
Diese verhältnismäßig schnelle energetische Prozessführung kann zum Beispiel durch den Einsatz einer IR-Lampe, einer Heizplatte, einem Ofen, einer Blitzlampe, einem Plasma mit This relatively fast energetic process can be achieved, for example, by using an IR lamp, a hot plate, an oven, a flashlamp, a plasma
unterschiedlicher Gaszusammensetzung, einer RTP-Anlage oder einer Mikrowellenanlage, wenn erforderlich, im jeweils vorgeheizten bzw. warmgelaufenen Zustand, erfolgen. different gas composition, a RTP system or a microwave system, if necessary, in the preheated or warmed up state, carried out.
Ebenfalls kann eine Konvertierung durch Bestrahlung mit UV-Licht erfolgen. Die Konvertierungszeit kann dabei bevorzugt zwischen 1 s und 360 min betragen. Likewise, a conversion can take place by irradiation with UV light. The conversion time can preferably be between 1 s and 360 min.
Im Anschluss an die Konvertierung kann eine Anreicherung der Silizium-haltigen Schichten mit Wasserstoff durchgeführt werden, sogenannte„Wasserstoffpassivierung" von Defekten in der Silizium-haltigen Schicht infolge von nicht abgesättigten Bindungen,„dangling bonds", z.B. mit reaktivem Wasserstoff nach dem hot-wire Verfahren, mit einem Wasserstoff-haltigen Plasma, remote oder direkt, im Vakuum oder unter Atmosphärendruck; oder mittels Koronabehandlung unter Zufuhr von Wasserstoff, wobei unter Koronabehandlung ein Verfahren zur Following the conversion, an enrichment of the silicon-containing layers with hydrogen can be carried out, so-called "hydrogen passivation" of defects in the silicon-containing layer as a result of non-saturated bonds, "dangling bonds", e.g. with reactive hydrogen by the hot-wire method, with a hydrogen-containing plasma, remotely or directly, under vacuum or under atmospheric pressure; or by corona treatment with the supply of hydrogen, wherein under corona treatment, a method for
Oberflächenbehandlung von Kunststofffolien verstanden wird. Alternativ kann die Trocknung und oder Konvertierung, wie zuvor oben beschrieben, in Wasserstoff angereicherter Atmosphäre durchgeführt werden, so dass das Material von vornherein wasserstoffreich ist. Surface treatment of plastic films is understood. Alternatively, the drying and / or conversion, as described above, can be carried out in a hydrogen-enriched atmosphere so that the material is hydrogen-rich from the outset.
Der beschriebene Beschichtungsvorgang kann mehrfach durchgeführt werden; gleichzeitiges oder aufeinander folgendes Abscheiden, wobei die Filme teilweise oder komplett übereinanderliegen. Außerdem kann das Substrat beidseitig beschichtet werden. Die erfindungsgemäßen Zusammensetzungen eignen sich für eine Vielzahl von Verwendungen. Besonders gut eignen sie sich - für sich genommen oder in Zusammensetzungen mit weiteren Bestandteilen - zur Herstellung elektronischer oder optoelektronischer Silizium-haltiger The coating process described can be carried out several times; simultaneous or sequential deposition, with the films partially or completely overlying each other. In addition, the substrate can be coated on both sides. The compositions of the invention are suitable for a variety of uses. They are particularly well suited - taken alone or in compositions with further components - for the production of electronic or optoelectronic silicon-containing
Bauteilschichten. Die zuvor beschriebene Verwendung der erfindungsgemäßen Zusammensetzungen resultiert in einer deutlich Verbesserung des technischen Merkmals der sogenannten elektrischen Component layers. The above-described use of the compositions according to the invention results in a marked improvement in the technical feature of the so-called electrical
