EP3144228A1 - Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element - Google Patents

Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element Download PDF

Info

Publication number
EP3144228A1
EP3144228A1 EP16188885.4A EP16188885A EP3144228A1 EP 3144228 A1 EP3144228 A1 EP 3144228A1 EP 16188885 A EP16188885 A EP 16188885A EP 3144228 A1 EP3144228 A1 EP 3144228A1
Authority
EP
European Patent Office
Prior art keywords
cradle
rotation
ring
actuator
gyroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16188885.4A
Other languages
German (de)
French (fr)
Inventor
Gilles GANS
Xavier Jeandot
Gilles Carte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Thales SA
Original Assignee
Centre National dEtudes Spatiales CNES
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES, Thales SA filed Critical Centre National dEtudes Spatiales CNES
Publication of EP3144228A1 publication Critical patent/EP3144228A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/286Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using control momentum gyroscopes (CMGs)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/228Damping of high-frequency vibration effects on spacecraft elements, e.g. by using acoustic vibration dampers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/26Caging, i.e. immobilising moving parts, e.g. for transport
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/32Indicating or recording means specially adapted for rotary gyroscopes

Definitions

  • the invention relates to a double guide gyroscopic actuator with suspension and stop elements.
  • the invention can be applied in the spatial field to control and modify the orientation of spacecraft such as satellites.
  • a gyroscopic actuator also known by the abbreviation CMG for its acronym "Control Momentum Gyroscope" has the main function of generating a gyroscopic torque by combining two movements.
  • CMG Control Momentum Gyroscope
  • the constant speed rotation of an inertia wheel according to the axis of rotation of the wheel creates a kinetic moment.
  • a kinetic moment velocity in the axis perpendicular to the axis of rotation of the wheel This axis is called the cardan axis, it is the axis of rotation that rotates the wheel on its transverse axis. This results in a gyroscopic torque of the order of several tens of Newton meters transmitted to the satellite platform.
  • a gyroscopic actuator generates a gyroscopic torque by the combination of a kinetic moment created by the rotation of a constant speed rotating inertia wheel and the rotational speed of a cardan axis perpendicular to the axis of rotation. of the wheel.
  • a major drawback is that these two rotations generate each of the micro-vibrations which are then transmitted to the platform and disturb the stability of the line of sight of the satellite observation instrument.
  • This operating principle is schematized at the figure 1 .
  • the main function of the gyroscopic actuator is achieved by the combination of the kinetic momentum H of an inertia wheel and the speed of rotation of a gimbal.
  • the resulting gyroscopic torque is the vector product of H and the rotation speed of the gimbal.
  • a further disadvantage of prior art gyroscopic actuators is due to the generation of micro-vibrations due to the rotation of the high-speed flywheel and the rotation of the gimbal. These micro-vibrations can propagate in the satellite platform and disrupt equipment such as for example shooting instruments.
  • the invention aims to overcome all or part of the problems mentioned above by proposing a compact gyroscopic actuator having a specific architecture with a cardan guided by two guiding systems on either side of an inertia wheel and the implantation of suspension and stop elements for filtering at the source the micro-vibrations generated by the rotation of the flywheel and the rotation of the gimbal.
  • the gyroscopic actuator according to the invention comprises at least one suspension element adapted to limit micro-vibrations from the cradle and the flywheel.
  • the gyroscopic actuator according to the invention further comprises at least one stop element able to limit a movement of the cradle and the inertia wheel relative to the main structure.
  • the gyroscopic actuator according to the invention may comprise a motorization in the first end of the cradle for driving the cradle in rotation about the second axis of rotation.
  • the gyroscopic actuator according to the invention may comprise a power transfer element and signals in the second end of the cradle for transferring power and signals between the flywheel and the platform.
  • the cradle and the inertia wheel forming a subset having a center of gravity is configured to have its center of gravity on the second axis of rotation.
  • the ring, the cradle and the flywheel forming a suspended assembly, the flywheel and the cradle constituting two components of a first block, the suspended assembly and the main structure constituting two components of a second block , the gyroscopic actuator and the platform constituting two components of a third block, the at least one suspension element is positioned between the two components of a block.
  • the at least one abutment element is positioned between the two components of a block.
  • the ring, the cradle and the flywheel forming a suspended assembly having a center of gravity
  • the at least one suspension element having an isobarycentre
  • the at least one suspension element is arranged so that the isobarycentre of the at least one suspension element substantially coincides with the center of gravity of the suspended assembly.
  • the at least one abutment element having an isobarycentre is arranged so that the isobarycentre of the at least one abutment element substantially coincides with the center of gravity of the suspended assembly.
  • the invention also relates to a satellite comprising at least three gyroscopic actuators with double cardan guidance as described in this application and configured to manage the orientation of the satellite.
  • the gyroscopic double gimbal actuator is designed for the positioning of agile satellites.
  • the invention is based on two main points.
  • the gyroscopic actuator has a specific architecture with a cardan guided by two bearings, or guide elements, on either side of an inertia wheel.
  • suspension and abutment elements are implanted to filter the micro-vibrations generated at the source by the rotation of the wheel and by the rotation of the cardan subassembly composed by the cradle and the flywheel.
  • a gyroscopic actuator generates a gyroscopic torque by the combination of a kinetic moment created by the rotation of an inertia wheel rotating at a constant speed and by the speed of rotation of a cardan axis perpendicular to the axis of rotation. of the wheel. These two rotations generate each of the micro-vibrations which are then transmitted to the satellite platform and disturb the stability of the line of sight of the observation instrument.
  • the gyroscopic actuators rotate the cardan shaft, the flywheel being rotated at a constant speed, to create a gyroscopic torque.
  • the micro-vibrations generated by these two movements are attenuated by the implantation of several suspension elements to reduce the transmission of disturbances to the platform.
  • the mobile assembly being suspended by the suspension elements and not stacked during the launch, it it is necessary to implement stop elements to limit the dynamic displacements of the moving mass, that is to say the suspended assembly composed of the cardan subassembly and the ring, during the launch and transmit the loads of launch to the main structure with associated attenuation via these stop elements.
  • the figure 2 represents the architecture of a gyroscopic actuator 10 with double guidance according to the invention.
  • the gyroscopic actuator 10 with double guidance is intended to equip a satellite. It comprises a main structure 11 connected to a platform 12 of the satellite, a ring 16, a cradle 18 having a first end 19 and a second end 20 and an inertia wheel 21 mounted on the cradle 18 between the first and second ends 19 , 20, the flywheel 21 being rotatable relative to the cradle 18 about a first axis of rotation 22.
  • the cradle 18 has a shape of U.
  • U-shaped means any form comparable to a U, c that is, any shape having a central portion extending in one direction and terminating in two ends extending in another direction substantially perpendicular to the direction of the central portion.
  • the cradle 18 may also have substantially the shape of a semicircle.
  • the cradle 18 is configured to allow rotation of the flywheel 21 positioned on the central portion between its two ends.
  • the flywheel 21 can be mounted in a housing and the housing can be mounted on the cradle 18, without relative movement between the housing and the cradle 18.
  • the gyroscopic actuator 10 comprises a first bearing 23 positioned at the first end 19 of the cradle 18 and a second bearing 24 positioned at the second end 20 of the cradle 18 connecting the ring 16 to the cradle 18, the first and second bearings 23, 24 being configured to make the cradle 18 rotatable relative to the ring 16 about a second axis of rotation substantially perpendicular to the first axis of rotation 22.
  • the ring 16 is connected to the main structure 11.
  • the gyroscopic actuator 10 comprises at least one suspension element 13 able to limit micro-vibrations resulting from the rotation of the cradle 18 and the flywheel 21.
  • the gyroscopic actuator 10 may further comprise at least one abutment element 14 able to limit a travel of the cradle 18 and the inertia wheel 21 with respect to the main structure 11.
  • the ring is to be understood as a perforated volume at its center. It may be a solid of revolution such as a torus or any other polyhedron pierced at its center, that is to say a polyhedron whose section may take various forms.
  • the ring can also be a perforated polygon.
  • the ring 16 is perforated so that the flywheel 21 is placed in the opening, the median plane of the ring 16 not necessarily coinciding with that of the flywheel 21.
  • the ring 16 is shown in one piece. It is understood that it is not beyond the scope of the invention considering a ring composed of several sub-parts interconnected by known fastening means. It is the same for the cradle 18 and the main structure 11.
  • the cradle 18 and the flywheel 21 form a subassembly called cardan subassembly 17. And the ring 16 and the cardan subassembly 17 form the suspended assembly 15.
  • the figure 3 represents the cardan subassembly 17 of the double guide gyroscopic actuator 10 according to the invention.
  • the cardan subassembly 17 is composed of the inertia wheel 21 mounted on the cradle 18, the cradle 18 is guided by two bearings 23, 24, also called guide elements, at these two ends 19, 20.
  • the bearings 23, 24 may be any type of suitable bearings.
  • the cardan subassembly 17 may comprise a motorization 26 in the first 19 of the two ends of the cradle 18 for driving the cradle 18 in rotation about the second axis of rotation 25.
  • the cardan subassembly 17 may comprise a power transfer element and signals 27 in the second 20 of the two ends of the cradle 18 for transferring a power and signals between the flywheel 21 and the platform.
  • the signals coming from the flywheel 21 may for example be temperature, speed, position signals coming from different sensors present in the flywheel 21.
  • the signal transfer can also take place from the platform to the wheel. , especially for the power for feeding the wheel.
  • the power and signal transfer element 27 may be a contact collector or a contactless transformer.
  • a contactless transformer will be preferred to the collector with contact because this component significantly improves the constraints related to the service life. Indeed, the collector with contact operates by friction between brushes and tracks for the transfer of power and signals. The friction limits the service life of the collector and disrupts the steering of the satellite when changing the direction of rotation of the gimbal.
  • the gyroscopic actuator 10 may also include a position or speed sensor, for example in the first end 19 of the cradle 18.
  • the sensor may be an optical encoder for controlling the position and speed of rotation of the cardan subassembly. 17.
  • the second axis of rotation 25, that is to say the axis of rotation of the gimbal, can be inclined at an angle with respect to the interface plane between the main structure 11 and the platform 12 depending on the applications.
  • the engine part is generally composed of a motor, a position and / or speed sensor and a main bearing.
  • the ring 16 is a complex piece whose role is to ensure the necessary rigidity of the suspended assembly 15 while interfacing with the cardan subassembly 17 and the suspension elements 13 and stop 14.
  • the ring 16 can have several forms, it is not necessarily circular, and with a section of several possible forms. This piece can be made in additive manufacturing from an optimized organic form.
  • the cradle 18 can be made in additive manufacturing from an optimized organic form.
  • the cardan subassembly 17 is guided with respect to a ring-shaped structure 16.
  • This assembly called the suspended assembly 15, is suspended by the suspension element or elements 13.
  • the figure 4 represents the suspended assembly 15 of the gyroscopic actuator 10 with double guidance according to the invention.
  • the cardan subassembly 17, that is to say the ring 16, the cradle 18 and the flywheel 21, has a center of gravity Gc.
  • the cardan subassembly 17 is configured to have its center of gravity on the second axis of rotation 25. This configuration can be obtained by construction, with a particular shape of the cradle 18 and / or the flywheel 21 and thanks to their positioning relative to each other.
  • the cardan subassembly 17 may comprise at least one feeder 27 so as to position the center of gravity Gc of the cardan subassembly 17 on the second axis of rotation 25.
  • the part rotated about the second axis of rotation 25, or cardan axis, composed essentially of the flywheel 21 and the cradle 18 is balanced in rotation by placing its center of gravity Gc on the axis of rotation 25.
  • One or more balance weights, also called weights 27, are provided on the cradle 18 to adjust the position of the center of gravity Gc of the movable part, that is to say the cardan subassembly 17, on the axis of rotation 25.
  • the number, the positioning, the shape of the balancing masses 27 may vary according to the configuration considered. On the figure 4 they are positioned on one side of the cradle 18, nevertheless, they could also be positioned on another face of the cradle 18 or on the flywheel 21.
  • the positioning of the center of gravity Gc of the cardan subassembly 17 on the axis rotation 25 prevents the inertia wheel 21 from rotating during the launch and limits the micro-vibrations generated by the rotation of the cardan sub-assembly 17. If these micro-vibrations are not limited, the performance is then degraded.
  • the figure 5 represents an exemplary configuration of the suspension elements 13 and the stop elements 14 of the gyroscopic actuator 10 with double guidance according to the invention.
  • This example gives a configuration with four suspension elements 13 and four abutment elements 14 whose axes are positioned in the same plane, the axes pointing towards the center of gravity Gs of the suspended assembly 15.
  • the invention is based on the fact of using suspension elements 13 and abutment 14 to perform a micro-vibration filtering function generated by the rotation of the flywheel 21 and the drive of the cardan during the maneuvering phases. and satellite shots via suspension elements 13, as well as to perform a function of holding launch loads through the stop elements 14.
  • these elements 13, 14 can be multiplied around the mobile load to meet the desired need.
  • the number of suspension elements 13 is equal to the number of abutment elements 14, but this is not necessarily the case.
  • the number of suspension elements 13 may be different from the number of abutment elements 14.
  • the suspension elements 13 and the abutment elements 14 are mounted between the set to isolate exported micro-vibration generator and the main structure 11 connected to the platform. It may be noted that the suspension elements 13 and the abutment elements 14 of the invention can be dimensioned specifically according to the use made of it, but also it is important to emphasize that they can be elements standard suspension and stop without the need to resize them regardless of the gyro actuator. Indeed, the modularity of these suspension elements 13 and the abutment elements 14 allows to choose the number of elements and to arrange these elements according to the performances to be reached, the mobile mass suspended, the efforts to the launching.
  • the suspension element 13 and the abutment element 14 are used in a complementary manner: indeed, during launching, the abutment element 14 performs the holding function. Moving the moving load is limited and amortized. In other words, the movement of the moving load is controlled.
  • the suspension elements 13 filter the micro-vibrations generated by the suspended assembly 15 without contact at the stop element 14.
  • the stiffness of the suspension elements 13 is lower than the stiffness of the elements abutment 14, typically a factor 10.
  • the suspension element 13 follows the deformation of the abutment element 14.
  • a three-dimensional game is created around the stop element 14.
  • the suspension element 13 works and filters the micro-vibrations.
  • the combined rotations of the flywheel 21 and the cradle 18 generate a gyroscopic torque to be transmitted to the platform.
  • the suspension element 13 is deformed until the stop element 14 takes over.
  • the stop element 14 deforms when the game is caught and there is contact with the abutment element 14.
  • the gyroscopic torque is then transmitted to the platform essentially by the abutment element 14.
  • the suspension elements 13 can be placed in the same plane, the isobarycentre of all of these elements is advantageously coincident with, or substantially coincides with, the center of gravity of the suspended assembly 15.
  • the axes of these elements can be placed in the same plane or not.
  • the abutment elements 14 can also be placed in the same plane, the isobarycentre of all these elements is advantageously coincident with, or substantially coincides with, the center of gravity of the suspended assembly 15.
  • the axes of these elements can be placed in the same plane or not and point or not towards the center of gravity of the suspended assembly 15.
  • the planes containing the axes of the suspension elements 13 and the abutment elements 14 may or may not be merged. For example, one can choose to place the axes of the suspension elements 13 and the abutment elements 14 in the same plane and that this plane contains the center of gravity of the suspended assembly 15.
  • the suspension elements 13 and the abutment members 14 can also be arranged as required with different angles to place the isobarycentre of the suspension elements 13 and / or abutment elements 14 at the center of gravity of the suspended assembly 15 .
  • the stiffness of the suspension element 13 is lower than the stiffness of the abutment element 14, the aim being that the stiffness of the abutment element 14 ensures all the mechanical strength of the mobile part during launching.
  • the suspension element 13 filters the micro-vibrations generated by the rotation of the wheel 21 and the rotation of the cradle 18, the abutment element 14 is not stressed: a functional game is present all around the stop.
  • the flywheel 21 and the cradle 18 constituting two components of a first block, the suspended assembly 15 and the main structure 11 constituting two components of a second block, the gyroscopic actuator 10 and the platform constituting two components of a third block, it can be said that the at least one suspension element 13 is positioned between the two components of a block.
  • the at least one abutment element 14 is positioned between the two components of a block. It is therefore possible to note the total modularity of the suspension elements 13 and the abutment elements 14 both as regards the number of each of the elements and the positioning of these elements.
  • the suspension element (s) 13 and / or the abutment element (s) 14 it is possible to position the suspension element (s) 13 and / or the abutment element (s) 14 between the flywheel 21 and the cradle 18 and / or between the suspended assembly 15 and the main structure 11 and or between the gyroscopic actuator 10 and the platform 12.
  • the suspension elements 13 and / or abutment 14 may be uniformly distributed or not between the two components of the corresponding block and the orientation of the suspension elements 13 may be the same for all the suspension elements, but may also differ. It is the same for the stop elements 14.
  • the suspension elements 13 can be oriented in the same way as the stop elements 14 but can also be oriented differently. The modularity of these elements is total.
  • the figure 6 represents another example of configuration of the suspension elements 13 and the stop elements 14 of the gyroscopic actuator 10 with double guidance according to the invention.
  • the suspension elements 13 and abutment 14 can be distributed as desired both by their number and by their position on the ring 16.
  • the suspended assembly 15 has a center of gravity Gs
  • the at least one suspension element 13 has an isobarycenter.
  • the at least one suspension element 13 is arranged so that the isobarycentre of the at least one suspension element 13 coincides substantially with the center of gravity Gs of the suspended assembly 15.
  • the at least one element stop 14 has an isobarycenter.
  • the at least one abutment element 14 is arranged so that the isobarycentre of the at least one abutment element 14 substantially coincides with the center of gravity Gs of the suspended assembly 15.
  • a preferred solution is to place the isobarycentre of all of the elements 13, 14 coincides with the center of gravity Gs of the suspended assembly 15.
  • suspension elements 13 and abutment 14 may be uniformly distributed or not around the moving assembly.
  • the planes containing the suspension elements 13 and the abutment elements 14 may be merged or not.
  • the suspension elements 13 and abutment 14 also limit the loads incurred by the equipment mounted on the suspended assembly 15. For example, the shock levels injected at the base of the CMG, that is to say between the main structure 11 and the platform 12, are filtered by the suspension elements 13 and abutment 14. This solution makes it possible to implement shock-sensitive elements on the suspended assembly 15, in particular the optical encoder and the flywheel 21.
  • the figure 7 represents an embodiment of the main structure 11 of the gyroscopic actuator 10 with double guidance according to the invention.
  • the main structure 11 supporting the suspended assembly 15 can be made in additive manufacturing from an optimized organic form. This possibility makes it possible to obtain a main structure 11 of the desired shape, stiffness and holding with a considerable gain in mass compared with a traditional main structure as represented on FIG. figure 2 .
  • a main structure as represented on the figure 2 weighs 9 kg while the main structure represented on the figure 7 weighs only 3 kg.
  • the main structure 11 can take any desired shape, it is possible to choose the angle of inclination of the second axis of rotation 25. On the figure 2 this angle is about 30 °, but the possible adaptation of the shape of the main structure 11 allows to have any angle of inclination.
  • the invention proposes a gyroscopic actuator solution with two guides and a smaller motorization, integrating the suspensions in the actuator closer to the micro-vibration generating components and realizing a completely suspended gimbal assembly.
  • the ring allows to clear a lot of room to be able to place the elements of suspension and stop.
  • the advantages of this solution are a reduction of micro-vibrations transmitted to the platform, with the possibility of placing a suspension system if necessary, the limitation of friction through the use of a transformer without contact for passing power and signals of the wheel, which promotes the service life and increases the performance of the gyroscopic actuator because there is no dry friction torque from the collector.
  • Another major advantage is the modularity of the suspension elements and the stop elements. The number of elements can be multiplied and it is possible to develop them to comply with the need based on the need for filtering, the suspended mass, the position of the center of gravity.
  • a major advantage is the filtering of micro-vibrations generated at the source to avoid the amplification effect of these micro-vibrations.
  • the stop elements make it possible to overcome an expensive stacking system. According to the invention, the moving load is not stacked thanks to the use of stop elements. Finally, the onboard equipment is protected by limiting the loads at launch by the abutment elements.
  • the invention also relates to a satellite comprising at least three gyroscopic actuators as described above and configured to manage the orientation of the satellite.
  • the figure 8 schematically represents a satellite 100 comprising at least three gyroscopic actuators 10 according to the invention.
  • the satellite 100 may comprise four or more gyroscopic actuators to provide redundancy in the event of a failure of one of the gyroscopic actuators.

