EP3375910A2 - Steckverbinder - Google Patents

Steckverbinder Download PDF

Info

Publication number
EP3375910A2
EP3375910A2 EP18000214.9A EP18000214A EP3375910A2 EP 3375910 A2 EP3375910 A2 EP 3375910A2 EP 18000214 A EP18000214 A EP 18000214A EP 3375910 A2 EP3375910 A2 EP 3375910A2
Authority
EP
European Patent Office
Prior art keywords
layer
containing layer
amorphous
connector
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18000214.9A
Other languages
English (en)
French (fr)
Other versions
EP3375910A3 (de
Inventor
Uwe Zeigmeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metal Applications GmbH
Original Assignee
Diehl Metal Applications GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Metal Applications GmbH filed Critical Diehl Metal Applications GmbH
Publication of EP3375910A2 publication Critical patent/EP3375910A2/de
Publication of EP3375910A3 publication Critical patent/EP3375910A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/619Amorphous layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/58Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the invention relates to a connector.
  • a connector is z. B. from the DE 10 2008 042 824 A1 known, which is suitable to be inserted or pressed into a hole of a printed circuit board.
  • the connector has an approximately cylindrical region in which a connector inserted into a printed circuit board makes electrical contact with the printed circuit board, which is called in the further contact area.
  • the conventional connector has a press-fit body, which may be made of copper, bronze or CuSn 6 .
  • the injection-molded body is coated with two layers arranged at least partly on one another, wherein the outer layer comprises thiol.
  • the thiol serves as a passivating or lubricating agent to limit the pressing forces necessary during pressing.
  • the disadvantage of this connector is that an organic intermediate layer in the contact area is necessary, which adversely affects the electrical properties.
  • the object of the present invention is to eliminate the disadvantages of the prior art.
  • a connector is to be specified, which can be pressed with low insertion forces into a printed circuit board and is easy to manufacture.
  • a connector comprising a press body which is coated with a first Ni-containing layer and a second Ni-containing layer, wherein the first and / or the second Ni-containing layer is a nanocrystalline or amorphous layer ,
  • the first Ni-containing layer and the second Ni-containing layer have grain sizes of different orders of magnitude.
  • one of the layers may be microcrystalline and the other nanocrystalline or amorphous.
  • microcrystalline is meant a particle size in the range of 0.3 ⁇ m to 7 ⁇ m, in particular 0.5 ⁇ m to 3 ⁇ m.
  • nanocrystalline is meant a particle size of 4 nm to 200 nm, in particular 4 nm to 100 nm, in particular 4 nm to 80 nm, in particular 4 nm to 60 nm.
  • amorphous is meant that no crystallites are detectable by conventional methods such as X-ray diffraction, electron diffraction or transmission electron microscopy.
  • the Ni-containing layers contain no appreciable amounts of organic contaminants.
  • the Ni-containing layers expediently contain at least 80% by weight, in particular at least 90% by weight, of nickel.
  • the Ni-containing layers particularly preferably contain at least 95% by weight, in particular at least 97% by weight, of nickel.
  • the first and the second Ni-containing layer are at least partially superimposed, preferably superimposed over the entire surface.
  • the advantage of the connector according to the invention is that it by means of electroplating, z. B. strip electroplating can be coated. A separate coating by means of an organic aid is not required.
  • the connector according to the invention thus has no organic coating, in particular in the contact area, in which the connector is contacted when pressed into a circuit board to the circuit board.
  • one of the Ni-containing layers is a matt nickel and the other Ni-containing layer is a bright nickel.
  • a bright nickel is understood to mean a nickel coating which has a smooth, glossy surface.
  • a matte nickel has a dull, d. H. rougher surface.
  • electrolytes can be used to produce a gloss or a matt nickel known electrolytes.
  • the first or the second Ni-containing layer of the connector according to the invention is an amorphous layer which contains up to 15% by weight of phosphorus, in particular up to 10% by weight of phosphorus. By adding phosphorus, the amorphous Ni-containing layer can be stabilized.
  • the nanocrystalline and / or amorphous layer preferably has a thickness of 0.1 to 3 ⁇ m, in particular 0.1 to 2.2 ⁇ m, in particular 0.1 to 1 ⁇ m, in particular 0.1 to 0.7 ⁇ m, in particular 0.1 to 0.3 ⁇ m.
