WO2017103867A1 - Drone with rotors comprising hinged blades - Google Patents

Drone with rotors comprising hinged blades Download PDF

Info

Publication number
WO2017103867A1
WO2017103867A1 PCT/IB2016/057700 IB2016057700W WO2017103867A1 WO 2017103867 A1 WO2017103867 A1 WO 2017103867A1 IB 2016057700 W IB2016057700 W IB 2016057700W WO 2017103867 A1 WO2017103867 A1 WO 2017103867A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
pitch
axis
rotor
drone
Prior art date
Application number
PCT/IB2016/057700
Other languages
French (fr)
Inventor
Arthur GARDIN
Florent ROQUE
Original Assignee
Evodrone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evodrone filed Critical Evodrone
Publication of WO2017103867A1 publication Critical patent/WO2017103867A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/37Rotors having articulated joints
    • B64C27/41Rotors having articulated joints with flapping hinge or universal joint, common to the blades
    • B64C27/43Rotors having articulated joints with flapping hinge or universal joint, common to the blades see-saw type, i.e. two-bladed rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • B64U30/297Tilting rotors

Definitions

  • the present invention relates to a drone. It relates more particularly to a multirotor drone comprising a fuselage and a plurality of powertrains driving a plurality of rotors.
  • drones multirotors These rotary wing aircraft consist of several rotors (at least three) whose different thrusts allow lift and control of the drone.
  • the main advantage of this configuration lies in its simplicity: just a few motors directly driving rotors, controlled by an inertial unit and controlled by a small computer, to fly almost any object , similar to a helicopter.
  • the invention provides different technical means.
  • the object of the invention is to provide a multirotor drone rotor head architecture for limiting the transmission of gyroscopic forces from the rotor to the structure of the drone.
  • the invention provides a multirotor drone comprising a fuselage and a plurality of powertrains driving a plurality of rotors each of which contributes to a significant fraction of the lift, characterized in that the rotors are variable pitch, each rotor comprises two blades, the blades being mounted in opposition on either side of a pivot axis BP of the blades, so that the rotor has a degree of freedom in rotation about said axis of rotation BP of the rotor and in the blades each have a hinge of pitch around an axis AP of articulation of the blades made using two spherical ball joints.
  • the blades being arranged free to tilt, they minimize the transmission of the generated forces of the rotor to the structure, including gyroscopic and aerodynamic forces.
  • Fixing the blades with the two spherical ball joints allows obtaining a degree of freedom around the axis AP passing through the center of the ball joints, with a rigid behavior in the other directions.
  • Such an architecture has several advantages: simplicity and robustness are increased compared to a conventional system consisting of radial contact bearings and thrust bearings.
  • the very rigid retention of the blades thus avoids dynamic imbalances of the rotor in flight.
  • the ratio of Mass / Robustness / Price is particularly interesting, especially in small dimensions compatible with drones which is the object of this invention and improved maintainability due to the simplicity of assembly.
  • Such an architecture allows, with a compact and lightweight system, a blade mobility along a single axis AP, retaining rigidity in all other directions.
  • This solution also provides excellent resistance to stress, in particular centrifugal.
  • the solution provides a good dynamic behavior of the rotor and a good positioning of the blades.
  • this solution is particularly compact and lightweight, and corresponds well to small scales related to drones.
  • the BP tilting axis which is defined as the axis passing through the anchor points of the blade pitch controls, forms a Delta angle with respect to the AP axis. articulation of the blades.
  • the value of the Delta angle is provided to vary the angle of incidence of the blades as a function of their tilting.
  • Such an architecture allows to bring the blades in the plane perpendicular to the axis of rotation.
  • the Delta angle is included:
  • the drone comprises a pitch control implemented by a kinematic chain comprising an actuator connected to a control rod passing through a rotary cage motor.
  • the invention advantageously provides that the end of the control rod is connected to two connecting rods, located opposite the actuator of pitch relative to the engine, each link being connected to a blade, thus controlling the pivoting of the blades around the axis AP, thus making it possible to vary the pitch angle.
  • a blade articulation insert is integrated in the blade root and comprises two bores housing the two spherical ball joints, and a threaded hole for fixing the anchor point of the order. to not. DESCRIPTION OF THE FIGURES
  • FIGS. 1A and 1B are diagrammatic representations illustrating an example of pivoting of the blades around a pivot axis BP;
  • FIG. 1C is a perspective view of an example of a drone
  • FIG. 2 is a view from above of an exemplary implementation of a rocking rotor
  • FIG. 3 shows the arrangement of FIG. 2 seen in perspective
  • FIGS. 4A, 4B and 4C make it possible to illustrate the effect of tilting of the blades
  • FIG. 5 illustrates a portion of a rotor with spherical ball joints
  • FIG. 6 illustrates a blade with a hinge insert
  • FIGS. 7a and 7b illustrate an example of a sliding bearing arrangement
  • FIGS. 8a and 8b illustrate an exemplary pitch control system with a through rod
  • FIGS. 9a to 9c illustrate an example of an elastic connecting piece.
  • UAV means a remotely piloted aircraft as defined in the decree of 1 April 2012 on “the design of civil aircraft that circulate without any person on board, the conditions of their employment and the required capabilities people who use them. " In short, it is any aircraft capable of unmanned flight on board, which is controlled either by a computer (on board or on the ground) or by an operator on the ground, used for recreational purposes, competitions , or professional.
  • multirotors any rotary wing aircraft whose air lift is obtained by means of the use of at least three non-coaxial rotors, each of which participates in a significant fraction of the lift. total required for the flight.
  • rotary wing any drone whose lift in the air is obtained by means of the use of at least one rotor, allowing the drone to perform hovering.
  • the invention relates preferentially to multirotor drones equipped with three to eight rotors.
  • the invention preferably on multirotors equipped with four to six rotors 4.
  • the invention relates more preferably to multirotor drones with variable pitch, the control of which is obtained by means of the modification of the collective pitch of at least three of their rotors 4.
  • the described invention relates only to multirotor drones equipped with two-bladed rotors, or rotors 4 equipped with two blades 5 diametrically opposed.
  • the invention relates to a rotor 4 hinged so that the two blades 5 can rock together relative to their axis of rotation.
  • the plane in which the trajectory of the blades 5 is inclined may incline with respect to the main rotation axis 6 of the rotor: this plane is therefore not systematically normal to this axis of rotation.
  • the axis of this joint must also be carefully selected to meet the following constraints: allow the tilting of the blades 5 relative to their axis of rotation and not introduce additional vibrations because of this new degree of freedom .
  • the tilting axis BP is positioned in compliance with these three rules: be inscribed in a plane orthogonal to the axis of rotation 6 main rotor, do not be parallel to the axis of the pitch pitch of the blades 5 and be positioned so that the center of inertia of the parts can tilt (blades 5, blade feet, rotor head 10, etc.) or coincide with the axis in question.
  • the advantage of this joint lies in the following: the entire rotor 4 is free to tilt at the mercy of external stresses (aerodynamic solicitation and gyroscopic effects induced by an inclination of the drone in space) regardless of movements of its main axis of rotation.
  • the gyroscopic forces generated by the rotor 4 tend to keep the orientation of the rotor disk constant in space, despite the inclination of the drone 1.
  • tilting articulation 7 makes it possible not to force the rotor 4 to follow the inclination of the drone 1, but use centrifugal forces and some aerodynamic efforts to restore the orientation of the rotor disc.
  • it is not the structure that counteracts the gyroscopic forces by reaction to them, but external forces (centrifugal force and aerodynamic forces). The transmission of gyroscopic forces is greatly reduced.
  • the tilting of the blades 5 causes a change in their pitch in one direction or the other, depending if the axis of articulation of the blades is located forward or backward of the anchor point of the pitch control.
  • the angle Delta is positive when the anchoring point of the pitch control 8 is situated in front of the axis of the pitch articulation (on the leading edge side of the blade 5 ), and negative in the other direction. Note finally that in the extreme case where this angle would be zero, the tilting of the blades is no longer possible. This case of the present invention is therefore excluded.
  • FIG. 4B represents this effect with an arrow P illustrating the lift, pointing downwards.
  • a downward tilt has the effect of increasing its pitch.
  • FIG. 4B represents this effect with an arrow P illustrating the lift, pointing upwards.
  • the desired effect is obtained: the tilting of the blades generates an aerodynamic force tending to bring the rotor back into a plane perpendicular to its axis of rotation.
  • the angle Delta is preferably chosen in the following ranges:
  • the pitch articulation is the pivot connection between a blade 5 and the rotor head 10. It allows the modification of the collective pitch of the rotor.
  • the invention preferably relates to multirotor drones with variable pitch, the rotors of which have a pitch joint made using two spherical ball joints 19.
  • the pitch control is implemented by a kinematic chain comprising an actuator January 1, connected to a control rod 12 through the rotating cage motor 9.
  • the control rod end 13 is connected on each side of the rotor head 10 to a connecting rod 14, each being connected to a blade, and controlling the pivoting blades around the axis AP, thus allowing to face vary the pitch angle.
  • Other modes of variable pitch actuation may be used within the scope of the present invention.
  • a simplified blade articulation insert 16 makes it possible to ensure that each blade integrates into its own geometry a means of positioning the following elements between them, precisely, definitively and without adjustments: the wing, the two ball joints spheres and the anchor point of the pitch control.
  • An embodiment of such a blade is shown in Figure 6, where there are two bores 18 for positioning the two spherical ball joints, and the threaded hole 17 for securing the anchor point of the step command.
  • This blade architecture is of multiple interest, especially small scales characteristic of multi-rotor drones provided according to the invention, namely drones of a few kilograms:
  • Such architecture is particularly simple, lightweight, robust and durable, significantly limiting the number of parts needed and avoiding the use of fragile and unsustainable elements such as miniature ball bearings. This has the direct consequence of simplifying the assembly and maintenance of the system.
  • FIGS. 7a and 7b show an advantageous exemplary embodiment of tilting articulation carried out by means of plain bearings 20.
  • These plain bearings have several advantages over the connection elements commonly encountered in the state of the invention. art: -They greatly limit the transmission of forces to the structure by allowing a quasi-free movement of the rotor, unlike the elastomeric links of model-reduced helicopters, which exert a strong restoring force for small deviations. They are particularly adapted to the tilting movement generated by the rotor, with respect to ball-bearing type connections. Indeed, it is a reciprocating movement in low amplitude rotation which tends to greatly degrade the service life of the ball bearings by premature local wear of the bearing tracks.
  • FIG. 3 shows an exemplary embodiment of a system comprising a rotary cage and hollow shaft motor 9, as well as an indexed pitch control with respect to the rotating shaft of the motor, the step actuator 1 1 being located opposite the rotor relative to the engine (notion of control passing through the engine).
  • This architecture has the advantage of being particularly simple and compact by gathering all the control elements in the immediate vicinity of the rotary cage motor. It also makes the control system not particularly robust and accurate by advantageously limiting game sources and complex efforts in fragile links.
  • Figures 8a and 8b show an advantageous embodiment of a pitch control system with stops 21 limiting its stroke mechanically. This feature has several advantages:
  • Figures 9a, 9b and 9c show an advantageous embodiment of a system with a resilient connecting piece connecting a rotary actuator, servo-type, to the slider previously described.
  • This elastic connecting piece 22, provided with a deformation zone 23, is sufficiently flexible in bending to absorb the small deformations caused by the transformation of the rotational movement of the actuator in a translation movement of the slider, while being rigid enough to transmit the pitch control efforts.
  • This architecture has the advantage of simplifying the pitch control system by advantageously replacing a complex articulation of rigid elements by a single flexible element. As a result, the system is more robust and its assembly and maintenance are simplified.
  • FIG. 10 shows an advantageous exemplary embodiment of a drone equipped with powertrains (GMP) in which each GMP comprises a one-piece frame 26, gathering around a single piece all the organs of the GMP to be precisely positioned between them (motor positioning zones 24, positioning zone of the pitch actuator 25, fixing the GMP to the cell 27).
  • GMP powertrains
  • This one-piece frame 26 has the double advantage of limiting the number of parts required for the relative positioning of each member of the GMP, and to release the cell (structure of the drone) from all dimensional constraints related to the integration of a GMP with variable pitch.

