EP3390221A1 - Low-vibration drone - Google Patents

Low-vibration drone

Info

Publication number
EP3390221A1
EP3390221A1 EP16815958.0A EP16815958A EP3390221A1 EP 3390221 A1 EP3390221 A1 EP 3390221A1 EP 16815958 A EP16815958 A EP 16815958A EP 3390221 A1 EP3390221 A1 EP 3390221A1
Authority
EP
European Patent Office
Prior art keywords
powertrain
drone
rotor
universal joint
housing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16815958.0A
Other languages
German (de)
French (fr)
Inventor
Arthur GARDIN
Florent ROQUE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evodrone
Original Assignee
Evodrone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evodrone filed Critical Evodrone
Publication of EP3390221A1 publication Critical patent/EP3390221A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • B64C2027/002Vibration damping devices mounted between the rotor drive and the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/60UAVs characterised by the material

Definitions

  • the present invention relates to a multirotors drone. It relates more particularly to a drone comprising a fuselage and a plurality of housing structures for a plurality of powertrains.
  • MTOW mini drones multirotors.
  • These rotary wing aircraft consist of several rotors (at least 3) whose different thrusts allow lift and control of the drone.
  • the main advantage of this configuration compared to conventional helicopters, lies in its simplicity: just a few motors directly driving rotors, controlled by an inertial unit and controlled by a small computer, to fly almost any object .
  • Vibrations are particularly harmful for the reliability and precision of drones.
  • the inertial units which determine the position of the drone in space, are very sensitive to vibrations. These can cause drift and disorientation of the drone which then becomes uncontrollable.
  • the vibrations may also be responsible for disengagement in flight of the drone, because of the loss of fastening screws or premature structural fatigue, for example.
  • the vibrations transmitted to the on-board sensors for the mission can drastically reduce the accuracy of measurements.
  • the "rolling shutter” phenomenon well known to photographers, and directly related to the vibrations of a camera, which is responsible for obvious geometric aberrations.
  • the reduction of the vibration level is therefore an essential problem for the design of a professional drone.
  • the strategy currently implemented by the bulk of UAV manufacturers consists of isolating only the sensor (camera or other) from the structure of the drone via silentblocs. Although functional, this strategy has two major drawbacks: the vibrations are transmitted to the inertial unit, thus disturbing the reading of the accelerometers and gyroscopes which condition the stability of the flight and the structure of the drone remains subjected to vibrations, which can thus lead to serious problems of reliability (disruption of the inertial unit, loss of screws in flight, premature structural fatigue, etc.).
  • EP 2599718 discloses a disk-shaped drone comprising a body housing a plurality of horizontally oriented rotors driven by motors. Each of the rotors is connected to the body through a support arm. The body serves as anchor for the rotor support arms. The body is centrally disposed in the platform casing.
  • the object of the invention is to provide a device for isolating in a particularly effective manner the vibrations from a multirotor drone powertrain, while transmitting the necessary efforts to control the drone.
  • the invention provides a drone comprising a fuselage and a plurality of housing structures in which are arranged a plurality of powertrains, a mechanical link between each powertrain and each powertrain housing structure, said mechanical connection between each power train and each powertrain housing structure comprising a flexible connecting member connecting the power train to the powertrain housing structure, said mechanical linkage between each powertrain and each powertrain housing structure further comprising a joint universal arranged in the axis of rotation of the powertrain, opposite the rotor.
  • the flexible connecting element is remote from said universal joint.
  • the universal joint is advantageously anti-torque.
  • the flexible connecting element is an elastomeric membrane fixed on the one hand to the upper portion of the powertrain, and on the other hand to the housing structure.
  • the universal joint has the advantage of being inexpensive, durable and effective.
  • the universal joint comprises a spiral membrane cooperating on the one hand with the housing structure and on the other hand with the powertrain and a multiaxial flexible connection in which a prominent portion of the powertrain is inserted.
  • FIG 1A is a schematic view illustrating the main efforts to be taken into account in a drone multirotors architecture
  • FIG 1B is a sectional view in the vertical plane of the powertrain housing and the powertrain, with a symbolic representation of the damping system according to the invention
  • FIG. 1C is a perspective view of an example of a drone provided with a plurality of powertrain housing structures arranged at the end of arms carried by the fuselage of the drone;
  • FIG. 2 is a sectional view in the vertical plane of an example of a housing structure of the powertrain and an example of implementation of a damping system
  • FIG 3 is a top view of the housing structure of the powertrain to see the extreme positrons allowed by the damping system according to the invention
  • FIGS. 4A and 4B illustrate an example of a joint or ball joint according to the invention
  • FIGS. 5A and 5B illustrate two examples of flexible fastening according to the invention.
  • drone 1 is meant a remotely piloted aircraft as defined in the decree of 1 April 2012 on “the design of civil aircraft that circulate without any person on board, the conditions of their employment and capabilities required by the people who use them. In short, it is any aircraft capable of unmanned flight on board, which is controlled either by a computer (on board or on the ground) or by an operator on the ground, used for recreational purposes, competitions , or professional.