  • the sequence of layers on the injection-molding body can in particular be selected from one of the layer sequences listed in Table I: Table I first Ni-containing layer second Ni-containing layer third Ni-containing layer amorphous nanocrystalline amorphous microcrystalline nanocrystalline amorphous nanocrystalline microcrystalline microcrystalline amorphous microcrystalline nanocrystalline nanocrystalline microcrystalline amorphous nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline nanocrystalline
  • the press-fit body of the connector according to the invention comprises copper, a copper alloy or steel.
  • the copper alloy may be an alloy of CuFe, FuFe 2 P, CuNiSn, CuNiSi, CuZn, CuSnZn, CuSn 4 , CuSn 6 or CuSn 8 .
  • an intermediate layer of Cu or Sn can be arranged between the injection body and the first Ni-containing layer. Through the intermediate layer, the surface roughness can be further reduced.
  • Fig. 1 shows a connector 1, which is suitable for pressing into an opening of a printed circuit board made of copper, which is coated with bronze and / or tin.
  • the connector 1 includes a pen tip 10, a press-fit body 2 having a press-fit portion 11 and a mounting portion 12.
  • the connector 1 is coated with two Ni-containing layers at least partially overlapping each other.
  • a cylindrical portion of the press-fit portion 11 serves as a contact surface.
  • Fig. 2 shows a first embodiment of the layer structure of the connector 1.
  • On a first Ni-containing layer 3 is arranged with an average grain size of 0.8 microns.
  • the end surface forms a nanocrystalline second Ni-containing layer 4, which has an average grain size of 30 nm.
  • the surface hardness is increased, which has a modulus of 205 +/- 7 GPa and an indentation hardness of 9.4 +/- 0.6 GPa at a grain size of 30 nm.
  • the nanocrystalline structure of the second Ni-containing layer 4 produces a smoother surface which has improved sliding properties.
  • Such a layer sequence is particularly suitable for a one-time insertion process.
  • Fig. 3 shows a further embodiment of a layer structure of a connector.
  • the layer structure has an intermediate layer 5 between the injection-molded body 2 and the first Ni-containing layer 3.
  • the intermediate layer 5 is made of tin. It serves as a primer layer and to level the roughness of the injection body 2.
  • the intermediate layer is a nanocrystalline layer having a grain size of 30 nm.
  • the intermediate layer 5 may also consist of copper.
  • Fig. 4 shows a third embodiment of a layer structure on a press-fit body 2 with three Ni-containing layers, wherein the first Ni-containing layer 3 is a nanocrystalline layer, the second Ni-containing layer 4 is a microcrystalline and the third Ni-containing layer 6 is an amorphous layer ,
  • the amorphous layer contains 12% by weight of phosphorus.
  • Such a Ni-P layer has an E-modulus of 149 +/- 6 GPa and an indentation hardness of 9 +/- 0.7 GPa.
  • the surface of the amorphous layer has a consistently low frictional resistance against a copper friction surface. Cold welding to a copper or bronze layer can be minimized or prevented with such a layer structure.
  • the amorphous layer has increased resistance to frictional oxidation and poor layer degradation, making it well suited for repeated mating applications.
  • Fig. 5 shows a layer structure on a press-in body 2 with three Ni-containing layers, and an intermediate layer 5.
  • the three Ni-containing layers 3, 4, 6 correspond to those of in Fig. 4 shown embodiment.
  • the intermediate layer 5 is made of tin.
  • Fig. 6 shows the result of two rubbing tests between a copper pin and a disc which is coated with a matt nickel or a bright nickel.
  • the time is plotted on the horizontal axis and the coefficient of friction (COF) is plotted on the vertical axis.
  • the curve of the glossy nickel shows a running-in phase in which the friction coefficient increases during the rubbing test, whereas the coefficient of friction in the rubbing test on matt nickel has an approximately constant value.
  • Fig. 7 is a diagram and shows a comparison of a further Reib flows between a copper pin and a coated with bright nickel or an amorphous Ni-P layer disc.
  • the rubbing tests on the amorphous Ni-P layer show a consistently low coefficient of friction, while the rubbing test on the bright nickel has an increasing coefficient of friction.
  • After 10 cycles of friction occurs in bright nickel material transfer of Cu particles as in the schematic representation of the microscopic examination in Fig. 8 it is apparent.
  • no transfer of material was observed on the friction surface after 10 rubbing cycles, as in Fig. 9 is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft einen Steckverbinder (1), umfassend einen Einpresskörper (2), welcher mit einer ersten Ni-haltigen Schicht (3) und einer zweiten Ni-haltigen Schicht (4) beschichtet ist, wobei die erste und/oder die zweite Ni-haltige Schicht eine nanokristalline oder amorphe Schicht ist.

