EP3386610A1 - Verfahren zur behandlung von rauchgasen aus einem verbrennungs- oder kalzinierungsofen und anlage zur durchführung solch eines verfahrens - Google Patents

Verfahren zur behandlung von rauchgasen aus einem verbrennungs- oder kalzinierungsofen und anlage zur durchführung solch eines verfahrens

Info

Publication number
EP3386610A1
EP3386610A1 EP16813003.7A EP16813003A EP3386610A1 EP 3386610 A1 EP3386610 A1 EP 3386610A1 EP 16813003 A EP16813003 A EP 16813003A EP 3386610 A1 EP3386610 A1 EP 3386610A1
Authority
EP
European Patent Office
Prior art keywords
fumes
residues
reactions
desulfurization
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16813003.7A
Other languages
English (en)
French (fr)
Inventor
Thierry ALLEGRUCCI
Chin Lim
Philippe Martineau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Solios Inc
Fives Solios SA
Original Assignee
Fives Solios Inc
Fives Solios SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Solios Inc, Fives Solios SA filed Critical Fives Solios Inc
Publication of EP3386610A1 publication Critical patent/EP3386610A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/343Heat recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a treatment method for the pollutants contained in the fumes.
  • the technology presented here consists in particular of treating the sulfur oxides - by a so-called desulfurization process (DeSOx) - such as sulfur dioxide (SO 2 ), and nitrogen oxides - by a process known as denitrification. (DeNOx) -, such as nitrogen oxide (NO) and nitrogen dioxide (NO 2 ).
  • the fumes to be treated come in particular from combustion sources such as combustion furnaces or coal-fired boilers, or from an oven or a calcination process for the production of cement, the production of lime, or any other method of calcination.
  • Such fumes contain one or more acid pollutants such as hydrochloric acid (HCl), hydrofluoric acid (HF), sulfur oxides (SO x ) and nitrogen oxides (NO x ), which can cause damage to the environment, for example by acid rain, if these fumes are released into the atmosphere without appropriate and effective treatment.
  • acid pollutants such as hydrochloric acid (HCl), hydrofluoric acid (HF), sulfur oxides (SO x ) and nitrogen oxides (NO x )
  • HCl hydrochloric acid
  • HF hydrofluoric acid
  • SO x sulfur oxides
  • NO x nitrogen oxides
  • SCR Selective Catalytic Reduction
  • SNCR Selective Non-Catalytic Reduction
  • SNCR Selective Non-Catalytic Reduction
  • it consists in the neutralization of NO x at very high temperatures, around 850 ° C - 1000 ° C, so that a catalyst is not necessary, but which is sometimes incompatible with the process.
  • NO x reduction efficiency decreases significantly if the temperature range at the injection point of the reagent is not respected.
  • the injection of excess ammonia into the reactor can cause corrosion to downstream equipment and ammonia leakage into the environment.
  • the temperature range required for SNCR technology is incompatible with that for desulphurization. Therefore, SCR technology is preferred to combine it within a single plant with desulphurization.
  • the desulphurization is generally carried out before the denitrification, so that the fumes at a suitable temperature for the desulfurization must be reheated before the denitrification, which implies a consumption of energy increasing the costs of the process of treatment of the fumes.
  • the document EP 2 815 801 describes an example of such an installation, in which fumes generated in a boiler are sent firstly into a treatment unit S0 2 , then into a processing unit SCR. Between the two units, a compressor makes it possible to increase the temperature of the gases at the inlet of the treatment unit SCR.
  • the invention provides a method of treating flue gases from a combustion or calcination furnace comprising polluting species including sulfur oxides and nitrogen oxides.
  • the method comprises the following steps:
  • the method being characterized in that the heated fumes are mixed, after the injection of the nitrogen oxide neutralizing agent, with the cooled fumes after they are brought into contact with the sulfur oxide neutralization agent, the separation residues of the desulfurization reactions and contacting with said catalyst being carried out within a single separation device.
  • the method thus makes it possible to clean the fumes of both sulfur oxides and nitrogen oxides in a single installation, while minimizing energy expenditure, and the installation to carry out the process is thus of reduced size.
  • the sulfur oxide neutralization agent is, for example, lime.
  • the nitrogen oxide neutralizing agent is, for example, ammonia.
  • the humidity in the fumes is controlled in order to optimize the desulfurization.
  • the invention proposes a plant for treating flue gases from an oven and comprising sulfur oxides and nitrogen oxides, for the implementation of the process as presented above, comprising an exchanger heat exchanger connected to the furnace for cooling the exhaust gases from said furnace, a desulfurization reactor connected to the heat exchanger and wherein the cooled flue gases are contacted with a sulfur oxide neutralizing agent to reduce the latter by desulfurization reactions, a separation device, connected to the desulfurization reactor, and in which residues of the desulfurization reactions are separated from the fumes, an injector of a nitrogen oxide neutralizing agent in at least a part of the separated fumes residues of the desulfurization reactions, and a catalytic device for the denitrification of the fumes, the device for separating the due to the desulphurization reactions being connected to the heat exchanger so that the at least part of the fumes from the residue