  • rotary wing means any drone whose lift in the air is obtained by means of at least one rotor 6, allowing the drone to hover.
  • the invention relates preferentially to multirotor drones equipped with three to eight rotors.
  • powertrain 4" powertrain which comprises a motor, a rotor with fixed pitch or variable pitch, and all the transmission elements between the motor and the rotor 6 (reducer, rotor head, axis of rotation 5, blade holders, etc.)
  • MOW means "maximum take off weight”, that is to say, the maximum take-off weight of an aircraft, the mass beyond which an aircraft can take off without potentially harming flight safety.
  • Rolling Shutter image acquisition technique on a digital sensor, which consists in recording line by line the image received by the sensor. This technique causes geometric aberrations, or image distortions, when moving objects are being acquired or when the sensor is subjected to vibrations.
  • Figure 1A illustrates the key forces involved in a rotor arrangement.
  • the latter must be able to transmit the traction force.
  • the torque transmitted by the motor must be supported by the fixing means.
  • the fixing assembly in addition to being adapted to the latter constraints, must be able to damp the vibrations as well as possible.
  • FIG. 1C illustrates an example of a multirotor drone 1 comprising a plurality of housing structures 3 such as that illustrated in the example of FIG. 1B.
  • the objective sought by vibration isolation is to modify the stiffness of the connection between the exciting element and its support in the direction of excitation, so that the cutoff frequency of this link is significantly lower than the excitation frequency.
  • the exciting element is the powertrain 4, and more precisely the rotor 6 where most of the vibrations (unbalance, geometric defect, etc.).
  • the direction of the excitation is the plane materialized by the rotor disk 6.
  • the support of the exciting element is the structure of the drone.
  • the connection between the exciting element and its support is the attachment of the powertrain 4 in the housing structure 3 of the powertrain.
  • the objective is to change the stiffness of the maintenance of the powertrain 4 in the plane of the rotor 6, while transmitting the torque and traction provided by the powertrain as shown in the diagram of Figure 1A.
  • the invention proposes a mounting, as shown diagrammatically in FIG.
  • this architecture makes it possible to transmit the traction and torque forces of the powertrain to the structure via the universal joint, while isolating the motions of the powertrain 4 in the plane of the rotor 6 thanks to the flexible connection elements 20.
  • Figure 3 illustrates the beneficial effect of this configuration, using a top view of a powertrain 4 arranged in a housing structure 3.
  • the solid lines represent the initial position of the bearing ball 7 of the rotor axis.
  • the dashed lines represent the powertrain 4 in maximum deflection position.
  • the characteristic length is defined as the distance L between the universal joint 10 and the plane of the rotor. To maximize the efficiency of the invention, this characteristic length must be related to the diameter D of the rotor 6, and a characteristic length is preferably chosen in the following ranges: a range of extended characteristic length for which the distance L is greater than or equal to 0.5.D and lower or equal to 2.D. A first preferred characteristic length range for which the distance L is greater than or equal to 0.2. D and less than or equal to 1, 5.D. Finally, a second preferred characteristic length range for which the distance L is greater than or equal to 0.5. D and less than or equal to 1 .D.
  • the concrete embodiment of a universal joint connection 10 is complicated by the restricted space and mass constraints imposed by a multirotor drone. Added to this is the need to transmit the traction force provided by the powertrain 4 to the structure.
  • conventional solutions such as blade coupling, cardan joints or Rzeppa gasket do not take up, or fail, traction.
  • the GMP comprises a protruding portion 1 1 which fits into a homothetic hole of the joint, and of larger dimensions, by the company of a flexible multiaxial connection 13 put implemented for example by an elastomeric piece which cooperates with the structure of the drone around the hole.
  • a spiral membrane 12 is fixed in its center on the powertrain 4, for example using the fasteners 14, and at its ends on the structure of the drone 1. It transmits rigidly the torque of the powertrain 4 to the structure of the drone while the multiaxial flexible connection 13 transmits almost rigidly the traction of the powertrain 4, while leaving it "swivel" around the joint, thanks to local deformations of the elastomeric part.
  • FIGS. 5A and 5B show two exemplary embodiments of a flexible connection element 20.
  • FIG. 5A shows an exemplary interface between the upper zone of a hollow-axis GMP with a "brushless" motor with a rotating cage with the housing structure 3.
  • the figure illustrates the rotor 5 and the stator 8, the latter serving as an attachment point for an inner fixation 21 of a flexible membrane 20, cooperating on the other hand with the housing structure 3 at the Figure 5B shows an example similar to that of Figure 5A, for a full-axis GMP.
  • the figure illustrates the rotor 5 and the stator 8, the latter serving as an attachment point for an inner fixation 21 of a flexible membrane 20, cooperating on the other hand with the housing structure 3 by means of an external fastener 22 .
  • the main difficulty in the choice of flexible connecting elements 20 lies in the fact that a rotor 6 must accelerate to reach a nominal speed. During this acceleration phase, the natural frequency of the device will be reached and exceeded. During the passage of this natural frequency, it is necessary to have a damping coefficient sufficient to avoid a phenomenon of divergent resonance and potentially destructive. However, this damping must not be too high to avoid canceling the insulating effect of the link beyond this natural frequency.
  • the flexible connecting elements 20 are preferably made using elastomeric materials (rubbers, silicones, latex, etc.).
  • elastomeric materials rubbers, silicones, latex, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

