EP3375742B1 - Textile machine with a plurality of spinning or winding positions and method for operating the textile machine - Google Patents

Textile machine with a plurality of spinning or winding positions and method for operating the textile machine Download PDF

Info

Publication number
EP3375742B1
EP3375742B1 EP18160069.3A EP18160069A EP3375742B1 EP 3375742 B1 EP3375742 B1 EP 3375742B1 EP 18160069 A EP18160069 A EP 18160069A EP 3375742 B1 EP3375742 B1 EP 3375742B1
Authority
EP
European Patent Office
Prior art keywords
component
spinning
textile machine
sensor unit
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18160069.3A
Other languages
German (de)
French (fr)
Other versions
EP3375742A1 (en
Inventor
Bernd Bahlmann
Mario Maleck
Robin Wein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP3375742A1 publication Critical patent/EP3375742A1/en
Application granted granted Critical
Publication of EP3375742B1 publication Critical patent/EP3375742B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/04Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to excessive tension or irregular operation of apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • D01H13/145Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements set on carriages travelling along the machines; Warning or safety devices pulled along the working unit by a band or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/22Automatic winding machines, i.e. machines with servicing units for automatically performing end-finding, interconnecting of successive lengths of material, controlling and fault-detecting of the running material and replacing or removing of full or empty cores
    • B65H54/26Automatic winding machines, i.e. machines with servicing units for automatically performing end-finding, interconnecting of successive lengths of material, controlling and fault-detecting of the running material and replacing or removing of full or empty cores having one or more servicing units moving along a plurality of fixed winding units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/14Warning or safety devices, e.g. automatic fault detectors, stop motions ; Monitoring the entanglement of slivers in drafting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to a textile machine with a plurality of spinning or winding stations, the spinning or winding stations and / or the textile machine, d. H. Sections that are not directly assigned to one of the spinning or winding stations, such as a cover of a drive head, comprise at least one component that is movable between at least two layers. Furthermore, the textile machine comprises at least one sensor unit, with the aid of which a position and / or movement of the component can be detected. The invention also relates to a method for operating the textile machine.
  • the object of the present invention is therefore to remedy this disadvantage of the prior art.
  • a textile machine with a large number of spinning or winding stations is proposed, the spinning or winding station and / or the textile machine comprising at least one component which can be moved between at least two layers.
  • the construction elements can be the most varied of components of the textile machine.
  • the component by a Housing or a housing part (for example a rotor cover) of a rotor spinning unit, a thread catching device and / or a bobbin holder can be formed. These components can be moved between at least two layers, with z.
  • an air-jet spinning machine can also comprise components mounted in a correspondingly movable manner, such as in particular the air-jet spinning nozzle, which can be opened for cleaning.
  • the at least two layers of the component are at least one position in which the section comprising the component, in particular the corresponding winding or spinning station of the textile machine, is operated normally.
  • the housing or the housing part of the rotor spinning unit is closed during normal operation so that it can spin a thread, or the bobbin holder is in a position in which the thread can be wound onto the tube located therein.
  • operation of the corresponding section is not possible, since, for example, the housing or the housing part of the rotor spinning unit is open and therefore no thread can be produced.
  • the housing or the housing part of the spinning unit of a rotor or air-jet spinning machine is open, a route of a maintenance device can also be blocked. As a result, there is a risk of the maintenance device colliding with the component, which is to be prevented.
  • the component can have further layers.
  • the housing can be used as a component for maintenance manually by a Maintenance personnel are opened. If, after maintenance, the housing was not completely closed, but still opened slightly, this can also represent a position of the component.
  • the textile machine comprises at least the named sensor unit.
  • the sensor unit comprises an inertial measuring unit for detecting the change in position and / or movement of the component.
  • a size and a direction of the change in position and / or movement are also recorded.
  • a change in position can be, for example, a change in the orientation if the component rotates, for example, about at least one pivot point.
  • the component can, however, additionally or alternatively also be shifted in a translatory manner, for example if the corresponding, z. B. designed as a housing cover, the component is moved to open.
  • the change in movement includes, for example, accelerations, such as braking and / or an increase in speed, such as occur, for example, in a traversing device.
  • the inertial measuring unit can be used to determine the position and the movement of the component between the at least two positions by integrating the change in movement twice. By simply integrating the change in position, a position between the two positions can also be determined, which in this case represent end positions. This also requires two initial conditions, which include the initial position and the initial movement of the component. However, these can be known relatively simply because the component is in a known initial or starting position (for example when the component encompasses the housing of the rotor spinning unit and is initially closed) and thus initially also remains in a position in which there is no movement. This can change the position and / or movement of the component can be determined at any time between the respective end positions, which would not be possible, for example, with a simple contact switch.
  • Each position and / or movement of the component can now be recognized by the inertial measuring unit. For example, it is possible to detect incomplete closing of the housing of the spinning station. Thereupon, for example, a corresponding notification can be given to the maintenance staff or a control that the housing is not closed and the spinning station is not yet functional.
  • the inertial measuring unit comprises a rotation rate sensor.
  • the rotation rate sensor can be designed, for example, as a laser gyro or as a fiber gyro, in which an angular velocity and / or an angular acceleration about an axis can be measured with the aid of a laser.
  • the yaw rate sensor can also be designed without moving parts, so that it has a robust structure.
  • a measurement of the angular velocity and / or acceleration about an axis can be sufficient, for example, if the component can only rotate about a pivot point.
  • rotations around two or all three spatial axes can also be measured.
  • the yaw rate sensor can have, for example, two or three fiber or laser gyros that are perpendicular to one another.
  • the inertial measuring unit can also comprise a gyroscope sensor.
  • a gyroscope can rotate and an orientation of the inertial measuring unit in space can be measured with it. In this way, for example, rotations of the component around different axes can be measured.
  • the inertial measuring unit can also comprise a sensor for measuring linear accelerations. With the aid of such a sensor, translational displacements can be measured in at least one of the three spatial directions of the component.
  • MEMS MicroElectroMechanical System
  • the sensor unit is arranged at the spinning station.
  • the sensor unit can also be arranged directly on the component.
  • the sensor unit can be arranged on the component which moves with it in order to directly measure the movement of the component between the at least two layers. This enables particularly precise detection of the change in position and / or movement of the component.
  • the component is designed as a coil arm holding a coil, at least one sensor unit being arranged on the coil arm and / or on the coil.
  • the thread produced by the spinning station is wound onto the bobbin, the bobbin being held rotatably by the bobbin arm.
  • the bobbin and the bobbin arm can of course also be arranged in a winding station.
  • the sensor unit on the coil arm can, for example, detect a hopping of the coil while it is rotating. Hopping can be generated, for example, if the coil is unbalanced. By hopping the thread can no longer be neatly wound onto the bobbin or a bearing of the bobbin arm can be damaged.
  • the sensor unit can also be arranged on the coil, so that the sensor unit rotates with the coil. In this way, for example, a speed of the coil can be measured directly.
  • a sensor unit can also be arranged on the coil and on the coil arm so that, for example, the rotation of the coil and the pivoting of the coil arm can be measured.
  • a diameter of the coil can also be calculated with the aid of the sensor unit on the coil arm.
  • the thread When the thread is wound onto the bobbin, its diameter increases steadily, with the bobbin arm being pivoted as a result.
  • the change in orientation during the pivoting of the coil arm can be detected with the aid of the sensor unit. From this, the change in the diameter of the coil can be calculated, from which conclusions can be drawn about the current diameter. In this way, for example, the point in time can be determined when the bobbin is full and has to be changed.
  • the textile machine and / or the spinning or winding station comprises a unit, the unit being arranged on the component and the sensor unit being arranged in the area or in a housing of the unit.
  • the unit can be designed, for example, as an actuator and / or a further sensor. Additionally or alternatively, the unit can also be designed as a thread monitor, with the aid of which it can be recognized whether the thread is being guided through the spinning or winding station. If the sensor unit is arranged, for example, in the area of the thread monitor or in its housing (or on its housing), the measured values of the sensor unit can be transmitted via its data line in addition to the data of the thread monitor.
  • the sensor unit is arranged in the area of a pivot point of a component that can be rotated or pivoted between the two positions.
  • the sensor unit can include, for example, the rotation rate sensor or the gyroscope.
  • a change in the angle of rotation and / or the angular speed of the component can be measured with a high resolution.
  • Such a further development of the invention can be implemented, for example, if the sensor unit, due to its design, can only be arranged in the area of the pivot point.
  • the sensor unit is arranged on the rotatable or pivotable component in an area spaced from the pivot point.
  • the sensor unit can for example comprise the sensor for measuring linear accelerations.
  • the sensor unit can also be arranged on the component in an area opposite the pivot point or in an area at least spaced apart from the pivot point.
  • the lever movement converts the turning or pivoting of the component into a translational movement, this translational movement being able to be measured by the sensor for measuring linear accelerations. In this way, for example, particularly small rotational or pivoting movements can be measured, since these are amplified by the length of the component to a larger movement of the sensor unit.
  • the textile machine comprises a controller connected to the sensor unit, which is designed to generate an alarm (optical and / or acoustic or via a remote device) based on the change in position and / or the change in movement of the component z. B. a smartphone) and / or to stop the maintenance device moving along the spinning and / or winding stations and / or to shut down the spinning and / or winding station.
  • the controller can further include, for example, a processor for calculating the change in position and / or movement from the measurements of the sensor unit (s). In order to stop the spinning and / or winding station, for example, it is connected to actuators of the spinning and / or winding station.
  • control can also receive information about the position at which the maintenance device is located along the spinning and / or winding stations. The control can then decide, depending on a distance between the spinning or winding stations and the maintenance device, whether the maintenance device must be stopped when a component of one or more spinning or winding stations protrudes into the path of the maintenance device.
  • the spinning and / or winding station has an actuator with the aid of which the component can be moved between the two layers.
  • the actuator can also be connected to the controller so that when it detects that the component is in the path of the maintenance facility, it can cause the component to be moved with the aid of the actuator into a position in which the maintenance facility can pass unhindered.
  • the invention also relates to a method for operating a textile machine with a plurality of spinning or winding stations, the spinning or winding stations and / or one or more other sections of the textile machine comprising at least one component that can be moved back and forth between at least two layers .
  • the textile machine also includes a sensor unit, with the aid of which a change in position and / or movement of the component is monitored. With the help of the sensor unit, a Size and direction of the change in position and / or movement is monitored.
  • the sensor unit comprises an inertial measuring unit which comprises at least one MEMS element.
  • the component can, for example, be a housing of a rotor or air-jet spinning unit or a part of the same, which is opened for maintenance or cleaning.
  • the housing can for example be pivoted or pulled away from the spinning unit. If the component still closes the spinning unit, it is, for example, in a first position. When the component is open for maintenance or cleaning, in particular completely, it is in a second position.
  • the component can be arranged in the second layer, for example, in such a way that it crosses a travel path of a maintenance device traveling along the spinning stations. If the maintenance device collides with the component, damage can be caused both to the maintenance device and to the component, which of course must be avoided. The position of the component is therefore monitored with the aid of a sensor unit, for example to prevent a collision.
  • a position between the first and second position can also be monitored with the sensor unit.
  • the component can be located between the two layers, but still allow the maintenance facility to drive past. This intermediate layer can be recognized and it can be concluded from this that the collision of the maintenance device with the component does not take place. The maintenance facility therefore does not have to be stopped.
  • the textile machine comprises a controller connected to the sensor unit, which, based on the measured position and / or movement of the component, can cause an alarm to be issued and / or the maintenance device moving along the spinning or winding stations to be stopped and / or the spinning or winding station stopped becomes.
  • the alarm can be issued, for example, to make maintenance personnel aware of a specific position and / or movement of the component.
  • the alarm can be given, for example, if the component does not completely close the spinning unit and z. B. the negative pressure inside the spinning unit cannot be built up.
  • the moving maintenance device can also be stopped in order to avoid a collision with the component projecting into the route.
  • the spinning and / or winding station can be shut down in order to carry out an emergency stop. If, for example, the maintenance personnel carelessly opens the housing during spinning, the change in movement, namely the acceleration of the sensor unit, and its direction can be detected with the aid of the sensor unit. In order to avoid injury to the maintenance staff, the emergency stop of the spinning unit can then be triggered.
  • a current position and / or movement of the component is calculated by analyzing the change in position and / or movement.
  • the analysis can also include, for example, adding up or integrating the changes in position and / or movement.
  • This method step can advantageously be carried out by the controller.
  • the productivity of the textile machine can be increased.
  • the maintenance device moving along the spinning or winding stations does not have to be stopped when the control calculates that the component is not in the intended position, but neither is it in the travel path of the maintenance device protrudes.
  • the maintenance device can then drive past the component in order to carry out maintenance activities at another spinning or winding station.
  • the control causes an actuator arranged at the spinning or winding station to move the component from one position to the other position. If, for example, the component protrudes into the route of the maintenance facility, the actuator can at least briefly pivot, rotate or pull the component out of the route to avoid a collision. The actuator can also close the component if it is, for example, the housing of the spinning unit.
  • FIG. 1 shows a schematic top view of a textile machine 1 with a large number of spinning stations 2 shown in the same way, with only a single spinning station 2 being provided with a reference number for the sake of simplicity.
  • the Spinning positions 2 can all be of the same design.
  • the textile machine can also have winding stations.
  • the textile machine 1 also has a component 3 which, in the present exemplary embodiment, is arranged at the spinning station 2 and can be moved back and forth between at least two layers.
  • the component 3 can proceed from a first layer 4 (see also FIG Figure 2 ) are rotated or pivoted in a second position 5 shown here in the direction of rotation DR.
  • the first layer 4 for example, the component 3 can be aligned with the spinning stations 2.
  • the component 3 can be formed, for example, by a housing of the (rotor or air) spinning station 2 or a portion of the same or a thread catching device or a bobbin holder, these being only examples of movable components 3 within the meaning of the invention.
  • the textile machine 1 comprises a maintenance device 7 which can move on or on a running rail 8 along the spinning stations 2 in the direction of travel FR.
  • the spinning station 2 can be serviced and / or cleaned by means of the maintenance device 7.
  • An open component 3 also has other effects.
  • a component 3 designed as a housing seals off the spinning station 2, so that a negative pressure can be built up in the spinning station 2, which is important for the spinning process.
  • the opened housing is no longer sealed off the spinning station 2 and the spinning process is impaired.
  • Sensor units not shown here, are therefore known in the prior art, which can detect a position of the component 3.
  • the sensor unit 6 (cf. Figure 2 ) of the textile machine 1, on the other hand, has an inertial measuring unit for detecting the change in position and / or movement of the component 3.
  • a position and / or movement between the two positions 4, 5 can also be recognized with the aid of the inertial measuring unit.
  • the component 3 can, for example, have a position in which the maintenance device 7 can drive past the component 3, but the component 3 as a housing does not completely close the spinning station 2.
  • the inertial measuring unit it can also be recognized, for example, that the component 3 is moving from the second layer 5 in the direction of the first layer 4 and that the movement, in particular the speed of the movement, is sufficient that the maintenance facility 7 passing by is no longer with the Component 3 collides because it is then rotated sufficiently far in the direction of the first layer 4.
  • the inertial measuring unit can also measure the change in movement, in particular the acceleration, of the component 3, so that it can also be calculated when the maintenance device 7 is safely driving past the component 3.
  • FIG. 2 shows in this embodiment a section of a spinning station 2 with a pivotable component 3.
  • the component 3 is designed as a rotor lid in this embodiment.
  • a thread 12 is spun in a rotor 11 in the spinning station 2.
  • the rotor 11 is set in rotation via a rotor shaft 15, rotating in the rotor housing 16.
  • the spun thread 12 is withdrawn via a withdrawal tube 17 and wound onto a spool, not shown here.
  • the rotor 11 rotates in a rotor chamber 13 to which a negative pressure is applied during the spinning of the thread 12.
  • the rotor chamber 13 is closed by the pivotable component 3 and the two seals 14, so that the negative pressure can be created.
  • the component 3 Since the negative pressure is important for the spinning of the thread 12, the component 3 must seal the rotor chamber 13 in this exemplary embodiment.
  • the component 3 must be arranged in the first position 4 so that it seals the rotor chamber 13 with the seals 14.
  • the inertial measuring unit can measure accelerations and rotation rates as well as changes in the rotation rates, from which a current position and / or movement of the component 3 can be calculated by integration.
  • the two layers 4, 5 be recognized, but also all the layers and / or movements between them and their changes. For example, it can be recognized if the component 3 accelerates as a result of the opening, so that, for example, an emergency stop of the spinning station 2 can be triggered if the rotor chamber 13 is accidentally opened during the spinning process.
  • the inertial measuring unit can include, for example, a rotation rate sensor in order to detect a change in rotation and / or rotation as a change in position and / or movement of the component 3.
  • the rotation rate sensor can be designed, for example, as a fiber or laser gyro. On In this way, the rotation rate and / or the rotation rate change of the sensor unit 6 can be measured, which is synonymous with the rotation rate and / or the rotation rate change of the component 3.
  • the inertial measuring unit can also comprise a gyroscope.
  • a gyro can rotate therein, with the aid of which a change in orientation of the sensor unit 6 and thus of the component 3 in space can be measured.
  • the inertial measuring unit can also have a sensor for measuring linear accelerations. This can be arranged at the end 10 of the component 3 opposite the pivot point 9, so that the rotation of the component 3 at the end 10 is converted into a translational movement at least in the area of the first position 4.
  • FIG. 3 shows a schematic view of a thread-producing spinning station 2, the thread 12 being wound onto a bobbin 19.
  • the thread 12 is produced by first feeding a sliver from a can (not shown here) into an opening device 24.
  • the opening device 24 produces individual fibers 23 from the sliver, which are guided to the rotor 11.
  • the thread 12 is spun from the individual fibers 23.
  • the thread 12 is diverted from the rotor 11, passed between a pair of delivery rollers 22 and guided via a deflection roller 25 to the bobbin 19 on which the thread 12 is wound.
  • the spool 19 is generally not driven by itself, but is set in rotation by means of a winding roller 20.
  • the bobbin 19 rests on the winding roller 20, with the friction between the lateral surface 26 the spool 19 and the lateral surface 27 of the spool roller 20, the rotation of the spool roller 20 is transmitted to the spool 19.
  • the coil 19 is rotatably arranged on a component 3a, the component 3a in this exemplary embodiment being formed by a coil arm.
  • the radius R of the bobbin 19 increases.
  • the component 3a also pivots away from the winding roller 20, which in this exemplary embodiment leads to the component 3a pivoting upward.
  • an angle ⁇ also increases.
  • a sensor unit 6a is arranged on the component 3a. By pivoting the component 3a as the radius R increases, the sensor unit 6a is rotated at the same time.
  • An inertial measuring unit arranged in the sensor unit 6a can measure the pivoting and thus an increase in the angle ⁇ , with the radius R of the coil 20 being able to be calculated from this measurement. This is advantageous, among other things, because a coil replacement can be planned on the basis of this data.
  • the inertial measuring unit arranged in the sensor unit 6a can measure a change in the angle ⁇ by measuring an acceleration of the component 3a.
  • the sensor unit 6a can thus measure, for example, the speed at which the component 3a moves away from the winding roller 20 as the radius R increases. As a result, the change in angle and from this the current angle ⁇ of component 3a can be determined. Additionally or alternatively, the sensor unit 6a can also measure a change in orientation of the component 3a. The angle ⁇ can thereby be determined directly.
  • Another advantage of the sensor unit 6a on the component 3a is that vibrations of the component 3a can be measured. If, for example, the outer surface 26 of the coil 19 has a circumference deviating from the circular shape, or if the coil 19 is unbalanced, the coil 19 begins to hop on the winding roller 20, which leads to said vibrations. These vibrations can lead to damage to the bearings of the component 3 a or to an uneven winding of the thread 12 on the bobbin 19. Both are disadvantageous for the productivity of the spinning station 2.
  • the measurement and / or the detection of vibrations with the aid of the sensor unit 6 is of course not restricted to the exemplary embodiment described here. With the aid of the sensor unit 6, of course, vibrations on other motors, actuators and / or other rotating and / or pivoting components can also be measured.
  • damping of the component 3a which is designed here as a coil arm, can also advantageously be set.
  • the damping can be regulated and / or controlled as a function of the vibrations, so that the damping is always set so strongly that the vibrations are suppressed.
  • an orientation of an axis of rotation 28 of the coil 19 can also be detected.
  • a non-parallelism between the axis of rotation 28 and the axis of rotation 29 means that the lateral surfaces 26, 27 of the bobbin 19 and the winding roller 20 only touch in sections, so that the bobbin 19 can deform.
  • the coil 19 will differ from the circular cross-section deformed away, so that imbalances are formed that lead to the vibrations described above.
  • the bobbin 19 begins to hop on the bobbin roller 20, so that the winding process is impaired.
  • the sensor unit 6a can also comprise a Hall sensor, with the aid of which a speed of the coil 19 can be detected.
  • the coil 19 can, for example, have a magnet that rotates with the coil 19. When the magnet moves past the Hall sensor, a signal is registered. The speed then depends on the frequency at which the signal occurs.
  • the above-mentioned pair of delivery rollers 22 and the deflection roller 25 are arranged on a further component 3b in this exemplary embodiment.
  • the component 3b comprises elements required for the transport and / or maintenance of the thread 12, for example.
  • the component 3b comprises a thread suction device, not shown here, with the aid of which a thread end can be sucked in for re-spinning in the event of a thread break.
  • a thread monitor 21 is also arranged on the component 3b, with the aid of which it can be recognized whether the thread 12 is being delivered to the bobbin 19. In particular, with the help of the thread monitor 21 it can be recognized whether, for example, the thread 12 has broken and thereupon emit a corresponding signal.
  • a further sensor unit 6b is arranged in the area of the thread monitor 21.
  • the sensor unit 6b can for example also be arranged in a housing of the thread monitor 21.
  • the arrangement of the sensor unit 6b in the area of the thread monitor 21 (or with this in its housing) is advantageous because it means that an additional data line for the sensor unit 6b can be dispensed with.
  • the measurement data of the sensor unit 6b can additionally be passed to the controller 18 via the data line of the thread monitor 21 (not shown here).
  • Figure 4 shows the spinning position of the Figure 3 with a pivoted component 3b.
  • the rotor 11, for example, can be serviced or cleaned by the swiveled-open component 3b.
  • the sensor unit 6b By pivoting the component 3b open, the sensor unit 6b is also pivoted in particular.
  • the inertial measuring unit arranged in the sensor unit 6b makes it possible to detect a change in movement, in particular an acceleration and / or a speed, away from the remaining spinning station 2 or towards it.
  • the current position of the component 3b can be calculated from this.
  • the calculation of the position of the component 3b is advantageous since the component 3b can protrude into the travel path of the maintenance device 7 in the pivoted-open position. This can lead to a collision between the maintenance device 7 and the component 3b.
  • a change in orientation of the component 3b can also be detected by the sensor unit 6b. If the sensor unit 6b comprises a gyroscope, for example, the change in the orientation, in particular the pivoting away, of the component 3b can be detected.
  • the sensor unit 6b is also arranged on the thread monitor 21.
  • the sensor unit 6b can also be integrated in the thread monitor 21.
  • the measured values of the sensor unit 6b can also be transmitted via the data line of the thread monitor 21, so that a separate data line for the sensor unit 6b can be saved.
  • the sensor unit 6b can thus also be easily retrofitted, for example.
  • the data line not shown here, leads to the controller 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Quality & Reliability (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Looms (AREA)