  • the separation device comprises for example at least one bag filter, a catalyst for denitrification being distributed over the surface of the filter sleeves.
  • the separation device comprises at least one baghouse filter, a catalyst for denitrification being placed inside the filter sleeves.
  • an installation 100 for the implementation of a method for treating flue gases from a combustion or calcination furnace.
  • the plant is particularly suitable for the treatment of fumes from a lime production furnace, the acid gases of which contain, in particular, sulfur oxides (SO x ) and nitrogen oxides (NO x ).
  • the installation 100 comprises a heat exchanger 1 of known type.
  • the heat exchanger 1 is for example cooling tubes: the lower temperature fluid circulates inside the tubes, while the hotter fluid is in contact with the outer wall of the tubes.
  • the heat exchanger 1 therefore comprises two fluid circulation circuits.
  • a first flow circuit of the heat exchanger 1 for example the gas flow circuit in contact with the outer wall of the cooling tubes, is connected, on the one hand, to a pipe 1 1 through which the warm fumes from the furnace arrive, and, secondly, a desulphurization reactor 2, for example of the Venturi type, by a conduit 25 for entering the cooled fumes in the reactor 2.
  • the reactor 2 comprises an inlet formed by the succession, in the direction of circulation of the cooled fumes, a convergent 5, a neck 4 and a divergent 3.
  • the reactor 2 is supplied with a sulfur oxide neutralization agent.
  • This sulfur oxide neutralization agent may be lime, sodium bicarbonate, magnesium carbonate, calcium carbonate, or a mixture of at least two of these products.
  • the reactor 2 is supplied with fresh lime from a tank 28 which reacts with the sulfur oxides to form salts.
  • the fresh lime is fed from the reservoir 28 to the neck 4 of the reactor 2 via a feed line 27.
  • the reactor 2 is also fed with hydrated recycled lime.
  • the humidity control in the reactor 2 is important. In fact, the moisture content must be sufficiently adjusted so that the lime behaves like a powdery reagent, and does not agglomerate into paste.
  • the humidity must be controlled so that the evaporation of the water contained on the surface of the solid particles causes a controlled cooling of the fumes and promotes the absorption and the neutralization of S0 2 , and other possible acids (HCI and HF), while keeping the temperature of the fumes away from their dew point to avoid clogging problems.
  • a maximum moisture content by weight of lime of 10% was determined to be adequate.
  • the desulphurization reactions in the reactor 2 are thus carried out for a short residence of the fumes in the reactor 2.
  • the reaction residues are generally solid salts, such as calcium sulphate (CaSO 3 ) as residues of the sulfur, but also calcium fluoride (CaF 2 ) and calcium chloride (CaCl 2 ).
  • the installation 100 comprises a separation device 6, connected to the reactor 2 by a conduit 14 entering a filter of the device 6, and for separating the solid residues reactions including desulphurization, in this case the salts formed and excess lime, gases.
  • the separation device 6 comprises at least one bag filter composed of a plurality of filtration modules, through which the fumes pass, the solid residues, and possibly excess lime, being recovered and directed to a reservoir 9 recycling by a pipe 19 recovery.
  • the particles which are deposited on the surface of the filter sleeves in the separation device 6 form a cake composed of still active hydrated lime particles forming an additional surface, which makes it possible to continue the acid gas neutralization reaction within the separation device 6. separation device 6 and further increase the efficiency of the process. About 80-95% of the neutralization reaction takes place in reactor 2, and the remainder occurs on the filter sleeves of separation device 6.
  • the filter sleeves are said to be catalytic because they include a catalyst for denitrification reactions.
  • the sleeves are coated over their entire surface with a layer of a metal catalyst, which increases the contact area with the fumes.
  • the catalyst can be placed inside the sleeves.
  • the mixture in the recycling tank 9 is called recycled lime.
  • the recycled lime is in solid form, making it easy to revalue. All or part of the recycled lime can be re-used in the desulfurization reactor 2.
  • the recycled lime is taken by a supply duct 20 to a humidification drum 10, in which water, in a well controlled quantity, enters through a feed 22.
  • the recycled lime is moistened, without exceeding maximum moisture content of 10% by weight of lime, is then sent to the reactor 2 of desulfurization by a conduit 23 connected to the neck 4 of the reactor 2 to react again with the acidic pollutants in the fumes.
  • Recirculation of lime recycled in reactor 2 maximizes the gas / solid contact, for better use of the reagent and less landfilling residues.
  • Residues that are not recycled are dry, which makes it easier to landfill or even re-use as a soil application product.