Abstract

L'invention s'applique au domaine spatial et concerne un actionneur gyroscopique (10) à double guidage destiné à équiper un satellite comprenant une structure principale (11) reliée à une plateforme (12), ladite plateforme (12) étant destinée à être reliée au satellite, un anneau, un berceau en forme de U, ayant une première extrémité (19) et une seconde extrémité (20) et une partie centrale, une roue à inertie (21) montée sur la partie centrale du berceau entre la première et la seconde extrémités (19, 20), la roue à inertie (21) étant mobile en rotation par rapport au berceau autour d'un premier axe de rotation (22). Selon l'invention, il comprend un premier palier (23) positionné à la première extrémité (19) du berceau et un second palier (24) positionné à la seconde extrémité (20) du berceau reliant l'anneau au berceau, les premier et second paliers (23, 24) étant configurés pour rendre le berceau mobile en rotation par rapport à l'anneau autour d'un deuxième axe de rotation (25) sensiblement perpendiculaire au premier axe de rotation (22), l'anneau est relié à la structure principale (11), et l'actionneur gyroscopique (10) comprend au moins un élément de suspension (13) apte à limiter des micro-vibrations issues du berceau et de la roue à inertie (21) et au moins un élément de butée (14) apte à limiter un débattement du berceau et de la roue à inertie (21) par rapport à la structure principale (11).The invention applies to the spatial domain and relates to a gyroscopic actuator (10) with double guidance intended to equip a satellite comprising a main structure (11) connected to a platform (12), said platform (12) being intended to be connected to the satellite, a ring, a U-shaped cradle, having a first end (19) and a second end (20) and a central portion, an inertia wheel (21) mounted on the central portion of the cradle between the first and the second ends (19, 20), the inertia wheel (21) being rotatable relative to the cradle about a first axis of rotation (22). According to the invention, it comprises a first bearing (23) positioned at the first end (19) of the cradle and a second bearing (24) positioned at the second end (20) of the cradle connecting the ring to the cradle, the first and second bearings (23, 24) being configured to rotate the cradle relative to the ring about a second axis of rotation (25) substantially perpendicular to the first axis of rotation (22), the ring is connected to the main structure (11), and the gyroscopic actuator (10) comprises at least one suspension element (13) adapted to limit micro-vibrations from the cradle and the flywheel (21) and at least one element of stop (14) adapted to limit a movement of the cradle and the inertia wheel (21) relative to the main structure (11).