Description

  • Die Erfindung betrifft einen Steckverbinder.
  • Ein Steckverbinder ist z. B. aus der DE 10 2008 042 824 A1 bekannt, welcher geeignet ist in ein Loch einer Leiterplatte eingeführt bzw. eingedrückt zu werden. Der Steckverbinder weist einen näherungsweise zylinderförmigen Bereich auf, in dem ein in eine Leiterplatte eingeführter Steckverbinder elektrischen Kontakt mit der Leiterplatte herstellt, welcher im weiteren Kontaktbereich genannt wird. Der herkömmliche Steckverbinder weist einen Einpresskörper auf, welcher aus Kupfer, Bronze oder CuSn6 hergestellt sein kann. Der Einpresskörper ist mit zwei zumindest teilweise aufeinander angeordneten Schichten beschichtet, wobei die äußere Schicht Thiol umfasst. Das Thiol dient als Passivierungs- bzw. Schmiermittel, um die beim Einpressen notwendigen Einpresskräfte zu begrenzen. Der Nachteil dieses Steckverbinders besteht darin, dass eine organische Zwischenschicht im Kontaktbereich notwendig ist, die die elektrischen Eigenschaften negativ beeinflusst.
  • Die Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Insbesondere soll ein Steckverbinder angegeben werden, welcher mit niedrigen Einpresskräften in eine Leiterplatte eingepresst werden kann und der einfach herzustellen ist.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Nach Maßgabe der Erfindung wird ein Steckverbinder, umfassend einen Einpresskörper, angegeben, welcher mit einer ersten Ni-haltigen Schicht und einer zweiten Ni-haltigen Schicht beschichtet ist, wobei die erste und/oder die zweite Ni-haltige Schicht eine nanokristalline oder amorphe Schicht ist.
  • Die erste Ni-haltige Schicht und die zweite Ni-haltige Schicht besitzen Korngrößen in unterschiedlichen Größenordnungen. Insbesondere kann eine der Schichten mikrokristallin und die andere nanokristallin oder amorph sein. Unter "mikrokristallin" wird eine Korngröße im Bereich von 0,3 µm bis 7 µm, insbesondere 0,5 µm bis 3 µm, verstanden. Unter "nanokristallin" wird eine Korngröße von 4 nm bis 200 nm, insbesondere 4 nm bis 100 nm, insbesondere 4 nm bis 80 mn, insbesondere 4 nm bis 60 nm, verstanden. Unter "amorph" wird verstanden, dass keine Kristallite mittels üblicher Verfahren wie Röntgenbeugung, Elektronenbeugung oder Transmissionselektronenmikroskopie nachweisbar sind.
  • Die Ni-haltigen Schichten enthalten insbesondere keine nennenswerten Mengen an organischen Verunreinigungen. Zweckmäßigerweise enthalten die Ni-haltigen Schichten zumindest 80 Gew.%, insbesondere zu zumindest 90 Gew.% Nickel. Besonders bevorzugt enthalten die Ni-haltigen Schichten zumindest 95 % Gew.%, insbesondere zumindest 97 Gew.% Nickel. Die erste und die zweite Ni-haltige Schicht überlagern sich zumindest teilweise, vorzugsweise überlagern sie sich vollflächig.
  • Der Vorteil des erfindungsgemäßen Steckverbinders liegt darin, dass er mittels galvanischer Beschichtung, z. B. Bandgalvanik beschichtet werden kann. Eine separate Beschichtung mittels eines organischen Hilfsmittels ist nicht erforderlich. Der erfindungsgemäße Steckverbinder weist somit keine organische Beschichtung insbesondere im Kontaktbereich auf, in dem der Steckverbinder beim Einpressen in eine Leiterplatte mit der Leiterplatte kontaktiert wird.
  • In einer vorteilhaften Ausgestaltung ist eine der Ni-haltigen Schichten ein Mattnickel und die andere Ni-haltige Schicht ein Glanznickel. Unter einem Glanznickel wird eine Nickelbeschichtung verstanden, welche eine glatte, glänzende Oberfläche aufweist. Ein Mattnickel weist eine matte, d. h. rauere Oberfläche auf. Zur Erzeugung eines Glanz- bzw. eines Mattnickels können bekannte Elektrolyten eingesetzt werden.