Description

Die vorliegende Erfindung betrifft eine Textilmaschine mit einer Vielzahl an Spinn- oder Spulstellen, wobei die Spinn- oder Spulstellen und/oder die Textilmaschine, d. h. Abschnitt, die nicht direkt einer der Spinn- oder Spulstellen zugeordnet sind, wie beispielsweise eine Verkleidung eines Antriebskopfs, zumindest ein Bauelement umfassen, das zwischen wenigstens zwei Lagen bewegbar ist. Ferner umfasst die Textilmaschine zumindest eine Sensoreinheit, mit deren Hilfe eine Lage und/oder Bewegung des Bauelements erkannt werden kann. Des Weiteren betrifft die Erfindung ein Verfahren zum Betreiben der Textilmaschine.The present invention relates to a textile machine with a plurality of spinning or winding stations, the spinning or winding stations and / or the textile machine, d. H. Sections that are not directly assigned to one of the spinning or winding stations, such as a cover of a drive head, comprise at least one component that is movable between at least two layers. Furthermore, the textile machine comprises at least one sensor unit, with the aid of which a position and / or movement of the component can be detected. The invention also relates to a method for operating the textile machine.

Aus der DE 101 37 081 A1 ist eine Textilmaschine mit an Bearbeitungsstellen angeordneten Sensoren bekannt, wobei mit Hilfe der Sensoren eine Endstellung von Bauelementen der Bearbeitungsstellen erkannt werden kann. Nachteilig an den Sensoren ist, dass mit ihnen keine Lage oder Bewegung zwischen den Stellungen erkannt werden kann.From the DE 101 37 081 A1 a textile machine with sensors arranged at processing points is known, with the aid of the sensors an end position of components of the processing points can be detected. The disadvantage of the sensors is that no position or movement between the positions can be detected with them.