Description

L'invention concerne un actionneur gyroscopique à double guidage avec des éléments de suspension et de butée. L'invention peut s'appliquer dans le domaine spatial afin de contrôler et modifier l'orientation des engins spatiaux comme par exemple les satellites.The invention relates to a double guide gyroscopic actuator with suspension and stop elements. The invention can be applied in the spatial field to control and modify the orientation of spacecraft such as satellites.

Un actionneur gyroscopique, aussi connu sous l'abréviation CMG pour son acronyme anglo-saxon « Control Momentum Gyroscope », a pour fonction principale de générer un couple gyroscopique par combinaison de deux mouvements. La rotation à vitesse constante d'une roue à inertie selon l'axe de rotation de la roue crée un moment cinétique. Puis on impose une vitesse au moment cinétique dans l'axe perpendiculaire à l'axe de rotation de la roue. Cet axe est appelé l'axe cardan, c'est l'axe de rotation qui fait tourner la roue sur son axe transverse. Il en résulte un couple gyroscopique de l'ordre de plusieurs dizaines de Newton-mètres transmis à la plateforme du satellite. Autrement dit, un actionneur gyroscopique génère un couple gyroscopique par la combinaison d'un moment cinétique créé par la rotation d'une roue à inertie tournant à vitesse constante et par la vitesse de rotation d'un axe cardan perpendiculaire à l'axe de rotation de la roue. Un inconvénient majeur est que ces deux rotations génèrent chacune des micro-vibrations qui sont ensuite transmises à la plateforme et perturbent la stabilité de la ligne de visée de l'instrument d'observation du satellite.A gyroscopic actuator, also known by the abbreviation CMG for its acronym "Control Momentum Gyroscope", has the main function of generating a gyroscopic torque by combining two movements. The constant speed rotation of an inertia wheel according to the axis of rotation of the wheel creates a kinetic moment. Then we impose a kinetic moment velocity in the axis perpendicular to the axis of rotation of the wheel. This axis is called the cardan axis, it is the axis of rotation that rotates the wheel on its transverse axis. This results in a gyroscopic torque of the order of several tens of Newton meters transmitted to the satellite platform. In other words, a gyroscopic actuator generates a gyroscopic torque by the combination of a kinetic moment created by the rotation of a constant speed rotating inertia wheel and the rotational speed of a cardan axis perpendicular to the axis of rotation. of the wheel. A major drawback is that these two rotations generate each of the micro-vibrations which are then transmitted to the platform and disturb the stability of the line of sight of the satellite observation instrument.

Ce principe de fonctionnement est schématisé à la figure 1. La fonction principale de l'actionneur gyroscopique est réalisée par la combinaison du moment cinétique H d'une roue à inertie et de la vitesse de rotation d'un cardan. Le couple gyroscopique résultant est le produit vectoriel de H et de la vitesse de rotation du cardan.This operating principle is schematized at the figure 1 . The main function of the gyroscopic actuator is achieved by the combination of the kinetic momentum H of an inertia wheel and the speed of rotation of a gimbal. The resulting gyroscopic torque is the vector product of H and the rotation speed of the gimbal.

Dans l'art antérieur, il existe différents types d'actionneur gyroscopique de pilotage de l'attitude d'un véhicule spatial tel qu'un satellite. Un inconvénient des actionneurs de l'art antérieur vient du fait que la roue à inertie est déportée par rapport à la partie motorisation et guidage du cardan. De ce fait, la partie guidage et notamment le roulement reprend la totalité des sollicitations de flexion lors de la phase de lancement du satellite sur lequel l'actionneur est monté. Comme la roue n'est pas gerbée, pour tenir les charges importantes de la phase de lancement, on applique à ce roulement une certaine précontrainte. Cependant, cette précontrainte a pour conséquence de réduire la durée de vie du roulement et donc de l'actionneur.In the prior art, there are different types of gyroscopic actuator for controlling the attitude of a spacecraft such as a satellite. A disadvantage of the actuators of the prior art comes from the fact that the inertia wheel is offset relative to the drive and guiding part of the gimbal. As a result, the guide part and in particular the bearing take up all the bending stresses during the launch phase of the satellite on which the actuator is mounted. As the wheel is not stacked, to hold the important loads of the launch phase, it applies to this bearing some prestressing. However, this preload has the effect of reducing the life of the bearing and therefore of the actuator.

Un autre inconvénient des actionneurs gyroscopiques connus de l'art antérieur réside dans leur encombrement qui les empêche de tenir dans un volume restreint.Another disadvantage of known gyroscopic actuators of the prior art lies in their size which prevents them from keeping in a small volume.

Un inconvénient supplémentaire des actionneurs gyroscopiques connus de l'art antérieur vient du fait de la génération de micro-vibrations dues à la rotation de la roue à inertie à haute vitesse et à la rotation du cardan. Ces micro-vibrations peuvent se propager dans la plateforme du satellite et perturber les équipements comme par exemple des instruments de prise de vues.A further disadvantage of prior art gyroscopic actuators is due to the generation of micro-vibrations due to the rotation of the high-speed flywheel and the rotation of the gimbal. These micro-vibrations can propagate in the satellite platform and disrupt equipment such as for example shooting instruments.

L'invention vise à pallier tout ou partie des problèmes cités plus haut en proposant un actionneur gyroscopique compact ayant une architecture spécifique avec un cardan guidé par deux systèmes de guidage de part et d'autre d'une roue à inertie et l'implantation d'éléments de suspension et de butée pour filtrer à la source les micro-vibrations générées par la rotation de la roue à inertie et par la rotation du cardan.The invention aims to overcome all or part of the problems mentioned above by proposing a compact gyroscopic actuator having a specific architecture with a cardan guided by two guiding systems on either side of an inertia wheel and the implantation of suspension and stop elements for filtering at the source the micro-vibrations generated by the rotation of the flywheel and the rotation of the gimbal.

A cet effet, l'invention a pour objet un actionneur gyroscopique à double guidage destiné à équiper un satellite comprenant :

  • une structure principale reliée à une plateforme du satellite,
  • un anneau,
  • un berceau ayant une première extrémité et une seconde extrémité,
  • une roue à inertie montée sur le berceau entre la première et la seconde extrémités, la roue à inertie étant mobile en rotation par rapport au berceau autour d'un premier axe de rotation,
caractérisé en ce qu'il comprend un premier palier positionné à la première extrémité du berceau et un second palier positionné à la seconde extrémité du berceau reliant l'anneau au berceau, les premier et second paliers étant configurés pour rendre le berceau mobile en rotation par rapport à l'anneau autour d'un deuxième axe de rotation sensiblement perpendiculaire au premier axe de rotation, et en ce que l'anneau est relié à la structure principale.For this purpose, the subject of the invention is a gyroscopic actuator with double guidance intended to equip a satellite comprising:
  • a main structure connected to a satellite platform,
  • a ring,
  • a cradle having a first end and a second end,
  • an inertia wheel mounted on the cradle between the first and second ends, the inertia wheel being rotatable relative to the cradle about a first axis of rotation,
characterized in that it comprises a first bearing positioned at the first end of the cradle and a second bearing positioned at the second end of the cradle connecting the ring to the cradle, the first and second bearings being configured to make the cradle movable in rotation by relative to the ring about a second axis of rotation substantially perpendicular to the first axis of rotation, and in that the ring is connected to the main structure.

Avantageusement, l'actionneur gyroscopique selon l'invention comprend au moins un élément de suspension apte à limiter des micro-vibrations issues du berceau et de la roue à inertie.Advantageously, the gyroscopic actuator according to the invention comprises at least one suspension element adapted to limit micro-vibrations from the cradle and the flywheel.

Avantageusement, l'actionneur gyroscopique selon l'invention comprend en outre au moins un élément de butée apte à limiter un débattement du berceau et de la roue à inertie par rapport à la structure principale.Advantageously, the gyroscopic actuator according to the invention further comprises at least one stop element able to limit a movement of the cradle and the inertia wheel relative to the main structure.

Selon un mode de réalisation, l'actionneur gyroscopique selon l'invention peut comprendre une motorisation dans la première extrémité du berceau destinée à entraîner le berceau en rotation autour du deuxième axe de rotation.According to one embodiment, the gyroscopic actuator according to the invention may comprise a motorization in the first end of the cradle for driving the cradle in rotation about the second axis of rotation.

Selon un autre mode de réalisation, l'actionneur gyroscopique selon l'invention peut comprendre un élément de transfert de puissance et de signaux dans la seconde extrémité du berceau destiné à transférer une puissance et des signaux entre la roue à inertie et la plateforme.According to another embodiment, the gyroscopic actuator according to the invention may comprise a power transfer element and signals in the second end of the cradle for transferring power and signals between the flywheel and the platform.

Avantageusement, le berceau et la roue à inertie formant un sous-ensemble ayant un centre de gravité, le sous-ensemble est configuré pour avoir son centre de gravité sur le deuxième axe de rotation.Advantageously, the cradle and the inertia wheel forming a subset having a center of gravity, the subassembly is configured to have its center of gravity on the second axis of rotation.

Avantageusement, l'anneau, le berceau et la roue à inertie formant un ensemble suspendu, la roue à inertie et le berceau constituant deux composants d'un premier bloc, l'ensemble suspendu et la structure principale constituant deux composants d'un deuxième bloc, l'actionneur gyroscopique et la plateforme constituant deux composants d'un troisième bloc, le au moins un élément de suspension est positionné entre les deux composants d'un bloc.Advantageously, the ring, the cradle and the flywheel forming a suspended assembly, the flywheel and the cradle constituting two components of a first block, the suspended assembly and the main structure constituting two components of a second block , the gyroscopic actuator and the platform constituting two components of a third block, the at least one suspension element is positioned between the two components of a block.

Avantageusement, le au moins un élément de butée est positionné entre les deux composants d'un bloc.Advantageously, the at least one abutment element is positioned between the two components of a block.

Avantageusement, l'anneau, le berceau et la roue à inertie formant un ensemble suspendu ayant un centre de gravité, le au moins un élément de suspension ayant un isobarycentre, le au moins un élément de suspension est aménagé de façon à ce que l'isobarycentre du au moins un élément de suspension coïncide sensiblement avec le centre de gravité de l'ensemble suspendu.Advantageously, the ring, the cradle and the flywheel forming a suspended assembly having a center of gravity, the at least one suspension element having an isobarycentre, the at least one suspension element is arranged so that the isobarycentre of the at least one suspension element substantially coincides with the center of gravity of the suspended assembly.

Avantageusement, le au moins un élément de butée ayant un isobarycentre, le au moins un élément de butée est aménagé de façon à ce que l'isobarycentre du au moins un élément de butée coïncide sensiblement avec le centre de gravité de l'ensemble suspendu.Advantageously, the at least one abutment element having an isobarycentre, the at least one abutment element is arranged so that the isobarycentre of the at least one abutment element substantially coincides with the center of gravity of the suspended assembly.