  • In einer weiteren Ausgestaltung ist die erste oder die zweite Ni-haltige Schicht des erfindungsgemäßen Steckverbinders eine amorphe Schicht, welche bis zu 15 Gew. % Phosphor, insbesondere bis zu 10 Gew. % Phosphor, enthält. Durch den Zusatz von Phosphor kann die amorphe Ni-haltige Schicht stabilisiert werden.
  • Vorzugsweise weist die nanokristalline und/oder amorphe Schicht eine Dicke von 0,1 bis 3 µm, insbesondere 0,1 bis 2,2 µm, insbesondere 0,1 bis 1 µm, insbesondere 0,1 bis 0,7 µm, insbesondere 0,1 bis 0,3 µm, auf. Die Schichtabfolge auf dem Einpresskörper kann insbesondere aus einer der in Tabelle I aufgeführten Schichtabfolgen ausgewählt sein: Tabelle I
    erste Ni-haltige Schicht zweite Ni-haltige Schicht dritte Ni-haltige Schicht
    amorph nanokristallin
    amorph mikrokristallin
    nanokristallin amorph
    nanokristallin mikrokristallin
    mikrokristallin amorph
    mikrokristallin nanokristallin
    nanokristallin mikrokristallin amorph
    nanokristallin mikrokristallin nanokristallin
    mikrokristallin nanokristallin amorph
  • In einer bevorzugten Ausgestaltung umfasst der Einpresskörper des erfindungsgemäßen Steckverbinders Kupfer, eine Kupferlegierung oder Stahl. Insbesondere kann die Kupferlegierung eine Legierung aus CuFe, FuFe2P, CuNiSn, CuNiSi, CuZn, CuSnZn, CuSn4, CuSn6 oder CuSn8 sein.
  • In einer weiteren Ausgestaltung kann zwischen dem Einpresskörper und der ersten Ni-haltigen Schicht eine Zwischenschicht aus Cu oder Sn angeordnet sein. Durch die Zwischenschicht kann die Oberflächenrauheit weiter reduziert werden.
  • Nachführend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. Die Zeichnungen sind schematische Darstellungen und zeigen:
  • Fig. 1
    einen erfindungsgemäßen Steckverbinder,
    Fig. 2
    eine schematische Darstellung der Beschichtungsabfolge des Steckverbinders von Fig. 1,
    Fig. 3
    ein zweites Ausführungsbeispiel einer Schichtabfolge der Beschichtung eines Steckverbinders,
    Fig. 4
    ein drittes Ausführungsbeispiel der Beschichtungsabfolge eines Steckverbinders,
    Fig. 5
    ein viertes Ausführungsbeispiel einer Beschichtung eines Steckverbinders,
    Fig. 6
    ein Diagramm eines Reibversuchs,
    Fig. 7
    ein weiteres Diagramm eines Reibversuchs,
    Fig. 8
    eine schematische Darstellung einer TEM-Querschnittsabbildung einer Glanznickel-Oberfläche, und
    Fig. 9
    eine schematische Darstellung einer TEM-Querschnittsabbildung einer amorphen NiP-Oberfläche.
  • Fig. 1 zeigt einen Steckverbinder 1, der zum Einpressen in eine Öffnung einer Leiterplatte aus Kupfer, welche mit Bronze und/oder Zinn beschichtet ist, geeignet ist. Der Steckverbinder 1 umfasst eine Stiftspitze 10, einen Einpresskörper 2 mit einem Einpressbereich 11 und einen Befestigungsbereich 12. Der Steckverbinder 1 ist mit zwei Ni-haltigen Schichten, die einander zumindest teilweise überlagern, beschichtet. Ein zylinderförmiger Abschnitt des Einpressbereichs 11 dient als Kontaktfläche.
  • Fig. 2 zeigt ein erstes Ausführungsbeispiel des Schichtaufbaus des Steckverbinders 1. Der Einpresskörper 2 ist aus CuSn6 hergestellt und besitzt eine Rauigkeit Ra = 0,5 µm. Darauf ist eine erste Ni-haltige Schicht 3 mit einer durchschnittlichen Korngröße von 0,8 µm angeordnet. Die Endoberfläche bildet eine nanokristalline zweite Ni-haltige Schicht 4, welche eine durchschnittliche Korngröße von 30 nm aufweist. Durch die zweite Ni-haltige Schicht 4 mit nanokristalliner Korngröße wird die Oberflächenhärte erhöht, welche bei einer Korngröße von 30 nm einen E-Modul von 205 +/- 7 GPa und eine Eindruckhärte von 9,4 +/- 0,6 GPa aufweist. Durch das nanokristalline Gefüge der zweiten Ni-haltigen Schicht 4 wird eine glattere Oberfläche erzeugt, die verbesserte Gleiteigenschaften aufweist. Eine solche Schichtabfolge eignet insbesondere für einen einmaligen Steckvorgang.