  • the main parameters to ensure a good S0 2 neutralization efficiency are in particular the stoichiometric excess of the hydrated lime fed with respect to the pollutants, the amount of lime recycled and its surface humidity which conditions the lowering of the flue gas temperature, as well as the active surface (BET surface) of hydrated lime particles.
  • the fumes at the outlet of the separation device 6 are then directed by a duct 16 to a ventilator 7. This allows in particular to overcome the pressure drop experienced in the filters of the separation device 6. Subsequently, the purified fumes are returned from the fan 7 to a chimney 8 by an outlet conduit 17.
  • At least a portion of the fumes separated from the residues of the desulfurization reactions and arriving at the stack 8 is recirculated upstream of the process, to be cleaned of nitrogen oxides by the so-called SCR method.
  • a portion of the fumes in the chimney 8 is returned to the heat exchanger 1, in the second flow circuit inside the cooling tubes.
  • the recirculated fumes, separated from the residues of the desulfurization reactions are heated by the hot fumes entering the first flow circuit of the exchanger 1, while the hot fumes entering the first circuit are cooled by the recirculated fumes. .
  • the energy consumption necessary to bring the fumes to the appropriate temperatures following the steps of their cleaning is thus reduced.
  • the recirculated and heated fumes exit the heat exchanger 1 through a contacting conduit 12, distinct from the inlet conduit of the reactor 2, and connected to a reservoir of a nitrogen oxide neutralization agent, for example ammonia.
  • a nitrogen oxide neutralization agent for example ammonia.
  • ammonia, or urea, or a mixture of these two products can be used.
  • the injector 26 of the nitrogen oxide neutralization agent in this example of ammonia, is connected to the contacting conduit 12, so that ammonia mixes with the recirculated fumes and heated in the conduit 12 of contacting.
  • the mixture of ammonia and recirculated fumes is combined and mixed with the gas / solids mixture leaving the desulfurization reactor 2 by the junction of the contacting conduit 12 and the inlet conduit 14 in the filter of the device 6, and connecting the reactor 2 to the separation device 6 at a combination point. From the point of combination, the fumes in the filter inlet duct 14 are then a mixture comprising in particular:
  • This mixture then enters the separation device 6, with a compatible temperature for denitrification by the SCR method, and comes into contact with the filter of the bag filter.
  • the denitrification reactions reduce the nitrogen oxides and ammonia in the fumes to their ionic form to be transformed in particular into nitrogen gas and water vapor.
  • the separation device 6 then also serves as a catalytic device for denitrification.
  • the fumes are then directed, as before, to the chimney 8, from where the non-recycled portion of these fumes is discharged into the atmosphere through an opening 18.
  • the fumes thus removed have pollutants in very low concentration, respecting environmental regulations.
  • An advantage of the process is that the residues recovered at the separation device 6, that is to say the salts (CaCl 2 , CaF 2 , CaSO 3 ), are dry, so the recovery of these residues in the market is possible.
  • Another advantage is due to the minimal amount of water used to moisturize the hydrated lime in the drum 10; it is not necessary to perform a treatment of liquid effluents, which reduces the amount of equipment and possibly maintenance and operation costs.
  • the arrangement of equipment in the implementation of the method also has its advantages. For example, by placing the catalytic baghouses after the desulfurization reactor 2, the majority of SO 2 being removed in the reactor 2, the risks of poisoning the catalyst in the filters of the separation device 6 are significantly reduced.
  • filters Another advantage provided by these filters is that catalyst particles can be deposited on the entire surface of their sleeves, which increases the reaction surface for denitrification. Thus, the nitrogen oxides are able to react over the entire length of the filter sleeves with the majority of the ammonia injected upstream of the filters, which avoids its escape to the environment. Likewise, this filtration makes it possible to achieve a high efficiency in the separation of pollutants from the gases, since most of the constituents contained in the starting fumes can be removed.
  • the process allows, within a single installation, to achieve desulphurization and denitrification of fumes, limiting energy consumption.
  • the method makes it possible to circulate the fumes from the furnace in two parallel circuits, namely a desulfurization circuit and a denitrification circuit, and to adjust the flue gas temperature in each circuit by minimizing the energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
EP16813003.7A 2015-12-10 2016-11-22 Verfahren zur behandlung von rauchgasen aus einem verbrennungs- oder kalzinierungsofen und anlage zur durchführung solch eines verfahrens Withdrawn EP3386610A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562130A FR3044934B1 (fr) 2015-12-10 2015-12-10 Procede de traitement des fumees issues d'un four de combustion ou de calcination et installation pour la mise en oeuvre d'un tel procede
PCT/FR2016/053051 WO2017098105A1 (fr) 2015-12-10 2016-11-22 Procédé de traitement des fumées issues d'un four de combustion ou de calcination et installation pour la mise en oeuvre d'un tel procédé