Dunkelleitfähigkeit, wie die Beschreibung der folgenden Bespiele 1 und 2 sowie das Dark conductivity, as the description of the following Examples 1 and 2 and the
Vergleichsbeispiel offenbaren. Comparative example reveal.
Die elektrische Dunkelleitfähigkeit im Sinne der vorliegenden Erfindung ist ein Maß für die Qualität der Dotierung infolge einer geringeren Defektdichte in dem jeweils beschichteten Substrat. The electrical dark conductivity in the sense of the present invention is a measure of the quality of the doping due to a lower defect density in the respective coated substrate.
Auffällig ist die nach Beispiel 2 erzielte elektrische Dunkelleitfähigkeit, welche um 5 Striking is the electrical dark conductivity achieved according to Example 2, which is around 5
Zehnerpotenzen höher liegt als jene des Vergleichsbeispiels unter Verwendung des Trialkylboran- Derivats B(Et)3. Powers of ten higher than those of the comparative example using the trialkylborane derivative B (Et) 3 .
Die Bedeutung der neben den Borsäure- ebenfalls gleichzeitig vorhandenen Boron- sowie Borinsäureester in Beispiel 2, welche durch NMR-spektroskopische Messung nachgewiesen wurden, wird durch den Vergleich mit Beispiel 1 offensichtlich.  The importance of boron and borinic acid esters, which are also present simultaneously in addition to the boric acid esters, in Example 2, which were detected by NMR spectroscopic measurement, becomes evident by comparison with Example 1.
In Beispiel 1 erfolgt die Dotierung ausschließlich durch den Borsäureester B(0-n-Bu)3 und führt zu einer registrierten elektrischen Dunkelleitfähigkeit, die zehnfach höher ist als jene des  In Example 1, the doping is carried out exclusively by the boric acid ester B (O-n-Bu) 3 and leads to a registered electrical dark conductivity, which is ten times higher than that of the
Vergleichsbeispiels unter Verwendung des Trialkylboran-Derivats B(Et)3. Dennoch weist das beschichtete Substrat gemäß Beispiel 2 eine um 4 Zehnerpotenzen höhere Dunkelleitfähigkeit auf im Vergleich zu Beispiel 1.  Comparative example using the trialkylborane derivative B (Et) 3. Nevertheless, the coated substrate according to Example 2 has a four-powers of ten higher dark conductivity than in Example 1.
Dieser technische Effekt war aus dem Stand der Technik nicht vorhersehbar.  This technical effect was unpredictable from the prior art.
Die folgenden Beispiele sollen die Verwendung der Erfindung weiter ergänzend erläutern, ohne selbst beschränkend zu wirken: The following examples are intended to further illustrate the use of the invention without itself being limiting:
Heteroemitter Solarzellen  Hetero emitter solar cells
- HIT Solarzellen  - HIT solar cells
Selective Emitter Solarzellen  Selective emitter solar cells
Back Contact Solarzellen  Back Contact solar cells
Feldeffekt Transistoren, Dünnschichttransistoren  Field effect transistors, thin-film transistors
Dielektrische Schichten in mikroelektronischen Bauteilen  Dielectric layers in microelectronic devices
- Oberflächenpassivierung von Halbleitermaterialien  - Surface passivation of semiconductor materials
Verwendete Abkürzungen: Used abbreviations:
NPS Neopentasilan oder Tetrasilylsilan oder Si(SiH3)4  NPS neopentasilane or tetrasilylsilane or Si (SiH3) 4
NPO Neopentasilan-basiertes Silan-Oligomer  NPO neopentasilane-based silane oligomer
THF Tetrahydrofuran  THF tetrahydrofuran