Abstract

The invention relates to a multirotor drone (1) comprising a fuselage and a plurality of engine units driving a plurality of rotors (4), each rotor comprising two blades (5) mounted in a facing arrangement on either side of a blade tilting axis BP, such that each of the blades (5) has one rotational degree of freedom about said blade tilting axis BP.

Description

DRONE AVEC ROTORS COMPRENANT DES PALES ARTICULEES  DRONE WITH ROTORS COMPRISING ARTICULATED BLADES
DOMAINE TECHNIQUE DE L'INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] La présente invention concerne un drone. Elle concerne plus particulièrement un drone multirotor comprenant un fuselage et une pluralité de groupe motopropulseurs entraînant une pluralité de rotors. The present invention relates to a drone. It relates more particularly to a multirotor drone comprising a fuselage and a plurality of powertrains driving a plurality of rotors.
ETAT DE LA TECHNIQUE ANTERIEURE STATE OF THE PRIOR ART
[0002] Avec la miniaturisation permanente de l'électronique, un nouveau type de drone a vu le jour depuis une petite décennie dans la catégorie des mini-drones (MTOW < 25kg) : les drones multirotors. Ces aéronefs à voilure tournante sont constitués de plusieurs rotors (au moins trois) dont les différentes poussées permettent la sustentation et le contrôle du drone. L'avantage majeur de cette configuration, par rapport aux hélicoptères classiques, réside dans sa simplicité : il suffit de quelques moteurs entraînant directement des rotors, asservis par une centrale inertielle et commandés par un petit calculateur, pour faire voler presque n'importe quel objet, similairement à un hélicoptère. With the permanent miniaturization of electronics, a new type of drone has emerged for a small decade in the category of mini drones (MTOW <25kg): drones multirotors. These rotary wing aircraft consist of several rotors (at least three) whose different thrusts allow lift and control of the drone. The main advantage of this configuration, compared to conventional helicopters, lies in its simplicity: just a few motors directly driving rotors, controlled by an inertial unit and controlled by a small computer, to fly almost any object , similar to a helicopter.
[0003] D'abord utilisés comme engins de loisir, ces drones multirotors ont vu leurs domaines d'utilisations se diversifier considérablement : ils sont dorénavant exploités professionnellement pour accomplir des missions très diverses. Ces missions peuvent prendre la forme d'objets à transporter/élever dans l'air, ou bien de captation d'informations sous toutes leurs formes au moyen de capteurs embarqués dans l'aéronef (prise de vue aérienne, cartographie, relevés en tous genres, etc.). [0003] These multirotor drones, used primarily as recreational vehicles, have seen their fields of use diversify considerably: they are now professionally exploited to perform a wide variety of missions. These missions can take the form of objects to be transported / raised in the air, or of information gathering in all their forms by means of sensors embedded in the aircraft (aerial shooting, mapping, surveys of all kinds). , etc.).
[0004] Ces applications professionnelles nécessitent à la fois des performances en vol optimales (autonomie, manœuvrabilité et charge embarquée du drone), ainsi qu'une fiabilité exemplaire. These professional applications require both optimal flight performance (range, maneuverability and embedded load of the drone), as well as exemplary reliability.
[0005] La recherche de performances toujours meilleures guide les concepteurs de multirotors vers une augmentation de la surface portante de leurs rotors, et donc du diamètre de ces derniers. Cette augmentation s'accompagne inéluctablement d'une amplification de certains effets pervers, qui étaient jusqu'alors souvent négligés sur des rotors de petit diamètre. Notamment, les rotors de grand diamètre génèrent des efforts gyroscopiques importants et incompatibles avec la mécanique embarquée, les systèmes d'amortissement de vibrations ou encore les structures très légères de certains multirotors. Parmi les conséquences néfastes de la transmission d'efforts gyroscopiques du rotor à la structure du drone, on pourra citer quelques exemples : fatigue prématurée des pièces rotatives de la tête de rotor du fait de l'introduction d'efforts cycliques importants, déplacements importants, voire franchissement des butées d'un groupe motopropulseur monté de façon souple (isolation vibratoire) lors de l'inclinaison du drone ou encore sollicitation excessive de la structure du drone, du fait de la transmission à celle-ci de vibrations et d'efforts gyroscopiques générés par le rotor de grand diamètre. The search for ever better performance guides the designers of multirotors to increase the bearing surface of their rotors, and therefore the diameter of the latter. This increase is inevitably accompanied by an amplification of certain perverse effects, which until now were often neglected on small diameter rotors. In particular, the large diameter rotors generate significant gyroscopic efforts and incompatible with onboard mechanics, vibration damping systems or the very light structures of some multirotors. From Negative consequences of the transmission of gyroscopic forces from the rotor to the structure of the drone, we can cite some examples: premature fatigue of rotating parts of the rotor head due to the introduction of significant cyclic forces, large displacements, even crossing stops of a powertrain mounted in a flexible manner (vibration isolation) during the inclination of the drone or excessive loading of the structure of the drone, because of the transmission thereto of vibrations and gyroscopic forces generated by the large diameter rotor.
[0006] Pour pallier ces différents inconvénients, l'invention prévoit différents moyens techniques. To overcome these disadvantages, the invention provides different technical means.
EXPOSE DE L'INVENTION SUMMARY OF THE INVENTION
[0007] L'objet de l'invention consiste à prévoir une architecture de tête de rotor de drone multirotor permettant de limiter la transmission d'efforts gyroscopiques du rotor vers la structure du drone.  The object of the invention is to provide a multirotor drone rotor head architecture for limiting the transmission of gyroscopic forces from the rotor to the structure of the drone.
[0008] Pour ce faire, l'invention prévoit un drone multirotor comprenant un fuselage et une pluralité de groupes motopropulseurs entraînant une pluralité de rotors dont chacun contribue à une fraction significative de la portance, caractérisé en ce que les rotors sont à pas variable, chaque rotor comporte deux pales, les pales étant montées en opposition de part et d'autre d'un axe de basculement BP des pales, de sorte que le rotor comporte un degré de liberté en rotation autour dudit axe de basculement BP du rotor et en ce que les pales disposent chacune d'une articulation de pas autour d'un axe AP d'articulation des pales réalisé à l'aide de deux rotules sphériques.  To do this, the invention provides a multirotor drone comprising a fuselage and a plurality of powertrains driving a plurality of rotors each of which contributes to a significant fraction of the lift, characterized in that the rotors are variable pitch, each rotor comprises two blades, the blades being mounted in opposition on either side of a pivot axis BP of the blades, so that the rotor has a degree of freedom in rotation about said axis of rotation BP of the rotor and in the blades each have a hinge of pitch around an axis AP of articulation of the blades made using two spherical ball joints.
[0009] Les pales étant agencées libres en basculement, elles minimisent la transmission des efforts engendrés du rotor vers la structure, notamment les efforts gyroscopiques et aérodynamiques. The blades being arranged free to tilt, they minimize the transmission of the generated forces of the rotor to the structure, including gyroscopic and aerodynamic forces.
[0010] La fixation des pales à l'aide des deux rotules sphériques permet l'obtention d'un degré de liberté autour de l'axe AP passant par le centre des rotules, avec un comportement rigide dans les autres directions. Fixing the blades with the two spherical ball joints allows obtaining a degree of freedom around the axis AP passing through the center of the ball joints, with a rigid behavior in the other directions.