Aufgabe der vorliegenden Erfindung ist es somit, diesen Nachteil des Stands der Technik zu beheben.The object of the present invention is therefore to remedy this disadvantage of the prior art.

Die Aufgabe wird gelöst durch eine Textilmaschine und ein Verfahren für deren Betrieb mit den Merkmalen der unabhängigen Patentansprüche.The object is achieved by a textile machine and a method for its operation with the features of the independent patent claims.

Vorgeschlagen wird eine Textilmaschine mit einer Vielzahl an Spinn- oder Spulstellen, wobei die Spinn- oder Spulstelle und/oder die Textilmaschine zumindest ein Bauelement umfassen, das zwischen wenigstens zwei Lagen bewegbar ist. Die Bauelemente können dabei die verschiedensten Komponenten der Textilmaschine sein. Beispielsweise kann das Bauelement durch ein Gehäuse oder ein Gehäuseteil (bspw. einen Rotordeckel) einer Rotorspinneinheit, eine Fadenfangeinrichtung und/oder ein Spulenhalter gebildet sein. Diese Bauelemente können zwischen wenigstens zwei Lagen bewegt werden, wobei z. B. das Gehäuse oder die Gehäuseteile der Rotorspinneinheit verschwenkt oder linear bewegt, die Fadenfangeinrichtung oder der Spulenhalter in der Regel verschwenkt werden kann. Vergleichbar hierzu kann auch eine Luftspinnmaschine entsprechend beweglich gelagerte Bauelemente umfassen, wie insbesondere die Luftspinndüse, die zum Reinigen geöffnet werden kann.A textile machine with a large number of spinning or winding stations is proposed, the spinning or winding station and / or the textile machine comprising at least one component which can be moved between at least two layers. The construction elements can be the most varied of components of the textile machine. For example, the component by a Housing or a housing part (for example a rotor cover) of a rotor spinning unit, a thread catching device and / or a bobbin holder can be formed. These components can be moved between at least two layers, with z. B. the housing or the housing parts of the rotor spinning unit pivoted or moved linearly, the thread catching device or the bobbin holder can usually be pivoted. Comparable to this, an air-jet spinning machine can also comprise components mounted in a correspondingly movable manner, such as in particular the air-jet spinning nozzle, which can be opened for cleaning.

Bei den wenigstens zwei Lagen des Bauelements handelt es sich um zumindest eine Lage, in der die der das Bauelement umfassende Abschnitt, insbesondere die entsprechende Spul- oder Spinnstelle der Textilmaschine, normal betrieben wird. Beispielsweise ist das Gehäuse oder das Gehäuseteil der Rotorspinneinheit während des Normalbetriebs geschlossen, so dass diese einen Faden spinnen kann, oder der Spulenhalter befindet sich in einer Lage, in der der Faden auf die sich darin befindliche Hülse aufgespult werden kann. In zumindest einer anderen Lage ist ein Betrieb des entsprechenden Abschnitts hingegen nicht möglich, da beispielsweise das Gehäuse oder das Gehäuseteil der Rotorspinneinheit geöffnet ist und damit kein Faden produziert werden kann.The at least two layers of the component are at least one position in which the section comprising the component, in particular the corresponding winding or spinning station of the textile machine, is operated normally. For example, the housing or the housing part of the rotor spinning unit is closed during normal operation so that it can spin a thread, or the bobbin holder is in a position in which the thread can be wound onto the tube located therein. In at least one other position, however, operation of the corresponding section is not possible, since, for example, the housing or the housing part of the rotor spinning unit is open and therefore no thread can be produced.

Wenn beispielsweise das Gehäuse oder das Gehäuseteil der Spinneinheit einer Rotor- oder Luftspinnmaschine geöffnet ist, kann auch ein Fahrweg einer Wartungseinrichtung versperrt sein. Infolgedessen besteht die Gefahr einer Kollision der Wartungseinrichtung mit dem Bauelement, was es zu verhindern gilt.If, for example, the housing or the housing part of the spinning unit of a rotor or air-jet spinning machine is open, a route of a maintenance device can also be blocked. As a result, there is a risk of the maintenance device colliding with the component, which is to be prevented.

Darüber hinaus kann das Bauelement weitere Lagen aufweisen. Beispielsweise kann das Gehäuse als Bauelement für eine Wartung manuell von einem Wartungspersonal geöffnet werden. Wenn nach der Wartung das Gehäuse nicht vollständig geschlossen wurde, sondern noch minimal geöffnet ist, kann auch das eine Lage des Bauelements darstellen.In addition, the component can have further layers. For example, the housing can be used as a component for maintenance manually by a Maintenance personnel are opened. If, after maintenance, the housing was not completely closed, but still opened slightly, this can also represent a position of the component.

Um eine Lage und/oder eine Bewegung des Bauelements erkennen zu können, umfasst die Textilmaschine zumindest die genannte Sensoreinheit.In order to be able to detect a position and / or a movement of the component, the textile machine comprises at least the named sensor unit.

Erfindungsgemäß umfasst die Sensoreinheit eine inertiale Messeinheit zur Erfassung der Lage- und/oder Bewegungsänderung des Bauelements. Dabei wird auch eine Größe und eine Richtung der Lage- und/oder Bewegungsänderung erfasst. Eine Lageänderung kann beispielsweise eine Änderung der Orientierung sein, wenn sich das Bauelement beispielsweise um zumindest einen Drehpunkt dreht. Das Bauelement kann aber zusätzlich oder alternativ auch translatorisch verschoben werden, beispielsweise wenn das entsprechende, z. B. als Gehäusedeckel ausgebildete, Bauelement zum Öffnen verschoben wird. Die Bewegungsänderung umfasst beispielsweise Beschleunigungen, wie beispielsweise ein Abbremsen und/oder eine Geschwindigkeitszunahme, wie sie beispielsweise bei einer Changiervorrichtung auftreten.According to the invention, the sensor unit comprises an inertial measuring unit for detecting the change in position and / or movement of the component. A size and a direction of the change in position and / or movement are also recorded. A change in position can be, for example, a change in the orientation if the component rotates, for example, about at least one pivot point. The component can, however, additionally or alternatively also be shifted in a translatory manner, for example if the corresponding, z. B. designed as a housing cover, the component is moved to open. The change in movement includes, for example, accelerations, such as braking and / or an increase in speed, such as occur, for example, in a traversing device.

Durch die inertiale Messeinheit können durch zweifache Integration der Bewegungsänderung die Lage und die Bewegung des Bauelements zwischen den wenigstens zwei Lagen bestimmt werden. Durch eine einfache Integration der Lageänderung kann ebenfalls eine Lage zwischen den beiden Lagen bestimmt werden, die in diesem Fall Endlagen darstellen. Dazu sind ferner zwei Anfangsbedingungen nötig, die die Anfangslage und die Anfangsbewegung des Bauelements umfassen. Diese können allerdings relativ einfach dadurch bekannt sein, dass sich das Bauelement in einer bekannten Anfangs- bzw. Ausgangslage befindet (beispielsweise wenn das Bauelement das Gehäuse der Rotorspinneinheit umfasst und zu Anfangs geschlossen ist) und somit zu Anfangs auch in einer Lage verharrt, in der keine Bewegung stattfindet. Dadurch können die Lage und/oder die Bewegung des Bauelements zu jedem Zeitpunkt zwischen den jeweiligen Endlagen bestimmt werden, was beispielsweise mit einem einfachen Kontaktschalter nicht möglich wäre. Durch die inertiale Messeinheit kann nun jede Lage und/oder Bewegung des Bauelements erkannt werden. Es ist beispielsweise möglich, ein unvollständiges Schließen des Gehäuses der Spinnstelle zu erkennen. Daraufhin kann beispielsweise ein entsprechender Hinweis an das Wartungspersonal oder eine Steuerung gegeben werden, dass das Gehäuse nicht geschlossen ist und die Spinnstelle noch nicht funktionsfähig ist.The inertial measuring unit can be used to determine the position and the movement of the component between the at least two positions by integrating the change in movement twice. By simply integrating the change in position, a position between the two positions can also be determined, which in this case represent end positions. This also requires two initial conditions, which include the initial position and the initial movement of the component. However, these can be known relatively simply because the component is in a known initial or starting position (for example when the component encompasses the housing of the rotor spinning unit and is initially closed) and thus initially also remains in a position in which there is no movement. This can change the position and / or movement of the component can be determined at any time between the respective end positions, which would not be possible, for example, with a simple contact switch. Each position and / or movement of the component can now be recognized by the inertial measuring unit. For example, it is possible to detect incomplete closing of the housing of the spinning station. Thereupon, for example, a corresponding notification can be given to the maintenance staff or a control that the housing is not closed and the spinning station is not yet functional.

In einer vorteilhaften Weiterbildung der Erfindung umfasst die inertiale Messeinheit einen Drehratensensor. Der Drehratensensor kann beispielsweise als ein Laserkreisel oder als ein Faserkreisel ausgebildet sein, bei dem mit Hilfe eines Lasers eine Winkelgeschwindigkeit und/oder eine Winkelbeschleunigung um eine Achse gemessen werden kann. Durch die Messung mit Hilfe des Lasers kann der Drehratensensor auch ohne bewegliche Teile ausgebildet werden, so dass er robust aufgebaut ist. Eine Messung der Winkelgeschwindigkeit und/oder -beschleunigung um eine Achse kann beispielsweise genügen, wenn sich das Bauelement nur um einen Drehpunkt drehen kann. Mit Hilfe des Drehratensensors können auch Drehungen um zwei oder alle drei Raumachsen gemessen werden. Dazu kann der Drehratensensor beispielsweise zwei bzw. drei senkrecht zueinander stehende Faser- oder Laserkreisel aufweisen.In an advantageous development of the invention, the inertial measuring unit comprises a rotation rate sensor. The rotation rate sensor can be designed, for example, as a laser gyro or as a fiber gyro, in which an angular velocity and / or an angular acceleration about an axis can be measured with the aid of a laser. By measuring with the aid of the laser, the yaw rate sensor can also be designed without moving parts, so that it has a robust structure. A measurement of the angular velocity and / or acceleration about an axis can be sufficient, for example, if the component can only rotate about a pivot point. With the help of the rotation rate sensor, rotations around two or all three spatial axes can also be measured. For this purpose, the yaw rate sensor can have, for example, two or three fiber or laser gyros that are perpendicular to one another.

Zusätzlich oder alternativ kann die inertiale Messeinheit auch einen Gyroskopsensor umfassen. In dem Gyroskopsensor kann beispielsweise ein Kreisel rotieren und mit ihm eine Orientierung der inertialen Messeinheit im Raum gemessen werden. Dadurch können beispielsweise Drehungen des Bauelements um verschiedene Achsen gemessen werden.Additionally or alternatively, the inertial measuring unit can also comprise a gyroscope sensor. In the gyroscope sensor, for example, a gyroscope can rotate and an orientation of the inertial measuring unit in space can be measured with it. In this way, for example, rotations of the component around different axes can be measured.

Ebenfalls zusätzlich oder alternativ kann die inertiale Messeinheit auch einen Sensor zur Messung von linearen Beschleunigungen umfassen. Mit Hilfe eines derartigen Sensors können translatorische Verschiebungen in zumindest einer der drei Raumrichtungen des Bauelements gemessen werden.Likewise, in addition or as an alternative, the inertial measuring unit can also comprise a sensor for measuring linear accelerations. With the aid of such a sensor, translational displacements can be measured in at least one of the three spatial directions of the component.

Die inertiale Messeinheit umfasst zumindest ein MEMS-Element (MEMS=MicroElectroMechanical System). Da MEMS-Elemente Größen im Mikrometer- bis in den Millimeterbereich aufweisen, kann die inertiale Messeinheit besonders klein ausgebildet werden, so dass ein Anbringen der Sensoreinheit an dem Bauelement unproblematisch ist. Außerdem weisen die MEMS-Elemente einen geringen Energieverbrauch auf, so dass dieser bei der Dimensionierung der Energieversorgung der Textilmaschine im Wesentlichen vernachlässigbar ist. Des Weiteren erzeugen die MEMS-Elemente bei der Messung direkt ein elektrisches Spannungssignal, das zur Analyse weitergeleitet werden kann.The inertial measuring unit comprises at least one MEMS element (MEMS = MicroElectroMechanical System). Since MEMS elements have sizes in the micrometer to millimeter range, the inertial measuring unit can be made particularly small, so that attaching the sensor unit to the component is unproblematic. In addition, the MEMS elements have a low energy consumption, so that this is essentially negligible when dimensioning the energy supply of the textile machine. Furthermore, the MEMS elements directly generate an electrical voltage signal during the measurement, which can be passed on for analysis.