The invention relates to a drone comprising a fuselage and a plurality of housing structures (3) for a plurality of engine units (4), the mechanical connection between each engine unit (4) and each housing structure (3) for the engine unit (4) comprising: a ball joint (10) arranged in the axis of rotation of the engine unit (4), opposite the rotor (6); and a flexible connecting member (20) connecting the engine unit (4) to the housing structure (3) for the engine unit (4).

Description

PRONE A FAIBLE NIVEAU DE VIBRATION  PRONE WITH LOW VIBRATION LEVEL
DOMAINE TECHNIQUE DE L'INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] La présente invention concerne un drone multirotors. Elle concerne plus particulièrement un drone comprenant un fuselage et une pluralité de structures de logements pour une pluralité de groupe motopropulseurs. The present invention relates to a multirotors drone. It relates more particularly to a drone comprising a fuselage and a plurality of housing structures for a plurality of powertrains.
ETAT DE LA TECHNIQUE ANTERIEURE STATE OF THE PRIOR ART
[0002] Avec la miniaturisation permanente de l'électronique, un nouveau type de drone a vu le jour depuis une petite décennie dans la catégorie des mini-drones (« MTOW »< 25kg) : les drones multirotors. Ces aéronefs à voilure tournante sont constitués de plusieurs rotors (au moins 3) dont les différentes poussées permettent la sustentation et le contrôle du drone. L'avantage majeur de cette configuration, par rapport aux hélicoptères classiques, réside dans sa simplicité : il suffit de quelques moteurs entraînant directement des rotors, asservis par une centrale inertielle et commandés par un petit calculateur, pour faire voler presque n'importe quel objet. With the permanent miniaturization of electronics, a new type of drone has emerged for a small decade in the category of mini drones ("MTOW" <25kg): drones multirotors. These rotary wing aircraft consist of several rotors (at least 3) whose different thrusts allow lift and control of the drone. The main advantage of this configuration, compared to conventional helicopters, lies in its simplicity: just a few motors directly driving rotors, controlled by an inertial unit and controlled by a small computer, to fly almost any object .
[0003] D'abord utilisés comme engins de loisir, ces drones multirotors ont vu leurs domaines d'utilisations se diversifier considérablement : ils sont dorénavant exploités professionnellement pour accomplir des missions très diverses. Ces missions peuvent prendre la forme d'objets à transporter/élever dans l'air, ou bien de captation d'informations sous toutes leurs formes au moyen de capteurs embarqués dans l'aéronef (prise de vue aérienne, cartographie, relevés en tous genres, etc.). [0003] These multirotor drones, used primarily as recreational vehicles, have seen their fields of use diversify considerably: they are now professionally exploited to perform a wide variety of missions. These missions can take the form of objects to be transported / raised in the air, or of information gathering in all their forms by means of sensors embedded in the aircraft (aerial shooting, mapping, surveys of all kinds). , etc.).
[0004] Ces applications professionnelles nécessitent à la fois une fiabilité exemplaire, et une précision optimale de la captation d'informations. Or les vibrations sont particulièrement néfastes pour la fiabilité et la précision des drones. En effet, les centrales inertielles, qui déterminent la position du drone dans l'espace, sont très sensibles aux vibrations. Celles-ci peuvent causer des dérives et désorienter le drone qui devient alors incontrôlable. Les vibrations peuvent également être responsables d'une désolidarisation en vol du drone, du fait de la perte de vis de fixation ou d'une fatigue structurelle prématurée par exemple. D'autre part, les vibrations transmises aux capteurs embarqués pour la mission (caméras, appareils photo, capteurs infrarouge, etc.), peuvent réduire drastiquement la précision des mesures. On évoquera notamment le phénomène de « rolling shutter » bien connu des photographes, et directement lié aux vibrations d'un appareil photo, qui est responsable d'aberrations géométriques flagrantes. These professional applications require both exemplary reliability and optimal accuracy of information capture. Vibrations are particularly harmful for the reliability and precision of drones. Indeed, the inertial units, which determine the position of the drone in space, are very sensitive to vibrations. These can cause drift and disorientation of the drone which then becomes uncontrollable. The vibrations may also be responsible for disengagement in flight of the drone, because of the loss of fastening screws or premature structural fatigue, for example. On the other hand, the vibrations transmitted to the on-board sensors for the mission (cameras, cameras, infrared sensors, etc.) can drastically reduce the accuracy of measurements. We will mention in particular the "rolling shutter" phenomenon well known to photographers, and directly related to the vibrations of a camera, which is responsible for obvious geometric aberrations.
[0005] La réduction du niveau de vibrations est donc une problématique essentielle pour la conception d'un drone professionnel. La stratégie actuellement mise en œuvre par l'essentiel des constructeurs de drones consiste à isoler uniquement le capteur (caméra ou autre) de la structure du drone via des silentblocs. Bien que fonctionnelle, cette stratégie présente deux inconvénients majeurs : les vibrations sont transmises à la centrale inertielle, perturbant ainsi la lecture des accéléromètres et des gyroscopes qui conditionnent la stabilité du vol et la structure du drone reste soumise aux vibrations, pouvant ainsi entraîner de graves problèmes de fiabilité (perturbation de la centrale inertielle, perte de vis en vol, fatigue structurelle prématurée, etc). The reduction of the vibration level is therefore an essential problem for the design of a professional drone. The strategy currently implemented by the bulk of UAV manufacturers consists of isolating only the sensor (camera or other) from the structure of the drone via silentblocs. Although functional, this strategy has two major drawbacks: the vibrations are transmitted to the inertial unit, thus disturbing the reading of the accelerometers and gyroscopes which condition the stability of the flight and the structure of the drone remains subjected to vibrations, which can thus lead to serious problems of reliability (disruption of the inertial unit, loss of screws in flight, premature structural fatigue, etc.).