Publications (1)

Publication Number Publication Date
EP3386610A1 true EP3386610A1 (de) 2018-10-17

Family

ID=55542833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16813003.7A Withdrawn EP3386610A1 (de) 2015-12-10 2016-11-22 Verfahren zur behandlung von rauchgasen aus einem verbrennungs- oder kalzinierungsofen und anlage zur durchführung solch eines verfahrens

Country Status (5)

Country Link
US (1) US20180326351A1 (de)
EP (1) EP3386610A1 (de)
CA (1) CA3003371A1 (de)
FR (1) FR3044934B1 (de)
WO (1) WO2017098105A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816027A (zh) * 2018-07-20 2018-11-16 陈雪飞 一种高效气体净化装置
US11014044B2 (en) * 2018-09-03 2021-05-25 South China Institute Of Environmental Science, Mee Waste gas purification system and method
CN111514746B (zh) * 2020-04-26 2021-03-02 河北环科除尘设备有限公司 一种多功能烟气脱硫脱硝装置及方法
WO2022146872A1 (en) * 2020-12-30 2022-07-07 W.L. Gore & Associates, Inc. Improving catalytic efficiency of flue gas filtration through salt formation by using least one oxidizing agent
CN115105935A (zh) * 2022-07-13 2022-09-27 中冶京诚工程技术有限公司 一种高炉热风炉烟气脱硫脱硝系统及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023383B1 (de) * 1970-07-29 1975-08-07
DE3523326A1 (de) * 1985-06-29 1987-01-08 Steag Ag Verfahren zur abscheidung von no(pfeil abwaerts)x(pfeil abwaerts) aus gasen, insbesondere rauchgasen
DE3537874A1 (de) * 1985-10-24 1987-04-30 Linde Ag Verfahren zum entfernen unerwuenschter bestandteile aus rauchgasen
US4724130A (en) * 1986-07-28 1988-02-09 Conoco Inc. Recovery of promoters used in flue gas desulfurization
AT385211B (de) * 1986-10-22 1988-03-10 Siemens Ag Oesterreich Verfahren zur reinigung der abgase von feuerungsanlagen und vorrichtung zur durchfuehrung des verfahrens
US4795619A (en) * 1987-03-20 1989-01-03 Lerner Bernard J Removal of acid gases in dry scrubbing of hot gases
US5585081A (en) * 1988-07-25 1996-12-17 The Babcock & Wilcox Company SOx, NOx and particulate removal system
DE3932540A1 (de) * 1989-09-29 1991-04-11 Siemens Ag Verfahren und anlage zur rauchgasreinigung
US5770163A (en) * 1994-12-21 1998-06-23 Mitsubishi Jukogyo Kabushiki Kaisha System for the recovery of ammonia escaping from an ammonia reduction denitrator
US5893940A (en) * 1997-05-05 1999-04-13 Ppg Industries, Inc. Reduction of NOx emissions in a glass melting furnace
JP3546132B2 (ja) * 1997-12-22 2004-07-21 三菱重工業株式会社 排煙処理方法
DE102005001595A1 (de) * 2005-01-12 2006-07-20 Grochowski, Horst, Dr. Verfahren zum Reinigen von Abgasen eines Glasschmelzprozesses, insbesondere für Gläser für LCD-Bildschirme
JP5171479B2 (ja) * 2008-08-25 2013-03-27 バブコック日立株式会社 排煙脱硝装置
CN102343201A (zh) * 2011-10-11 2012-02-08 南京大学 一种利用烟道气余热脱除其酸性气体的工艺
US20140105800A1 (en) * 2012-03-30 2014-04-17 Alstom Technology Ltd Method for processing a power plant flue gas
FR3002622B1 (fr) * 2013-02-28 2019-09-13 Fives Solios Centre de traitement de fumees provenant d'un four a cuire des anodes
CN203494378U (zh) * 2013-08-30 2014-03-26 安徽省元琛环保科技有限公司 水泥回转窑NOx控制的SCR脱硝装置