[0011] Une telle architecture présente plusieurs avantages : la simplicité et la robustesse sont accrues par rapport à un système classique constitué de roulements à contact radial et de butées à billes. Le maintien très rigide des pales évite ainsi des déséquilibrages dynamiques du rotor en vol. Le ratio de Masse/Robustesse/Prix est particulièrement intéressant, notamment dans des petites dimensions compatibles avec les drones dont fait l'objet cette invention et une maintenabilité améliorée du fait de la simplicité du montage. Such an architecture has several advantages: simplicity and robustness are increased compared to a conventional system consisting of radial contact bearings and thrust bearings. The very rigid retention of the blades thus avoids dynamic imbalances of the rotor in flight. The ratio of Mass / Robustness / Price is particularly interesting, especially in small dimensions compatible with drones which is the object of this invention and improved maintainability due to the simplicity of assembly.
[0012] Une telle architecture permet, avec un système compact et léger, une mobilité des pales selon un axe AP unique, en conservant la rigidité dans toutes les autres directions. Such an architecture allows, with a compact and lightweight system, a blade mobility along a single axis AP, retaining rigidity in all other directions.
[0013] Cette solution permet en plus une excellente résistance aux efforts, en particulier centrifuges. La solution procure un bon comportement dynamique du rotor et un bon positionnement des pales. En outre, cette solution est particulièrement compacte et légère, et correspond bien aux petites échelles liées aux drones. This solution also provides excellent resistance to stress, in particular centrifugal. The solution provides a good dynamic behavior of the rotor and a good positioning of the blades. In addition, this solution is particularly compact and lightweight, and corresponds well to small scales related to drones.
[0014] Selon un mode de réalisation avantageux, l'axe de basculement BP, qui est définit comme l'axe passant par les points d'ancrage des commandes de pas des pales, forme un angle Delta par rapport à l'axe AP d'articulation des pales. According to an advantageous embodiment, the BP tilting axis, which is defined as the axis passing through the anchor points of the blade pitch controls, forms a Delta angle with respect to the AP axis. articulation of the blades.
[0015] Egalement de manière avantageuse, la valeur de l'angle Delta est prévue de façon à faire varier l'angle d'incidence des pales en fonction de leur basculement. Une telle architecture permet de ramener les pales dans le plan perpendiculaire à l'axe de rotation. Also advantageously, the value of the Delta angle is provided to vary the angle of incidence of the blades as a function of their tilting. Such an architecture allows to bring the blades in the plane perpendicular to the axis of rotation.
[0016] De manière avantageuse, l'angle Delta est compris : Advantageously, the Delta angle is included:
entre -90°<ô<0° ou; 0°<ô<90° et plus préférentiellement entre -80°≤ô≤-30° ou; 30°≤ô≤80° et encore plus préférentiellement entre -60°≤ô≤-40° ou ; 40°≤ô≤60°. between -90 ° <0 <0 ° or; 0 ° <δ <90 ° and more preferably between -80 ° ≤ o≤-30 ° or; 30 ° ≤ô≤80 ° and even more preferably between -60 ° ≤ o≤-40 ° or; 40 ° ≤ô≤60 °.
[0017] Selon un autre mode de réalisation avantageux, le drone comporte une commande de pas mise en œuvre par une chaîne cinématique comprenant un actionneur, connecté à une tige de commande traversant un moteur à cage tournante. According to another advantageous embodiment, the drone comprises a pitch control implemented by a kinematic chain comprising an actuator connected to a control rod passing through a rotary cage motor.
[0018] L'invention prévoit de façon avantageuse que l'extrémité de la tige de commande est reliée à deux biellettes de raccordement, situées à l'opposé de l'actionneur de pas par rapport au moteur, chacune des biellettes étant reliée à une pale, commandant ainsi le pivotement des pales autour de l'axe AP, permettant ainsi de faire varier l'angle de pas. The invention advantageously provides that the end of the control rod is connected to two connecting rods, located opposite the actuator of pitch relative to the engine, each link being connected to a blade, thus controlling the pivoting of the blades around the axis AP, thus making it possible to vary the pitch angle.
[0019] Selon un mode de réalisation avantageux, un insert d'articulation de pale est intégré au pied de pale et comprend deux alésages logeant les deux rotules sphériques, ainsi qu'un trou taraudé permettant de fixer le point d'ancrage de la commande de pas. DESCRIPTION DES FIGURES According to an advantageous embodiment, a blade articulation insert is integrated in the blade root and comprises two bores housing the two spherical ball joints, and a threaded hole for fixing the anchor point of the order. to not. DESCRIPTION OF THE FIGURES
[0020] Tous les détails de réalisation sont donnés dans la description qui suit, complétée par les figures 1 à 9C, présentées uniquement à des fins d'exemples non limitatifs, et dans lesquelles:  All the details of embodiment are given in the description which follows, supplemented by FIGS. 1 to 9C, presented solely for purposes of non-limiting examples, and in which:
-les figures 1A et 1 B sont des représentations schématiques illustrant un exemple de pivotement des pales autour d'un axe de basculement BP ;  FIGS. 1A and 1B are diagrammatic representations illustrating an example of pivoting of the blades around a pivot axis BP;
-la figure 1 C est une vue en perspective d'un exemple de drone ;  FIG. 1C is a perspective view of an example of a drone;
-la figure 2 est une vue de dessus d'un exemple de mise en œuvre d'un rotor basculant ; FIG. 2 is a view from above of an exemplary implementation of a rocking rotor;
-la figure 3 montre l'agencement de la figure 2 vu en perspective ; FIG. 3 shows the arrangement of FIG. 2 seen in perspective;
-les figures 4A, 4B et 4C permettent d'illustrer l'effet du basculement des pales ;  FIGS. 4A, 4B and 4C make it possible to illustrate the effect of tilting of the blades;
-la figure 5 illustre une portion d'un rotor avec les rotules sphériques ;  FIG. 5 illustrates a portion of a rotor with spherical ball joints;
-la figure 6 illustre une pale avec un insert d'articulation ;  FIG. 6 illustrates a blade with a hinge insert;
-les figures 7a et 7b illustrent un exemple d'agencement à paliers lisses ;  FIGS. 7a and 7b illustrate an example of a sliding bearing arrangement;
-les figures 8a et 8b illustrent un exemple de système de commande de pas avec tige traversante ;  FIGS. 8a and 8b illustrate an exemplary pitch control system with a through rod;
-les figures 9a à 9c illustrent un exemple de pièce de liaison élastique.  FIGS. 9a to 9c illustrate an example of an elastic connecting piece.
DESCRIPTION DETAILLEE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
DEFINITIONS DEFINITIONS
[0021] Par « drone » on entend un aéronef télépiloté tel que défini dans l'arrêté du 1 1 avril 2012 relatif à « la conception des aéronefs civils qui circulent sans aucune personne à bord, aux conditions de leur emploi et sur les capacités requises des personnes qui les utilisent ». En résumé, il s'agit de tout aéronef capable de voler sans pilote à bord, dont le contrôle est réalisé soit par un ordinateur (embarqué ou au sol), soit par un opérateur au sol, utilisé à des fins de loisirs, de compétitions, ou professionnelles.  "UAV" means a remotely piloted aircraft as defined in the decree of 1 April 2012 on "the design of civil aircraft that circulate without any person on board, the conditions of their employment and the required capabilities people who use them. " In short, it is any aircraft capable of unmanned flight on board, which is controlled either by a computer (on board or on the ground) or by an operator on the ground, used for recreational purposes, competitions , or professional.
[0022] Par « multirotors » on entend tout aéronef à voilure tournante, dont la sustentation dans l'air est obtenue au moyen de l'utilisation d'au moins trois rotors, non coaxiaux, qui participent chacun à une fraction significative de la portance totale nécessaire au vol. By "multirotors" is meant any rotary wing aircraft whose air lift is obtained by means of the use of at least three non-coaxial rotors, each of which participates in a significant fraction of the lift. total required for the flight.