[0006] Certains constructeurs montent également les moteurs sur des silentblocs. Cette technique n'a qu'une efficacité très limitée puisqu'elle nécessite d'utiliser des silentblocs très rigides afin de limiter les phénomènes de couplage dynamiques. En effet, le recours à de simples silentblocs ne permet pas de connaître précisément les modes propres de vibrations du moteur sur son support. Par conséquent, il est indispensable d'avoir un montage suffisamment rigide pour que les fréquences propres du montage soient éloignées des vitesses de rotation du moteur, au risque de causer des résonnances destructrices, ce qui serait l'effet inverse de celui recherché. Dès lors, seules des fréquences très élevées, rarement problématiques sur des drones, peuvent être isolées. [0007] D'autres constructeurs de drones installent la centrale inertielle sur un matériau isolant. Là encore, l'efficacité de cette solution est très limitée du fait de la masse très faible d'une centrale inertielle, et donc de la difficulté à l'isoler de fréquences relativement faibles (de l'ordre de la vitesse de rotation des moteurs). En théorie, pour obtenir un montage efficace, il faudrait soit alourdir conséquemment la centrale inertielle, inenvisageable dans un drone dont la légèreté est primordiale, soit utiliser des matériaux isolants extrêmement peu rigides. Dans ce dernier cas, la centrale inertielle n'est presque plus solidaire du drone et la simple présence de câbles électriques branchés sur la centrale peut suffire à en modifier l'orientation, donc à fausser les mesures et à désorienter le drone. Some manufacturers also mount the engines on silentblocs. This technique has a very limited efficiency since it requires the use of very rigid silentblocs to limit dynamic coupling phenomena. Indeed, the use of simple silentblocs does not allow to know precisely the natural modes of vibration of the engine on its support. Therefore, it is essential to have a sufficiently rigid mounting so that the natural frequencies of the assembly are moved away from the rotational speeds of the engine, with the risk of causing destructive resonances, which would be the opposite effect to that sought. Therefore, only very high frequencies, rarely problematic on drones, can be isolated. [0007] Other UAV manufacturers install the inertial unit on an insulating material. Here again, the effectiveness of this solution is very limited because of the very small mass of an inertial unit, and therefore the difficulty of isolating it from relatively low frequencies (of the order of the rotational speed of the motors ). In theory, to obtain an effective assembly, it would either be necessary to weigh down the inertial unit, unthinkable in a drone whose lightness is paramount, or use insulating materials extremely inflexible. In the latter case, the inertial unit is almost no longer integral with the drone and the mere presence of electrical cables connected to the central can suffice to change the orientation, so to distort the measurements and to disorient the drone.
[0008] On constate donc que la problématique vibratoire n'est que partiellement résolue dans les multirotors actuels. Une solution palliant ce problème consiste à isoler efficacement les vibrations à la source, soit directement au niveau du groupe motopropulseur. Toutefois, contrairement à l'isolation vibratoire d'un capteur ou d'une centrale inertielle, l'isolation d'un groupe motopropulseur nécessite que certains efforts soient transmis de façon rigide : la traction nécessaire au vol du drone, et le couple nécessaire au contrôle du drone en lacet. Le recours à de simples silentblocs ne permet pas de respecter cette contrainte. It is therefore found that the vibratory problem is only partially solved in the current multirotors. One solution to overcome this problem is to effectively isolate the vibrations at the source, directly at the powertrain. However, unlike the vibratory isolation of a sensor or an inertial unit, the isolation of a powertrain requires that certain forces be transmitted rigidly: the traction required for the flight of the drone, and the torque required for control of the drone in yaw. The use of simple silentblocs does not allow to respect this constraint.
[0009] Le document EP 2599718 décrit un drone en forme de disque comprenant un corps logeant plusieurs rotors orientés horizontalement et entraînés par des moteurs. Chacun des rotors est en liaison avec le corps par l'entremise d'un bras de support. Le corps sert d'ancrage pour les bras de support des rotors. Le corps est disposé centraiement dans le boîtier de la plate-forme. [0009] EP 2599718 discloses a disk-shaped drone comprising a body housing a plurality of horizontally oriented rotors driven by motors. Each of the rotors is connected to the body through a support arm. The body serves as anchor for the rotor support arms. The body is centrally disposed in the platform casing.
[0010] Pour pallier ces différents inconvénients, l'invention prévoit différents moyens techniques. EXPOSE DE L'INVENTION To overcome these disadvantages, the invention provides different technical means. SUMMARY OF THE INVENTION
[0011] L'objet de l'invention consiste à prévoir un dispositif permettant d'isoler de façon particulièrement efficace les vibrations provenant d'un groupe motopropulseur de drone multirotor, tout en transmettant les efforts nécessaires au contrôle du drone. The object of the invention is to provide a device for isolating in a particularly effective manner the vibrations from a multirotor drone powertrain, while transmitting the necessary efforts to control the drone.
Pour ce faire, l'invention prévoit un drone comprenant un fuselage et une pluralité de structures de logements dans lesquelles sont disposés une pluralité de groupes motopropulseurs, une liaison mécanique entre chaque groupe motopropulseur et chaque structure de logement de groupe motopropulseur, ladite liaison mécanique entre chaque groupe motopropulseur et chaque structure de logement de groupe motopropulseur comprenant un élément de liaison souple reliant le groupe motopropulseur à la structure de logement du groupe motopropulseur, ladite liaison mécanique entre chaque groupe motopropulseur et chaque structure de logement de groupe motopropulseur comportant par ailleurs un joint universel disposée dans l'axe de rotation du groupe motopropulseur, à l'opposé du rotor. To do this, the invention provides a drone comprising a fuselage and a plurality of housing structures in which are arranged a plurality of powertrains, a mechanical link between each powertrain and each powertrain housing structure, said mechanical connection between each power train and each powertrain housing structure comprising a flexible connecting member connecting the power train to the powertrain housing structure, said mechanical linkage between each powertrain and each powertrain housing structure further comprising a joint universal arranged in the axis of rotation of the powertrain, opposite the rotor.
[0012] [0012]
[0013] Selon une telle architecture on obtient un excellent découplage entre le groupe motopropulseur et la structure du drone permettant ainsi une réduction des vibrations. According to such an architecture we obtain an excellent decoupling between the powertrain and the structure of the drone thus allowing a reduction of vibrations.
[0014]Selon un mode de réalisation avantageux, l'élément de liaison souple est à distance dudit joint universel. According to an advantageous embodiment, the flexible connecting element is remote from said universal joint.
[0015] Le joint universel est avantageusement anti-couple. The universal joint is advantageously anti-torque.
[0016] De manière avantageuse, l'élément de liaison souple est une membrane élastomère fixée d'une part à la portion supérieure du groupe motopropulseur, et d'autre part à la structure de logement. [0017] Selon une telle architecture, le joint universel présente l'avantage d'être peu coûteux, durable et efficace. Advantageously, the flexible connecting element is an elastomeric membrane fixed on the one hand to the upper portion of the powertrain, and on the other hand to the housing structure. According to such an architecture, the universal joint has the advantage of being inexpensive, durable and effective.
[0018] De manière avantageuse, le joint universel comprend une membrane spirale coopérant d'une part avec la structure de logement et d'autre part avec le groupe motopropulseur et une liaison souple multiaxiale dans laquelle une portion proéminente du groupe motopropulseur est insérée. Advantageously, the universal joint comprises a spiral membrane cooperating on the one hand with the housing structure and on the other hand with the powertrain and a multiaxial flexible connection in which a prominent portion of the powertrain is inserted.