RTP Rapid Thermal Processing  RTP Rapid Thermal Processing
HIT Heterojunction with Intrinsic Thin layer Beispiele Beispiel 1 HIT heterojunction with intrinsic thin layer Examples Example 1
Zu 1g NPO (Mw ~2200g/mol) wurde 0, 124g B(0-n-Bu)3 gegeben und für 180 min bei 30°C oligomerisiert. 0, 1g des resultierenden p-dotierten NPO wurde mit 0,069g Cyclooktan und 0,161g Toluol formuliert und auf ein Glassubstrat aufgegeben. In einer Beschichtung bei 6000 U/min und anschließender Konvertierung bei 500°C/60s konnte eine p-dotierte a-Si Schicht mit 152 nm erhalten werden. Die elektrische Dunkelleitfähigkeit beträgt 2x10~7S/cm. To 1g NPO (Mw ~ 2200 g / mol), 124g B (0-n-Bu) 3 was added and oligomerized for 180 min at 30 ° C 0th 0.1 g of the resulting p-doped NPO was formulated with 0.069 g cyclooctane and 0.161 g toluene and applied to a glass substrate. In a coating at 6000 rpm and subsequent conversion at 500 ° C./60 s, a p-doped a-Si layer with 152 nm was obtained. The electrical dark conductivity is 2x10 ~ 7 S / cm.
Beispiel 2 Example 2
In eine Mischung aus 1 g NPS und 0,035g THF wurde bei 30°C Diboran (10% in N2) eingeleitet und über einen Zeitraum von 210 min bei 30°C oligomerisiert. Zu 0, 1g des resultierenden p-dotierten NPO wurde 0,05g Cyclooktan und 0,452g Toluol gegeben. Die resultierende Formulierung wurde mittels B NMR Spektroskopie untersucht und B(0-n-Bu)3 (δ( Β) = 19 ppm (s)), HB(0-n-Bu)2 (δ( Β) = 27 ppm (d, JBH = 160 Hz)), und H2B(0-n-Bu) (δ( Β) = 8 ppm (t, JBH = 124 Hz)) wurden beobachtet. Weiterhin wurde die Formulierung auf ein Glassubstrat gegeben. In einer Diborane (10% in N 2) was introduced into a mixture of 1 g NPS and 0.035 g THF at 30 ° C. and oligomerized over a period of 210 min at 30 ° C. To 0.1 g of the resulting p-doped NPO was added 0.05 g of cyclooctane and 0.452 g of toluene. The resulting formulation was analyzed by B NMR spectroscopy and B (0-n-Bu) 3 (δ (Β) = 19 ppm (s)), HB (0-n-Bu) 2 (δ (Β) = 27 ppm ( d, JBH = 160 Hz), and H 2 B (O-n-Bu) (δ (Β) = 8 ppm (t, JBH = 124 Hz)) were observed. Furthermore, the formulation was placed on a glass substrate. In a
Beschichtung bei 2000 U/min und anschließender Konvertierung bei 500°C/60s konnte eine p- dotierte a-Si Schicht mit 60 nm erhalten werden. Die elektrische Dunkelleitfähigkeit beträgt 1 , 1x10" 3S/cm. Coating at 2000 rpm and subsequent conversion at 500 ° C / 60 s, a p-doped 60 nm a-Si layer was obtained. The electrical dark conductivity is 1, 1x10 " 3 S / cm.
Vergleichsbeispiel: Comparative Example:
Zu 5g NPS wurden 2,587g B(Et)3 (1 M in THF) gegeben und für 120min bei 30°C oligomerisiert. 0, 1g des resultierenden p-dotierten NPO wurde mit 0,05g Cyclooktan und 0,45g Toluol formuliert und auf ein Glassubstrat aufgegeben. In einer Beschichtung bei 6000 U/min und anschließender Konvertierung bei 500°C/60s konnte eine p-dotierte a-Si Schicht mit 37 nm erhalten werden. Die elektrische Dunkelleitfähigkeit beträgt 2x10~8S/cm To 5 g NPS was added 2.587 g B (Et) 3 (1 M in THF) and oligomerized for 120 min at 30 ° C. 0.1 g of the resulting p-doped NPO was formulated with 0.05 g cyclooctane and 0.45 g toluene and applied to a glass substrate. In a coating at 6000 rpm and subsequent conversion at 500 ° C./60 s, a p-doped a-Si layer with 37 nm was obtained. The electrical dark conductivity is 2x10 ~ 8 S / cm
Experimenteller Teil: Experimental part:
Alle Arbeiten wurden durchgeführt in Gloveboxen produziert von M. Braun Inertgas-SystemeAll work was carried out in glove boxes produced by M. Braun inert gas systems