L'invention concerne aussi un satellite comprenant au moins trois actionneurs gyroscopiques à double guidage cardan tels que décrits dans cette demande et configurés pour gérer l'orientation du satellite.The invention also relates to a satellite comprising at least three gyroscopic actuators with double cardan guidance as described in this application and configured to manage the orientation of the satellite.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description illustrée par le dessin joint dans lequel :

  • la figure 1, déjà commentée, illustre le principe de fonctionnement d'un actionneur gyroscopique,
  • la figure 2 représente l'architecture d'un actionneur gyroscopique à double guidage selon l'invention,
  • la figure 3 représente le sous-ensemble cardan de l'actionneur gyroscopique à double guidage selon l'invention,
  • la figure 4 représente l'ensemble suspendu de l'actionneur gyroscopique à double guidage selon l'invention,
  • la figure 5 représente un exemple de configuration des modules de suspension et des modules de butée de l'actionneur gyroscopique à double guidage selon l'invention,
  • la figure 6 représente un autre exemple de configuration des éléments de suspension et des éléments de butée de l'actionneur gyroscopique à double guidage selon l'invention,
  • la figure 7 représente un mode de réalisation de la structure principale de l'actionneur gyroscopique à double guidage selon l'invention,
  • la figure 8 représente schématiquement un satellite comprenant au moins trois actionneurs gyroscopiques selon l'invention.
The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment given by way of example, a description illustrated by the attached drawing in which:
  • the figure 1 , already commented, illustrates the principle of operation of a gyroscopic actuator,
  • the figure 2 represents the architecture of a gyroscopic actuator with double guidance according to the invention,
  • the figure 3 represents the cardan subassembly of the double guide gyroscopic actuator according to the invention,
  • the figure 4 represents the suspended assembly of the double guide gyroscopic actuator according to the invention,
  • the figure 5 represents an exemplary configuration of the suspension modules and the stop modules of the double-guide gyroscopic actuator according to the invention,
  • the figure 6 represents another exemplary configuration of the suspension elements and the stop elements of the double-guide gyroscopic actuator according to the invention,
  • the figure 7 represents an embodiment of the main structure of the double-guide gyroscopic actuator according to the invention,
  • the figure 8 schematically represents a satellite comprising at least three gyroscopic actuators according to the invention.

Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures.For the sake of clarity, the same elements will bear the same references in the different figures.

L'actionneur gyroscopique à double guidage cardan est destiné au positionnement des satellites agiles. L'invention repose sur deux points principaux. Tout d'abord, l'actionneur gyroscopique dispose d'une architecture spécifique avec un cardan guidé par deux paliers, ou éléments de guidage, de part et d'autre d'une roue à inertie. Par ailleurs, des éléments de suspension et de butée sont implantés pour filtrer les micro-vibrations générées à la source par la rotation de la roue et par la rotation du sous-ensemble cardan composé par le berceau et la roue à inertie. En effet, un actionneur gyroscopique génère un couple gyroscopique par la combinaison d'un moment cinétique créé par la rotation d'une roue à inertie tournant à vitesse constante et par la vitesse de rotation d'un axe cardan perpendiculaire à l'axe de rotation de la roue. Ces deux rotations génèrent chacune des micro-vibrations qui sont ensuite transmises à la plateforme du satellite et perturbent la stabilité de la ligne de visée de l'instrument d'observation.The gyroscopic double gimbal actuator is designed for the positioning of agile satellites. The invention is based on two main points. First, the gyroscopic actuator has a specific architecture with a cardan guided by two bearings, or guide elements, on either side of an inertia wheel. Moreover, suspension and abutment elements are implanted to filter the micro-vibrations generated at the source by the rotation of the wheel and by the rotation of the cardan subassembly composed by the cradle and the flywheel. Indeed, a gyroscopic actuator generates a gyroscopic torque by the combination of a kinetic moment created by the rotation of an inertia wheel rotating at a constant speed and by the speed of rotation of a cardan axis perpendicular to the axis of rotation. of the wheel. These two rotations generate each of the micro-vibrations which are then transmitted to the satellite platform and disturb the stability of the line of sight of the observation instrument.

Lors des phases de manoeuvre et de prise de vue par les instruments scientifiques à bord du satellite, les actionneurs gyroscopiques mettent en rotation l'axe cardan, la roue à inertie étant en rotation à vitesse constante, pour créer un couple gyroscopique. Selon l'invention, les micro-vibrations générées par ces deux mouvements sont atténuées par l'implantation de plusieurs éléments de suspension pour réduire au mieux la transmission des perturbations à la plateforme. L'ensemble mobile étant suspendu par les éléments de suspension et non gerbé lors du lancement, il est nécessaire d'implanter des éléments de butée pour limiter les débattements dynamiques de la masse mobile, c'est-à-dire l'ensemble suspendu composé du sous-ensemble cardan et de l'anneau, lors du lancement et transmettre les charges de lancement à la structure principale avec atténuation associée via ces éléments de butée.During maneuvering and shooting phases by the scientific instruments on board the satellite, the gyroscopic actuators rotate the cardan shaft, the flywheel being rotated at a constant speed, to create a gyroscopic torque. According to the invention, the micro-vibrations generated by these two movements are attenuated by the implantation of several suspension elements to reduce the transmission of disturbances to the platform. The mobile assembly being suspended by the suspension elements and not stacked during the launch, it it is necessary to implement stop elements to limit the dynamic displacements of the moving mass, that is to say the suspended assembly composed of the cardan subassembly and the ring, during the launch and transmit the loads of launch to the main structure with associated attenuation via these stop elements.

La figure 2 représente l'architecture d'un actionneur gyroscopique 10 à double guidage selon l'invention. L'actionneur gyroscopique 10 à double guidage est destiné à équiper un satellite. Il comprend une structure principale 11 reliée à une plateforme 12 du satellite, un anneau 16, un berceau 18 ayant une première extrémité 19 et une seconde extrémité 20 et une roue à inertie 21 montée sur le berceau 18 entre la première et la seconde extrémités 19, 20, la roue à inertie 21 étant mobile en rotation par rapport au berceau 18 autour d'un premier axe de rotation 22. Le berceau 18 a une forme de U. On entend par forme de U toute forme assimilable à un U, c'est-à-dire toute forme ayant une partie centrale s'étendant selon une direction et se terminant par deux extrémités s'étendant dans une autre direction sensiblement perpendiculairement à la direction de la partie centrale. A l'extrême, le berceau 18 peut également avoir sensiblement la forme d'un demi-cercle. Le berceau 18 est configuré pour permettre la rotation de la roue à inertie 21 positionnée sur la partie centrale entre ses deux extrémités. Par exemple, la roue à inertie 21 peut être montée dans un carter et le carter peut être monté sur le berceau 18, sans mouvement relatif entre le carter et le berceau 18. Ou bien d'autres configurations sont envisageables selon la forme du berceau 18. Selon l'invention, l'actionneur gyroscopique 10 comprend un premier palier 23 positionné à la première extrémité 19 du berceau 18 et un second palier 24 positionné à la seconde extrémité 20 du berceau 18 reliant l'anneau 16 au berceau 18, les premier et second paliers 23, 24 étant configurés pour rendre le berceau 18 mobile en rotation par rapport à l'anneau 16 autour d'un deuxième axe de rotation 25 sensiblement perpendiculaire au premier axe de rotation 22. Selon l'invention, l'anneau 16 est relié à la structure principale 11.The figure 2 represents the architecture of a gyroscopic actuator 10 with double guidance according to the invention. The gyroscopic actuator 10 with double guidance is intended to equip a satellite. It comprises a main structure 11 connected to a platform 12 of the satellite, a ring 16, a cradle 18 having a first end 19 and a second end 20 and an inertia wheel 21 mounted on the cradle 18 between the first and second ends 19 , 20, the flywheel 21 being rotatable relative to the cradle 18 about a first axis of rotation 22. The cradle 18 has a shape of U. U-shaped means any form comparable to a U, c that is, any shape having a central portion extending in one direction and terminating in two ends extending in another direction substantially perpendicular to the direction of the central portion. At the extreme, the cradle 18 may also have substantially the shape of a semicircle. The cradle 18 is configured to allow rotation of the flywheel 21 positioned on the central portion between its two ends. For example, the flywheel 21 can be mounted in a housing and the housing can be mounted on the cradle 18, without relative movement between the housing and the cradle 18. Or other configurations are possible depending on the shape of the cradle 18 According to the invention, the gyroscopic actuator 10 comprises a first bearing 23 positioned at the first end 19 of the cradle 18 and a second bearing 24 positioned at the second end 20 of the cradle 18 connecting the ring 16 to the cradle 18, the first and second bearings 23, 24 being configured to make the cradle 18 rotatable relative to the ring 16 about a second axis of rotation substantially perpendicular to the first axis of rotation 22. According to the invention, the ring 16 is connected to the main structure 11.

Avantageusement, l'actionneur gyroscopique 10 comprend au moins un élément de suspension 13 apte à limiter des micro-vibrations issues de la rotation du berceau 18 et de la roue à inertie 21.Advantageously, the gyroscopic actuator 10 comprises at least one suspension element 13 able to limit micro-vibrations resulting from the rotation of the cradle 18 and the flywheel 21.

Avantageusement, l'actionneur gyroscopique 10 selon l'invention peut comprendre en outre au moins un élément de butée 14 apte à limiter un débattement du berceau 18 et de la roue à inertie 21 par rapport à la structure principale 11.Advantageously, the gyroscopic actuator 10 according to the invention may further comprise at least one abutment element 14 able to limit a travel of the cradle 18 and the inertia wheel 21 with respect to the main structure 11.

Dans cette demande, en ce qui concerne l'anneau 16, nous parlerons uniquement d'anneau pour faciliter la compréhension mais le terme anneau est à comprendre au sens large. L'anneau est à comprendre comme un volume ajouré en son centre. Il peut s'agir d'un solide de révolution tel qu'un tore ou tout autre polyèdre ajouré en son centre, c'est-à-dire un polyèdre dont la section peut prendre diverses formes. L'anneau peut également être un polygone ajouré. L'anneau 16 est ajouré de façon à ce que la roue à inertie 21 soit placée dans l'ajourement, le plan médian de l'anneau 16 n'étant pas nécessairement confondu avec celui de la roue à inertie 21.In this application, with regard to the ring 16, we will speak only of ring to facilitate understanding but the term ring is to be understood in the broad sense. The ring is to be understood as a perforated volume at its center. It may be a solid of revolution such as a torus or any other polyhedron pierced at its center, that is to say a polyhedron whose section may take various forms. The ring can also be a perforated polygon. The ring 16 is perforated so that the flywheel 21 is placed in the opening, the median plane of the ring 16 not necessarily coinciding with that of the flywheel 21.

Dans cette demande, l'anneau 16 est représenté en une seule pièce. Il est bien entendu qu'on ne sort pas du cadre de l'invention en considérant un anneau composé de plusieurs sous-parties reliées entre elles par des moyens de fixation connus. Il en est de même pour le berceau 18 et la structure principale 11.In this application, the ring 16 is shown in one piece. It is understood that it is not beyond the scope of the invention considering a ring composed of several sub-parts interconnected by known fastening means. It is the same for the cradle 18 and the main structure 11.

Le berceau 18 et la roue à inertie 21 forment un sous-ensemble appelé sous-ensemble cardan 17. Et l'anneau 16 et le sous-ensemble cardan 17 forment l'ensemble suspendu 15.The cradle 18 and the flywheel 21 form a subassembly called cardan subassembly 17. And the ring 16 and the cardan subassembly 17 form the suspended assembly 15.

