EP3374172B1 - Pressing tool designed as a press platen - Google Patents

Pressing tool designed as a press platen Download PDF

Info

Publication number
EP3374172B1
EP3374172B1 EP16797793.3A EP16797793A EP3374172B1 EP 3374172 B1 EP3374172 B1 EP 3374172B1 EP 16797793 A EP16797793 A EP 16797793A EP 3374172 B1 EP3374172 B1 EP 3374172B1
Authority
EP
European Patent Office
Prior art keywords
press
structuring
laser
pressing
pressing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16797793.3A
Other languages
German (de)
French (fr)
Other versions
EP3374172A1 (en
Inventor
Rolf Espe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hueck Rheinische GmbH
Original Assignee
Hueck Rheinische GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hueck Rheinische GmbH filed Critical Hueck Rheinische GmbH
Priority to PL16797793T priority Critical patent/PL3374172T3/en
Publication of EP3374172A1 publication Critical patent/EP3374172A1/en
Application granted granted Critical
Publication of EP3374172B1 publication Critical patent/EP3374172B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/20Moulding or pressing characterised by using platen-presses
    • B27N3/203Moulding or pressing characterised by using platen-presses with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/20Moulding or pressing characterised by using platen-presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • B27N7/005Coating boards, e.g. with a finishing or decorating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates

Definitions

  • the invention relates to a press tool designed as a press plate for coating wood-based panels in hydraulic press systems.
  • the coated wooden tool panels are used, for example, as furniture panels or floor panels, the surfaces of which are equipped with synthetic resin films.
  • the synthetic resin films usually consist of printed or plain-colored fine cellulose papers and are soaked in the so-called impregnation plants with the pre-condensed resins and then further condensed in a heated drying zone until they reach a certain moisture content of around 8%.
  • the synthetic resin films consist, for example, of so-called aminoplast resins based on melamine and formaldehyde or also of mixed resins of melamine / urea and formaldehyde. These mixtures are precondensed at a certain condensation temperature and pH in a reaction vessel with an agitator until they have reached the desired viscosity and degree of crosslinking.
  • pre-condensates are used for paper impregnation.
  • the paper is impregnated using the impregnation process. This is followed by drying in horizontal air ducts at approx. 125 to 155 ° C. This process step initially represents another polycondensation which is interrupted after the drying zone.
  • the synthetic resin films are initially firm and easy to transport, so that they can be processed well in the hydraulic press systems.
  • the coating of the wood-based panels, which are formulated as MDF, HDF, chipboard or plywood, takes place in so-called hydraulic, heated press systems.
  • the heating plates are fixed with appropriate press plates, the surfaces of which are structured or smooth with different degrees of gloss.
  • Press pads made of elastic materials are used between the heating plates and the press plates, which serve to equalize the pressure and to compensate for the thickness tolerances of the press plates and press system.
  • the coating material which consists of the synthetic resin films and the wood-based panels, is run into the heated press systems, the system closes and is subjected to the required pressure.
  • the precondensed aminoplast resins become liquid again, the condensation of the resins and thus the spatial crosslinking continues. It increases the viscosity of the resins until after a certain time they are converted into the solid and irreversible state. During this process, the surface of the resins is also formed and it takes on the exact structure and gloss level of the corresponding surface of the press plates used.
  • metallic press plates consist of a brass material from the material group MS 64 or chrome steels according to DIN 1.4024 according to AISI 410 or DIN 1.4542 according to AISI 630.
  • Other metallic materials cannot be used as press plates due to their purity, surface formation or their technical data.
  • the purity of the material plays a crucial role in surface processing.
  • the chrome steels used must not have cavities so that there are no flaws in the subsequent surface treatment.
  • the chrome steels listed are vacuum melted and therefore show a uniform and clean metal structure during the rolling process.
  • the rolled raw plates must first be ground in order to achieve a certain thickness tolerance.
  • the etching method remains the currently productive method.
  • an etching reserve is first applied to the prepared sheet metal surface by means of screen printing, roller printing or digitally using an inkjet printhead. An older method with a photo layer that is then exposed and fixed is hardly used today.
  • the sheet is treated accordingly with FeCl 3 in an acid bath. The free unprinted areas are attacked by the acid without any etching reserve and metal is removed in accordance with the desired structure depth.
  • the structures can be rounded or designed accordingly.
  • the gloss level setting of the Structured sheet metal surfaces are done in a blasting process with different blasting media and blasting thicknesses, according to the desired degree of gloss.
  • the final processing stage is the subsequent chrome plating in order to protect the sheet metal surfaces against abrasion and to achieve a good separation effect compared to the aminoplast resins.
  • Structure fabrication using the chemical etching process is a complex and difficult production process, since the structure depths cannot be measured, for example, during the etching process. It is therefore based on the etching time and assumes that the structure depth will then always be the same. In practice, however, it has been shown that this is not the case, because various parameters have a considerable influence on the etching speed and thus on the etching depth of the structure. Acid temperature, acid pressure during spray etching, acid concentration are all factors that influence the etching process.
  • Another disadvantage of FeCl 3 is that it is harmful to health, it is extremely irritating to the skin and there is a risk of serious damage to eyes.
  • the backs of the steel sheets have a certain roughness, since relative movements occur during the pressing process, the backs of the sheets rub over the press pads, which are equipped with soft metal threads in the form of copper or brass threads.
  • the metal threads are necessary to transfer the heat transfer from the heating plate to the material to be pressed via the press plate.
  • the abrasion then leads to thin metal threads that can no longer absorb the high tensile stresses within the upholstery and tear.
  • the upholstery become unusable.
  • the use of metallic press plates in the coating of wood-based panels is therefore unsatisfactory.
  • EP 0611 638 A1 discloses a pressing tool according to the preamble of claim 1.
  • the invention is therefore based on the object of specifying an improved press tool designed as a press plate.
  • the object of the invention is achieved by a pressing tool for coating wood-based panels in hydraulic heating presses with the features of claim 1.
  • Polyether ether ketones are relatively light and more convenient to handle. There are several processes available for structuring that are healthier and more reliable, and which can thus eliminate the negative properties of the metal press plates. Surprisingly, the PEEK sheets showed high strength despite a much lower density of 1.31 kg / dm 3 and PEEK with 30% CA of 1.41 kg / dm 3 .
  • a steel sheet of quality DIN 1.4542 or AISI 630 shows a density of 7.8 kg / dm 3 . This means a press plate of the format 6200 ⁇ 2400 mm in 5 mm thickness results in a total weight of approx.
  • etching media such as FeCl 3