Vorteilhaft ist es ferner, wenn die Sensoreinheit an der Spinnstelle angeordnet ist. Dabei kann die Sensoreinheit auch direkt an dem Bauelement angeordnet sein. Die Sensoreinheit kann am Bauelement angeordnet sein, das sich mitbewegt, um die Bewegung des Bauelements zwischen den wenigsten zwei Lagen direkt zu messen. Dadurch ist eine besonders genaue Erfassung der Lage- und/oder Bewegungsänderung des Bauelements möglich.It is also advantageous if the sensor unit is arranged at the spinning station. The sensor unit can also be arranged directly on the component. The sensor unit can be arranged on the component which moves with it in order to directly measure the movement of the component between the at least two layers. This enables particularly precise detection of the change in position and / or movement of the component.

Des Weiteren ist es von Vorteil, wenn das Bauelement als ein eine Spule haltender Spulenarm ausgebildet ist, wobei zumindest eine Sensoreinheit am Spulenarm und/oder an der Spule angeordnet ist. Auf die Spule wird der durch die Spinnstelle produzierte Faden aufgewickelt, wobei die Spule drehbar durch den Spulenarm gehalten ist. Ebenso können die Spule und der Spulenarm natürlich auch in einer Spulstelle angeordnet sein. Durch die Sensoreinheit am Spulenarm kann beispielsweise ein Hüpfen der Spule während ihrer Drehung erkannt werden. Das Hüpfen kann beispielsweise dadurch erzeugt werden, dass die Spule eine Unwucht aufweist. Durch das Hüpfen kann der Faden nicht mehr sauber auf die Spule aufgewickelt werden oder eine Lagerung des Spulenarms kann beschädigt werden.Furthermore, it is advantageous if the component is designed as a coil arm holding a coil, at least one sensor unit being arranged on the coil arm and / or on the coil. The thread produced by the spinning station is wound onto the bobbin, the bobbin being held rotatably by the bobbin arm. Likewise, the bobbin and the bobbin arm can of course also be arranged in a winding station. The sensor unit on the coil arm can, for example, detect a hopping of the coil while it is rotating. Hopping can be generated, for example, if the coil is unbalanced. By hopping the thread can no longer be neatly wound onto the bobbin or a bearing of the bobbin arm can be damaged.

Alternativ kann die Sensoreinheit auch an der Spule angeordnet sein, so dass die Sensoreinheit mit der Spule mitrotiert. Dadurch kann beispielsweise direkt eine Drehzahl der Spule gemessen werden.Alternatively, the sensor unit can also be arranged on the coil, so that the sensor unit rotates with the coil. In this way, for example, a speed of the coil can be measured directly.

Zusätzlich kann auch an der Spule und am Spulenarm jeweils eine Sensoreinheit angeordnet sein, so dass beispielsweise die Drehung der Spule und das Verschwenken des Spulenarms gemessen werden kann.In addition, a sensor unit can also be arranged on the coil and on the coil arm so that, for example, the rotation of the coil and the pivoting of the coil arm can be measured.

Ferner kann mit Hilfe der Sensoreinheit am Spulenarm auch ein Durchmesser der Spule berechnet werden. Wenn auf die Spule der Faden aufgewickelt wird, nimmt deren Durchmesser stetig zu, wobei infolgedessen auch der Spulenarm verschwenkt wird. Die Änderung der Orientierung während des Verschwenkens des Spulenarms kann mit Hilfe der Sensoreinheit erkannt werden. Daraus kann die Änderung des Durchmessers der Spule berechnet werden, woraus auf den momentanen Durchmesser geschlossen werden kann. Dadurch kann beispielsweise der Zeitpunkt ermittelt werden, wann die Spule voll ist und gewechselt werden muss.Furthermore, a diameter of the coil can also be calculated with the aid of the sensor unit on the coil arm. When the thread is wound onto the bobbin, its diameter increases steadily, with the bobbin arm being pivoted as a result. The change in orientation during the pivoting of the coil arm can be detected with the aid of the sensor unit. From this, the change in the diameter of the coil can be calculated, from which conclusions can be drawn about the current diameter. In this way, for example, the point in time can be determined when the bobbin is full and has to be changed.

Vorteilhaft ist es ferner, wenn die Textilmaschine und/oder die Spinn- oder die Spulstelle eine Einheit umfasst, wobei die Einheit am Bauelement angeordnet ist und wobei die Sensoreinheit im Bereich oder in einem Gehäuse der Einheit angeordnet ist. Die Einheit kann beispielsweise als ein Aktor und/oder ein weiterer Sensor ausgebildet sein. Zusätzlich oder alternativ kann die Einheit aber auch als ein Fadenwächter ausgebildet sein, mit dessen Hilfe erkannt werden kann, ob der Faden durch die Spinn- oder Spulstelle geführt wird. Wenn die Sensoreinheit beispielsweise im Bereich des Fadenwächters oder mit in dessen Gehäuse (oder an dessen Gehäuse) angeordnet ist, können die Messwerte der Sensoreinheit zusätzlich zu den Daten des Fadenwächters über dessen Datenleitung übermittelt werden.It is also advantageous if the textile machine and / or the spinning or winding station comprises a unit, the unit being arranged on the component and the sensor unit being arranged in the area or in a housing of the unit. The unit can be designed, for example, as an actuator and / or a further sensor. Additionally or alternatively, the unit can also be designed as a thread monitor, with the aid of which it can be recognized whether the thread is being guided through the spinning or winding station. If the sensor unit is arranged, for example, in the area of the thread monitor or in its housing (or on its housing), the measured values of the sensor unit can be transmitted via its data line in addition to the data of the thread monitor.

Dadurch kann eine extra Datenleitung für die Sensoreinheit eingespart und die Sensoreinheit kann beispielsweise einfach nachgerüstet werden.This saves an extra data line for the sensor unit and the sensor unit can, for example, be easily retrofitted.

Außerdem ist es von Vorteil, wenn die Sensoreinheit im Bereich eines Drehpunktes eines zwischen den beiden Lagen drehbaren oder verschwenkbaren Bauelements angeordnet ist. Die Sensoreinheit kann beispielsweise den Drehratensensor oder auch das Gyroskop umfassen. Im Bereich des Drehpunktes kann eine Änderung des Drehwinkels und/oder der Winkelgeschwindigkeit des Bauelements mit einer hohen Auflösung gemessen werden. Eine derartige Weiterentwicklung der Erfindung kann beispielsweise realisiert werden, wenn die Sensoreinheit konstruktionsbedingt lediglich im Bereich des Drehpunkts angeordnet werden kann.It is also advantageous if the sensor unit is arranged in the area of a pivot point of a component that can be rotated or pivoted between the two positions. The sensor unit can include, for example, the rotation rate sensor or the gyroscope. In the area of the pivot point, a change in the angle of rotation and / or the angular speed of the component can be measured with a high resolution. Such a further development of the invention can be implemented, for example, if the sensor unit, due to its design, can only be arranged in the area of the pivot point.

Weiterhin ist es von Vorteil, wenn die Sensoreinheit am drehbaren oder verschwenkbaren Bauelement in einem vom Drehpunkt beabstandeten Bereich angeordnet ist. Die Sensoreinheit kann beispielsweise den Sensor zum Messen von linearen Beschleunigungen umfassen. Außerdem kann die Sensoreinheit auch an einem dem Drehpunkt gegenüberliegenden Bereich oder an einem vom Drehpunkt zumindest beabstandeten Bereich am Bauelement angeordnet sein. Durch die Beabstandung vom Drehpunkt wird durch die Hebelbewegung das Drehen oder Schwenken des Bauelements in eine translatorische Bewegung umgesetzt, wobei diese translatorische Bewegung von dem Sensor zum Messen von linearen Beschleunigungen gemessen werden kann. Auf diese Weise können beispielsweise besonders geringe Dreh- oder Schwenkbewegungen gemessen werden, da diese durch eine Länge des Bauelements zu einer größeren Bewegung der Sensoreinheit verstärkt werden.It is also advantageous if the sensor unit is arranged on the rotatable or pivotable component in an area spaced from the pivot point. The sensor unit can for example comprise the sensor for measuring linear accelerations. In addition, the sensor unit can also be arranged on the component in an area opposite the pivot point or in an area at least spaced apart from the pivot point. As a result of the spacing from the pivot point, the lever movement converts the turning or pivoting of the component into a translational movement, this translational movement being able to be measured by the sensor for measuring linear accelerations. In this way, for example, particularly small rotational or pivoting movements can be measured, since these are amplified by the length of the component to a larger movement of the sensor unit.

In einer vorteilhaften Weiterbildung der Erfindung umfasst die Textilmaschine eine mit der Sensoreinheit verbundene Steuerung, die ausgebildet ist, aufgrund der Lageänderung und/oder der Bewegungsänderung des Bauelements einen Alarm (optisch und/oder akustisch oder über ein Remotegerät, z. B. ein Smartphone) abzugeben und/oder die entlang der Spinn- und/oder Spulstellen fahrende Wartungseinrichtung zu stoppen und/oder die Spinn- und/oder Spulstelle stillzusetzen. Die Steuerung kann ferner beispielsweise einen Prozessor zur Berechnung der Lage- und/oder Bewegungsänderung aus den Messungen der Sensoreinheit(en) umfassen. Um beispielsweise die Spinn- und/oder Spulstelle stillzusetzen, ist diese mit Aktoren der Spinn- und/oder Spulstelle verbunden. Außerdem kann die Steuerung auch Informationen darüber erhalten, an welcher Position sich die Wartungseinrichtung entlang der Spinn- und/oder Spulstellen befindet. Die Steuerung kann daraufhin in Abhängigkeit eines Abstands zwischen den Spinn- oder Spulstellen und der Wartungseinrichtung entscheiden, ob die Wartungseinrichtung gestoppt werden muss, wenn ein Bauelement einer oder mehrerer Spinn- oder Spulstellen in den Fahrweg der Wartungseinrichtung ragt.In an advantageous further development of the invention, the textile machine comprises a controller connected to the sensor unit, which is designed to generate an alarm (optical and / or acoustic or via a remote device) based on the change in position and / or the change in movement of the component z. B. a smartphone) and / or to stop the maintenance device moving along the spinning and / or winding stations and / or to shut down the spinning and / or winding station. The controller can further include, for example, a processor for calculating the change in position and / or movement from the measurements of the sensor unit (s). In order to stop the spinning and / or winding station, for example, it is connected to actuators of the spinning and / or winding station. In addition, the control can also receive information about the position at which the maintenance device is located along the spinning and / or winding stations. The control can then decide, depending on a distance between the spinning or winding stations and the maintenance device, whether the maintenance device must be stopped when a component of one or more spinning or winding stations protrudes into the path of the maintenance device.

Vorteilhaft ist es auch, wenn die Spinn- und/oder Spulstelle einen Aktor aufweist, mit dessen Hilfe das Bauelement zwischen den beiden Lagen bewegbar ist. Dabei kann der Aktor auch mit der Steuerung verbunden sein, so dass diese beim Erkennen, dass sich das Bauelement im Fahrweg der Wartungseinrichtung befindet, veranlassen kann, das Bauelement mit Hilfe des Aktors in eine Lage zu bewegen, in der die Wartungseinrichtung ungehindert vorbeifahren kann.It is also advantageous if the spinning and / or winding station has an actuator with the aid of which the component can be moved between the two layers. The actuator can also be connected to the controller so that when it detects that the component is in the path of the maintenance facility, it can cause the component to be moved with the aid of the actuator into a position in which the maintenance facility can pass unhindered.

Ferner betrifft die Erfindung ein Verfahren zum Betreiben einer Textilmaschine mit einer Vielzahl an Spinn- oder Spulstellen, wobei die Spinn- oder Spulstellen und/oder ein oder mehrere sonstige Abschnitte der Textilmaschine zumindest ein Bauelement umfassen, das zwischen wenigsten zwei Lagen hin und her bewegbar ist. Bei der Textilmaschine können ein oder mehrere Merkmale gemäß vorangegangener und/oder nachfolgender Beschreibung verwirklicht sein. Die Textilmaschine umfasst außerdem eine Sensoreinheit, mit deren Hilfe eine Lage- und/oder eine Bewegungsänderung des Bauelements überwacht wird. Mit Hilfe der Sensoreinheit wird auch eine Größe und eine Richtung der Lage- und/oder Bewegungsänderung überwacht. Erfindungsgemäß umfasst die Sensoreinheit eine inertiale Messeinheit welche zumindest ein MEMS-Element umfasst.The invention also relates to a method for operating a textile machine with a plurality of spinning or winding stations, the spinning or winding stations and / or one or more other sections of the textile machine comprising at least one component that can be moved back and forth between at least two layers . One or more features according to the preceding and / or following description can be implemented in the textile machine. The textile machine also includes a sensor unit, with the aid of which a change in position and / or movement of the component is monitored. With the help of the sensor unit, a Size and direction of the change in position and / or movement is monitored. According to the invention, the sensor unit comprises an inertial measuring unit which comprises at least one MEMS element.