  • Fig. 3 zeigt ein weiteres Ausführungsbeispiel eines Schichtaufbaus eines Steckverbinders. Der Schichtaufbau weist zwischen dem Einpresskörper 2 und der ersten Ni-haltigen Schicht 3 eine Zwischenschicht 5 auf. Die Zwischenschicht 5 besteht aus Zinn. Sie dient als Haftvermittlerschicht sowie zur Einebnung der Rauigkeit des Einpresskörpers 2. Bei der Zwischenschicht handelt es sich um eine nanokristalline Schicht mit einer Korngröße von 30 nm. Alternativ kann die Zwischenschicht 5 auch aus Kupfer bestehen.
  • Fig. 4 zeigt ein drittes Ausführungsbeispiel eines Schichtaufbaus auf einem Einpresskörper 2 mit drei Ni-haltigen Schichten, wobei die erste Ni-haltige Schicht 3 eine nanokristalline Schicht, die zweite Ni-haltige Schicht 4 eine mikrokristalline und die dritte Ni-haltige Schicht 6 eine amorphe Schicht ist. Die amorphe Schicht enthält 12 Gew. % Phosphor. Eine solche Ni-P Schicht hat einen E-Modul von 149 +/- 6 GPa und eine Eindruckhärte von 9 +/- 0,7 GPa. Die Oberfläche der amorphen Schicht weist einen gleichbleibend geringen Reibwiderstand gegenüber einer Kupferreibfläche auf. Ein Kaltverschweißen gegen eine Kupfer- oder Bronzeschicht kann mit einem solchen Schichtaufbau minimiert oder verhindert werden. Die amorphe Schicht weist eine erhöhte Stabilität gegen Reiboxidation und eine geringe Schichtdegradation auf, so dass sie auch für wiederholte Steckanwendungen gut geeignet ist.
  • Fig. 5 zeigt einen Schichtaufbau auf einem Einpresskörper 2 mit drei Ni-haltigen Schichten, sowie einer Zwischenschicht 5. Die drei Ni-haltigen Schichten 3, 4, 6 entsprechen denjenigen des in Fig. 4 gezeigten Ausführungsbeispiels. Die Zwischenschicht 5 besteht aus Zinn.
  • Fig. 6 zeigt das Ergebnis von zwei Reibversuchen zwischen einem Kupferstift und einer Scheibe, die mit einem Mattnickel bzw. einem Glanznickel beschichtet ist. Auf der waagerechten Achse ist die Zeit aufgetragen, auf der senkrechten Achse ist der Reibungskoeffizient (COF) aufgetragen. Die Kurve des Glanznickels zeigt eine Einlaufphase, in der der Reibungskoeffizient während des Reibversuchs zunimmt, wohingegen der Reibungskoeffizient bei dem Reibversuch auf Mattnickel einen näherungsweise gleichbleibenden Wert aufweist.
  • Fig. 7 ist ein Diagramm und zeigt einen Vergleich eines weiteren Reibversuchs zwischen einem Kupferstift und einer mit Glanznickel bzw. einer amorphen Ni-P Schicht beschichteten Scheibe. Die Reibversuche auf der amorphen Ni-P Schicht zeigen einen gleichbleibend niedrigen Reibungskoeffizienten, während der Reibversuch auf dem Glanznickel einen ansteigenden Reibungskoeffizienten aufweist. Nach 10 Reibzyklen tritt beim Glanznickel ein Materialübertrag von Cu-Partikeln, wie in der schematischen Darstellung der mikroskopischen Untersuchung in Fig. 8 ersichtlich ist, auf. Bei einer amorphen Ni-P Schicht wurde kein Materialübertrag an der Reiboberfläche nach 10 Reibzyklen beobachtet, wie in Fig. 9 gezeigt ist.
  • BEZUGSZEICHENLISTE
  • 1
    Steckkontakt
    2
    Einpresskörper
    3
    erste Ni-haltige Schicht
    4
    zweite Ni-haltige Schicht
    5
    Zwischenschicht
    6
    dritte Ni-haltige Schicht
    10
    Stiftspitze
    11
    Einpressbereich
    12
    Befestigungsbereich