Also Published As

Publication number Publication date
US20180326351A1 (en) 2018-11-15
FR3044934B1 (fr) 2021-08-06
CA3003371A1 (fr) 2017-06-15
WO2017098105A1 (fr) 2017-06-15
FR3044934A1 (fr) 2017-06-16

Similar Documents

Publication Publication Date Title
EP3386610A1 (de) Verfahren zur behandlung von rauchgasen aus einem verbrennungs- oder kalzinierungsofen und anlage zur durchführung solch eines verfahrens
KR102048058B1 (ko) 폐수를 증발시키고 산성 가스 배출물을 감소시키는 장치 및 방법
EP1949956B1 (de) Verfahren und Anlage zur Klärung von Dämpfen, die saure Schadstoffe enthalten
EP3238811A1 (de) Vorrichtung und verfahren zur verdampfung von abwasser und zur reduzierung von säuregasemissionen
US20160145127A1 (en) System and method for reducing gas emissions from wet flue gas desulfurization waste water
CN108273370A (zh) 一种结合烟气脱白的湿式烟气脱硫装置及其使用方法
WO2018115499A1 (fr) Procede et installation de denitrification des fumees de combustion
EP1576999A1 (de) Modulare und intergrierte Vorrichtung zur Filtration und katalytischen Entstickung von Rauchgasen, Anlage enthaltend eine derartige Vorrichtung und Verfahren zu ihrer Verwendung
EP3002059A1 (de) Regenerierungsverfahren eines denox-katalysators
EP2823875B1 (de) Verfahren zur Rauchgasreinigung
EP2570177B1 (de) Method and facility for purifying flue gases
US9724638B2 (en) Apparatus and method for evaporating waste water and reducing acid gas emissions
CZ62398A3 (cs) Způsob zpracování spalin a zařízení k provádění tohoto způsobu
FR2734736A1 (fr) Epurateur de fumees par flux croise avec du lait de chaux ou de calcaire
FR2964045A1 (fr) Procede de regeneration d'un catalyseur de denitrification et installation de mise en oeuvre correspondante
FR3046087B1 (fr) Installation de traitement de fumees et procede de traitement des fumees au sein d'une telle installation
JP2009148684A (ja) アンモニア含有排水の処理方法
EP2851116A1 (de) Verfahren zur katalytischen Reinigung von Rauchgasen, die Stickoxide enthalten
JPH0494720A (ja) 脱硫剤供給配管加熱式排ガス処理装置
EP2371444B1 (de) Verfahren und Anlage zur Reinigung von sauren Verunreinigungen enthaltenden Rauchgasen
JP2004081958A (ja) バグフィルタ装置の逆洗方法およびバグフィルタ装置
EP3006097B1 (de) Anlage und verfahren zur behandlung mit kalk von verbrennungsrauchgasen aus der verbrennung von hausmüll
CN116085810A (zh) 用于含盐有机废液的处理系统和处理方法
EP2486970B1 (de) Verfahren zur Reinigung von Verbrennungsabgasen mittels Natriumhydrogencarbonat oder Natriumsesquicarbonat
FR2790257A1 (fr) Procede d'elimination de sels, notamment de sulfates et de pyrosulfates d'ammonium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ALLEGRUCCI, THIERRY

Inventor name: MARTINEAU, PHILIPPE

Inventor name: LIM, CHIN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190711

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191122