GmbH oder mittels Methoden der Standard Schlenk-Technik (D. F. Shriver, M. A. Drezdzon, The manipulation of air sensitive Compounds, 1986, Wiley VCH, New York, USA.) unter einer inerten Atmosphäre von trockenem Stickstoff (N2; 02-Gehalt: < 10 ppm; H2O Gehalt: < 10 ppm). Trockene, sauerstoff-freie Lösungsmittel (Cyclooktan, Toluol) wurden vorbereitet mittels einer Lösungsmittel Trocknungsanlage des Typs MB-SPS-800-Auto hergestellt von M. Braun Inertgas-Systeme GmbH. Deuteriertes Benzol (CeDe) wurde bezogen von der Sigma-Aldrich, Coorp. und vor der Benutzung zur Trocknung für mindestens 2 Tage gelagert über Molsieb (4 A). NMR Spektren wurden gemessen an einem Spektrometer des Typs Varian INOVA 300 ( Β: 96.2 MHz) der Firma Varian, Inc. bei Raumtemperatur. Chemische Verschiebungen sind angegeben im Vergleich zu einer externen Referenz (BF3*Et.20). Die beschriebenen Formulierungen wurde bei Raumtemperatur angesetzt und mittels einer PE-Spritze (inklusive Spritzenfilter: 1 μητι) auf das Substrat (EagleXG Glas der Firma Corning Inc.) aufgegeben. Die Nassfilme wurden erzeugt mit einen Spincoat G3P-8 Spin Coater der Firma SCS Specialty Coating Systems, Inc. bei 25 °C. Die Konvertierung der Nassfilme wurde auf labortypischen Heizplatten der Firma HARRY GESTIGKEIT GmbH durchgeführt. Schichtdicken wurden gemessen mittels einem SENpro Eilipsometer der FirmaGmbH or by standard Schlenk techniques (DF Shriver, MA Drezdzon, The Manipulation of Air Sensitive Compounds, 1986, Wiley VCH, New York, USA.) Under an inert atmosphere of dry nitrogen (N 2 O 2 content: <10 ppm, H2O content: <10 ppm). Dry, oxygen-free solvents (cyclooctane, toluene) were prepared by means of a solvent drying system of the type MB-SPS-800-Auto manufactured by M. Braun Inertgas-Systeme GmbH. Deuterated benzene (CeDe) was purchased from Sigma-Aldrich, Coorp. and before use for drying stored for at least 2 days on molecular sieve (4 A). NMR spectra were measured on a Varian INOVA 300 (Β: 96.2 MHz) Spectrometer from Varian, Inc. at room temperature. Chemical shifts are indicated compared to an external reference (BF 3 * Et.20). The described formulations were at room temperature set and by means of a PE syringe (including syringe filter: 1 μητι) on the substrate (EagleXG glass from Corning Inc.) abandoned. The wet films were produced using a Spincoat G3P-8 spin coater from SCS Specialty Coating Systems, Inc. at 25 ° C. The conversion of the wet films was carried out on typical laboratory heating plates from HARRY GESTIGKEIT GmbH. Layer thicknesses were measured by means of a SENpro Eilipsometer of the company
SENTECH Gesellschaft für Sensortechnik mbH mit vorgegebenen Einfallswinkeln zwischen 40 und 90 0 (5° Schritte). Die Kontaktierung der erzeugten Schichten wurde erreicht durch das Aufbringen von Silberkontakten mittels einer Sputteranlage des Typs Emscope Modell SC 500 der Firma Quorum Technologies Ltd. Messungen zur Bestimmung der elektrischen Dunkelleitfähigkeit wurden durchgeführt an einem Zweipunktmessgerät der Firma Keithley Instruments Inc. in einer N2 Atmosphäre und im Dunkeln in einem abgeschlossenem Metallcontainer bei 25 °C. SENTECH Gesellschaft für Sensortechnik mbH with given angles of incidence between 40 and 90 0 (5 ° steps). The contacting of the layers produced was achieved by the application of silver contacts by means of an Emscope model SC 500 sputtering system from Quorum Technologies Ltd. Measurements to determine dark electrical conductivity were performed on a two-point meter from Keithley Instruments Inc. in an N 2 atmosphere and in the dark in a sealed metal container at 25 ° C.