[0023] Par « voilure tournante » on entend tout drone dont la sustentation dans l'air est obtenue au moyen de l'utilisation d'au moins un rotor, permettant au drone d'effectuer du vol stationnaire. L'invention porte préférentiellement sur les drones multirotors équipés de trois à huit rotors. [0024] L'invention préférentiellement sur les multirotors équipés de quatre à six rotors 4. By "rotary wing" is meant any drone whose lift in the air is obtained by means of the use of at least one rotor, allowing the drone to perform hovering. The invention relates preferentially to multirotor drones equipped with three to eight rotors. The invention preferably on multirotors equipped with four to six rotors 4.
[0025] L'invention porte plus préférentiellement sur les drones multirotors à pas variable, dont le contrôle est obtenu au moyen de la modification du pas collectif d'au moins trois de leurs rotors 4. The invention relates more preferably to multirotor drones with variable pitch, the control of which is obtained by means of the modification of the collective pitch of at least three of their rotors 4.
ROTORS BIPALES ROTORS BIPALES
[0026] L'invention décrite porte uniquement sur les drones multirotors dotés de rotors bipales, soit des rotors 4 équipés de deux pales 5 diamétralement opposées.  The described invention relates only to multirotor drones equipped with two-bladed rotors, or rotors 4 equipped with two blades 5 diametrically opposed.
ARTICULATION DE BASCULEMENT DU ROTOR ROTOR TILTING JOINT
[0027] L'invention porte sur un rotor 4 articulé de sorte que les deux pales 5 puissent basculer ensemble par rapport à leur axe de rotation. De cette façon, le plan dans lequel s'inscrit la trajectoire des pales 5 peut s'incliner par rapport à l'axe de rotation 6 principal du rotor : ce plan n'est donc pas systématiquement normal à cet axe de rotation.  The invention relates to a rotor 4 hinged so that the two blades 5 can rock together relative to their axis of rotation. In this way, the plane in which the trajectory of the blades 5 is inclined may incline with respect to the main rotation axis 6 of the rotor: this plane is therefore not systematically normal to this axis of rotation.
[0028] L'axe de cette articulation doit par ailleurs être judicieusement choisi afin de respecter les contraintes suivantes : permettre le basculement des pales 5 par rapport à leur axe de rotation et ne pas introduire de vibrations supplémentaires du fait de ce nouveau degré de liberté. The axis of this joint must also be carefully selected to meet the following constraints: allow the tilting of the blades 5 relative to their axis of rotation and not introduce additional vibrations because of this new degree of freedom .
[0029] Pour cela, selon un premier mode de réalisation tel que montré aux figures 1A et 1 B, l'axe de basculement BP est positionné dans le respect de ces trois règles : être inscrit dans un plan orthogonal à l'axe de rotation 6 principal du rotor, ne pas être parallèle à l'axe de l'articulation de pas des pales 5 et être positionné de façon à ce que le centre d'inertie des pièces pouvant basculer (pales 5, pieds de pale, tête de rotor 10, etc) soit coïncidant à l'axe en question. For this, according to a first embodiment as shown in Figures 1A and 1B, the tilting axis BP is positioned in compliance with these three rules: be inscribed in a plane orthogonal to the axis of rotation 6 main rotor, do not be parallel to the axis of the pitch pitch of the blades 5 and be positioned so that the center of inertia of the parts can tilt (blades 5, blade feet, rotor head 10, etc.) or coincide with the axis in question.
[0030] L'intérêt de cette articulation réside dans ce qui suit : le rotor 4 tout entier est libre de s'incliner au gré des sollicitations extérieures (sollicitations aérodynamiques et effets gyroscopiques induits par une inclinaison du drone dans l'espace) indépendamment des mouvements de son axe principal de rotation. Par exemple, lorsque le drone 1 s'incline dans l'espace, les efforts gyroscopiques générés par le rotor 4 tendent à maintenir constante l'orientation du disque rotor dans l'espace, et ce malgré l'inclinaison du drone 1. L'articulation de basculement 7 permet de ne pas forcer le rotor 4 à suivre l'inclinaison du drone 1 , mais d'utiliser les efforts centrifuges et certains efforts aérodynamiques pour rétablir l'orientation du disque rotor. Ainsi, ce n'est pas la structure qui contrecarre les efforts gyroscopiques par réaction à ces derniers, mais des efforts extérieurs (force centrifuge et efforts aérodynamiques). La transmission d'efforts gyroscopiques est donc grandement réduite. The advantage of this joint lies in the following: the entire rotor 4 is free to tilt at the mercy of external stresses (aerodynamic solicitation and gyroscopic effects induced by an inclination of the drone in space) regardless of movements of its main axis of rotation. For example, when the drone 1 tilts in space, the gyroscopic forces generated by the rotor 4 tend to keep the orientation of the rotor disk constant in space, despite the inclination of the drone 1. tilting articulation 7 makes it possible not to force the rotor 4 to follow the inclination of the drone 1, but use centrifugal forces and some aerodynamic efforts to restore the orientation of the rotor disc. Thus, it is not the structure that counteracts the gyroscopic forces by reaction to them, but external forces (centrifugal force and aerodynamic forces). The transmission of gyroscopic forces is greatly reduced.
ANGLE DELTA DE COUPLAGE BASCULEMENT - PAS DELTA ANGLE COUPLING TILT - NOT
Au-delà des efforts centrifuges qui tendent naturellement à ramener le rotor vers sa position d'équilibre (soit dans un plan orthogonal à l'axe principal de rotation du rotor), on peut également introduire des efforts aérodynamiques permettant de contrecarrer les efforts gyroscopiques. Pour cela, comme le montre la figure 2, on cherche à faire en sorte que le basculement des pales 5 par rapport à leur axe de rotation soit couplé avec une modification de leur pas, qui tend à lutter contre ce basculement. Pour obtenir cet effet, on étudie l'orientation de l'axe d'articulation AP de pas des pales, par rapport à la direction formée par les deux points d'ancrage 8 de la commande de pas des pales. On appelle Delta l'angle formé par ces deux directions.  Beyond the centrifugal forces that naturally tend to bring the rotor to its equilibrium position (ie in a plane orthogonal to the main axis of rotation of the rotor), one can also introduce aerodynamic forces to counteract the gyroscopic forces. For this, as shown in Figure 2, it is sought to ensure that the tilting of the blades 5 relative to their axis of rotation is coupled with a change in their pitch, which tends to combat this tilting. To obtain this effect, we study the orientation of the hinge axis AP pitch of the blades, with respect to the direction formed by the two anchoring points 8 of the pitch control of the blades. The angle formed by these two directions is called Delta.
[0031] On constate alors que si cet angle est différent de 90°, le basculement des pales 5 entraine une modification de leur pas dans un sens ou dans l'autre, suivant si l'axe d'articulation de pas des pales est situé en avant ou en arrière du point d'ancrage de la commande de pas. Par convention, on dira que l'angle Delta est positif lorsque le point d'ancrage de la commande de pas 8 est situé en avant de l'axe de l'articulation de pas (du côté du bord d'attaque de la pale 5), et négatif dans l'autre sens. Notons enfin que dans le cas extrême où cet angle serait nul, le basculement des pales n'est alors plus possible. On exclue donc ce cas de figure de la présente invention. It is then found that if this angle is different from 90 °, the tilting of the blades 5 causes a change in their pitch in one direction or the other, depending if the axis of articulation of the blades is located forward or backward of the anchor point of the pitch control. By convention, it will be said that the angle Delta is positive when the anchoring point of the pitch control 8 is situated in front of the axis of the pitch articulation (on the leading edge side of the blade 5 ), and negative in the other direction. Note finally that in the extreme case where this angle would be zero, the tilting of the blades is no longer possible. This case of the present invention is therefore excluded.