Das Bauelement kann beispielsweise ein Gehäuse einer Rotor- oder Luftspinneinheit bzw. ein Teil desselben sein, das für eine Wartung oder eine Reinigung geöffnet wird. Das Gehäuse kann beispielsweise verschwenkt oder von der Spinneinheit weggezogen werden. Wenn das Bauelement die Spinneinheit noch verschließt, befindet es sich beispielsweise in einer ersten Lage. Wenn das Bauelement für die Wartung oder Reinigung, insbesondere vollständig, geöffnet ist, befindet es sich in einer zweiten Lage. Ferner kann das Bauelement in der zweiten Lage beispielsweise derart angeordnet sein, dass es einen Fahrweg einer entlang der Spinnstellen fahrenden Wartungseinrichtung kreuzt. Bei einer Kollision der Wartungseinrichtung mit dem Bauelement können Schäden sowohl an der Wartungseinrichtung als auch am Bauelement verursacht werden, was es natürlich zu vermeiden gilt. Daher wird die Lage des Bauelements mit Hilfe einer Sensoreinheit überwacht, um beispielsweise eine Kollision zu verhindern.The component can, for example, be a housing of a rotor or air-jet spinning unit or a part of the same, which is opened for maintenance or cleaning. The housing can for example be pivoted or pulled away from the spinning unit. If the component still closes the spinning unit, it is, for example, in a first position. When the component is open for maintenance or cleaning, in particular completely, it is in a second position. Furthermore, the component can be arranged in the second layer, for example, in such a way that it crosses a travel path of a maintenance device traveling along the spinning stations. If the maintenance device collides with the component, damage can be caused both to the maintenance device and to the component, which of course must be avoided. The position of the component is therefore monitored with the aid of a sensor unit, for example to prevent a collision.

Mit der Sensoreinheit kann auch eine Lage zwischen der ersten und zweiten Lage überwacht werden. Beispielsweise kann sich das Bauelement zwischen den beiden Lagen befinden, aber trotzdem das Vorbeifahren der Wartungseinrichtung ermöglichen. Diese Zwischenlage kann erkannt werden und daraus geschlossen werden, dass die Kollision der Wartungseinrichtung mit dem Bauelement nicht stattfindet. Die Wartungseinrichtung muss somit nicht gestoppt werden.A position between the first and second position can also be monitored with the sensor unit. For example, the component can be located between the two layers, but still allow the maintenance facility to drive past. This intermediate layer can be recognized and it can be concluded from this that the collision of the maintenance device with the component does not take place. The maintenance facility therefore does not have to be stopped.

Des Weiteren ist es von Vorteil, wenn die Textilmaschine eine mit der Sensoreinheit verbundene Steuerung umfasst, die aufgrund der gemessenen Lage und/oder Bewegung des Bauelements veranlassen kann, dass ein Alarm abgegeben und/oder die entlang der Spinn- oder Spulstellen fahrenden Wartungseinrichtung gestoppt und/oder die Spinn- oder Spulstelle stillgesetzt wird. Der Alarm kann beispielsweise abgegeben werden, um Wartungspersonal auf eine bestimmte Lage und/oder Bewegung des Bauelements aufmerksam zu machen. Der Alarm kann beispielsweise abgegeben werden, wenn das Bauelement die Spinneinheit nicht vollständig verschließt und z. B. der Unterdruck im Inneren der Spinneinheit nicht aufgebaut werden kann.Furthermore, it is advantageous if the textile machine comprises a controller connected to the sensor unit, which, based on the measured position and / or movement of the component, can cause an alarm to be issued and / or the maintenance device moving along the spinning or winding stations to be stopped and / or the spinning or winding station stopped becomes. The alarm can be issued, for example, to make maintenance personnel aware of a specific position and / or movement of the component. The alarm can be given, for example, if the component does not completely close the spinning unit and z. B. the negative pressure inside the spinning unit cannot be built up.

Aus Sicherheitsgründen kann beispielsweise auch die fahrende Wartungseinrichtung gestoppt werden, um eine Kollision mit dem in den Fahrweg hineinragenden Bauelement zu vermeiden.For safety reasons, for example, the moving maintenance device can also be stopped in order to avoid a collision with the component projecting into the route.

Ebenfalls aus Sicherheitsgründen kann die Spinn- und/oder Spulstelle stillgesetzt werden, um einen Not-Stopp durchzuführen. Wenn beispielsweise das Wartungspersonal während des Spinnens das Gehäuse unbedacht öffnet, kann mit Hilfe der Sensoreinheit die Bewegungsänderung, nämlich das Beschleunigen der Sensoreinheit, und deren Richtung erkannt werden. Um eine Verletzung des Wartungspersonals zu vermeiden, kann daraufhin der Not-Stopp der Spinnstelle ausgelöst werden.Also for safety reasons, the spinning and / or winding station can be shut down in order to carry out an emergency stop. If, for example, the maintenance personnel carelessly opens the housing during spinning, the change in movement, namely the acceleration of the sensor unit, and its direction can be detected with the aid of the sensor unit. In order to avoid injury to the maintenance staff, the emergency stop of the spinning unit can then be triggered.

In einer vorteilhaften Weiterbildung des Verfahrens wird mittels Analyse der Lage- und/oder der Bewegungsänderung eine gegenwärtige Lage und/oder Bewegung des Bauelements berechnet. Die Analyse kann auch beispielsweise ein Aufsummieren bzw. Integrieren der Lage- und/oder Bewegungsänderungen umfassen. Dieser Verfahrensschritt kann vorteilhafterweise durch die Steuerung ausgeführt werden. Durch die genaue Berechnung der Lage und/oder der Bewegung des Bauelements kann die Produktivität der Textilmaschine erhöht werden. Beispielsweise muss die entlang der Spinn- oder Spulstellen fahrende Wartungseinrichtung nicht gestoppt werden, wenn die Steuerung berechnet, dass das Bauelement sich zwar nicht in der vorgesehenen Lage befindet, es aber auch nicht in den Fahrweg der Wartungseinrichtung ragt. Die Wartungseinrichtung kann dann am Bauelement vorbeifahren, um Wartungstätigkeiten an einer anderen Spinn- oder Spulstelle durchzuführen.In an advantageous further development of the method, a current position and / or movement of the component is calculated by analyzing the change in position and / or movement. The analysis can also include, for example, adding up or integrating the changes in position and / or movement. This method step can advantageously be carried out by the controller. By precisely calculating the position and / or the movement of the component, the productivity of the textile machine can be increased. For example, the maintenance device moving along the spinning or winding stations does not have to be stopped when the control calculates that the component is not in the intended position, but neither is it in the travel path of the maintenance device protrudes. The maintenance device can then drive past the component in order to carry out maintenance activities at another spinning or winding station.

Um Beschädigungen zu vermeiden, ist es vorteilhaft, wenn die Steuerung aufgrund der gemessenen Lage und/oder Bewegung einen an der Spinn- oder Spulstelle angeordneten Aktor veranlasst, das Bauelement von einer Lage in die andere Lage zu bewegen. Wenn beispielsweise das Bauelement in den Fahrweg der Wartungseinrichtung ragt, kann der Aktor das Bauelement zur Vermeidung einer Kollision zumindest kurzzeitig aus dem Fahrweg schwenken, drehen oder ziehen. Der Aktor kann auch das Bauelement schließen, wenn es sich dabei beispielsweise um das Gehäuse der Spinneinheit handelt.In order to avoid damage, it is advantageous if, based on the measured position and / or movement, the control causes an actuator arranged at the spinning or winding station to move the component from one position to the other position. If, for example, the component protrudes into the route of the maintenance facility, the actuator can at least briefly pivot, rotate or pull the component out of the route to avoid a collision. The actuator can also close the component if it is, for example, the housing of the spinning unit.

Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigen:

Figur 1
eine schematische Draufsicht einer Textilmaschine mit einer Vielzahl an Spinnstellen,
Figur 2
einen Ausschnitt einer Spinnstelle mit einem schwenkbaren Bauelement,
Figur 3
eine schematische Ansicht einer fadenproduzierenden Spinnstelle, wobei der Faden auf eine Spule aufgewickelt wird und
Figur 4
eine schematische Ansicht der Spinnstelle gemäß Figur 3 mit aufgeschwenktem Bauelement.
Further advantages of the invention are described in the following exemplary embodiments. Show it:
Figure 1
a schematic top view of a textile machine with a large number of spinning positions,
Figure 2
a section of a spinning station with a pivotable component,
Figure 3
a schematic view of a thread-producing spinning station, the thread being wound onto a bobbin and
Figure 4
a schematic view of the spinning station according to Figure 3 with the component swung open.

Figur 1 zeigt eine schematische Draufsicht einer Textilmaschine 1 mit einer Vielzahl an gleichartig dargestellter Spinnstellen 2, wobei der Einfachheit halber nur eine einzige Spinnstelle 2 mit einem Bezugszeichen versehen ist. Die Spinnstellen 2 können alle von der gleichen Ausführung sein. Anstelle der Spinnstellen 2 kann die Textilmaschine auch Spulstellen aufweisen. Figure 1 shows a schematic top view of a textile machine 1 with a large number of spinning stations 2 shown in the same way, with only a single spinning station 2 being provided with a reference number for the sake of simplicity. The Spinning positions 2 can all be of the same design. Instead of the spinning stations 2, the textile machine can also have winding stations.

Die Textilmaschine 1 weist ferner ein Bauelement 3 auf, das im vorliegenden Ausführungsbeispiel an der Spinnstelle 2 angeordnet ist und zwischen wenigstens zwei Lagen hin und her bewegt werden kann. Im vorliegenden Ausführungsbeispiel kann das Bauelement 3 ausgehend von einer ersten Lage 4 (vgl. auch Figur 2) in eine hier gezeigte zweite Lagen 5 in Drehrichtung DR gedreht bzw. verschwenkt werden. In der ersten Lage 4 kann beispielsweise das Bauelement 3 fluchtend zu den Spinnstellen 2 ausgerichtet sein. Das Bauelement 3 kann beispielsweise durch ein Gehäuse der (Rotor- oder Luft-) Spinnstelle 2 oder einen Abschnitt desselben oder eine Fadenfangeinrichtung oder einen Spulenhalter gebildet sein, wobei dies nur Beispiele für bewegliche Bauelemente 3 im Sinne der Erfindung sind.The textile machine 1 also has a component 3 which, in the present exemplary embodiment, is arranged at the spinning station 2 and can be moved back and forth between at least two layers. In the present exemplary embodiment, the component 3 can proceed from a first layer 4 (see also FIG Figure 2 ) are rotated or pivoted in a second position 5 shown here in the direction of rotation DR. In the first layer 4, for example, the component 3 can be aligned with the spinning stations 2. The component 3 can be formed, for example, by a housing of the (rotor or air) spinning station 2 or a portion of the same or a thread catching device or a bobbin holder, these being only examples of movable components 3 within the meaning of the invention.

Des Weiteren umfasst die Textilmaschine 1 in diesem Ausführungsbeispiel eine Wartungseinrichtung 7, die auf oder an einer Fahrschiene 8 entlang der Spinnstellen 2 in Fahrrichtung FR verfahren kann. Mittels der Wartungseinrichtung 7 kann beispielsweise die Spinnstelle 2 gewartet und/oder gereinigt werden.Furthermore, in this exemplary embodiment, the textile machine 1 comprises a maintenance device 7 which can move on or on a running rail 8 along the spinning stations 2 in the direction of travel FR. For example, the spinning station 2 can be serviced and / or cleaned by means of the maintenance device 7.