La figure 3 représente le sous-ensemble cardan 17 de l'actionneur gyroscopique 10 à double guidage selon l'invention. Comme décrit précédemment, le sous-ensemble cardan 17 est composé de la roue à inertie 21 montée sur le berceau 18, le berceau 18 est guidé par deux paliers 23, 24, aussi appelés éléments de guidage, en ces deux extrémités 19, 20. Les paliers 23, 24 peuvent être tout type de paliers adaptés. On peut par exemple citer des paliers lisses ou préférentiellement des paliers à roulements, tels que, par exemple, des roulements à billes ou des roulements à rouleaux. Selon l'invention, le sous-ensemble cardan 17 peut comprendre une motorisation 26 dans la première 19 des deux extrémités du berceau 18 destinée à entraîner le berceau 18 en rotation autour du deuxième axe de rotation 25. Le sous-ensemble cardan 17 peut comprendre un élément de transfert de puissance et de signaux 27 dans la seconde 20 des deux extrémités du berceau 18 destiné à transférer une puissance et des signaux entre la roue à inertie 21 et la plateforme. Les signaux issus de la roue à inertie 21 peuvent par exemple être des signaux de température, de vitesse, de position provenant de différents capteurs présents dans la roue à inertie 21. Le transfert de signal peut aussi s'opérer de la plateforme vers la roue, notamment pour la puissance pour l'alimentation de la roue. L'élément de transfert de puissance et de signaux 27 peut être un collecteur avec contact ou un transformateur sans contact. Avantageusement, un transformateur sans contact sera préféré au collecteur avec contact car ce composant améliore nettement les contraintes liées à la durée de vie. En effet, le collecteur avec contact opère par frottement entre des balais et des pistes pour le transfert de la puissance et des signaux. Les frottements limitent la durée de vie du collecteur et perturbent le pilotage du satellite lors du changement du sens de rotation du cardan.The figure 3 represents the cardan subassembly 17 of the double guide gyroscopic actuator 10 according to the invention. As previously described, the cardan subassembly 17 is composed of the inertia wheel 21 mounted on the cradle 18, the cradle 18 is guided by two bearings 23, 24, also called guide elements, at these two ends 19, 20. The bearings 23, 24 may be any type of suitable bearings. For example, there may be mentioned plain bearings or preferably rolling bearings, such as, for example, ball bearings or roller bearings. According to the invention, the cardan subassembly 17 may comprise a motorization 26 in the first 19 of the two ends of the cradle 18 for driving the cradle 18 in rotation about the second axis of rotation 25. The cardan subassembly 17 may comprise a power transfer element and signals 27 in the second 20 of the two ends of the cradle 18 for transferring a power and signals between the flywheel 21 and the platform. The signals coming from the flywheel 21 may for example be temperature, speed, position signals coming from different sensors present in the flywheel 21. The signal transfer can also take place from the platform to the wheel. , especially for the power for feeding the wheel. The power and signal transfer element 27 may be a contact collector or a contactless transformer. Advantageously, a contactless transformer will be preferred to the collector with contact because this component significantly improves the constraints related to the service life. Indeed, the collector with contact operates by friction between brushes and tracks for the transfer of power and signals. The friction limits the service life of the collector and disrupts the steering of the satellite when changing the direction of rotation of the gimbal.

L'actionneur gyroscopique 10 peut aussi comprendre un capteur de position ou de vitesse, par exemple dans la première extrémité 19 du berceau 18. Le capteur peut être un codeur optique permettant d'asservir la position et la vitesse de rotation du sous-ensemble cardan 17.The gyroscopic actuator 10 may also include a position or speed sensor, for example in the first end 19 of the cradle 18. The sensor may be an optical encoder for controlling the position and speed of rotation of the cardan subassembly. 17.

Le deuxième axe de rotation 25, c'est-à-dire l'axe de rotation du cardan, peut être incliné avec un certain angle par rapport au plan d'interface entre la structure principale 11 et la plateforme 12 en fonction des applications.The second axis of rotation 25, that is to say the axis of rotation of the gimbal, can be inclined at an angle with respect to the interface plane between the main structure 11 and the platform 12 depending on the applications.

La partie motorisation est généralement composée d'un moteur, un capteur de position et/ou de vitesse et un roulement principal.The engine part is generally composed of a motor, a position and / or speed sensor and a main bearing.

L'anneau 16 est une pièce complexe dont le rôle est d'assurer la rigidité nécessaire de l'ensemble suspendu 15 tout en s'interfaçant avec le sous-ensemble cardan 17 et les éléments de suspension 13 et de butée 14. Comme expliqué précédemment, l'anneau 16 peut avoir plusieurs formes, il n'est pas nécessairement circulaire, et avec une section de plusieurs formes possibles. Cette pièce peut être réalisée en fabrication additive à partir d'une forme organique optimisée.The ring 16 is a complex piece whose role is to ensure the necessary rigidity of the suspended assembly 15 while interfacing with the cardan subassembly 17 and the suspension elements 13 and stop 14. As previously explained , the ring 16 can have several forms, it is not necessarily circular, and with a section of several possible forms. This piece can be made in additive manufacturing from an optimized organic form.

Le berceau 18 peut être réalisé en fabrication additive à partir d'une forme organique optimisée.The cradle 18 can be made in additive manufacturing from an optimized organic form.

Le sous-ensemble cardan 17 est guidé par rapport à une structure en forme d'anneau 16. Cet ensemble appelé ensemble suspendu 15 est suspendu par le ou les éléments de suspension 13.The cardan subassembly 17 is guided with respect to a ring-shaped structure 16. This assembly, called the suspended assembly 15, is suspended by the suspension element or elements 13.

La figure 4 représente l'ensemble suspendu 15 de l'actionneur gyroscopique 10 à double guidage selon l'invention. Le sous-ensemble cardan 17, c'est-à-dire l'anneau 16, le berceau 18 et la roue à inertie 21, a un centre de gravité Gc. Le sous-ensemble cardan 17 est configuré pour avoir son centre de gravité sur le deuxième axe de rotation 25. Cette configuration peut être obtenue par construction, avec une forme particulière du berceau 18 et/ou de la roue à inertie 21 et grâce à leur positionnement l'un par rapport à l'autre.The figure 4 represents the suspended assembly 15 of the gyroscopic actuator 10 with double guidance according to the invention. The cardan subassembly 17, that is to say the ring 16, the cradle 18 and the flywheel 21, has a center of gravity Gc. The cardan subassembly 17 is configured to have its center of gravity on the second axis of rotation 25. This configuration can be obtained by construction, with a particular shape of the cradle 18 and / or the flywheel 21 and thanks to their positioning relative to each other.

Pour avoir son centre de gravité sur le deuxième axe de rotation 25, le sous-ensemble cardan 17 peut comprendre au moins une masselotte 27 de façon à positionner le centre de gravité Gc du sous-ensemble cardan 17 sur le deuxième axe de rotation 25. La partie en rotation autour du deuxième axe de rotation 25, ou axe cardan, composée essentiellement de la roue à inertie 21 et du berceau 18 est équilibrée en rotation en plaçant son centre de gravité Gc sur l'axe de rotation 25. Une ou des masses d'équilibrage, aussi appelées masselottes 27, sont prévues sur le berceau 18 pour régler la position du centre de gravité Gc de la partie mobile, c'est-à-dire du sous-ensemble cardan 17, sur l'axe de rotation 25. Le nombre, le positionnement, la forme des masses d'équilibrage 27 peuvent varier selon la configuration considérée. Sur la figure 4, elles sont positionnées sur une face du berceau 18, néanmoins, elles pourraient également être positionnées sur une autre face du berceau 18 ou sur la roue à inertie 21. Le positionnement du centre de gravité Gc du sous-ensemble cardan 17 sur l'axe de rotation 25 permet d'éviter que la roue à inertie 21 ne tourne pendant le lancement et limite les micro-vibrations générées par la rotation du sous-ensemble cardan 17. Si ces micro-vibrations ne sont pas limitées, la performance est alors dégradée.To have its center of gravity on the second axis of rotation 25, the cardan subassembly 17 may comprise at least one feeder 27 so as to position the center of gravity Gc of the cardan subassembly 17 on the second axis of rotation 25. The part rotated about the second axis of rotation 25, or cardan axis, composed essentially of the flywheel 21 and the cradle 18 is balanced in rotation by placing its center of gravity Gc on the axis of rotation 25. One or more balance weights, also called weights 27, are provided on the cradle 18 to adjust the position of the center of gravity Gc of the movable part, that is to say the cardan subassembly 17, on the axis of rotation 25. The number, the positioning, the shape of the balancing masses 27 may vary according to the configuration considered. On the figure 4 they are positioned on one side of the cradle 18, nevertheless, they could also be positioned on another face of the cradle 18 or on the flywheel 21. The positioning of the center of gravity Gc of the cardan subassembly 17 on the axis rotation 25 prevents the inertia wheel 21 from rotating during the launch and limits the micro-vibrations generated by the rotation of the cardan sub-assembly 17. If these micro-vibrations are not limited, the performance is then degraded.

La figure 5 représente un exemple de configuration des éléments de suspension 13 et des éléments de butée 14 de l'actionneur gyroscopique 10 à double guidage selon l'invention. Cet exemple donne une configuration à quatre éléments de suspension 13 et quatre éléments de butée 14 dont les axes sont positionnés dans le même plan, les axes pointant vers le centre de gravité Gs de l'ensemble suspendu 15.The figure 5 represents an exemplary configuration of the suspension elements 13 and the stop elements 14 of the gyroscopic actuator 10 with double guidance according to the invention. This example gives a configuration with four suspension elements 13 and four abutment elements 14 whose axes are positioned in the same plane, the axes pointing towards the center of gravity Gs of the suspended assembly 15.

L'invention repose sur le fait d'utiliser des éléments de suspension 13 et de butée 14 pour réaliser une fonction de filtrage des micro-vibrations générées par la rotation de la roue à inertie 21 et par la motorisation du cardan lors des phases de manoeuvre et de prises de vue satellite par l'intermédiaire d'éléments de suspension 13, ainsi que pour réaliser une fonction de tenue des charges de lancement grâce aux éléments de butée 14.The invention is based on the fact of using suspension elements 13 and abutment 14 to perform a micro-vibration filtering function generated by the rotation of the flywheel 21 and the drive of the cardan during the maneuvering phases. and satellite shots via suspension elements 13, as well as to perform a function of holding launch loads through the stop elements 14.

En fonction de la masse mobile et des performances de filtrage à atteindre, ces éléments 13, 14 peuvent être multipliés autour de la charge mobile pour répondre au besoin recherché. Sur la figure 5, le nombre d'éléments de suspension 13 est égal au nombre d'éléments de butée 14, mais ce n'est pas nécessairement le cas. Le nombre d'éléments de suspension 13 peut être différent du nombre d'éléments de butée 14.Depending on the mobile mass and the filter performance to be achieved, these elements 13, 14 can be multiplied around the mobile load to meet the desired need. On the figure 5 , the number of suspension elements 13 is equal to the number of abutment elements 14, but this is not necessarily the case. The number of suspension elements 13 may be different from the number of abutment elements 14.

Les éléments de suspension 13 et les éléments de butée 14 sont montés entre l'ensemble à isoler générateur de micro-vibrations exportées et la structure principale 11 reliée à la plateforme. On peut noter que les éléments de suspension 13 et les éléments de butée 14 de l'invention peuvent être dimensionnés spécifiquement en fonction de l'utilisation qu'il en est faite, mais aussi il est important de souligner qu'ils peuvent être des éléments de suspension et de butée standard sans nécessité de les redimensionner quelle que soit l'actionneur gyroscopique. En effet, la modularité de ces éléments de suspension 13 et des éléments de butée 14 permet de choisir le nombre d'éléments et d'aménager ces éléments en fonction des performances à atteindre, de la masse mobile suspendue, des efforts au lancement.The suspension elements 13 and the abutment elements 14 are mounted between the set to isolate exported micro-vibration generator and the main structure 11 connected to the platform. It may be noted that the suspension elements 13 and the abutment elements 14 of the invention can be dimensioned specifically according to the use made of it, but also it is important to emphasize that they can be elements standard suspension and stop without the need to resize them regardless of the gyro actuator. Indeed, the modularity of these suspension elements 13 and the abutment elements 14 allows to choose the number of elements and to arrange these elements according to the performances to be reached, the mobile mass suspended, the efforts to the launching.