[0032] Si l'on observe le comportement d'une pale 5 dans le cas d'un angle Delta positif, on constate, tel qu'illustré aux figures 4A, 4B et 4C, qu'un basculement vers le haut (figure 4B) de la pale a pour effet de réduire son pas. La figure 4C représente cet effet avec une flèche P illustrant la portance, orientée vers le bas. Inversement, un basculement vers le bas (figure 4C) a pour effet d'augmenter son pas. La figure 4B représente cet effet avec une flèche P illustrant la portance, orientée vers le haut. On obtient bien l'effet escompté : le basculement des pales engendre un effort aérodynamique tendant ramener le rotor dans un plan perpendiculaire à son axe de rotation. Notons enfin que plus l'angle Delta est faible, plus l'effet obtenu est important ; inversement, plus l'angle Delta est proche de 90°, plus l'effet obtenu est faible. [0033] Enfin, on note que l'utilisation d'un angle Delta négatif (point d'ancrage de l'articulation de pas situé derrière l'axe de l'articulation de pas, soit du côté du bord de fuite de la pale) permet d'obtenir un résultat équivalent, principalement du fait de phénomènes dynamiques complexes que nous ne détaillerons pas dans ce document. If we observe the behavior of a blade 5 in the case of a positive Delta angle, we see, as shown in Figures 4A, 4B and 4C, a tilting upward (Figure 4B ) of the blade has the effect of reducing his pace. FIG. 4C represents this effect with an arrow P illustrating the lift, pointing downwards. Conversely, a downward tilt (Figure 4C) has the effect of increasing its pitch. FIG. 4B represents this effect with an arrow P illustrating the lift, pointing upwards. The desired effect is obtained: the tilting of the blades generates an aerodynamic force tending to bring the rotor back into a plane perpendicular to its axis of rotation. Finally, note that the lower the Delta angle, the greater the effect obtained; conversely, the closer the Delta angle is to 90 °, the lower the effect obtained. Finally, it is noted that the use of a negative Delta angle (anchor point of the hinge of pitch located behind the axis of the hinge pitch, or the side of the trailing edge of the blade ) makes it possible to obtain an equivalent result, mainly because of complex dynamic phenomena that we will not detail in this document.
[0034] Par conséquent, l'angle Delta est préférentiellement choisi dans les plages suivantes : Therefore, the angle Delta is preferably chosen in the following ranges:
Figure imgf000009_0001
Figure imgf000009_0001
ARTICULATION DE PAS ARTICULATION OF NOT
[0035] L'articulation de pas, uniquement présente sur les drones multirotors à pas variable, est la liaison de pivot entre une pale 5 et la tête de rotor 10. Elle permettant la modification du pas collectif du rotor. L'invention porte préférentiellement sur les drones multirotors à pas variable dont les rotors disposent d'une articulation de pas réalisée à l'aide de deux rotules sphériques 19.  The pitch articulation, only present on drones multirotors with variable pitch, is the pivot connection between a blade 5 and the rotor head 10. It allows the modification of the collective pitch of the rotor. The invention preferably relates to multirotor drones with variable pitch, the rotors of which have a pitch joint made using two spherical ball joints 19.
[0036] Dans l'exemple de réalisation de la figure 3, la commande de pas est mise en œuvre par une chaîne cinématique comprenant un actionneur 1 1 , connecté à une tige de commande 12 traversant le moteur à cage tournante 9. Du côté opposé du moteur, au-dessus de la tête de rotor 10, l'extrémité de tige de commande 13 est reliée de chaque côté de la tête du rotor 10 à une biellette de raccordement 14, chacune étant reliée à une pale, et commandant le pivotement des pales autour de l'axe AP, permettant ainsi de face varier l'angle de pas. D'autres modes d'actionnement du pas variable peuvent être utilisés dans le cadre de la présente invention. In the embodiment of Figure 3, the pitch control is implemented by a kinematic chain comprising an actuator January 1, connected to a control rod 12 through the rotating cage motor 9. On the opposite side of the motor, above the rotor head 10, the control rod end 13 is connected on each side of the rotor head 10 to a connecting rod 14, each being connected to a blade, and controlling the pivoting blades around the axis AP, thus allowing to face vary the pitch angle. Other modes of variable pitch actuation may be used within the scope of the present invention.
ARTICULATION DE PALE SIMPLIFIEE JOINT OF SIMPLIFIED BLADE
[0037] Un insert 16 d'articulation de pale simplifiée permet de faire en sorte que chaque pale intègre dans sa géométrie propre un moyen de positionner entre eux les éléments suivants, de façon précise, définitive et sans réglages : la voilure, les deux rotules sphériques et le point d'ancrage de la commande de pas. [0038] Un mode de réalisation d'une telle pale est présenté dans la figure 6, où l'on distingue les deux alésages 18 permettant de positionner les deux rotules sphériques, ainsi que le trou taraudé 17 permettant de fixer le point d'ancrage de la commande de pas. A simplified blade articulation insert 16 makes it possible to ensure that each blade integrates into its own geometry a means of positioning the following elements between them, precisely, definitively and without adjustments: the wing, the two ball joints spheres and the anchor point of the pitch control. An embodiment of such a blade is shown in Figure 6, where there are two bores 18 for positioning the two spherical ball joints, and the threaded hole 17 for securing the anchor point of the step command.
[0039] Cette architecture est obtenue de façon avantageuse au moyen d'un insert unique autour duquel la voilure est surmoulée, tel qu'illustré à la figure 6. This architecture is obtained advantageously by means of a single insert around which the wing is molded, as shown in Figure 6.
[0040] Cette architecture de pale revêt un intérêt multiple, tout particulièrement aux petites échelles caractéristiques des drones multi-rotors prévus selon l'invention, à savoir les drones de quelques kilogrammes : This blade architecture is of multiple interest, especially small scales characteristic of multi-rotor drones provided according to the invention, namely drones of a few kilograms:
-Elle permet une utilisation optimale des rotules sphériques, qui présentent elles-mêmes de multiples avantages :  -It allows optimal use of spherical ball joints, which themselves have multiple advantages:
-Transmission particulièrement rigide des efforts générés par la pale (notamment efforts centrifuges, efforts de traînée, efforts de portance).  Particularly rigid transmission of the forces generated by the blade (in particular centrifugal forces, drag stresses, lift forces).
-Grande robustesse et durabilité du système du fait d'une sollicitation optimale des rotules sphériques (effort radial dominant du fait de la force centrifuge).  -High strength and durability of the system due to an optimal solicitation of spherical bearings (radial force dominating due to centrifugal force).
-Grande précision et répétabilité de positionnement de la pale sur la tête rotor.  -High accuracy and repeatability of positioning the blade on the rotor head.
[0041] Une telle architecture permet en outre à la pale de remplir de multiples fonctions qui, dans l'état de l'art, sont souvent assurées par de multiples pièces : Such an architecture also allows the blade to perform multiple functions which, in the state of the art, are often provided by multiple parts:
-Articulation de pas de la pale, -Articulation of pitch of the blade,
-Positionnement de la pale sur la tête de rotor, -Positioning the blade on the rotor head,
-Positionnement du point d'ancrage de la commande de pas, -Positioning the anchor point of the pitch control,
-Renforcement local de la pale, dans une zone particulièrement sollicitée (pied de pale).  Local reinforcement of the blade in a particularly stressed area (blade root).
[0042] Une telle architecture est particulièrement simple, légère, robuste et durable, en limitant notablement le nombre de pièces nécessaires et en évitant de recourir à des éléments fragiles et peu durables tels que des roulements à billes miniatures. Ceci a pour conséquence directe de simplifier le montage et la maintenance du système. Such architecture is particularly simple, lightweight, robust and durable, significantly limiting the number of parts needed and avoiding the use of fragile and unsustainable elements such as miniature ball bearings. This has the direct consequence of simplifying the assembly and maintenance of the system.