Problematisch ist es unter anderem, wenn das Bauelement 3 in der hier gezeigten zweiten Lage 5 angeordnet ist, da es zu einer Kollision mit der fahrenden Wartungseinrichtung 7 und daraufhin zu einer Beschädigung des Bauelements 3 und der Wartungseinrichtung 7 kommen kann. Ein geöffnetes Bauelement 3 hat auch noch weitere Auswirkungen. Beispielsweise dichtet ein als Gehäuse ausgebildetes Bauelement 3 die Spinnstelle 2 ab, so dass in der Spinnstelle 2 ein Unterdruck aufgebaut werden kann, welcher für den Spinnprozess wichtig ist. Das geöffnete Gehäuse ist die Spinnstelle 2 hingegen nicht mehr abdichtet und der Spinnprozess beeinträchtigt.It is problematic, among other things, if the component 3 is arranged in the second layer 5 shown here, since a collision with the moving maintenance device 7 and then damage to the component 3 and the maintenance device 7 can occur. An open component 3 also has other effects. For example, a component 3 designed as a housing seals off the spinning station 2, so that a negative pressure can be built up in the spinning station 2, which is important for the spinning process. The opened housing, however, is no longer sealed off the spinning station 2 and the spinning process is impaired.

Im Stand der Technik sind deswegen hier nicht gezeigte Sensoreinheiten bekannt, die eine Lage des Bauelements 3 erkennen können. Ein Nachteil dieser Sensoreinheiten ist allerdings, dass lediglich die Endlagen des Bauelements 3 (komplett geschlossen oder komplett geöffnet) erkannt werden kann.Sensor units, not shown here, are therefore known in the prior art, which can detect a position of the component 3. A disadvantage of these sensor units, however, is that only the end positions of the component 3 (completely closed or completely open) can be detected.

Erfindungsgemäß weist die Sensoreinheit 6 (vgl. Figur 2) der Textilmaschine 1 hingegen eine inertiale Messeinheit zur Erfassung der Lage- und/oder Bewegungsänderung des Bauelements 3 auf. Mit der inertialen Messeinheit wird auch eine Größe (= ein Betrag) und eine Richtung der Lage- und/oder Bewegungsänderung erfasst. Mit Hilfe der inertialen Messeinheit kann ebenfalls eine Lage und/oder Bewegung zwischen den beiden Lagen 4, 5 erkannt werden. Das Bauelement 3 kann beispielsweise eine Lage aufweisen, in der die Wartungseinrichtung 7 an dem Bauelement 3 vorbeifahren kann, aber das Bauelement 3 als Gehäuse die Spinnstelle 2 nicht komplett verschließt.According to the invention, the sensor unit 6 (cf. Figure 2 ) of the textile machine 1, on the other hand, has an inertial measuring unit for detecting the change in position and / or movement of the component 3. The inertial measuring unit also records a variable (= an amount) and a direction of the change in position and / or movement. A position and / or movement between the two positions 4, 5 can also be recognized with the aid of the inertial measuring unit. The component 3 can, for example, have a position in which the maintenance device 7 can drive past the component 3, but the component 3 as a housing does not completely close the spinning station 2.

Mit Hilfe der inertialen Messeinheit kann beispielsweise auch erkannt werden, dass sich das Bauelement 3 von der zweiten Lage 5 in Richtung der ersten Lage 4 bewegt und dass die Bewegung, insbesondere die Geschwindigkeit der Bewegung, ausreicht, dass die vorbeifahrende Wartungseinrichtung 7 nicht mehr mit dem Bauelement 3 kollidiert, weil es dann bereits ausreichend weit in Richtung erster Lage 4 gedreht ist.With the help of the inertial measuring unit it can also be recognized, for example, that the component 3 is moving from the second layer 5 in the direction of the first layer 4 and that the movement, in particular the speed of the movement, is sufficient that the maintenance facility 7 passing by is no longer with the Component 3 collides because it is then rotated sufficiently far in the direction of the first layer 4.

Des Weiteren kann die inertiale Messeinheit auch die Bewegungsänderung, insbesondere die Beschleunigung, des Bauelements 3 messen, so dass auch berechnet werden kann, wann ein sicheres Vorbeifahren der Wartungseinrichtung 7 an dem Bauelement 3 gegeben ist.Furthermore, the inertial measuring unit can also measure the change in movement, in particular the acceleration, of the component 3, so that it can also be calculated when the maintenance device 7 is safely driving past the component 3.

Figur 2 zeigt in diesem Ausführungsbeispiel einen Ausschnitt einer Spinnstelle 2 mit einem verschwenkbaren Bauelement 3. Das Bauelement 3 ist in diesem Ausführungsbeispiel als Rotordeckel ausgebildet. In der Spinnstelle 2 wird in diesem Ausführungsbeispiel in einem Rotor 11 ein Faden 12 gesponnen. Dazu wird der Rotor 11 über einen Rotorschaft 15 in Rotation versetzt, wobei er sich in dem Rotorgehäuse 16 dreht. Über ein Abzugsröhrchen 17 wird der gesponnene Faden 12 abgezogen und auf eine hier nicht gezeigte Spule aufgewickelt. Der Rotor 11 rotiert dabei in einer Rotorkammer 13, die während des Spinnens des Fadens 12 mit einem Unterdruck beaufschlagt ist. Die Rotorkammer 13 wird durch das schwenkbare Bauelement 3 und den beiden Abdichtungen 14 verschlossen, so dass der Unterdruck ausgebildet werden kann. Figure 2 shows in this embodiment a section of a spinning station 2 with a pivotable component 3. The component 3 is designed as a rotor lid in this embodiment. In this exemplary embodiment, a thread 12 is spun in a rotor 11 in the spinning station 2. For this purpose, the rotor 11 is set in rotation via a rotor shaft 15, rotating in the rotor housing 16. The spun thread 12 is withdrawn via a withdrawal tube 17 and wound onto a spool, not shown here. The rotor 11 rotates in a rotor chamber 13 to which a negative pressure is applied during the spinning of the thread 12. The rotor chamber 13 is closed by the pivotable component 3 and the two seals 14, so that the negative pressure can be created.

Da der Unterdruck für das Spinnen des Fadens 12 wichtig ist, muss das Bauelement 3 in diesem Ausführungsbeispiel die Rotorkammer 13 abdichten. Dazu muss das Bauelement 3 in der ersten Stellung 4 angeordnet sein, so dass es mit den Abdichtungen 14 die Rotorkammer 13 abdichtet.Since the negative pressure is important for the spinning of the thread 12, the component 3 must seal the rotor chamber 13 in this exemplary embodiment. For this purpose, the component 3 must be arranged in the first position 4 so that it seals the rotor chamber 13 with the seals 14.

Um eine Lage- und/oder Bewegungsänderung des Bauelements 3 erkennen zu können, ist im Bereich des Drehpunktes 9 des Bauelements 3 die Sensoreinheit 6 angeordnet, die eine inertiale Messeinheit aufweist. Die inertiale Messeinheit kann Beschleunigungen und Drehraten sowie Änderungen der Drehraten messen, woraus durch eine Integration eine aktuelle Lage und/oder Bewegung des Bauelements 3 berechnet werden kann. Mit Hilfe der inertialen Messeinheit können somit nicht nur die beiden Lagen 4, 5 erkannt werden, sondern auch alle dazwischenliegenden Lagen und/oder Bewegungen sowie deren Änderungen. Beispielsweise kann erkannt werden, wenn sich durch das Öffnen das Bauelement 3 beschleunigt, so dass beispielsweise ein Not-Stopp der Spinnstelle 2 ausgelöst werden kann, wenn die Rotorkammer 13 während des Spinnprozesses versehentliche geöffnet wird.In order to be able to detect a change in position and / or movement of the component 3, the sensor unit 6, which has an inertial measuring unit, is arranged in the region of the pivot point 9 of the component 3. The inertial measuring unit can measure accelerations and rotation rates as well as changes in the rotation rates, from which a current position and / or movement of the component 3 can be calculated by integration. With the aid of the inertial measuring unit, not only can the two layers 4, 5 be recognized, but also all the layers and / or movements between them and their changes. For example, it can be recognized if the component 3 accelerates as a result of the opening, so that, for example, an emergency stop of the spinning station 2 can be triggered if the rotor chamber 13 is accidentally opened during the spinning process.

Die inertiale Messeinheit kann beispielsweise einen Drehratensensor umfassen, um eine Drehung- und/oder Drehungsänderung als Lage- und/oder Bewegungsänderung des Bauelements 3 zu erfassen. Der Drehratensensor kann beispielsweise als ein Faser- oder Laserkreisel ausgebildet sein. Auf diese Weise kann die Drehrate- und/oder die Drehratenänderung der Sensoreinheit 6 gemessen werden, was gleichbedeutend mit der Drehrate- und/oder die Drehratenänderung des Bauelements 3 ist.The inertial measuring unit can include, for example, a rotation rate sensor in order to detect a change in rotation and / or rotation as a change in position and / or movement of the component 3. The rotation rate sensor can be designed, for example, as a fiber or laser gyro. On In this way, the rotation rate and / or the rotation rate change of the sensor unit 6 can be measured, which is synonymous with the rotation rate and / or the rotation rate change of the component 3.

Zusätzlich oder alternativ kann die inertiale Messeinheit auch ein Gyroskop umfassen. Darin kann ein Kreisel rotieren, mit dessen Hilfe eine Orientierungsänderung der Sensoreinheit 6 und somit des Bauelements 3 im Raum gemessen werden kann.Additionally or alternatively, the inertial measuring unit can also comprise a gyroscope. A gyro can rotate therein, with the aid of which a change in orientation of the sensor unit 6 and thus of the component 3 in space can be measured.

Zusätzlich oder alternativ kann die inertiale Messeinheit auch einen Sensor zur Messung von linearen Beschleunigungen aufweisen. Dieser kann an dem zum Drehpunkt 9 gegenüberliegenden Ende 10 des Bauelements 3 angeordnet sein, so dass die Drehung des Bauelements 3 an dem Ende 10 in eine zumindest im Bereich der ersten Lage 4 translatorische Bewegung umgesetzt wird.Additionally or alternatively, the inertial measuring unit can also have a sensor for measuring linear accelerations. This can be arranged at the end 10 of the component 3 opposite the pivot point 9, so that the rotation of the component 3 at the end 10 is converted into a translational movement at least in the area of the first position 4.

Figur 3 zeigt eine schematische Ansicht einer fadenproduzierenden Spinnstelle 2, wobei der Faden 12 auf eine Spule 19 aufgewickelt wird. In dem folgenden Ausführungsbeispiel wird nunmehr auf eine Erklärung der bereits besprochenen Merkmale verzichtet. Der Faden 12 wird dadurch produziert, dass zuerst ein Faserband aus einer hier nicht gezeigten Kanne in eine Auflösevorrichtung 24 geführt wird. Die Auflösevorrichtung 24 erzeugt aus dem Faserband einzelne Fasern 23, die zum Rotor 11 geleitet werden. Im Rotor 11 wird aus den einzelnen Fasern 23 der Faden 12 gesponnen. Aus dem Rotor 11 wird der Faden 12 ausgeleitet, zwischen einem Lieferwalzenpaar 22 hindurchgeführt und über eine Umlenkrolle 25 zur Spule 19 geleitet, auf der der Faden 12 aufgewickelt wird. Figure 3 shows a schematic view of a thread-producing spinning station 2, the thread 12 being wound onto a bobbin 19. In the following exemplary embodiment, an explanation of the features already discussed is dispensed with. The thread 12 is produced by first feeding a sliver from a can (not shown here) into an opening device 24. The opening device 24 produces individual fibers 23 from the sliver, which are guided to the rotor 11. In the rotor 11, the thread 12 is spun from the individual fibers 23. The thread 12 is diverted from the rotor 11, passed between a pair of delivery rollers 22 and guided via a deflection roller 25 to the bobbin 19 on which the thread 12 is wound.

Die Spule 19 ist im Allgemeinen nicht selbst angetrieben, sondern wird mittels einer Spulwalze 20 in Drehung versetzt. Die Spule 19 liegt dazu auf der Spulwalze 20 auf, wobei durch die Reibung zwischen der Mantelfläche 26 der Spule 19 und der Mantelfläche 27 der Spulwalze 20 die Rotation der Spulwalze 20 auf die Spule 19 übertragen wird.The spool 19 is generally not driven by itself, but is set in rotation by means of a winding roller 20. For this purpose, the bobbin 19 rests on the winding roller 20, with the friction between the lateral surface 26 the spool 19 and the lateral surface 27 of the spool roller 20, the rotation of the spool roller 20 is transmitted to the spool 19.