[0019] De manière avantageuse, le ratio d'amortissement R = l/L est compris entre 0,01 et 1 , préférentiellement entre 0,4 et 1 et plus préférentiellement entre 0,6 et 0,9, où L correspond à la distance entre le joint universel et le plan du rotor, et I correspond à la distance entre ledit joint et le point de fixation de la liaison souple avec le groupe motopropulseur. Advantageously, the damping ratio R = 1 / L is between 0.01 and 1, preferably between 0.4 and 1 and more preferably between 0.6 and 0.9, where L corresponds to distance between the universal joint and the plane of the rotor, and I corresponds to the distance between said seal and the attachment point of the flexible link with the powertrain.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
[0020]Tous les détails de réalisation sont donnés dans la description qui suit, complétée par les figures 1 à 5B, présentées uniquement à des fins d'exemples non limitatifs, et dans lesquelles : All the details of implementation are given in the description which follows, supplemented by FIGS. 1 to 5B, presented solely for purposes of non-limiting examples, and in which:
-la figure 1A est une vue schématique illustrant les principaux efforts devant être pris en compte dans une architecture de drone multirotors ;  FIG 1A is a schematic view illustrating the main efforts to be taken into account in a drone multirotors architecture;
-la figure 1 B est une vue en coupe dans le plan vertical du logement de groupe motopropulseur et du groupe motopropulseur, avec une représentation symbolique du système d'amortissement selon l'invention ;  FIG 1B is a sectional view in the vertical plane of the powertrain housing and the powertrain, with a symbolic representation of the damping system according to the invention;
-la figure 1 C est une vue en perspective d'un exemple de drone pourvu d'une pluralité de structures de logement de groupe motopropulseur agencés à l'extrémité de bras portés par le fuselage du drone ;  FIG. 1C is a perspective view of an example of a drone provided with a plurality of powertrain housing structures arranged at the end of arms carried by the fuselage of the drone;
-la figure 2 est une vue en coupe dans le plan vertical d'un exemple de structure de logement du groupe motopropulseur et d'un exemple de mise en œuvre d'un système d'amortissement ; -la figure 3 est une vue de dessus de la structure de logement du groupe motopropulseur permettant de voir les positons extrêmes permises par le système d'amortissement selon l'invention ; FIG. 2 is a sectional view in the vertical plane of an example of a housing structure of the powertrain and an example of implementation of a damping system; FIG 3 is a top view of the housing structure of the powertrain to see the extreme positrons allowed by the damping system according to the invention;
-les figures 4A et 4B illustrent un exemple de joint ou rotule selon l'invention ;  FIGS. 4A and 4B illustrate an example of a joint or ball joint according to the invention;
-les figures 5A et 5B illustrent deux exemples de fixation souple selon l'invention. FIGS. 5A and 5B illustrate two examples of flexible fastening according to the invention.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
DEFINITIONS DEFINITIONS
[0021] Par « drone » 1 on entend un aéronef télépiloté tels que défini dans l'arrêté du 1 1 avril 2012 relatif à « la conception des aéronefs civils qui circulent sans aucune personne à bord, aux conditions de leur emploi et sur les capacités requises des personnes qui les utilisent ». En résumé, il s'agit de tout aéronef capable de voler sans pilote à bord, dont le contrôle est réalisé soit par un ordinateur (embarqué ou au sol), soit par un opérateur au sol, utilisé à des fins de loisirs, de compétitions, ou professionnelles. By "drone" 1 is meant a remotely piloted aircraft as defined in the decree of 1 April 2012 on "the design of civil aircraft that circulate without any person on board, the conditions of their employment and capabilities required by the people who use them. In short, it is any aircraft capable of unmanned flight on board, which is controlled either by a computer (on board or on the ground) or by an operator on the ground, used for recreational purposes, competitions , or professional.
[0022] Par « voilure tournante » on entend tout drone dont la sustentation dans l'air est obtenue au moyen d'au moins un rotor 6, permettant au drone d'effectuer du vol stationnaire. L'invention porte préférentiellement sur les drones multirotors équipés de trois à huit rotors. By "rotary wing" means any drone whose lift in the air is obtained by means of at least one rotor 6, allowing the drone to hover. The invention relates preferentially to multirotor drones equipped with three to eight rotors.
[0023] Par « groupe motopropulseur 4 » on entend groupe motopropulseur qui comporte un moteur, un rotor à pas fixe ou à pas variable, et tous les éléments de transmission entre le moteur et le rotor 6 (réducteur, tête de rotor, axe de rotation 5, supports de pales, etc.) By "powertrain 4" is meant powertrain which comprises a motor, a rotor with fixed pitch or variable pitch, and all the transmission elements between the motor and the rotor 6 (reducer, rotor head, axis of rotation 5, blade holders, etc.)
[0024] Par « MTOW » on entend « maximum take off weight », c'est-à-dire la masse maximale au décollage d'un aéronef, soit la masse au-delà de laquelle un aéronef ne peut décoller sans nuire potentiellement à la sécurité du vol. [0025] Par « Rolling Shutter » on entend technique d'acquisition d'images sur un capteur numérique, qui consiste à enregistrer ligne par ligne l'image reçue par le capteur. Cette technique est à l'origine d'aberrations géométriques, ou distorsions d'images, lors de l'acquisition d'objets en mouvement ou lorsque le capteur est soumis à des vibrations. "MTOW" means "maximum take off weight", that is to say, the maximum take-off weight of an aircraft, the mass beyond which an aircraft can take off without potentially harming flight safety. By "Rolling Shutter" is meant image acquisition technique on a digital sensor, which consists in recording line by line the image received by the sensor. This technique causes geometric aberrations, or image distortions, when moving objects are being acquired or when the sensor is subjected to vibrations.
[0026] La figure 1A illustre les efforts clés en jeu dans un agencement de rotor. Ce dernier doit pouvoir transmettre l'effort de traction. Le couple transmis par le moteur doit être supporté par les moyens de fixation. L'ensemble de fixation, en plus d'être adaptés à ces dernières contraintes, doit pouvoir amortir au mieux les vibrations. Ces diverses exigences techniques étant souvent contradictoires, il est relativement complexe de parvenir à un juste équilibre entre ces diverses contraintes, expliquant ainsi le fait que les drones connus à ce jour ne comportent toujours pas de solution optimale. Figure 1A illustrates the key forces involved in a rotor arrangement. The latter must be able to transmit the traction force. The torque transmitted by the motor must be supported by the fixing means. The fixing assembly, in addition to being adapted to the latter constraints, must be able to damp the vibrations as well as possible. These various technical requirements are often contradictory, it is relatively complex to reach a right balance between these various constraints, explaining the fact that drones known to date still do not comprise of optimal solution.