ARTICULATION DE BASCULEMENT SUR PALIER LISSE TILT JOINT ON SMOOTH BEARING
[0043] Les figures 7a et 7b présentent un exemple de réalisation avantageux d'articulation de basculement réalisée à l'aide de paliers lisses 20. Ces paliers lisses présentent plusieurs avantages par rapport aux éléments de liaisons communément rencontrés dans l'état de l'art : -Ils limitent grandement la transmission d'efforts à la structure en autorisant un mouvement quasi-libre du rotor, contrairement aux liaisons élastomères des hélicoptères modèles-réduits, qui exercent une force de rappel importante pour de petites déviations. -Ils sont particulièrement adaptés au mouvement de basculement généré par le rotor, par rapport aux liaisons de type roulements à bille. En effet, il s'agit d'un mouvement alternatif en rotation de faible amplitude qui a tendance à dégrader fortement la durée de vie des roulements à billes par une usure locale prématurée des pistes des roulements. FIGS. 7a and 7b show an advantageous exemplary embodiment of tilting articulation carried out by means of plain bearings 20. These plain bearings have several advantages over the connection elements commonly encountered in the state of the invention. art: -They greatly limit the transmission of forces to the structure by allowing a quasi-free movement of the rotor, unlike the elastomeric links of model-reduced helicopters, which exert a strong restoring force for small deviations. They are particularly adapted to the tilting movement generated by the rotor, with respect to ball-bearing type connections. Indeed, it is a reciprocating movement in low amplitude rotation which tends to greatly degrade the service life of the ball bearings by premature local wear of the bearing tracks.
-Ils sont particulièrement résistants aux environnements hostiles (présence d'eau, sable, sel...).  -They are particularly resistant to hostile environments (presence of water, sand, salt ...).
COULISSEAU DE COM MANDE DE PAS TRAVERSANT ET INDEXE SLIDING COMBINATION SLIDER AND INDEX
[0044] La figure 3 présente un exemple de réalisation d'un système comportant un moteur 9 à cage tournante et à axe creux, ainsi qu'une commande de pas indexée par rapport à la cage tournante du moteur, l'actionneur de pas 1 1 étant situé à l'opposé du rotor par rapport au moteur (notion de commande traversant le moteur).  FIG. 3 shows an exemplary embodiment of a system comprising a rotary cage and hollow shaft motor 9, as well as an indexed pitch control with respect to the rotating shaft of the motor, the step actuator 1 1 being located opposite the rotor relative to the engine (notion of control passing through the engine).
[0045] Cette architecture présente l'avantage d'être particulièrement simple et compacte en rassemblant tous les éléments de commande à proximité immédiate du moteur à cage tournante. Elle permet également de rendre le système de commande de pas particulièrement robuste et précis en limitant de façon avantageuse les sources de jeu et les efforts complexes dans des liaisons fragiles. This architecture has the advantage of being particularly simple and compact by gathering all the control elements in the immediate vicinity of the rotary cage motor. It also makes the control system not particularly robust and accurate by advantageously limiting game sources and complex efforts in fragile links.
SYSTEME DE COM MANDE DE PAS DOTE DE BUTEES MECANIQUES INDEPENDANTES DE L'ACTIONNEUR STEAM CONTROL SYSTEM WITH INDEPENDENT MECHANICAL SHUTTERS OF THE ACTUATOR
[0046] Les figures 8a et 8b présentent un exemple de réalisation avantageux d'un système de commande de pas doté de butées 21 limitant mécaniquement sa course. Cette caractéristique présente plusieurs avantages :  Figures 8a and 8b show an advantageous embodiment of a pitch control system with stops 21 limiting its stroke mechanically. This feature has several advantages:
-protéger l'actionneur contre un dépassement de course pouvant l'endommager.  -protect the actuator against overtravel that may damage it.
-éviter le blocage de la commande de pas dans une position non prévue par la cinématique du système.  avoid the blocking of the pitch control in a position not provided for by the kinematics of the system.
-Limiter la plage de pas du rotor à une plage aérodynamiquement compatible avec le domaine de vol du drone.  -Limit the pitch range of the rotor to a range aerodynamically compatible with the flight range of the drone.
LIAISON SOUPLE SERVOCOMMANDE-COULISSEAU SERVO-COUPLING SOFT CONNECTION
[0047] Les figures 9a, 9b et 9c présentent un exemple de réalisation avantageux d'un système doté d'une pièce de liaison élastique reliant un actionneur rotatif, de type servocommande, au coulisseau préalablement décrit. Cette pièce de liaison élastique 22, dotée d'une zone de déformation 23 est suffisamment souple en flexion pour absorber les petites déformations causées par la transformation du mouvement de rotation de l'actionneur en un mouvement de translation du coulisseau, tout en étant suffisamment rigide pour transmettre les efforts de commande de pas. Figures 9a, 9b and 9c show an advantageous embodiment of a system with a resilient connecting piece connecting a rotary actuator, servo-type, to the slider previously described. This elastic connecting piece 22, provided with a deformation zone 23, is sufficiently flexible in bending to absorb the small deformations caused by the transformation of the rotational movement of the actuator in a translation movement of the slider, while being rigid enough to transmit the pitch control efforts.
[0048] Cette architecture présente l'avantage de simplifier le système de commande de pas en remplaçant de façon avantageuse une articulation complexe d'éléments rigides par un seul élément souple. De ce fait, le système est plus robuste et son montage et sa maintenance s'en trouvent simplifiées. This architecture has the advantage of simplifying the pitch control system by advantageously replacing a complex articulation of rigid elements by a single flexible element. As a result, the system is more robust and its assembly and maintenance are simplified.
BATI DE GROUPE MOTOPROPULSEUR MONOBLOC MONOBLOC MOTOR CONTROL UNIT
[0049] La figure 10 présente un exemple de réalisation avantageux d'un drone équipé de groupes motopropulseurs (GMP) dans lequel chaque GMP comporte un bâti monobloc 26, rassemblant autour d'une seule pièce tous les organes du GMP devant être précisément positionnés entre eux (zones de positionnement du moteur 24, zone de positionnement de l'actionneur de pas 25, fixation du GMP à la cellule 27).  FIG. 10 shows an advantageous exemplary embodiment of a drone equipped with powertrains (GMP) in which each GMP comprises a one-piece frame 26, gathering around a single piece all the organs of the GMP to be precisely positioned between them (motor positioning zones 24, positioning zone of the pitch actuator 25, fixing the GMP to the cell 27).
[0050] Ce bâti monobloc 26 présente le double avantage de limiter le nombre de pièces nécessaires au positionnement relatif de chaque organe du GMP, et de libérer la cellule (structure du drone) de toutes les contraintes dimensionnelles liées à l'intégration d'un GMP à pas variable. This one-piece frame 26 has the double advantage of limiting the number of parts required for the relative positioning of each member of the GMP, and to release the cell (structure of the drone) from all dimensional constraints related to the integration of a GMP with variable pitch.
Numéros de référence employés sur les figures Drone Reference numbers used on Drone figures
Fuselage Fuselage
Groupe motopropulseur Powertrain
Rotor Rotor
Pales blades
Axe du rotor Rotor shaft
Articulation de basculement Tilt Articulation
Points d'ancrage des commandes de pas Anchor points for step commands
Moteur Engine
Tête de rotor Rotor head
Actionneur actuator
Tige de commande de pas Step control rod
Extrémité de tige de commande de pas End of step control rod
Biellette de raccordement Connecting rod
Support Support
Insert d'articulation Joint insert
Trou taraudé Threaded hole
Alésage bore
Rotule sphérique Spherical ball
Palier lisse Plain bearing
Butée stopper
Pièce de liaison élastique Elastic connecting piece
Zone de déformation Deformation zone
Zone de positionnement Positioning area
Zone de positionnement Positioning area
Bâti monobloc Monobloc frame
Fixation du GMP à la cellule Attachment of the GMP to the cell