Dans cette demande, nous faisons la distinction entre un élément de suspension 13 et un élément de butée 14. Néanmoins, l'invention s'applique de manière similaire à un élément commun qui est à la fois un élément de suspension et de butée. Autrement dit, il est possible d'appliquer l'invention avec un élément ayant à la fois le rôle d'un élément de suspension et d'un élement de butéeIn this application, we distinguish between a suspension element 13 and a stop element 14. Nevertheless, the invention applies similarly to a common element which is both a suspension and abutment element. In other words, it is possible to apply the invention with an element having both the role of a suspension element and a stop element

L'élément de suspension 13 et l'élément de butée 14 sont utilisés de manière complémentaire : en effet lors du lancement, l'élément de butée 14 assure la fonction de maintien. Le déplacement de la charge mobile est limité et amorti. Autrement dit, le déplacement de la charge mobile est contrôlé. Lors des prises de vue, les éléments de suspension 13 filtrent les micro-vibrations générées par l'ensemble suspendu 15 sans contact au niveau de l'élément de butée 14. La raideur des éléments de suspension 13 est plus faible que la raideur des éléments de butée 14, typiquement d'un facteur 10. Au lancement, l'élément de suspension 13 suit la déformation de l'élément de butée 14.The suspension element 13 and the abutment element 14 are used in a complementary manner: indeed, during launching, the abutment element 14 performs the holding function. Moving the moving load is limited and amortized. In other words, the movement of the moving load is controlled. When shooting, the suspension elements 13 filter the micro-vibrations generated by the suspended assembly 15 without contact at the stop element 14. The stiffness of the suspension elements 13 is lower than the stiffness of the elements abutment 14, typically a factor 10. At launch, the suspension element 13 follows the deformation of the abutment element 14.

Plus précisément, un jeu tridimensionnel est créé autour de l'élément de butée 14. L'élément de suspension 13 travaille et filtre les micro-vibrations. Les rotations combinées de la roue à inertie 21 et du berceau 18 génèrent un couple gyroscopique à transmettre à la plateforme. Lors de la génération du couple gyroscopique, l'élément de suspension 13 est déformé jusqu'à ce que l'élément de butée 14 prenne le relais. L'élément de butée 14 se déforme lorsque le jeu est rattrapé et qu'il y a un contact avec l'élément de butée 14. Le couple gyroscopique est alors transmis à la plateforme essentiellement par l'élément de butée 14.More specifically, a three-dimensional game is created around the stop element 14. The suspension element 13 works and filters the micro-vibrations. The combined rotations of the flywheel 21 and the cradle 18 generate a gyroscopic torque to be transmitted to the platform. During the generation of the gyroscopic torque, the suspension element 13 is deformed until the stop element 14 takes over. The stop element 14 deforms when the game is caught and there is contact with the abutment element 14. The gyroscopic torque is then transmitted to the platform essentially by the abutment element 14.

Les éléments de suspension 13 peuvent être placés dans un même plan, l'isobarycentre de l'ensemble de ces éléments est avantageusement confondu, ou coïncide sensiblement, avec le centre de gravité de l'ensemble suspendu 15. Les axes de ces éléments peuvent être placés dans un même plan ou non. Avantageusement, on peut choisir de placer les axes de ces éléments de suspension 13 à équidistance du centre de gravité de l'ensemble suspendu 15 et pointer ou non vers le centre de gravité de l'ensemble suspendu 15.The suspension elements 13 can be placed in the same plane, the isobarycentre of all of these elements is advantageously coincident with, or substantially coincides with, the center of gravity of the suspended assembly 15. The axes of these elements can be placed in the same plane or not. Advantageously, one can choose from place the axes of these suspension elements 13 equidistant from the center of gravity of the suspended assembly 15 and point or not toward the center of gravity of the suspended assembly 15.

Les éléments de butée 14 peuvent également être placés dans un même plan, l'isobarycentre de l'ensemble de ces éléments est avantageusement confondu, ou coïncide sensiblement, avec le centre de gravité de l'ensemble suspendu 15. Les axes de ces éléments peuvent être placés dans un même plan ou non et pointer ou non vers le centre de gravité de l'ensemble suspendu 15.The abutment elements 14 can also be placed in the same plane, the isobarycentre of all these elements is advantageously coincident with, or substantially coincides with, the center of gravity of the suspended assembly 15. The axes of these elements can be placed in the same plane or not and point or not towards the center of gravity of the suspended assembly 15.

Les plans contenant les axes des éléments de suspension 13 et des éléments de butée 14 peuvent être ou non confondus. Par exemple, on peut choisir de placer les axes des éléments de suspension 13 et des éléments de butée 14 dans un même plan et que ce plan contienne le centre de gravité de l'ensemble suspendu 15.The planes containing the axes of the suspension elements 13 and the abutment elements 14 may or may not be merged. For example, one can choose to place the axes of the suspension elements 13 and the abutment elements 14 in the same plane and that this plane contains the center of gravity of the suspended assembly 15.

Les éléments de suspension 13 et les éléments de butée 14 peuvent être également aménagés selon les besoins avec des angles différents pour placer l'isobarycentre des éléments de suspension 13 et/ou des éléments de butée 14 au centre de gravité de l'ensemble suspendu 15.The suspension elements 13 and the abutment members 14 can also be arranged as required with different angles to place the isobarycentre of the suspension elements 13 and / or abutment elements 14 at the center of gravity of the suspended assembly 15 .

La raideur de l'élément de suspension 13 est plus faible que la raideur de l'élément de butée 14, le but étant que la raideur de l'élément de butée 14 assure toute la tenue mécanique de la partie mobile lors du lancement. En mode de prise de vue, l'élément de suspension 13 filtre les micro-vibrations générées par la rotation de la roue 21 et la rotation du berceau 18, l'élément de butée 14 n'est pas sollicité : un jeu fonctionnel est présent tout autour de la butée.The stiffness of the suspension element 13 is lower than the stiffness of the abutment element 14, the aim being that the stiffness of the abutment element 14 ensures all the mechanical strength of the mobile part during launching. In the shooting mode, the suspension element 13 filters the micro-vibrations generated by the rotation of the wheel 21 and the rotation of the cradle 18, the abutment element 14 is not stressed: a functional game is present all around the stop.

De manière générale, la roue à inertie 21 et le berceau 18 constituant deux composants d'un premier bloc, l'ensemble suspendu 15 et la structure principale 11 constituant deux composants d'un deuxième bloc, l'actionneur gyroscopique 10 et la plateforme constituant deux composants d'un troisième bloc, on peut dire que le au moins un élément de suspension 13 est positionné entre les deux composants d'un bloc. De même, le au moins un élément de butée 14 est positionné entre les deux composants d'un bloc. On peut donc noter la totale modularité des éléments de suspension 13 et des éléments de butée 14 tant en ce qui concerne le nombre de chacun des éléments que le positionnement de ces éléments. Autrement dit, il est possible de positionner le ou les élements de suspension 13 et/ou le ou les éléments de butée 14 entre la roue à inertie 21 et le berceau 18 et/ou entre l'ensemble suspendu 15 et la structure principale 11 et/ou entre l'actionneur gyroscopique 10 et la plateforme 12. Pour chacune des configurations (entre la roue à inertie 21 et le berceau 18, entre l'ensemble suspendu 15 et la structure principale 11, entre l'actionneur gyroscopique 10 et la plateforme 12), les éléments de suspension 13 et/ou de butée 14 peuvent être répartis de manière uniforme ou non entre les deux composants du bloc correspondant et l'orientation des éléments de suspension 13 peut être la même pour tous les éléments de suspension, mais peut aussi différer. Il en est de même pour les éléments de butée 14. De plus les éléments de suspension 13 peuvent être orientés de la même manière que les éléments de butée 14 mais peuvent aussi être orientés différemment. La modularité de ces éléments est totale.In general, the flywheel 21 and the cradle 18 constituting two components of a first block, the suspended assembly 15 and the main structure 11 constituting two components of a second block, the gyroscopic actuator 10 and the platform constituting two components of a third block, it can be said that the at least one suspension element 13 is positioned between the two components of a block. Similarly, the at least one abutment element 14 is positioned between the two components of a block. It is therefore possible to note the total modularity of the suspension elements 13 and the abutment elements 14 both as regards the number of each of the elements and the positioning of these elements. In other words, it is possible to position the suspension element (s) 13 and / or the abutment element (s) 14 between the flywheel 21 and the cradle 18 and / or between the suspended assembly 15 and the main structure 11 and or between the gyroscopic actuator 10 and the platform 12. For each of the configurations (between the flywheel 21 and the cradle 18, between the suspension assembly 15 and the main structure 11, between the gyroscopic actuator 10 and the platform 12), the suspension elements 13 and / or abutment 14 may be uniformly distributed or not between the two components of the corresponding block and the orientation of the suspension elements 13 may be the same for all the suspension elements, but may also differ. It is the same for the stop elements 14. In addition the suspension elements 13 can be oriented in the same way as the stop elements 14 but can also be oriented differently. The modularity of these elements is total.

La figure 6 représente un autre exemple de configuration des éléments de suspension 13 et des éléments de butée 14 de l'actionneur gyroscopique 10 à double guidage selon l'invention.The figure 6 represents another example of configuration of the suspension elements 13 and the stop elements 14 of the gyroscopic actuator 10 with double guidance according to the invention.

Les éléments de suspension 13 et de butée 14 peuvent être répartis à souhait tant par leur nombre que par leur position sur l'anneau 16.The suspension elements 13 and abutment 14 can be distributed as desired both by their number and by their position on the ring 16.

L'ensemble suspendu 15 a un centre de gravité Gs, le au moins un élément de suspension 13 a un isobarycentre. Et le au moins un élément de suspension 13 est aménagé de façon à ce que l'isobarycentre du au moins un élément de suspension 13 coïncide sensiblement avec le centre de gravité Gs de l'ensemble suspendu 15. De même, le au moins un élément de butée 14 a un isobarycentre. Le au moins un élément de butée 14 est aménagé de façon à ce que l'isobarycentre du au moins un élément de butée 14 coïncide sensiblement avec le centre de gravité Gs de l'ensemble suspendu 15.The suspended assembly 15 has a center of gravity Gs, the at least one suspension element 13 has an isobarycenter. And the at least one suspension element 13 is arranged so that the isobarycentre of the at least one suspension element 13 coincides substantially with the center of gravity Gs of the suspended assembly 15. Similarly, the at least one element stop 14 has an isobarycenter. The at least one abutment element 14 is arranged so that the isobarycentre of the at least one abutment element 14 substantially coincides with the center of gravity Gs of the suspended assembly 15.

Une solution préférentielle est de placer l'isobarycentre de l'ensemble de tous les éléments 13, 14 confondu avec le centre de gravité Gs de l'ensemble suspendu 15.A preferred solution is to place the isobarycentre of all of the elements 13, 14 coincides with the center of gravity Gs of the suspended assembly 15.