Die Spule 19 ist in diesem Ausführungsbeispiel an einem Bauelement 3a drehbar angeordnet, wobei das Bauelement 3a in diesem Ausführungsbeispiel durch einen Spulenarm ausgebildet ist. Wenn auf die Spule 19 immer mehr Faden 12 aufgewickelt wird, nimmt der Radius R der Spule 19 zu. Bei der Zunahme des Radius R schwenkt auch das Bauelement 3a von der Spulwalze 20 weg, was in diesem Ausführungsbeispiel zu einem Schwenken des Bauelements 3a nach oben führt. Bei dem Verschwenken des Bauelements 3a nimmt auch ein Winkel α zu.In this exemplary embodiment, the coil 19 is rotatably arranged on a component 3a, the component 3a in this exemplary embodiment being formed by a coil arm. As more and more thread 12 is wound onto the bobbin 19, the radius R of the bobbin 19 increases. When the radius R increases, the component 3a also pivots away from the winding roller 20, which in this exemplary embodiment leads to the component 3a pivoting upward. When the component 3a is pivoted, an angle α also increases.

Um auf den Radius R rückschließen zu können, ist an dem Bauelement 3a eine Sensoreinheit 6a angeordnet. Durch das Schwenken des Bauelements 3a bei der Zunahme des Radius R wird gleichzeitig die Sensoreinheit 6a mitverdreht. Eine in der Sensoreinheit 6a angeordnete inertiale Messeinheit kann das Schwenken und somit eine Zunahme des Winkels α messen, wobei aus dieser Messung der Radius R der Spule 20 berechnet werden kann. Dies ist unter anderem deshalb vorteilhaft, weil anhand dieser Daten ein Spulentausch geplant werden kann.In order to be able to infer the radius R, a sensor unit 6a is arranged on the component 3a. By pivoting the component 3a as the radius R increases, the sensor unit 6a is rotated at the same time. An inertial measuring unit arranged in the sensor unit 6a can measure the pivoting and thus an increase in the angle α, with the radius R of the coil 20 being able to be calculated from this measurement. This is advantageous, among other things, because a coil replacement can be planned on the basis of this data.

Die in der Sensoreinheit 6a angeordnete inertiale Messeinheit kann eine Änderung des Winkels α dadurch messen, dass sie eine Beschleunigung des Bauelements 3a misst. Die Sensoreinheit 6a kann somit beispielsweise die Geschwindigkeit messen, mit der sich das Bauelement 3a bei der Zunahme des Radius R von der Spulwalze 20 wegbewegt. Dadurch kann die Winkeländerung und daraus der aktuelle Winkel α des Bauelements 3a ermittelt werden. Zusätzlich oder alternativ kann die Sensoreinheit 6a aber auch eine Orientierungsänderung des Bauelements 3a messen. Dadurch kann unmittelbar der Winkel α ermittelt werden.The inertial measuring unit arranged in the sensor unit 6a can measure a change in the angle α by measuring an acceleration of the component 3a. The sensor unit 6a can thus measure, for example, the speed at which the component 3a moves away from the winding roller 20 as the radius R increases. As a result, the change in angle and from this the current angle α of component 3a can be determined. Additionally or alternatively, the sensor unit 6a can also measure a change in orientation of the component 3a. The angle α can thereby be determined directly.

Ein weiterer Vorteil der Sensoreinheit 6a am Bauelement 3a ist es, dass Vibrationen des Bauelements 3a gemessen werden können. Weist die Mantelfläche 26 der Spule 19 beispielsweise einen von der Kreisform abweichenden Umfang oder weist die Spule 19 eine Unwucht auf, beginnt die Spule 19 auf der Spulwalze 20 zu hüpfen, was zu besagten Vibrationen führt. Diese Vibrationen können zu Beschädigungen von Lagern des Bauelements 3a oder zu einem ungleichmäßigen Aufwickeln des Fadens 12 auf der Spule 19 führen. Beides ist nachteilig für die Produktivität der Spinnstelle 2.Another advantage of the sensor unit 6a on the component 3a is that vibrations of the component 3a can be measured. If, for example, the outer surface 26 of the coil 19 has a circumference deviating from the circular shape, or if the coil 19 is unbalanced, the coil 19 begins to hop on the winding roller 20, which leads to said vibrations. These vibrations can lead to damage to the bearings of the component 3 a or to an uneven winding of the thread 12 on the bobbin 19. Both are disadvantageous for the productivity of the spinning station 2.

Die Messung und/oder das Erkennen von Vibrationen mit Hilfe der Sensoreinheit 6 ist selbstverständlich nicht auf das hier beschriebene Ausführungsbeispiel beschränkt. Mit Hilfe der Sensoreinheit 6 können natürlich auch Vibrationen an anderen Motoren, Aktoren und/oder sonstigen sich drehenden und/oder verschwenkenden Bauteilen gemessen werden.The measurement and / or the detection of vibrations with the aid of the sensor unit 6 is of course not restricted to the exemplary embodiment described here. With the aid of the sensor unit 6, of course, vibrations on other motors, actuators and / or other rotating and / or pivoting components can also be measured.

Mit Hilfe der Messung einer möglichen Vibration der Spule 19 kann auch vorteilhafterweise eine Dämpfung des Bauelements 3a, das hier als Spulenarm ausgebildet ist, eingestellt werden. In Abhängigkeit der Vibrationen kann die Dämpfung geregelt und/oder gesteuert werden, so dass die Dämpfung stets derart stark eingestellt wird, dass die Vibrationen unterdrückt werden.With the aid of the measurement of a possible vibration of the coil 19, damping of the component 3a, which is designed here as a coil arm, can also advantageously be set. The damping can be regulated and / or controlled as a function of the vibrations, so that the damping is always set so strongly that the vibrations are suppressed.

Mit Hilfe der Sensoreinheit 6a am Bauelement 3a kann ferner eine Orientierung einer Drehachse 28 der Spule 19 erkannt werden. Insbesondere ist damit die Möglichkeit gegeben, dass durch die Messung der Orientierung der Drehachse 28 die Lage zu einer Drehachse 29 der Spulwalze 20 gemessen werden kann. Um die Spule 19 mit der Spulwalze 20 antreiben zu können, ist es vorteilhaft, wenn die Drehachse 28 der Spule 19 und die Drehachse 29 der Spulwalze 20 parallel zueinander ausgerichtet sind. Eine Nicht-Parallelität zwischen der Drehachse 28 und der Drehachse 29 führt dazu, dass sich die Mantelflächen 26, 27 der Spule 19 und der Spulwalze 20 nur abschnittsweise berühren, so dass sich die Spule 19 verformen kann. Insbesondere besteht die Gefahr, dass die Spule 19 sich vom kreisförmigen Querschnitt weg verformt, so dass Unwuchten ausgebildet werden, die zu den oben beschriebenen Vibrationen führen. Die Spule 19 beginnt auf der Spulwalze 20 zu hüpfen, so dass der Wickelprozess beeinträchtigt wird.With the aid of the sensor unit 6a on the component 3a, an orientation of an axis of rotation 28 of the coil 19 can also be detected. In particular, there is thus the possibility of measuring the orientation of the axis of rotation 28 to measure the position in relation to an axis of rotation 29 of the winding roller 20. In order to be able to drive the bobbin 19 with the bobbin roller 20, it is advantageous if the axis of rotation 28 of the bobbin 19 and the axis of rotation 29 of the bobbin roller 20 are aligned parallel to one another. A non-parallelism between the axis of rotation 28 and the axis of rotation 29 means that the lateral surfaces 26, 27 of the bobbin 19 and the winding roller 20 only touch in sections, so that the bobbin 19 can deform. In particular, there is a risk that the coil 19 will differ from the circular cross-section deformed away, so that imbalances are formed that lead to the vibrations described above. The bobbin 19 begins to hop on the bobbin roller 20, so that the winding process is impaired.

Zusätzlich oder alternativ kann die Sensoreinheit 6a auch einen Hallsensor umfassen, mit dessen Hilfe eine Drehzahl der Spule 19 erkannt werden kann. Dazu kann die Spule 19 beispielsweise einen Magneten aufweisen, der mit der Spule 19 mitrotiert. Wenn sich der Magnet an dem Hallsensor vorbei bewegt, wird ein Signal registriert. Die Drehzahl hängt dann von der Frequenz des Auftretens des Signals ab.Additionally or alternatively, the sensor unit 6a can also comprise a Hall sensor, with the aid of which a speed of the coil 19 can be detected. For this purpose, the coil 19 can, for example, have a magnet that rotates with the coil 19. When the magnet moves past the Hall sensor, a signal is registered. The speed then depends on the frequency at which the signal occurs.

Des Weiteren sind das oben erwähnte Lieferwalzenpaar 22 und die Umlenkrolle 25 in diesem Ausführungsbeispiel an einem weiteren Bauelement 3b angeordnet. Das Bauelement 3b umfasst beispielsweise für den Transport und/oder eine Pflege des Fadens 12 benötigte Elemente. Beispielsweise umfasst das Bauelement 3b eine hier nicht gezeigte Fadenabsaugeinrichtung, mit deren Hilfe bei einem Fadenriss ein Fadenende zum Wiederanspinnen eingesaugt werden kann. An dem Bauelement 3b ist in diesem Ausführungsbeispiel ferner ein Fadenwächter 21 angeordnet, mit dessen Hilfe erkannt werden kann, ob der Faden 12 zur Spule 19 geliefert wird. Insbesondere kann mit Hilfe des Fadenwächters 21 erkannt werden, ob beispielsweise der Faden 12 gerissen ist und daraufhin ein entsprechendes Signal abgeben.Furthermore, the above-mentioned pair of delivery rollers 22 and the deflection roller 25 are arranged on a further component 3b in this exemplary embodiment. The component 3b comprises elements required for the transport and / or maintenance of the thread 12, for example. For example, the component 3b comprises a thread suction device, not shown here, with the aid of which a thread end can be sucked in for re-spinning in the event of a thread break. In this exemplary embodiment, a thread monitor 21 is also arranged on the component 3b, with the aid of which it can be recognized whether the thread 12 is being delivered to the bobbin 19. In particular, with the help of the thread monitor 21 it can be recognized whether, for example, the thread 12 has broken and thereupon emit a corresponding signal.

In diesem Ausführungsbeispiel ist im Bereich des Fadenwächters 21 eine weitere Sensoreinheit 6b angeordnet. Die Sensoreinheit 6b kann beispielsweise auch mit in einem Gehäuse des Fadenwächters 21 angeordnet sein. Die Anordnung der Sensoreinheit 6b im Bereich des Fadenwächters 21 (oder mit diesem in dessen Gehäuse) ist deshalb vorteilhaft, weil dadurch auf eine zusätzliche Datenleitung für die Sensoreinheit 6b verzichtet werden kann. Die Messdaten der Sensoreinheit 6b können zusätzlich über die hier nicht gezeigte Datenleitung des Fadenwächters 21 an die Steuerung 18 geleitet werden.In this exemplary embodiment, a further sensor unit 6b is arranged in the area of the thread monitor 21. The sensor unit 6b can for example also be arranged in a housing of the thread monitor 21. The arrangement of the sensor unit 6b in the area of the thread monitor 21 (or with this in its housing) is advantageous because it means that an additional data line for the sensor unit 6b can be dispensed with. The measurement data of the sensor unit 6b can additionally be passed to the controller 18 via the data line of the thread monitor 21 (not shown here).

Figur 4 zeigt die Spinnstelle der Figur 3 mit einem aufgeschwenkten Bauelement 3b. Durch das aufgeschwenkte Bauelement 3b kann beispielsweise der Rotor 11 gewartet oder gereinigt werden. Durch das Aufschwenken des Bauelements 3b ist insbesondere auch die Sensoreinheit 6b mit verschwenkt. Durch die in der Sensoreinheit 6b angeordnete inertiale Messeinheit kann eine Bewegungsänderung, insbesondere eine Beschleunigung und/oder eine Geschwindigkeit, von der restlichen Spinnstelle 2 weg oder auf diese zu erkannt werden. Daraus kann die aktuelle Lage des Bauelements 3b berechnet werden. Figure 4 shows the spinning position of the Figure 3 with a pivoted component 3b. The rotor 11, for example, can be serviced or cleaned by the swiveled-open component 3b. By pivoting the component 3b open, the sensor unit 6b is also pivoted in particular. The inertial measuring unit arranged in the sensor unit 6b makes it possible to detect a change in movement, in particular an acceleration and / or a speed, away from the remaining spinning station 2 or towards it. The current position of the component 3b can be calculated from this.

Die Berechnung der Lage des Bauelements 3b ist vorteilhaft, da das Bauelement 3b in der aufgeschwenkten Lage in den Fahrweg der Wartungseinrichtung 7 ragen kann. Dadurch kann es zu einer Kollision zwischen der Wartungseinrichtung 7 und dem Bauelement 3b kommen.The calculation of the position of the component 3b is advantageous since the component 3b can protrude into the travel path of the maintenance device 7 in the pivoted-open position. This can lead to a collision between the maintenance device 7 and the component 3b.