Claims

REVENDICATIONS
1 . Drone (1) multirotor comprenant un fuselage (2) et une pluralité de groupes motopropulseurs (3) entraînant une pluralité de rotors (4) dont chacun contribue à une fraction significative de la portance, caractérisé en ce que les rotors sont à pas variable, chaque rotor (4) comporte deux pales (5), les pales étant montées en opposition de part et d'autre d'un axe de basculement BP des pales, de sorte que le rotor comporte un degré de liberté en rotation autour dudit axe de basculement BP du rotor et en ce que les pales disposent chacune d'une articulation de pas autour d'un axe AP d'articulation des pales réalisée à l'aide de deux rotules sphériques (19). 1. A multirotor drone (1) comprising a fuselage (2) and a plurality of powertrains (3) driving a plurality of rotors (4) each of which contributes a significant fraction of the lift, characterized in that the rotors are variable pitch, each rotor (4) comprises two blades (5), the blades being mounted in opposition on either side of a pivot axis LP of the blades, so that the rotor has a degree of freedom in rotation about said axis of rotation. BP tilting of the rotor and in that the blades each have a hinge of pitch around an axis AP of articulation of the blades made using two spherical ball joints (19).
2. Drone selon la revendication 1 , dans lequel l'axe de basculement BP forme un angle Delta par rapport à l'axe AP d'articulation des pales. 2. Drone according to claim 1, wherein the BP tilting axis forms a Delta angle with respect to the axis of articulation of the blades.
3. Drone selon la revendication 2, dans lequel l'angle Delta est compris : The drone of claim 2, wherein the Delta angle is comprised:
entre -90°<ô<0° ou; 0°<ô<90° et plus préférentiellement entre -80°≤ô≤-30° ou ; 30°≤ô≤80° et encore plus préférentiellement entre -60°≤ô≤-40° ou; 40°≤ô≤60°. between -90 ° <0 <0 ° or; 0 ° <δ <90 ° and more preferably between -80 ° ≤ o≤-30 ° or; 30 ° ≤ô≤80 ° and even more preferably between -60 ° ≤ o≤-40 ° or; 40 ° ≤ô≤60 °.
4. Drone selon l'une quelconque des revendications précédentes, comportant une commande de pas mise en œuvre par une chaîne cinématique comprenant un actionneur (1 1 ), connecté à une tige de commande (12) traversant le moteur à cage tournante (9). 4. Drone according to any one of the preceding claims, comprising a pitch control implemented by a kinematic chain comprising an actuator (1 1), connected to a control rod (12) passing through the rotary cage motor (9). .
5. Drone selon la revendication 4, dans lequel l'extrémité de la tige de commande est reliée à deux biellettes de raccordement, situées à l'opposé de l'actionneur de pas par rapport au moteur, chacune des biellettes étant reliée à une pale, commandant ainsi le pivotement des pales autour de l'axe AP, permettant ainsi de faire varier l'angle de pas. 5. Drone according to claim 4, wherein the end of the control rod is connected to two connecting rods, located opposite the pitch actuator relative to the motor, each link being connected to a blade , thus controlling the pivoting of the blades around the axis AP, thus making it possible to vary the pitch angle.
6. Drone selon l'une des revendications précédentes, comportant un insert (16) d'articulation de pale, intégré en racine de pale et comprenant deux alésages (18) logeant les deux rotules sphériques (19), ainsi qu'un trou taraudé (17) permettant de fixer le point d'ancrage de la commande de pas. 6. Drone according to one of the preceding claims, comprising a blade articulation insert (16), integrated root blade and comprising two bores (18) housing the two spherical ball joints (19), and a threaded hole (17) for fixing the anchor point of the pitch control.
PCT/IB2016/057700 2015-12-17 2016-12-16 Drone with rotors comprising hinged blades WO2017103867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR15/02628 2015-12-17
FR1502628A FR3045566B1 (en) 2015-12-17 2015-12-17 DRONE WITH ROTOR COMPRISING ARTICULATED BLADES