Ces éléments de suspension 13 et de butée 14 peuvent être répartis uniformément ou non autour de l'ensemble mobile.These suspension elements 13 and abutment 14 may be uniformly distributed or not around the moving assembly.

Les plans contenant les éléments de suspension 13 et les éléments de butée 14 peuvent être confondus ou pas.The planes containing the suspension elements 13 and the abutment elements 14 may be merged or not.

Les éléments de suspension 13 et de butée 14 permettent également de limiter les charges subies par les équipements montés sur l'ensemble suspendu 15. Par exemple, les niveaux de chocs injectés à la base du CMG, c'est-à-dire entre la structure principale 11 et la plateforme 12, sont filtrés par les éléments de suspension 13 et de butée 14. Cette solution permet d'implanter des éléments sensibles aux chocs sur l'ensemble suspendu 15, notamment le codeur optique et la roue à inertie 21.The suspension elements 13 and abutment 14 also limit the loads incurred by the equipment mounted on the suspended assembly 15. For example, the shock levels injected at the base of the CMG, that is to say between the main structure 11 and the platform 12, are filtered by the suspension elements 13 and abutment 14. This solution makes it possible to implement shock-sensitive elements on the suspended assembly 15, in particular the optical encoder and the flywheel 21.

La figure 7 représente un mode de réalisation de la structure principale 11 de l'actionneur gyroscopique 10 à double guidage selon l'invention. La structure principale 11 supportant l'ensemble suspendu 15 peut être réalisée en fabrication additive à partir d'une forme organique optimisée. Cette possibilité permet d'obtenir une structure principale 11 de la forme, raideur et tenue souhaitées avec un gain de masse considérable comparé à une structure principale traditionnelle telle que représentée sur la figure 2. Par exemple, une structure principale telle que représentée sur la figure 2 pèse 9 kg alors que la structure principale représentée sur la figure 7 ne pèse que 3 kg. La structure principale 11 pouvant prendre n'importe quelle forme souhaitée, il est possible de choisir l'angle d'inclinaison du deuxième axe de rotation 25. Sur la figure 2, cet angle est d'environ 30°, mais l'adaptation possible de la forme de la structure principale 11 permet d'avoir n'importe quel angle d'inclinaison.The figure 7 represents an embodiment of the main structure 11 of the gyroscopic actuator 10 with double guidance according to the invention. The main structure 11 supporting the suspended assembly 15 can be made in additive manufacturing from an optimized organic form. This possibility makes it possible to obtain a main structure 11 of the desired shape, stiffness and holding with a considerable gain in mass compared with a traditional main structure as represented on FIG. figure 2 . For example, a main structure as represented on the figure 2 weighs 9 kg while the main structure represented on the figure 7 weighs only 3 kg. The main structure 11 can take any desired shape, it is possible to choose the angle of inclination of the second axis of rotation 25. On the figure 2 this angle is about 30 °, but the possible adaptation of the shape of the main structure 11 allows to have any angle of inclination.

Ainsi l'invention propose une solution d'actionneur gyroscopique avec deux guidages et une motorisation plus petite, en intégrant les suspensions dans l'actionneur au plus près des composants générateurs de micro-vibrations et en réalisant un ensemble cardan complètement suspendu.Thus, the invention proposes a gyroscopic actuator solution with two guides and a smaller motorization, integrating the suspensions in the actuator closer to the micro-vibration generating components and realizing a completely suspended gimbal assembly.

L'anneau permet de dégager beaucoup de place pour pouvoir placer les éléments de suspension et de butée.The ring allows to clear a lot of room to be able to place the elements of suspension and stop.

Les avantages de cette solution sont une réduction des micro-vibrations transmises à la plateforme, avec possibilité de placer un système de suspension si besoin, la limitation de frottement grâce à l'utilisation d'un transformateur sans contact pour faire transiter la puissance et signaux de la roue, ce qui favorise la durée de vie et augmente les performances de l'actionneur gyroscopique car il n'y a pas de couple de frottement sec venant du collecteur. Un autre avantage majeur est la modularité des éléments de suspension et des éléments de butée. Le nombre d'éléments peut être multiplié et il est possible de les aménager pour se conformer au besoin en fonction du besoin de filtrage, de la masse suspendue, de la position du centre de gravité. Un avantage majeur est constitué par le filtrage des micro-vibrations générées à la source pour éviter l'effet d'amplification de ces micro-vibrations. De plus, les éléments de butée permettent de s'affranchir d'un système de gerbage onéreux. Selon l'invention, la charge mobile n'est pas gerbée grâce à l'utilisation d'éléments de butée. Enfin, les équipements embarqués sont protégés en limitant les charges au lancement par les éléments de butées.The advantages of this solution are a reduction of micro-vibrations transmitted to the platform, with the possibility of placing a suspension system if necessary, the limitation of friction through the use of a transformer without contact for passing power and signals of the wheel, which promotes the service life and increases the performance of the gyroscopic actuator because there is no dry friction torque from the collector. Another major advantage is the modularity of the suspension elements and the stop elements. The number of elements can be multiplied and it is possible to develop them to comply with the need based on the need for filtering, the suspended mass, the position of the center of gravity. A major advantage is the filtering of micro-vibrations generated at the source to avoid the amplification effect of these micro-vibrations. In addition, the stop elements make it possible to overcome an expensive stacking system. According to the invention, the moving load is not stacked thanks to the use of stop elements. Finally, the onboard equipment is protected by limiting the loads at launch by the abutment elements.

L'invention concerne également un satellite comprenant au moins trois actionneurs gyroscopiques tels que décrits précédemment et configurés pour gérer l'orientation du satellite. La figure 8 représente schématiquement un satellite 100 comprenant au moins trois actionneurs gyroscopiques 10 selon l'invention. Avantageusement, le satellite 100 peut comprendre quatre actionneurs gyroscopiques (ou plus) afin d'assurer une redondance en cas de panne d'un des actionneurs gyroscopiques.The invention also relates to a satellite comprising at least three gyroscopic actuators as described above and configured to manage the orientation of the satellite. The figure 8 schematically represents a satellite 100 comprising at least three gyroscopic actuators 10 according to the invention. Advantageously, the satellite 100 may comprise four or more gyroscopic actuators to provide redundancy in the event of a failure of one of the gyroscopic actuators.

Claims (11)

Actionneur gyroscopique (10) à double guidage destiné à équiper un satellite comprenant : - une structure principale (11) reliée à une plateforme (12) ladite plateforme (12) étant destinée à être reliée au satellite, - un anneau (16), - un berceau (18) en forme de U, ayant une première extrémité (19) et une seconde extrémité (20) et une partie centrale, - une roue à inertie (21) montée sur la partie centrale du berceau (18) entre la première et la seconde extrémités (19, 20), la roue à inertie (21) étant mobile en rotation par rapport au berceau (18) autour d'un premier axe de rotation (22), caractérisé en ce qu'il comprend un premier palier (23) positionné à la première extrémité (19) du berceau (18) et un second palier (24) positionné à la seconde extrémité (20) du berceau (18) reliant l'anneau (16) au berceau (18), les premier et second paliers (23, 24) étant configurés pour rendre le berceau (18) mobile en rotation par rapport à l'anneau (16) autour d'un deuxième axe de rotation (25) sensiblement perpendiculaire au premier axe de rotation (22), et en ce que l'anneau (16) est relié à la structure principale (11).Gyroscopic actuator (10) with double guidance for equipping a satellite comprising: a main structure (11) connected to a platform (12), said platform (12) being intended to be connected to the satellite, a ring (16), a U-shaped cradle (18) having a first end (19) and a second end (20) and a central portion, - an inertia wheel (21) mounted on the central part of the cradle (18) between the first and second ends (19, 20), the inertia wheel (21) being rotatable relative to the cradle (18) around a first axis of rotation (22), characterized in that it comprises a first bearing (23) positioned at the first end (19) of the cradle (18) and a second bearing (24) positioned at the second end (20) of the cradle (18) connecting the ring (16) to the cradle (18), the first and second bearings (23, 24) being configured to rotate the cradle (18) relative to the ring (16) about a second axis of rotation (25). ) substantially perpendicular to the first axis of rotation (22), and in that the ring (16) is connected to the main structure (11). Actionneur gyroscopique (10) selon la revendication précédente, caractérisé en ce qu'il comprend au moins un élément de suspension (13) apte à limiter des micro-vibrations issues du berceau (18) et de la roue à inertie (21).Gyroscopic actuator (10) according to the preceding claim, characterized in that it comprises at least one suspension element (13) adapted to limit micro-vibrations from the cradle (18) and the flywheel (21). Actionneur gyroscopique (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre au moins un élément de butée (14) apte à limiter un débattement du berceau (18) et de la roue à inertie (21) par rapport à la structure principale (11).Gyroscopic actuator (10) according to any one of the preceding claims, characterized in that it further comprises at least one stop element (14) able to limit a movement of the cradle (18) and the flywheel (21). ) with respect to the main structure (11). Actionneur gyroscopique (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une motorisation dans la première extrémité (19) du berceau (18) destinée à entraîner le berceau (18) en rotation autour du deuxième axe de rotation (25).Gyroscopic actuator (10) according to any one of the preceding claims, characterized in that it comprises a motorization in the first end (19) of the cradle (18) intended to driving the cradle (18) in rotation about the second axis of rotation (25). Actionneur gyroscopique (10) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un élément de transfert de puissance et de signaux (27) dans la seconde extrémité (20) du berceau (18) destiné à transférer une puissance et des signaux entre la roue à inertie (21) et la plateforme (12).A gyroscopic actuator (10) as claimed in any one of the preceding claims, characterized in that it comprises a power and signal transfer element (27) in the second end (20) of the cradle (18) for transferring power and signals between the flywheel (21) and the platform (12). Actionneur gyroscopique (10) selon l'une quelconque des revendications précédentes, le berceau (18) et la roue à inertie (21) formant un sous-ensemble (17) ayant un centre de gravité, caractérisé en ce que le sous-ensemble (17) est configuré pour avoir son centre de gravité sur le deuxième axe de rotation (25).A gyro actuator (10) as claimed in any one of the preceding claims, the cradle (18) and the inertia wheel (21) forming a subassembly (17) having a center of gravity, characterized in that the subset ( 17) is configured to have its center of gravity on the second axis of rotation (25). Actionneur gyroscopique (10) selon l'une quelconque des revendications 2 à 6 en tant que revendications dépendantes de la revendication 2, l'anneau (16), le berceau (18) et la roue à inertie (21) formant un ensemble suspendu (15), la roue à inertie (21) et le berceau (18) constituant deux composants d'un premier bloc, l'ensemble suspendu (15) et la structure principale (11) constituant deux composants d'un deuxième bloc, l'actionneur gyroscopique (10) et la plateforme (12) constituant deux composants d'un troisième bloc, caractérisé en ce que le au moins un élément de suspension (13) est positionné entre les deux composants d'un bloc.A gyro actuator (10) according to any one of claims 2 to 6 as dependent claims of claim 2, the ring (16), the cradle (18) and the flywheel (21) forming a suspended assembly ( 15), the inertia wheel (21) and the cradle (18) constituting two components of a first block, the suspended assembly (15) and the main structure (11) constituting two components of a second block, the gyroscopic actuator (10) and the platform (12) constituting two components of a third block, characterized in that the at least one suspension element (13) is positioned between the two components of a block. Actionneur gyroscopique (10) selon l'une quelconque des revendications 3 à 7 en tant que revendications dépendantes de la revendication 3, l'anneau (16), le berceau (18) et la roue à inertie (21) formant un ensemble suspendu (15), la roue à inertie (21) et le berceau (18) constituant deux composants d'un premier bloc, l'ensemble suspendu (15) et la structure principale (11) constituant deux composants d'un deuxième bloc, l'actionneur gyroscopique (10) et la plateforme (12) constituant deux composants d'un troisième bloc, caractérisé en ce que le au moins un élément de butée (14) est positionné entre les deux composants d'un bloc.A gyro actuator (10) according to any one of claims 3 to 7 as dependent claims of claim 3, the ring (16), the cradle (18) and the flywheel (21) forming a suspended assembly ( 15), the inertia wheel (21) and the cradle (18) constituting two components of a first block, the suspended assembly (15) and the main structure (11) constituting two components of a second block, the gyroscopic actuator (10) and the platform (12) constituting two components of a third block, characterized in that the at least one abutment element (14) is positioned between the two components of a block. Actionneur gyroscopique (10) selon l'une quelconque des revendications 2 à 8 en tant que revendications dépendantes de la revendication 2, l'anneau (16), le berceau (18) et la roue à inertie (21) formant un ensemble suspendu (15) ayant un centre de gravité, le au moins un élément de suspension (13) ayant un isobarycentre, caractérisé en ce que le au moins un élément de suspension (13) est aménagé de façon à ce que l'isobarycentre du au moins un élément de suspension (13) coïncide sensiblement avec le centre de gravité de l'ensemble suspendu (15).A gyro actuator (10) according to any of claims 2 to 8 as dependent claims of claim 2, the ring (16), the cradle (18) and the flywheel (21) forming a suspended assembly ( 15) having a center of gravity, the at least one suspension element (13) having an isobarycenter, characterized in that the at least one suspension element (13) is arranged so that the isobarycenter of the at least one suspension element (13) substantially coincides with the center of gravity of the suspended assembly (15). Actionneur gyroscopique (10) selon l'une quelconque des revendications 3 à 9 en tant que revendications dépendantes de la revendication 3, l'anneau (16), le berceau (18) et la roue à inertie (21) formant un ensemble suspendu (15) ayant un centre de gravité, le au moins un élément de butée (14) ayant un isobarycentre, caractérisé en ce que le au moins un élément de butée (14) est aménagé de façon à ce que l'isobarycentre du au moins un élément de butée (14) coïncide sensiblement avec le centre de gravité de l'ensemble suspendu (15).A gyro actuator (10) according to any of claims 3 to 9 as dependent claims of claim 3, the ring (16), the cradle (18) and the flywheel (21) forming a suspended assembly ( 15) having a center of gravity, the at least one abutment element (14) having an isobarycenter, characterized in that the at least one abutment element (14) is arranged so that the isobarycenter of the at least one abutment element (14) substantially coincides with the center of gravity of the suspended assembly (15). Satellite (100) caractérisé en ce qu'il comprend au moins trois actionneurs gyroscopiques (10) selon l'une quelconque des revendications précédentes configurés pour gérer l'orientation du satellite.Satellite (100) characterized in that it comprises at least three gyroscopic actuators (10) according to any one of the preceding claims configured to manage the orientation of the satellite.
EP16188885.4A 2015-09-18 2016-09-15 Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element Withdrawn EP3144228A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1501932A FR3041327B1 (en) 2015-09-18 2015-09-18 GYROSCOPIC ACTUATOR WITH DOUBLE CARDAN GUIDANCE, SUSPENSION ELEMENT AND STOPPER ELEMENT