Claims (9)

  1. Steckverbinder (1), umfassend einen Einpresskörper (2), welcher mit einer ersten Ni-haltigen Schicht (3) und einer zweiten Ni-haltigen Schicht (4) beschichtet ist,
    wobei die erste (3) und/oder die zweite Ni-haltige Schicht (4) eine nanokristalline oder amorphe Schicht ist.
  2. Steckverbinder nach Anspruch 1, wobei eine der Ni-haltigen Schichten (3, 4) ein Mattnickel und die andere Ni-haltige Schicht ein Glanznickel ist.
  3. Steckverbinder nach Anspruch 1, wobei die erste oder die zweite Ni-haltige Schicht (3, 4) eine amorphe Schicht ist, welche bis zu 15 Gew.% Phosphor, insbesondere bis zu 10 Gew.% Phosphor enthält.
  4. Steckverbinder nach einem der vorhergehenden Ansprüche, wobei die nanokristalline und/oder die amorphe Schicht eine Dicke von 0,1 - 3 µm, insbesondere 0,1 - 2,2 µm, insbesondere 0,1 - 1 µm, insbesondere 0,1 - 0,7 µm, insbesondere 0,1 - 0,3 µm aufweist.
  5. Steckverbinder nach einem der vorhergehenden Ansprüche, wobei auf der zweiten Ni-haltigen Schicht (4) eine dritte Ni-haltige Schicht (6) angeordnet ist.
  6. Steckverbinder nach einem der vorhergehenden Ansprüche, wobei die zweite Ni-haltige Schicht (4) mikrokristallin und die dritte Ni-haltige Schicht (6) nanokristallin oder amorph ist.
  7. Steckverbinder nach einem der vorhergehenden Ansprüche, wobei der Einpresskörper (2) aus Kupfer, einer Kupferlegierung oder Stahl besteht.
  8. Steckverbinder nach Anspruch 7, wobei die Kupferlegierung eine Legierung aus CuFe, FuFe2P, CuNiSn, CuNiSi, CuZn, CuSnZn, CuSn4, CuSn6 oder CuSn8 ist.
  9. Steckverbinder nach einem der vorhergehenden Ansprüche, wobei zwischen dem Einpresskörper (2) und der ersten Ni-haltigen Schicht (3) eine Zwischenschicht (5) aus Cu oder Sn angeordnet ist.
EP18000214.9A 2017-03-14 2018-03-06 Steckverbinder Withdrawn EP3375910A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017002472.3A DE102017002472A1 (de) 2017-03-14 2017-03-14 Steckverbinder

Publications (2)

Publication Number Publication Date
EP3375910A2 true EP3375910A2 (de) 2018-09-19
EP3375910A3 EP3375910A3 (de) 2018-11-14

Family

ID=61580891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000214.9A Withdrawn EP3375910A3 (de) 2017-03-14 2018-03-06 Steckverbinder

Country Status (5)

Country Link
US (1) US20180269603A1 (de)
EP (1) EP3375910A3 (de)