[0027] La figure 1 C illustre un exemple de drone 1 multirotor comportant une pluralité de structures de logement 3 telles que celle illustrée dans l'exemple de la figure 1 B. FIG. 1C illustrates an example of a multirotor drone 1 comprising a plurality of housing structures 3 such as that illustrated in the example of FIG. 1B.
[0028] L'objectif recherché par une isolation vibratoire est de modifier la raideur de la liaison entre l'élément excitant et son support dans la direction d'excitation, de façon à ce que la fréquence de coupure de cette liaison soit nettement inférieure à la fréquence d'excitation. The objective sought by vibration isolation is to modify the stiffness of the connection between the exciting element and its support in the direction of excitation, so that the cutoff frequency of this link is significantly lower than the excitation frequency.
[0029] L'élément excitant est le groupe motopropulseur 4, et plus précisément le rotor 6 d'où provient l'essentiel des vibrations (déséquilibrage, défaut géométrique, etc.). La direction de l'excitation est le plan matérialisé par le disque rotor 6. Le support de l'élément excitant est la structure du drone. La liaison entre l'élément excitant et son support est la fixation du groupe motopropulseur 4 dans la structure de logement 3 du groupe motopropulseur. [0030] L'objectif est donc de modifier la raideur du maintien du groupe motopropulseur 4 dans le plan du rotor 6, tout en transmettant le couple et la traction fournis par le groupe motopropulseur tel que montré dans le schéma de la figure 1A. Pour cela, l'invention propose un montage, tel que représenté schématiquement à la figure 2, composé d'une liaison de type joint universel 10 ou rotule à doigt, disposée à une distance raisonnable du rotor 6, et reliant le groupe motopropulseur 4 à la structure du drone 1 , ainsi que d'éléments de liaison souples 20, disposés entre le joint universel 10 et le rotor 6, reliant également le groupe motopropulseur 4 à la structure de logement 3 et dont les caractéristiques mécaniques (raideur et amortissement) sont adaptés aux fréquences à isoler. The exciting element is the powertrain 4, and more precisely the rotor 6 where most of the vibrations (unbalance, geometric defect, etc.). The direction of the excitation is the plane materialized by the rotor disk 6. The support of the exciting element is the structure of the drone. The connection between the exciting element and its support is the attachment of the powertrain 4 in the housing structure 3 of the powertrain. The objective is to change the stiffness of the maintenance of the powertrain 4 in the plane of the rotor 6, while transmitting the torque and traction provided by the powertrain as shown in the diagram of Figure 1A. For this, the invention proposes a mounting, as shown diagrammatically in FIG. 2, composed of a connection of universal joint type 10 or finger ball joint, disposed at a reasonable distance from the rotor 6, and connecting the power unit 4 to the structure of the drone 1, as well as flexible connecting elements 20, arranged between the universal joint 10 and the rotor 6, also connecting the power unit 4 to the housing structure 3 and whose mechanical characteristics (stiffness and damping) are adapted to the frequencies to be isolated.
[0031]Comme le montrent la figure 1 B et la figure 2, cette architecture permet bien de transmettre les efforts de traction et de couple du groupe motopropulseur à la structure via le joint universel, tout en isolant les mouvements du groupe motopropulseur 4 dans le plan du rotor 6 grâce aux éléments de liaison souples 20. As shown in Figure 1 B and Figure 2, this architecture makes it possible to transmit the traction and torque forces of the powertrain to the structure via the universal joint, while isolating the motions of the powertrain 4 in the plane of the rotor 6 thanks to the flexible connection elements 20.
[0032] La figure 3 illustre l'effet bénéfique de cette configuration, à l'aide d'une vue de dessus d'un groupe motopropulseur 4 agencé dans une structure de logement 3. Les lignes en trait plein représentent la position initiale du roulement à bille 7 de l'axe du rotor. Les lignes en trait pointillé représentent le groupe motopropulseur 4 en position de débattement maximal. Figure 3 illustrates the beneficial effect of this configuration, using a top view of a powertrain 4 arranged in a housing structure 3. The solid lines represent the initial position of the bearing ball 7 of the rotor axis. The dashed lines represent the powertrain 4 in maximum deflection position.
LONGUEUR CARACTERISTIQUE L CHARACTERISTIC LENGTH L
[0033]Tel que montré à la figure 1 B, la longueur caractéristique est définie comme la distance L entre le joint universel 10 et le plan du rotor. Pour maximiser l'efficacité de l'invention, cette longueur caractéristique doit être mise en relation avec le diamètre D du rotor 6, et on choisit préférentiellement une longueur caractéristique dans les plages suivantes : une plage de longueur caractéristique étendue pour laquelle la distance L est supérieure ou égale à 0,5.D et inférieure ou égale à 2.D. Une première plage de longueur caractéristique préférentielle pour laquelle la distance L est supérieure ou égale à 0,2. D et inférieure ou égale à 1 ,5.D. Enfin, une seconde plage de longueur caractéristique préférentielle pour laquelle la distance L est supérieure ou égale à 0,5. D et inférieure ou égale à 1 .D. As shown in Figure 1 B, the characteristic length is defined as the distance L between the universal joint 10 and the plane of the rotor. To maximize the efficiency of the invention, this characteristic length must be related to the diameter D of the rotor 6, and a characteristic length is preferably chosen in the following ranges: a range of extended characteristic length for which the distance L is greater than or equal to 0.5.D and lower or equal to 2.D. A first preferred characteristic length range for which the distance L is greater than or equal to 0.2. D and less than or equal to 1, 5.D. Finally, a second preferred characteristic length range for which the distance L is greater than or equal to 0.5. D and less than or equal to 1 .D.
RATIO D'AMORTISSEMENT AMORTIZATION RATIO
[0034] Le ratio d'amortissement est défini par R=L/I où L est la distance entre le joint universel 10 et le plan du rotor 6 et I est la distance entre le joint 10 et le point de fixation des éléments de liaison souples 20 sur le groupe motopropulseur 4. Pour une efficacité maximale de l'invention, on choisit R dans les plages suivantes : une plage de ratio d'amortissement étendue dans laquelle le ratio R est supérieur ou égal à 0,01 et inférieur ou égal à 1 . Une première plage de ratio d'amortissement préférentielle dans laquelle le ratio R est supérieur ou égal à 0,4 et inférieur ou égal à 1 . Enfin, une seconde plage de ratio d'amortissement préférentielle dans laquelle le ratio R est supérieur ou égal à 0,6 et inférieur ou égal à 0,9. The damping ratio is defined by R = L / I where L is the distance between the universal joint 10 and the plane of the rotor 6 and I is the distance between the seal 10 and the point of attachment of the connecting elements. 4 for the maximum efficiency of the invention, R is chosen in the following ranges: an extended damping ratio range in which the ratio R is greater than or equal to 0.01 and less than or equal to to 1. A first range of preferential damping ratio in which the ratio R is greater than or equal to 0.4 and less than or equal to 1. Finally, a second range of preferential damping ratio in which the ratio R is greater than or equal to 0.6 and less than or equal to 0.9.