Publications (1)

Publication Number Publication Date
EP3144228A1 true EP3144228A1 (en) 2017-03-22

Family

ID=55345860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16188885.4A Withdrawn EP3144228A1 (en) 2015-09-18 2016-09-15 Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element

Country Status (3)

Country Link
US (1) US20170081050A1 (en)
EP (1) EP3144228A1 (en)
FR (1) FR3041327B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111191326A (en) * 2019-12-27 2020-05-22 中国航空工业集团公司西安飞机设计研究所 Method for calculating hydraulic flow demand of flight control actuator by airplane
US20220250773A1 (en) * 2019-03-25 2022-08-11 Airbus Defence And Space Sas Device and method for determining the attitude of a satellite equipped with gyroscopic actuators, and satellite carrying such a device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10484095B2 (en) * 2017-06-15 2019-11-19 The Aerospace Corporation Communications relay satellite with a single-axis gimbal
CN111837065B (en) 2018-01-12 2022-08-30 巴科股份有限公司 Device for elastic pivoting about two orthogonal axes
US11021271B2 (en) 2018-05-10 2021-06-01 SpinLaunch Inc. Ruggedized reaction wheel for use on kinetically launched satellites
EP3628910B1 (en) 2018-09-26 2022-01-12 Goodrich Corporation Mechanical hard stops with movable stop members
US11483942B2 (en) 2019-12-18 2022-10-25 SpinLaunch Inc. Ruggedized avionics for use on kinetically launched vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014653A1 (en) * 1992-12-22 1994-07-07 Honeywell Inc. Direct torque control moment gyroscope
EP2060810A1 (en) * 2007-11-14 2009-05-20 Honeywell International Inc. Vibration reduction system employing active bearing mounts
WO2009066045A2 (en) * 2007-11-22 2009-05-28 Astrium Sas Modular device for multi-axial insulation against vibration and impacts, based on elastomer
EP2130767A1 (en) * 2008-06-06 2009-12-09 Thales Device for supporting at least one mobile object, reusable, secured independently and shockless, for spacecraft
EP2711300A2 (en) * 2012-09-25 2014-03-26 Honeywell International Inc. Launch lock assemblies with reduced preload and spacecraft isolation systems including the same
WO2014102770A1 (en) * 2012-12-26 2014-07-03 Israel Aerospace Industries Ltd Device, system and method for attitude control

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066905A (en) * 1960-02-26 1962-12-04 Allied Res Associates Inc Vibration isolator
US3565386A (en) * 1969-02-19 1971-02-23 Gen Motors Corp Mount for a body and coupling unit therefor
GB2036311B (en) * 1978-12-06 1982-12-22 Ferranti Ltd Gyroscopic apparatus
US4282529A (en) * 1978-12-18 1981-08-04 General Dynamics, Pomona Division Differential drive rolling arc gimbal
US4270393A (en) * 1979-03-12 1981-06-02 Martin Marietta Corporation Isolation system
JPS6011746A (en) * 1983-06-30 1985-01-22 Toshiba Corp Fly wheel device
US5305981A (en) * 1991-10-31 1994-04-26 Honeywell Inc. Multiaxis vibration isolation system
US20040261569A1 (en) * 2003-06-26 2004-12-30 Jacobs Jack H. Piezodynamic vibration damping system
FR2907423B1 (en) * 2006-10-23 2009-07-03 Astrium Sas Soc Par Actions Si GYRODYNE AND ITS MOUNTING DEVICE
FR2967742B1 (en) * 2010-11-23 2013-11-22 Astrium Sas VIBRATION INSULATION DEVICE
US9297438B2 (en) * 2012-01-25 2016-03-29 Honeywell International Inc. Three parameter damper anisotropic vibration isolation mounting assembly
US9354079B2 (en) * 2012-05-21 2016-05-31 Honeywell International Inc. Control moment gyroscopes including torsionally-stiff spoked rotors and methods for the manufacture thereof
US8919213B2 (en) * 2012-05-21 2014-12-30 Honeywell International Inc. Control moment gyroscopes including rotors having radially-compliant spokes and methods for the manufacture thereof
US10202208B1 (en) * 2014-01-24 2019-02-12 Arrowhead Center, Inc. High control authority variable speed control moment gyroscopes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014653A1 (en) * 1992-12-22 1994-07-07 Honeywell Inc. Direct torque control moment gyroscope
EP2060810A1 (en) * 2007-11-14 2009-05-20 Honeywell International Inc. Vibration reduction system employing active bearing mounts
WO2009066045A2 (en) * 2007-11-22 2009-05-28 Astrium Sas Modular device for multi-axial insulation against vibration and impacts, based on elastomer
EP2130767A1 (en) * 2008-06-06 2009-12-09 Thales Device for supporting at least one mobile object, reusable, secured independently and shockless, for spacecraft
EP2711300A2 (en) * 2012-09-25 2014-03-26 Honeywell International Inc. Launch lock assemblies with reduced preload and spacecraft isolation systems including the same
WO2014102770A1 (en) * 2012-12-26 2014-07-03 Israel Aerospace Industries Ltd Device, system and method for attitude control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250773A1 (en) * 2019-03-25 2022-08-11 Airbus Defence And Space Sas Device and method for determining the attitude of a satellite equipped with gyroscopic actuators, and satellite carrying such a device
US11498704B2 (en) * 2019-03-25 2022-11-15 Airbus Defence And Space Sas Device and method for determining the attitude of a satellite equipped with gyroscopic actuators, and satellite carrying such a device
CN111191326A (en) * 2019-12-27 2020-05-22 中国航空工业集团公司西安飞机设计研究所 Method for calculating hydraulic flow demand of flight control actuator by airplane

Also Published As

Publication number Publication date
FR3041327B1 (en) 2019-05-31
FR3041327A1 (en) 2017-03-24
US20170081050A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
EP3144228A1 (en) Gyroscopic actuator with dual gimbal guidance, suspension member and abutment element
EP1002716B1 (en) Method and device for the attitude control of a satellite
EP0142397B1 (en) Antenna stabilisation and aiming device, especially on a ship
EP2081829B1 (en) Gyrodyne and device for assembly thereof
FR2946745A1 (en) DYNAMIC LOAD BENCH.
EP0870676A1 (en) Individual blade control for rotorcraft with multiple swashplates
EP0435708A2 (en) Control method of the attitude with respect to the roll- and the gear axis for a satellite
EP0318359A1 (en) Device for spreading projectile wings
FR2837784A1 (en) CELLULAR DRIVE GIRAVION ROTOR WITH TORQUE SHARING DIFFERENTIAL
EP0055720B1 (en) Device for the orientation and the positioning of a useful load
WO2014122176A1 (en) Force feedback mini-shaft for electromagnetic control
EP1963706A2 (en) Elastomer-based modular multi-axis vibration/shock isolation device
EP1914815B1 (en) Turret with positioning in two axes and piezoelectric motorisation
EP2524816A1 (en) Device for rotational coupling of a crown gear to a wheel and aircraft landing gear provided with such a device
FR3034535A1 (en) METHOD AND DEVICE FOR CONTROLLING THE ATTITUDE OF A SPACE DEVICE
EP1188668B1 (en) Orientation device and on-board orientation system
EP3213999B1 (en) Deployment and pointing device
EP2222566A1 (en) Actuator with transfer of angular momentum for the attitude control of a spacecraft
EP2942287B1 (en) Method for controlling an attitude control system and attitude control system of a spacecraft
EP1635485B1 (en) Optical transmission method between an on-board spacecraft terminal and a distant terminal, and spacecraft adapted for said method
FR2746366A1 (en) METHOD AND DEVICE FOR THE RAPID MANEUVERING OF A USEFUL LOAD ON A SPATIAL PLATFORM
WO2017103867A1 (en) Drone with rotors comprising hinged blades
EP1676777B1 (en) Satellite equipped with means for countering the solar pressure
WO2002084361A1 (en) Device for mounting and correcting the position of a mirror extending in the shadow of the mirror and optical system fitted with said device
EP1590243A1 (en) Device for controlling the attitude of a satellite by means of gyroscopic actuators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170724

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20190426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190907