Publications (1)

Publication Number Publication Date
WO2017103867A1 true WO2017103867A1 (en) 2017-06-22

Family

ID=55542721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/057700 WO2017103867A1 (en) 2015-12-17 2016-12-16 Drone with rotors comprising hinged blades

Country Status (2)

Country Link
FR (1) FR3045566B1 (en)
WO (1) WO2017103867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017117174A1 (en) * 2017-07-28 2019-01-31 Airbus Defence and Space GmbH Propeller arrangement for an aircraft
DE102020128799A1 (en) 2020-11-02 2022-05-05 Flynow Aviation Gmbh Propulsion unit for a rotorcraft and rotorcraft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053480A (en) * 1959-10-06 1962-09-11 Piasecki Aircraft Corp Omni-directional, vertical-lift, helicopter drone
US4092084A (en) * 1976-07-22 1978-05-30 The South African Inventions Development Corporation Of Scientia Rotor for an autogiro
US20040056149A1 (en) * 2002-03-15 2004-03-25 University Of Maryland Biomimetic mechanism for micro aircraft
EP2587079A1 (en) * 2011-10-28 2013-05-01 Bell Helicopter Textron Inc. Increased capacity spherical lined bearings
WO2014160526A2 (en) * 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Passive rotor control mechanism for micro air vehicles
CN204527614U (en) * 2015-01-21 2015-08-05 西北农林科技大学 A kind of steering unit of small capacity double rotor wing unmanned aerial vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599339B2 (en) * 1993-07-27 1997-04-09 日本航空電子工業株式会社 Seesaw head mechanism of industrial unmanned helicopter
EP1761430B1 (en) * 2004-04-14 2014-07-23 Paul E. Arlton Rotary wing vehicle
EP2279943A4 (en) * 2008-04-21 2012-05-09 Boris Andreevich Polovinkin Vertical take-off and vertical landing gyroplane
EP3063064B1 (en) * 2013-11-01 2021-06-30 The University of Queensland A rotorcraft
CN104369862B (en) * 2014-10-27 2016-03-30 湖南星索尔航空科技有限公司 A kind of pilotless helicopter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053480A (en) * 1959-10-06 1962-09-11 Piasecki Aircraft Corp Omni-directional, vertical-lift, helicopter drone
US4092084A (en) * 1976-07-22 1978-05-30 The South African Inventions Development Corporation Of Scientia Rotor for an autogiro
US20040056149A1 (en) * 2002-03-15 2004-03-25 University Of Maryland Biomimetic mechanism for micro aircraft
EP2587079A1 (en) * 2011-10-28 2013-05-01 Bell Helicopter Textron Inc. Increased capacity spherical lined bearings
WO2014160526A2 (en) * 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Passive rotor control mechanism for micro air vehicles
CN204527614U (en) * 2015-01-21 2015-08-05 西北农林科技大学 A kind of steering unit of small capacity double rotor wing unmanned aerial vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FABIO RICCARDI: "WIND TUNNEL TESTING OF A VARIABLE-PITCH QUADROTOR UAV ISOLATED ROTOR", 7 September 2015 (2015-09-07), XP055300451, Retrieved from the Internet <URL:https://www.researchgate.net/profile/Fabio_Riccardi2/publication/281584199_WIND_TUNNEL_TESTING_OF_A_VARIABLE-PITCH_QUADROTOR_UAV_ISOLATED_ROTOR/links/55ee9f9b08ae199d47bf0b0f.pdf> [retrieved on 20160907] *
MARK JOHNSON CUTLER: "Design and Control of an Autonomous Variable-Pitch Quadrotor Helicopter", 1 January 2012 (2012-01-01), pages 1,2,7,8,73 - 84, XP055300789, Retrieved from the Internet <URL:http://acl.mit.edu/papers/Cutler_Masters12.pdf> [retrieved on 20160907] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017117174A1 (en) * 2017-07-28 2019-01-31 Airbus Defence and Space GmbH Propeller arrangement for an aircraft
US11104415B2 (en) 2017-07-28 2021-08-31 Airbus Defence and Space GmbH Propeller arrangement for an aircraft
DE102020128799A1 (en) 2020-11-02 2022-05-05 Flynow Aviation Gmbh Propulsion unit for a rotorcraft and rotorcraft
DE102020128799A8 (en) 2020-11-02 2022-07-07 Flynow Aviation Gmbh Propulsion unit for a rotorcraft and rotorcraft
DE102020128799B4 (en) 2020-11-02 2022-09-01 Flynow Aviation Gmbh Propulsion unit for a rotorcraft and rotorcraft

Also Published As

Publication number Publication date
FR3045566A1 (en) 2017-06-23
FR3045566B1 (en) 2018-04-13

Similar Documents

Publication Publication Date Title
US8052081B2 (en) Dual rotor helicopter with tilted rotational axes
US10472057B2 (en) Rotor assembly with high lock-number blades
EP2858897B1 (en) Joystick for controlling an aircraft
US20190039721A1 (en) Lopsided payload carriage gimbal for air and water-borne vehicles
FR3043337A1 (en) DRONE HAVING A TORQUE PROPULSION SUPPORT.
EP1212238A1 (en) Improvements to convertible aircraft with tilting rotors
CN103158869A (en) Multiple-yoke main rotor assembly
CA2914331C (en) Rear rotorcraft rotor, rotorcraft equipped with such a rear rotor and static and/or dynamic balancing method for a rear rotor of a rotorcraft
EP2684799B1 (en) Rotorcraft rotor with drag dampers housed in connecting sleeves of blades to a hub of the rotor
CN106986019B (en) Motor cabinet capable of changing inclination angle of rotary wing surface of multi-rotor unmanned aerial vehicle
CN105292469A (en) A control system for controlling collective and cyclic pitch of rotor blades of a multi-blade rotor in a rotary-wing aircraft
FR2927880A1 (en) HELICOPTER COMPRISING A PLURALITY OF SUSTAINING ELEMENTS WITH A COMPONENT FOR CONTROLLING THE IMPACT OF ITS BLADES
FR3006294A3 (en) AIRCRAFT WITH A ROTATING VESSEL AND A CANNED BLOWOUT BELONGING TO THE CATEGORIES OF MINI AND MICRO DRONES
WO2017103867A1 (en) Drone with rotors comprising hinged blades
WO2016185265A1 (en) Drone with a variable-pitch rotor
FR2801034A1 (en) HIGH-STABILITY, HIGH-MANEUVERABILITY PENDULUM HELICOPTER
EP3956219B1 (en) Propulsion device for rotorcraft with vertical take-off and landing, and a rotorcraft comprising at least one such propulsion device
WO2017103837A1 (en) Low-vibration drone
EP3067273B1 (en) Tricopter rotary-wing drone
FR2980117A1 (en) Contrarotative rotor integrated vertical takeoff and landing flying machine e.g. reduced helicopter module, has orientation module mounted on frame and comprising orientation unit to pivot contrarotative motor around pitch and rolling axes
US10457388B2 (en) Rotor assembly with high lock-number blades
FR2890375A1 (en) ROTARY VESSEL CONTROL ASSEMBLY
EP3081484B1 (en) A system for controlling a rotorcraft rotor, a rotorcraft fitted with such a system, and an associated control method
FR3067415B1 (en) SYSTEM FOR CONTROLLING THE BLADE SETTING OF A PROPELLER OF A TURBOMACHINE
EP3381800A1 (en) Rotary-wing aircraft including a set of swashplates and two drive scissors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16815668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16815668

Country of ref document: EP

Kind code of ref document: A1