Claims

Patentansprüche claims
1. Zusammensetzung umfassend 1. Composition comprising
mindestens ein Hydridosilan der generischen Formel SinHm at least one hydridosilane of the generic formula Si n H m
- mit n > 5 und  - with n> 5 and
- m = (2n) bis (2n+2) und  - m = (2n) to (2n + 2) and
mindestens eine Verbindung der Formel HnB (OR)3-n at least one compound of the formula H n B (OR) 3- n
- mit R = Ci-Cio-Alkyl, Ce-Cio-Aryl, Cz-Cw-Arylalkyl, Halogen,  with R = Ci-Cio-alkyl, Ce-Cio-aryl, Cz-Cw-arylalkyl, halogen,
- n = 0, 1 , 2.  - n = 0, 1, 2.
2. Zusammensetzung nach Anspruch 1 , 2. Composition according to claim 1,
dadurch gekennzeichnet,  characterized,
dass das mindestens eine Hydridosilan ein aus einem Hydridosilan der generischen Formel SixH2x+2 mit x > 3 oder einem cyclischen Hydridosilan der generischen Formel SixH2x mit x > 5 herstellbares Hydridosilan-Oligomer ist.  in that the at least one hydridosilane is a hydridosilane oligomer which can be prepared from a hydridosilane of the generic formula SixH2x + 2 with x> 3 or a cyclic hydridosilane of the generic formula SixH2x with x> 5.
3. Zusammensetzung nach Anspruch 2, 3. Composition according to claim 2,
dadurch gekennzeichnet,  characterized,
dass das Hydridosilan-Oligomer über thermische Oligomerisierung einer  that the hydridosilane oligomer via a thermal oligomerization of a
Zusammensetzung umfassend als Hydridosilan im Wesentlichen mindestens ein Composition comprising as Hydridosilan substantially at least one
Hydridosilan der Formel SixH2x+2 mit x > 3 -20 in Abwesenheit eines Katalysators bei Temperaturen von kleiner 235 °C erhältlich ist. Hydridosilane of the formula Si x H2x + 2 with x> 3 -20 in the absence of a catalyst at temperatures of less than 235 ° C is available.
4. Zusammensetzung nach Anspruch 3, 4. Composition according to claim 3,
dadurch gekennzeichnet,  characterized,
dass das Hydridosilan der Formel SixH2x+2 Neopentasilan ist. in that the hydridosilane of the formula is Si x H2x + 2 neopentasilane.
5. Zusammensetzung nach Anspruch 2, 5. Composition according to claim 2,
dadurch gekennzeichnet,  characterized,
dass das Hydridosilan der Formel SixH2x mit x > 5 Cyclopentasilan ist. that the hydridosilane of the formula Si x H2x with x> 5 cyclopentasilane.
6. Zusammensetzung nach einem der vorhergehenden Ansprüche, 6. Composition according to one of the preceding claims,
dadurch gekennzeichnet,  characterized,
dass die Verbindung der Formel HnB(OR)3-n die generische Formel HnB(OC4H9)3-n mit n 1 , 2 aufweist. the compound of the formula H n B (OR) 3 n has the generic formula H n B (OC 4 H 9) 3 n with n 1, 2.
7. Zusammensetzung nach einem der vorhergehenden Ansprüche, 7. Composition according to one of the preceding claims,
dadurch gekennzeichnet,  characterized,
dass sie noch mindestens ein Lösemittel aufweist. that it still has at least one solvent.
8. Zusammensetzung nach Anspruch 3, 8. Composition according to claim 3,
dadurch gekennzeichnet,  characterized,
dass die Formulierung weiterhin ein Hydridosilan der generischen Formel SinH2n+2 mit n = 5-9 aufweist. that the formulation further comprises a hydridosilane of the generic formula Si n H2n + 2 with n = 5-9.
9. Verfahren zur Herstellung einer Zusammensetzung nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, 9. A process for preparing a composition according to any one of claims 1-9, characterized
dass das mindestens eine Hydridosilan, die mindestens eine Verbindung der generischen Formel HnB (OR)3-n und etwaige weitere Bestandteile miteinander vermischt werden. in that the at least one hydridosilane, the at least one compound of the generic formula H n B (OR) 3- n and any other constituents are mixed together.
10. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 - 9 zur Erzeugung Silicium-haltiger Schichten. 10. Use of a composition according to any one of claims 1-9 for the production of silicon-containing layers.
EP16806103.4A 2015-12-15 2016-12-06 Doped compositions, method for producing same, and use of same Withdrawn EP3390278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015225289.2A DE102015225289A1 (en) 2015-12-15 2015-12-15 Doped compositions, processes for their preparation and their use
PCT/EP2016/079885 WO2017102434A1 (en) 2015-12-15 2016-12-06 Doped compositions, method for producing same, and use of same

Publications (1)

Publication Number Publication Date
EP3390278A1 true EP3390278A1 (en) 2018-10-24

Family

ID=57485492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16806103.4A Withdrawn EP3390278A1 (en) 2015-12-15 2016-12-06 Doped compositions, method for producing same, and use of same

Country Status (10)