Zusätzlich oder alternativ kann durch die Sensoreinheit 6b auch eine Orientierungsänderung des Bauelements 3b erkannt werden. Wenn die Sensoreinheit 6b beispielsweise ein Gyroskop umfasst, kann damit die Änderung der Orientierung, insbesondere das Wegschwenken, des Bauelements 3b erkannt werden.Additionally or alternatively, a change in orientation of the component 3b can also be detected by the sensor unit 6b. If the sensor unit 6b comprises a gyroscope, for example, the change in the orientation, in particular the pivoting away, of the component 3b can be detected.

In diesem Ausführungsbeispiel ist die Sensoreinheit 6b mit am Fadenwächter 21 angeordnet. Alternativ kann die Sensoreinheit 6b auch im Fadenwächter 21 integriert sein. Dadurch können die Messwerte der Sensoreinheit 6b mit über die Datenleitung des Fadenwächters 21 übertragen werden, so dass eine eigene Datenleitung für die Sensoreinheit 6b eingespart werden kann. Die Sensoreinheit 6b kann dadurch beispielsweise auch einfach nachgerüstet werden. Die hier nicht gezeigte Datenleitung führt dabei zur Steuerung 18.In this exemplary embodiment, the sensor unit 6b is also arranged on the thread monitor 21. Alternatively, the sensor unit 6b can also be integrated in the thread monitor 21. As a result, the measured values of the sensor unit 6b can also be transmitted via the data line of the thread monitor 21, so that a separate data line for the sensor unit 6b can be saved. The sensor unit 6b can thus also be easily retrofitted, for example. The data line, not shown here, leads to the controller 18.

Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Abwandlungen im Rahmen der Patentansprüche sind ebenso möglich wie eine Kombination der Merkmale, auch wenn diese in unterschiedlichen Ausführungsbeispielen dargestellt und beschrieben sind, sofern kein Widerspruch zur Lehre der unabhängigen Patentansprüche entsteht.The present invention is not restricted to the illustrated and described exemplary embodiments. Modifications within the scope of the claims are just as possible as a combination of the features, even if these are shown and described in different exemplary embodiments, provided that there is no contradiction to the teaching of the independent claims.

BezugszeichenlisteList of reference symbols

11
TextilmaschineTextile machine
22
SpinnstelleSpinning position
33
BauelementComponent
44th
erste Lage des Bauelementsfirst layer of the component
55
zweite Lage des Bauelementssecond layer of the component
66th
SensoreinheitSensor unit
77th
WartungseinrichtungMaintenance facility
88th
FahrschieneRunway
99
Drehpunktpivot point
1010
Ende des BauelementsEnd of the component
1111
Rotorrotor
1212
Fadenthread
1313
RotorkammerRotor chamber
1414th
Abdichtungseal
1515th
RotorschaftRotor shaft
1616
RotorgehäuseRotor housing
1717th
AbzugsröhrchenDrainage tube
1818th
Steuerungcontrol
1919th
SpuleKitchen sink
2020th
SpulwalzeWinding roller
2121st
FadenwächterThread monitor
2222nd
LieferwalzenpaarDelivery roller pair
2323
FasernFibers
2424
AuflösevorrichtungOpening device
2525th
UmlenkrollePulley
2626th
Mantelfläche der SpuleOuter surface of the coil
2727
Mantelfläche der SpulwalzeOuter surface of the winding roller
2828
Drehachse der SpuleAxis of rotation of the coil
2929
Drehachse der SpulwalzeAxis of rotation of the winding roller
DRDR
DrehrichtungDirection of rotation
FRFR
FahrrichtungDirection of travel
αα
Winkelangle
RR.
Radiusradius

Claims (13)

  1. A textile machine (1) having a plurality of spinning (2) or winding stations, the spinning (2) or winding stations and/or the textile machine (1) comprising at least one component (3) displaceable between at least two positions (4, 5), and the textile machine (1) comprising at least one sensor unit (6) by means of which a position (4, 5) and/or motion of the component (3) can be detected,
    characterized in that
    the sensor unit (6) comprises an inertial measurement unit for capturing a magnitude and a direction of the change in position and/or motion of the component (3), and that the inertial measurement unit comprises at least one MEMS element.
  2. The textile machine (1) according to the preceding claim,
    characterized in that the inertial measuring unit comprises a rate of rotation sensor and/or a gyroscope sensor and/or a sensor for measuring linear accelerations.
  3. The textile machine (1) according to any one or more of the preceding claims, characterized in that the sensor unit (6) is disposed on the spinning or winding station, preferably on said component (3).
  4. The textile machine (1) according to any one or more of the preceding claims, characterized in that the component (3) is implemented as a bobbin arm holding a bobbin (19), wherein at least one sensor unit (6) is disposed on the bobbin arm and/or on the bobbin (19).
  5. The textile machine (1) according to any one or more of the preceding claims, characterized in that the textile machine (1) and/or the spinning or winding station comprises a unit, particularly a thread monitor (21), an actuator, and/or a further sensor, wherein the unit is disposed on the component, and wherein the sensor unit (6) is disposed in the region or in a housing of the unit.
  6. The textile machine (1) according to any one or more of the preceding claims, characterized in that the sensor unit (6), particularly the rate of rotation sensor, preferably the gyroscope, is disposed in the region of a center of rotation (9) of a component (3) rotatable or pivotable between the two positions (4, 5).
  7. The textile machine (1) according to any one or more of the preceding claims, characterized in that the sensor unit (6), particularly the sensor for measuring linear accelerations, is disposed on the rotatable or pivotable component (3) in a region spaced apart from, preferably opposite, the center of rotation (9).
  8. The textile machine (1) according to any one or more of the preceding claims, characterized in that the textile machine (1) comprises a controller (18) connected to the sensor unit (6) and implemented for emitting an alarm and/or for stopping a maintenance device (7) traveling along a spinning (2) and/or winding station and/or for stopping the spinning (2) and/or winding station due to the change in position and/or change in motion of the component (3).
  9. The textile machine (1) according to any one or more of the preceding claims, characterized in that the spinning (2) and/or winding station comprises an actuator by means of which the component (3) can be displaced between the two positions (4, 5).
  10. A method for operating a textile machine (1) implemented according to any one or more of the preceding claims and having a plurality of spinning (2) or winding stations, the spinning (2) or winding stations and/or the textile machine (1) comprising at least one component (3) displaceable back and forth between at least two positions (4, 5), and the textile machine (1) comprising a sensor unit (6) by means of which a magnitude and a direction of a change in position and/or motion of the component (3) is monitored.
  11. The method according to the preceding claim, characterized in that the textile machine (1) comprises a controller (18) connected to the sensor unit (6) and able to initiate emitting an alarm and/or stopping a maintenance device (7) traveling along the spinning (2) or winding stations and/or stopping the spinning (2) or winding station due to the measured position (4, 5) and/or motion of the component (3).
  12. The method according to the preceding claim, characterized in that a present position (4, 5) and/or motion of the component (3) is calculated by means of analyzing, preferably summing, the changes in position and/or motion, particularly by the controller (18).
  13. The method according to any one or more of the preceding claims 11 through 12, characterized in that the controller (18) causes an actuator disposed at the spinning (2) and/or winding station to displace the component (3) from one position (4, 5) into a different position (4, 5) due to the measured position (4, 5) and/or motion.
EP18160069.3A 2017-03-16 2018-03-06 Textile machine with a plurality of spinning or winding positions and method for operating the textile machine Active EP3375742B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017105700.5A DE102017105700A1 (en) 2017-03-16 2017-03-16 Textile machine with a variety of spinning or winding units and a method for operating the textile machine

Publications (2)

Publication Number Publication Date
EP3375742A1 EP3375742A1 (en) 2018-09-19
EP3375742B1 true EP3375742B1 (en) 2021-01-27

Family

ID=61580944

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18160069.3A Active EP3375742B1 (en) 2017-03-16 2018-03-06 Textile machine with a plurality of spinning or winding positions and method for operating the textile machine

Country Status (3)

Country Link
EP (1) EP3375742B1 (en)
CN (1) CN108625001B (en)
DE (1) DE102017105700A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106512A1 (en) 2019-03-14 2020-09-17 Aesculap Ag Surgical instrument with a flow-through end area
DE102019116646A1 (en) * 2019-06-19 2020-12-24 Maschinenfabrik Rieter Ag Method for operating a partially or fully automatic spinning machine that produces cross-wound bobbins
BR112021025593A2 (en) * 2019-06-20 2022-02-01 Pentek Textile Machinery S R L Type fabric treating machine with fabric accumulating stations and method for controlling the accumulating amount in an accumulating station of a fabric treating machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140553B (en) * 1983-05-24 1988-03-23 Rieter Ag Maschf Automat location system
JPS63203814A (en) * 1987-02-18 1988-08-23 Murata Mach Ltd Spun yarn winding machine
JPH06127829A (en) * 1992-10-15 1994-05-10 Murata Mach Ltd Failure diagnostic device for cradle
JPH06127833A (en) * 1992-10-16 1994-05-10 Murata Mach Ltd Failure diagnostic device for cradle and method thereof
DE10137081B4 (en) 2001-07-28 2017-02-23 Rieter Ingolstadt Gmbh Textile machine with a maintenance device and method for collision avoidance
DE102007017209B4 (en) * 2007-04-05 2014-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Micromechanical inertial sensor for measuring rotation rates
DE102008052505A1 (en) * 2008-10-21 2010-04-22 Oerlikon Textile Gmbh & Co. Kg Winding device for a cross-wound textile machine and method for operating the winding device
US9352930B2 (en) * 2013-12-29 2016-05-31 Google Inc. Methods and systems for winding a tether
JP2017065897A (en) * 2015-09-30 2017-04-06 村田機械株式会社 Textile machine, textile machine system, state acquisition device and textile processing unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017105700A1 (en) 2018-09-20
CN108625001A (en) 2018-10-09
EP3375742A1 (en) 2018-09-19
CN108625001B (en) 2022-04-19

Similar Documents

Publication Publication Date Title
EP3375742B1 (en) Textile machine with a plurality of spinning or winding positions and method for operating the textile machine
EP2006557B1 (en) Method and device for starting an electric machine with a rotor, being magnetically supported
EP2804826B1 (en) Monitoring a web speed of a material web
DE2912340C2 (en) Cord opener for opening and untwisting a textile cord
WO1990011958A1 (en) Device and process for determining physical characteristics of a lift
WO1999001302A1 (en) Method for determining the rotational speed of a motor vehicle wheel rotating around a rotating axis
EP2305864B1 (en) Method for operating a service carriage and service carriage
DE102004026185A1 (en) Method and apparatus for operating a machine, such as a multi-axis industrial robot
DE10302531B4 (en) Measuring device and measuring method for electric motors
EP2653428A1 (en) Wire-actuated linear encoder
DE102004029020A1 (en) Method and apparatus for operating an open-end rotor spinning device
DE2525560A1 (en) MOVABLE MAINTENANCE DEVICE FOR OPEN-END SPINNING MACHINES
DE4313753A1 (en) Support plate for a support plate bearing of open-end spinning rotors
EP3476787B1 (en) Traversing unit, method for operating a traversing unit and workstation with a traversing unit
EP2571797B1 (en) Spooling machine and method for monitoring a spooling machine
CH654347A5 (en) DOUBLE-SIDED OPEN-END SPINDING MACHINE.
DE19611878A1 (en) Method for detecting faults in the transport of a continuous paper web in a printing press
EP0824495B1 (en) Method of controlling and monitoring the operation of a lift installation, and a roller bearing for use in the method
DE2307121A1 (en) METHOD AND DEVICE FOR CLEANING OPEN-END SPINNING TURBINES
EP2444585A2 (en) Method for monitoring movements on a rolling gate and device for executing the method
DE102018112802A1 (en) Method for operating a textile machine and textile machine
DE19642670B4 (en) Device for piecing a thread on an open-end spinning device
WO2022028828A1 (en) Device and method for capturing velocities of arm segments of a robot
DE102015120292B3 (en) Controlled unwinding device
WO2017050683A1 (en) Method for controlling an electrical drive, and electrical drive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190319

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200114

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D01H 13/14 20060101ALI20200915BHEP

Ipc: D01H 13/20 20060101ALI20200915BHEP

Ipc: B65H 54/26 20060101AFI20200915BHEP

Ipc: B65H 63/04 20060101ALI20200915BHEP

INTG Intention to grant announced

Effective date: 20201012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1358186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018003761

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018003761

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

26N No opposition filed

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210306

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210327

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210306

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220328

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220303

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220331

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502018003761

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230306

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1358186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230306