CN (1) CN108574161A (de)
DE (1) DE102017002472A1 (de)
MX (1) MX2018003112A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244866A1 (de) * 2019-06-05 2020-12-10 Erni International Ag Elektrisches kontaktelement für hohe betriebsspannungen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203800B4 (de) * 2018-03-13 2019-11-21 Te Connectivity Germany Gmbh Kontaktstift und Anordnung zur Verbindung von elektrischen Leitern aus Kupfer und Aluminium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042824A1 (de) 2008-10-14 2010-04-15 Robert Bosch Gmbh Elektrischer Leiter und Verfahren zur Herstellung eines elektrischen Leiters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335107B1 (en) * 1999-09-23 2002-01-01 Lucent Technologies Inc. Metal article coated with multilayer surface finish for porosity reduction
JP4362599B2 (ja) * 2004-03-05 2009-11-11 Dowaメタルテック株式会社 金属部材およびそれを用いた電気接点
JP5424666B2 (ja) * 2009-02-17 2014-02-26 学校法人早稲田大学 微細結晶−アモルファス混在金合金およびめっき皮膜、そのためのめっき液およびめっき皮膜形成方法
US8652649B2 (en) * 2009-07-10 2014-02-18 Xtalic Corporation Coated articles and methods
US20120328904A1 (en) * 2011-06-23 2012-12-27 Xtalic Corporation Printed circuit boards and related articles including electrodeposited coatings
DE102011078546A1 (de) * 2011-07-01 2013-01-03 Tyco Electronics Amp Gmbh Elektrische Kontaktbeschichtung
TWI493798B (zh) * 2012-02-03 2015-07-21 Jx Nippon Mining & Metals Corp Push-in terminals and electronic parts for their use
EP2975162B1 (de) * 2014-07-18 2018-09-05 FRANZ Oberflächentechnik GmbH & Co KG Verfahren zum schutzbeschichten eines werkstücks
TWI527920B (zh) * 2014-11-26 2016-04-01 財團法人金屬工業研究發展中心 保護膜與其鍍膜方法
WO2017143033A1 (en) * 2016-02-16 2017-08-24 Xtalic Corporation Articles including a multi-layer coating and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042824A1 (de) 2008-10-14 2010-04-15 Robert Bosch Gmbh Elektrischer Leiter und Verfahren zur Herstellung eines elektrischen Leiters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020244866A1 (de) * 2019-06-05 2020-12-10 Erni International Ag Elektrisches kontaktelement für hohe betriebsspannungen
CN113491039A (zh) * 2019-06-05 2021-10-08 埃尔尼国际股份有限公司 用于高操作电压的电接触元件
RU2769459C1 (ru) * 2019-06-05 2022-03-31 Эрни Интернациональ Аг Электрический контактный элемент для высоких рабочих напряжений