Country Link
US (1) US10370392B2 (en)
EP (1) EP3390278A1 (en)
JP (1) JP2019506350A (en)
KR (1) KR20180094885A (en)
CN (1) CN108367929A (en)
DE (1) DE102015225289A1 (en)
MX (1) MX2018007270A (en)
PH (1) PH12018501247A1 (en)
TW (1) TW201736261A (en)
WO (1) WO2017102434A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132492A (en) * 1994-10-13 2000-10-17 Advanced Technology Materials, Inc. Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same
FR2726551B1 (en) 1994-11-09 1997-01-31 Flamel Tech Sa PROCESS FOR PREPARING CERAMIC MATERIALS AND STARTING COMPOSITION LIKELY TO BE USED IN THIS PROCESS
US5866471A (en) 1995-12-26 1999-02-02 Kabushiki Kaisha Toshiba Method of forming semiconductor thin film and method of fabricating solar cell
JP2000031066A (en) 1998-07-10 2000-01-28 Sharp Corp Method for forming silicon film and manufacture of solar battery
KR100436319B1 (en) 1999-03-30 2004-06-18 제이에스알 가부시끼가이샤 Method for forming silicon film
EP1085579B1 (en) 1999-03-30 2009-02-18 Seiko Epson Corporation Method of manufacturing solar cell
JP2003313299A (en) 2002-04-22 2003-11-06 Seiko Epson Corp Higher order silane composition and process for forming silicon film using the same
KR101100562B1 (en) 2003-06-13 2011-12-29 제이에스알 가부시끼가이샤 Silane Polymer and Method for Forming Silicon Film
US7314513B1 (en) 2004-09-24 2008-01-01 Kovio, Inc. Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
US20110021736A1 (en) * 2008-03-04 2011-01-27 Bizhong Zhu Polyborosiloxane and Method of Preparing Same
DE102009002758A1 (en) 2009-04-30 2010-11-11 Evonik Degussa Gmbh Bandgap Tailoring of solar cells from liquid silane by adding germanium
DE102010002405A1 (en) * 2010-02-26 2011-09-01 Evonik Degussa Gmbh A process for the oligomerization of hydridosilanes, the process of preparing oligomerizates and their use
DE102010040231A1 (en) 2010-09-03 2012-03-08 Evonik Degussa Gmbh p-doped silicon layers
US9246173B2 (en) * 2012-11-16 2016-01-26 Mitsubishi Chemical Corporation Process for synthesis of hybrid siloxy derived resins and crosslinked networks therefrom
DE102012221669A1 (en) * 2012-11-27 2014-05-28 Evonik Industries Ag Process for producing carbon-containing hydridosilanes
DE102013010102A1 (en) 2013-06-18 2014-12-18 Evonik Industries Ag Formulations comprising hydridosilanes and hydridosilane oligomers, processes for their preparation and their use
DE102013020518A1 (en) 2013-12-11 2015-06-11 Forschungszentrum Jülich GmbH Fachbereich Patente Process and device for the polymerization of a composition comprising hydridosilanes and subsequent use of the polymers for the production of silicon-containing layers

Also Published As

Publication number Publication date
MX2018007270A (en) 2018-11-09
KR20180094885A (en) 2018-08-24
JP2019506350A (en) 2019-03-07
DE102015225289A1 (en) 2017-06-22
US10370392B2 (en) 2019-08-06
US20190023723A1 (en) 2019-01-24
CN108367929A (en) 2018-08-03
PH12018501247A1 (en) 2019-01-28
WO2017102434A1 (en) 2017-06-22
TW201736261A (en) 2017-10-16

Similar Documents

Publication Publication Date Title
EP2612348B1 (en) Method of manufacturing p-doped silicon layers
DE102009054997B3 (en) Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and their use
DE102009028802B3 (en) Process for producing metal-oxide-containing layers, metal oxide-containing layer which can be produced by the process and their use
DE102009028801B3 (en) Process for the preparation of indium oxide-containing layers, indium oxide-containing layer which can be produced by the process and their use
EP3010854B1 (en) Formulations containing hydridosilanes and hydridosilane oligomers, method for preparing same and use thereof
DE102009009337A1 (en) Process for the preparation of semiconductive indium oxide layers, indium oxide layers produced by the process and their use
EP2501840A2 (en) Silicon layers made of polymer-modified liquid silane formulations
DE102008058040A1 (en) Formulations containing a mixture of ZnO cubanes and method for producing semiconducting ZnO layers
DE102010043668A1 (en) Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and their use
DE102009002758A1 (en) Bandgap Tailoring of solar cells from liquid silane by adding germanium
EP2501841B1 (en) Method for producing silicon layers
EP3010855A1 (en) Formulations containing hydridosilanes and hydridosilane oligomers, method for preparing same and use thereof
DE102012209918A1 (en) Process for the preparation of indium oxide-containing layers
EP3390278A1 (en) Doped compositions, method for producing same, and use of same
EP2925805A1 (en) Method for producing hydridosilanes containing carbon

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PATZ, MATTHIAS

Inventor name: HERRMANN, STEPHAN

Inventor name: STUEGER, HARALD

Inventor name: MALSCH, MIRIAM, DEBORAH

Inventor name: WUNNICKE, ODO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190820

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210701