JOINT UNIVERSEL UNIVERSAL JOINT
[0035] Dans le cadre de la présente invention, la réalisation concrète d'une liaison à joint universel 10 est complexifiée par l'espace restreint et les contraintes de masse qu'impose un drone multirotors. A cela s'ajoute la nécessité de transmettre l'effort de traction fourni par le groupe motopropulseur 4 à la structure. Or les solutions classiques de type accouplement à lame, joints de Cardan ou joint de Rzeppa, ne reprennent pas, ou mal, la traction. In the context of the present invention, the concrete embodiment of a universal joint connection 10 is complicated by the restricted space and mass constraints imposed by a multirotor drone. Added to this is the need to transmit the traction force provided by the powertrain 4 to the structure. However, conventional solutions such as blade coupling, cardan joints or Rzeppa gasket do not take up, or fail, traction.
[0036] La solution préférentielle, illustrée aux figures 4A et 4B, le GMP comporte une portion proéminente 1 1 qui s'insère dans un trou homothétique du joint, et de dimensions supérieures, par l'entreprise d'une liaison souple multiaxiale 13 mise en œuvre par exemple par une pièce élastomère qui coopère avec la structure du drone autour du trou. Par ailleurs, une membrane spirale 12 est fixée en son centre sur le groupe motopropulseur 4, par exemple à l'aide des éléments de fixation 14, et à ses extrémités sur la structure du drone 1 . Celle-ci transmet de façon rigide le couple du groupe motopropulseur 4 à la structure du drone tandis que la liaison souple multiaxiale 13 transmet de façon quasiment rigide la traction du groupe motopropulseur 4, tout en le laissant « rotuler » autour du joint, grâce aux déformations locales de la pièce élastomère. The preferred solution, illustrated in FIGS. 4A and 4B, the GMP comprises a protruding portion 1 1 which fits into a homothetic hole of the joint, and of larger dimensions, by the company of a flexible multiaxial connection 13 put implemented for example by an elastomeric piece which cooperates with the structure of the drone around the hole. Moreover, a spiral membrane 12 is fixed in its center on the powertrain 4, for example using the fasteners 14, and at its ends on the structure of the drone 1. It transmits rigidly the torque of the powertrain 4 to the structure of the drone while the multiaxial flexible connection 13 transmits almost rigidly the traction of the powertrain 4, while leaving it "swivel" around the joint, thanks to local deformations of the elastomeric part.
ELEMENTS DE LIAISON SOUPLES SOFT LINK ELEMENTS
[0037] Les figures 5A et 5B présentent deux exemples de réalisation d'un élément de liaison souple 20. La figure 5A montre un exemple d'interface entre la zone supérieure d'un GMP à axe creux avec moteur « brushless » à cage tournante avec la structure de logement 3. La figure illustre le rotor 5 et le stator 8, ce dernier servant de point d'attache pour une fixation intérieure 21 d'une membrane souple 20, coopérant d'autre part à la structure de logement 3 au moyen d'une fixation extérieure 22. La figure 5B montre un exemple similaire à celui de la figure 5A, pour un GMP à axe plein. La figure illustre le rotor 5 et le stator 8, ce dernier servant de point d'attache pour une fixation intérieure 21 d'une membrane souple 20, coopérant d'autre part à la structure de logement 3 au moyen d'une fixation extérieure 22. FIGS. 5A and 5B show two exemplary embodiments of a flexible connection element 20. FIG. 5A shows an exemplary interface between the upper zone of a hollow-axis GMP with a "brushless" motor with a rotating cage with the housing structure 3. The figure illustrates the rotor 5 and the stator 8, the latter serving as an attachment point for an inner fixation 21 of a flexible membrane 20, cooperating on the other hand with the housing structure 3 at the Figure 5B shows an example similar to that of Figure 5A, for a full-axis GMP. The figure illustrates the rotor 5 and the stator 8, the latter serving as an attachment point for an inner fixation 21 of a flexible membrane 20, cooperating on the other hand with the housing structure 3 by means of an external fastener 22 .
[0038] La difficulté principale dans le choix des éléments de liaison souples 20 réside dans le fait qu'un rotor 6 doit accélérer pour atteindre un régime nominal. Durant cette phase d'accélération, la fréquence propre du dispositif sera atteinte puis dépassée. Lors du passage de cette fréquence propre, il est nécessaire d'avoir un coefficient d'amortissement suffisant pour éviter un phénomène de résonnance divergent et potentiellement destructeur. Toutefois, cet amortissement ne doit pas être trop élevé pour éviter d'annuler l'effet isolant de la liaison au-delà de cette fréquence propre. The main difficulty in the choice of flexible connecting elements 20 lies in the fact that a rotor 6 must accelerate to reach a nominal speed. During this acceleration phase, the natural frequency of the device will be reached and exceeded. During the passage of this natural frequency, it is necessary to have a damping coefficient sufficient to avoid a phenomenon of divergent resonance and potentially destructive. However, this damping must not be too high to avoid canceling the insulating effect of the link beyond this natural frequency.
[0039] Dans les exemples présentés ici, les éléments de liaison souples 20 sont préférentiellement réalisés à l'aide de matériaux élastomères (caoutchoucs, silicones, latex, etc.). [0040] Les Figures et leurs descriptions faites ci-dessus illustrent l'invention plutôt qu'elles ne la limitent. En particulier, l'invention et ses différentes variantes viennent d'être décrites en relation avec un exemple particulier comportant un drone pourvu de quatre bras 2 et quatre rotors 6. In the examples presented here, the flexible connecting elements 20 are preferably made using elastomeric materials (rubbers, silicones, latex, etc.). The figures and their descriptions made above illustrate the invention rather than limiting it. In particular, the invention and its various variants have just been described in connection with a particular example comprising a drone provided with four arms 2 and four rotors 6.
[0041] Néanmoins, il est évident pour un homme du métier que l'invention peut être étendue à d'autres modes de réalisation dans lesquels en variantes, on prévoit un nombre différents de bras et de rotors, de préférence entre quatre et huit. Nevertheless, it is obvious to one skilled in the art that the invention can be extended to other embodiments in which variants are provided with a different number of arms and rotors, preferably between four and eight.
Numéros de référence employés sur les figures Drone Reference numbers used on Drone figures
Bras Arms
Structure de logement du GMP GMP housing structure
Groupe motopropulseur (GMP) Powertrain (GMP)
Axe du rotor Rotor shaft
Rotor Rotor
Roulement à bille de l'axe du rotor Ball bearing of the rotor axis
Stator du moteur Stator of the engine
Joint universel Universal joint
Portion proéminente du groupe motopropulseur Prominent portion of the powertrain
Membrane spirale Spiral membrane
Liaison souple multiaxiale Flexible multiaxial connection
Fixation du groupe motopropulseur et de la membrane Éléments de liaison souples Attachment of Powertrain and Membrane Flexible Connecting Elements
Fixation intérieure de l'élément de liaison souple Internal fastening of the flexible connecting element
Fixation extérieure de l'élément de liaison souple External fixing of the flexible connecting element