Also Published As

Publication number Publication date
EP3375910A3 (de) 2018-11-14
CN108574161A (zh) 2018-09-25
MX2018003112A (es) 2018-11-09
DE102017002472A1 (de) 2018-09-20
US20180269603A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
DE112006000095T5 (de) Presssitzanschluss, Verfahren zur Herstellung hiervon, sowie Verbindungsanordnung zwischen einem Presssitzanschluss und einer Platine
DE112017002557B4 (de) Presspassanschluss-Verbindungsstruktur
DE112011102311B4 (de) Gleitlager
DE102010012609A1 (de) Sn-plattiertes Kupfer oder Sn-plattierte Kupferlegierung mit hervorragender Wärmebeständigkeit und Herstellungsverfahren dafür
EP1840394B1 (de) Gleitelement
DE102013220820B4 (de) Mehrschichtgleitelement
DE102005005926A1 (de) Kontaktstecker
DE10313775A1 (de) Steckverbindung
DE102009047043A1 (de) Lötfreie elektrische Verbindung
DE202018104958U1 (de) Steckverbinder mit Komponenten aus verbessertem Material
EP3375910A2 (de) Steckverbinder
DE1815726A1 (de) Trocken geschmierte Oberflaeche und Verfahren zur Herstellung derartiger Oberflaechen
DE102014117410A1 (de) Elektrisches Kontaktelement, Einpressstift, Buchse und Leadframe
DE102020000958A1 (de) Anschluss, Verbinder, Anschlusspaar und Verbinderpaar
DE102008056965A1 (de) Gleitlagerverbundwerkstoff mit galvanisch abgeschiedener Gleitschicht
DE2914618C2 (de) Schichtwerkstoff mit auf einer Trägerschicht im Drahtexplosionsverfahren oder Kathodenzerstäubung (Sputtering) aufgebrachter Gleit- oder Reibschicht, Verfahren zu seiner Herstellung und Target zur Durchführung des Verfahrens
DE112016002685T5 (de) Anschlussstück und Verbinder
DE102014005941A1 (de) Verfahren zum Herstellen eines elektrischen Kontaktelements zur Vermeidung von Zinnwhiskerbildung, und Kontaktelement
DE102011088211A1 (de) Kontaktelement und Verfahren zu seiner Herstellung
DE102020212054A1 (de) Gleitelement
DE102020212056A1 (de) Gleitelement
DE102008036090B4 (de) Elektrische Kontaktpaarung und Verfahren zur Herstellung und Kontaktierung einer solchen
DE102020002740A1 (de) Anschlussklemme, elektrischer Draht mit Klemme und Klemmenpaar
DE102008041619A1 (de) Kugelgelenk und Verfahren zu dessen Herstellung
DE102018100440A1 (de) Verfahren zum Herstellen eines kaltverformbaren Crimpkontakts, Verfahren zum Herstellen einer elektromechanischen Crimpverbindung und Crimpkontakt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 5/14 20060101AFI20181005BHEP

Ipc: H01R 12/58 20110101ALN20181005BHEP

Ipc: C25D 7/00 20060101ALI20181005BHEP

Ipc: H01R 4/62 20060101ALN20181005BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190515