Claims

REVENDICATIONS
1 . Drone (1 ) comprenant un fuselage et une pluralité de structures de logements (3) dans lesquelles sont disposés une pluralité de groupes motopropulseurs (4), une liaison mécanique entre chaque groupe motopropulseur (4) et chaque structure de logement (3) de groupe motopropulseur (4), ladite liaison mécanique entre chaque groupe motopropulseur (4) et chaque structure de logement (3) de groupe motopropulseur (4) comprenant un élément de liaison souple (20) reliant le groupe motopropulseur (4) à la structure de logement (3) du groupe motopropulseur (4), caractérisé en ce que ladite liaison mécanique entre chaque groupe motopropulseur (4) et chaque structure de logement (3) de groupe motopropulseur (4) comporte par ailleurs un joint universel (10) disposée dans l'axe (5) de rotation du groupe motopropulseur (4), à l'opposé du rotor (6).  1. Drone (1) comprising a fuselage and a plurality of housing structures (3) in which are arranged a plurality of powertrains (4), a mechanical link between each powertrain (4) and each housing structure (3) group power train (4), said mechanical connection between each power unit (4) and each powertrain housing structure (3) comprising a flexible connecting element (20) connecting the power unit (4) to the housing structure (3) powertrain (4), characterized in that said mechanical connection between each powertrain (4) and each housing structure (3) powertrain (4) further comprises a universal joint (10) disposed in the axis (5) of rotation of the power unit (4), opposite the rotor (6).
2. Drone (1 ) selon la revendication 1 , dans lequel l'élément de liaison souple (20) est à distance (I) du joint universel (10). 2. Drone (1) according to claim 1, wherein the flexible connecting element (20) is remote (I) of the universal joint (10).
3. Drone (1 ) selon l'une des revendications 1 ou 2, dans lequel le joint universel est anti-couple. 3. Drone (1) according to one of claims 1 or 2, wherein the universal joint is anti-torque.
4. Drone (1 ) selon l'une des revendications 1 à 3, dans lequel l'élément de liaison souple est une membrane élastomère fixée d'une part à la portion supérieure du groupe motopropulseur, et d'autre part à la structure de logement (3). 4. Drone (1) according to one of claims 1 to 3, wherein the flexible connecting element is an elastomeric membrane attached firstly to the upper portion of the powertrain, and secondly to the structure of housing (3).
5. Drone selon l'une des revendications précédentes, dans lequel le joint universel comprend une membrane spirale (12) coopérant d'une part avec la structure de logement (3) et d'autre part avec le groupe motopropulseur et une liaison souple multiaxiale (13) dans laquelle une portion proéminente (1 1 ) du groupe motopropulseur est insérée. 5. Drone according to one of the preceding claims, wherein the universal joint comprises a spiral membrane (12) cooperating on the one hand with the housing structure (3) and on the other hand with the powertrain and a flexible multiaxial connection (13) in which a prominent portion (1 1) of the powertrain is inserted.
6. Drone (1 ) selon l'une des revendications précédentes, comportant un ratio d'amortissement R = l/L entre 0,01 et 1 , préférentiellement entre 0,4 et 1 et plus préférentiellement entre 0,6 et 0,9, où L correspond à la distance entre le joint universel et le plan du rotor, et I correspond à la distance entre ledit joint et le point de fixation de la liaison souple avec le groupe motopropulseur. 6. Drone (1) according to one of the preceding claims, having a damping ratio R = 1 / L between 0.01 and 1, preferably between 0.4 and 1 and more preferably between 0.6 and 0.9 , where L is the distance between the universal joint and the plane of the rotor, and I is the distance between said seal and the attachment point of the flexible link with the power train.
EP16815958.0A 2015-12-17 2016-12-15 Low-vibration drone Pending EP3390221A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502625A FR3045569B1 (en) 2015-12-17 2015-12-17 DRONE WITH LOW VIBRATION LEVEL
PCT/IB2016/057651 WO2017103837A1 (en) 2015-12-17 2016-12-15 Low-vibration drone

Publications (1)

Publication Number Publication Date
EP3390221A1 true EP3390221A1 (en) 2018-10-24

Family

ID=55451252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16815958.0A Pending EP3390221A1 (en) 2015-12-17 2016-12-15 Low-vibration drone

Country Status (4)

Country Link
US (1) US20200262548A1 (en)
EP (1) EP3390221A1 (en)
FR (1) FR3045569B1 (en)
WO (1) WO2017103837A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700018546A1 (en) * 2017-02-20 2018-08-20 Sab Heli Div S R L RADIO CONTROLLED HELICOPTER
DE202017006861U1 (en) 2017-08-08 2018-08-09 HAVEL metal foam GmbH drone
CN113284134B (en) * 2021-06-17 2023-09-26 张清坡 Unmanned aerial vehicle flight platform for geological survey
US20240239481A1 (en) * 2023-01-17 2024-07-18 Beta Air, Llc A system and a method of vibration mitigation for an propulsor and a boom in an electric aircraft

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042200B1 (en) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Unmanned flying vehicle made with pcb
DE102011119590A1 (en) * 2011-11-29 2013-05-29 Aibotix GmbH Remote controllable flight platform
CN203318680U (en) * 2012-10-29 2013-12-04 深圳市哈博森科技有限公司 Four-rotor aircraft

Also Published As

Publication number Publication date
FR3045569A1 (en) 2017-06-23
WO2017103837A1 (en) 2017-06-22
US20200262548A1 (en) 2020-08-20
FR3045569B1 (en) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017103837A1 (en) Low-vibration drone
EP2499890B1 (en) Electronic navigation card holder for a rotor drone
US7997157B2 (en) Control moment gyroscope
EP2340997B1 (en) Vibration damping mechanism and aircraft with a support structure and a rotor with such a mechanism
EP2798314B1 (en) Stabilised platform
FR3043337A1 (en) DRONE HAVING A TORQUE PROPULSION SUPPORT.
WO2001060692A1 (en) Remote-controlled flying machine, in particular for surveillance or inspection
WO2014122176A1 (en) Force feedback mini-shaft for electromagnetic control
EP3144228A1 (en) Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element
FR2976554A1 (en) SYSTEM FOR INTEGRATING A DIESEL ENGINE IN A DRONE
WO2018011519A1 (en) Propulsion device for an aircraft, such as a turboprop engine for example
EP3329213B1 (en) Inertial measurement device with dual suspension
WO2016185265A1 (en) Drone with a variable-pitch rotor
WO2001034466A1 (en) Helicopter with highly stable and highly manoeuvrable pendular piloting system
FR3017566A1 (en) AIRCRAFT AND AIRCRAFT ENGINE INSTALLATION HAVING A LINK DEVICE FOR BINDING A POWER TRANSMISSION BOX AND A MOTOR
WO2017103867A1 (en) Drone with rotors comprising hinged blades
US9682786B2 (en) Isolation systems for image data gathering devices
EP3378764B1 (en) A rotorcraft fitted with an antivibration system, and a method of adjusting such an antivibration system
EP3150488B1 (en) Aircraft and aircraft gear motor assembly
FR3071816A1 (en) MULTIROTOR TYPE DRONE COMPRISING A ROTATION SPEED MANAGEMENT UNIT OF EACH ROTOR AND METHOD OF CONTROLLING SUCH A DRONE
EP1419963A1 (en) Drive shaft and corresponding method for an aircraft propeller displaced from the engine
KR101534727B1 (en) Balance shaft structure and banance shaft module
FR2996890A1 (en) Support assembly for scanning mirror of telescope used onboard e.g. meteorological satellite, has support device comprising rigidificator to connect plates so as to oppose movement of one of plates by freely allowing displacement of plate
FR3113893A1 (en) Yaw stabilized stator rotary wing aircraft
WO1994010034A1 (en) Rotary wing comprising two coaxial rotors

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

19U Interruption of proceedings before grant

Effective date: 20180913

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20230801

PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425

32PN Public notification

Free format text: NOTIFICATION ETABLIE CONFORMEMENT A LA REGLE 142 CBE (REPRISE DE LA PROCEDURE CONFORMEMENT A LA REGLE 142 (2) CBE EN DATE DU 17.03.2023)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

18D Application deemed to be withdrawn

Effective date: 20240202

D18D Application deemed to be withdrawn (deleted)
PUAJ Public notification under rule 129 epc

Free format text: ORIGINAL CODE: 0009425