  • One type of structuring is the fused deposition modeling FDM method, also known as fused filament fabrication FFF.
  • FDM fused deposition modeling FDM
  • a grid of dots is first applied to a surface, similar to a normal printer, the dots being liquefied by heating a wire-shaped plastic, applied by extrusion using a nozzle, and then hardened by cooling to the desired one Position in a grid of the working plane.
  • the structure of the structure is usually done by repeating one working level line by line and then shifting the working level upwards in a stack so that a structure is created in layers.
  • the layer thicknesses are between 25 and 1250 ⁇ m.
  • the data transfer is done using CAD technology.
  • the press plate is made of polyether ether ketone PEEK with at least 10 to 50% with a carbon fiber or with at least 10 to 50% of a graphite powder or with at least 10 to 50% of a thermally conductive material.
  • the press plate can consist of a polyimide PI, a polyamideimide PAI, a polyether ketone PEK, a polyether ketone ether ketone PEKEKK, a polyphenylene sulfide PPS, a polyaryl ether ketone PAEK, a polybenzimidazole PBI or a liquid cristal polymer LCP.
  • a CO 2 laser can be used with the PEEK sheet, which has significantly longer ablation times than with metal removal.
  • the laser being a pulsed fiber laser.
  • the removal rate is very low with the pulsed fiber laser.
  • the CO 2 laser is based on the fact that a so-called laser-active medium, in this case carbon dioxide CO 2 , is pumped by external energy supply. Atomic processes then take place in the medium itself, which take advantage of a complex device structure ultimately cause a chain reaction and thus the emission of laser light.
  • the CO 2 laser is also known as a gas laser.
  • the gas laser it is much easier to realize a larger volume of the laser-active material than, for example, with the fixed laser, simply by dimensioning the container large enough and allowing a corresponding amount of gas to flow in.
  • the volume has a direct influence on the achievable intensity of the laser, which means that high powers can also be achieved.
  • the CO 2 laser has a long wavelength, which is why it is well absorbed by plastics, while metal surfaces reflect stronger and therefore the removal is less. A power of 200 to 300 watts is sufficient for plastics to achieve good removal rates.
  • Another structure production variant is die pressing.
  • structures can be produced by the action of temperature and pressure.
  • a negative structure is used in a steel sheet that serves as a master sample.
  • This master sample serves as a structure generator for all other plastic press plates.
  • Under pressure and temperature that is below the melting point of the plastic, but still above the softening point the negative structure is embossed into the plastic sheet and thus receives a positive structure.
  • the press material is cooled under pressure until it is just below the softening point of the plastic used and then the press material is removed.
  • Reproducible structures can be produced using this method. Contrary to the structure production with metallic press plates in the chemical etching process, these structures are all identical and show no deviations. In this way, it is possible to manufacture a structure that is reliable and does not pose a health risk.
  • the sheet metal surfaces can also be further processed as with the metallic press sheets.
  • the level of gloss is adjusted using blasting media at a specific jet pressure, depending on the desired level of gloss.
  • the plastic sheets can also be chrome-plated to protect the surfaces, but it is advisable to apply a Cu layer beforehand. This can be done, for example, by reductive copper plating for plastics, or the electroless copper plating of plastics is also used the products Baymetec and Baycoflex.
  • the usual chrome plating can be carried out in galvanic baths. It has been shown in the tests that not every plastic is suitable for the use of press plates in hydraulic heating presses for plastic coating. The softening point of the plastics must be far above the processing temperature that prevails in the heating presses. This is usually between 190 and 220 ° C.
  • the plastic polyetheretherketone PEEK with an enrichment of approx. 30% carbon fiber or graphite has surprisingly been well suited for the production of press plates.
  • plastics have poorer thermal conductivity than metals, these differences could be largely compensated for by an enrichment of carbon fiber or graphite powder.
  • the plastic sheets show a better and closer fixation to the heating plates, so that the heat loss that occurs with the metallic press sheets due to the large sag does not take place here.
  • the different degrees of gloss can also be achieved by different coatings of the surface of the press plate made of a high-temperature-resistant plastic of provenance polyether ether ketone, similar to that in EP 2 060 658 B1 described.
  • An embodiment of the invention is shown in the attached schematic figure, which shows a press tool designed as a press plate 1.
  • the press plate 1 consists of a high-temperature-resistant polyether ether ketone plastic and comprises a surface 2 which is structured or smooth with different degrees of gloss.
  • the press plate 1 is enriched with at least 10 to 50% of a carbon fiber or with at least 10 to 50% of a graphite powder or with at least 10 to 50% of a thermally conductive material.
  • the press plate 1 can consist, for example, of a polyimide, a polyamideimide, a polyether ketone, a polyether ketone ether ketone ketone, a polyphenylene sulfide, a polyaryl ether ketone, a polybenzimidazole, or a Liquid Cristal Polymer LCP.
  • the structuring of the surface 2 of the press plate 1 was produced in the case of the present exemplary embodiment by means of a CO 2 laser 3.
  • digitized data of a 3-D topography of a previously removed structure assigned to the structuring of the surface 2 were used for controlling the X, Y and Z coordinates of the CO 2 laser 3.
  • the structuring of the surface 2 of the press plate 3 can also be carried out by means of a die pressing or produced using the fused deposition modeling method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Presses And Accessory Devices Thereof (AREA)
  • Laser Beam Processing (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

Die Erfindung betrifft ein als Pressblech ausgebildetes Presswerkzeug zur Beschichtung von Holzwerkstoffplatten in hydraulischen Pressenanlagen.The invention relates to a press tool designed as a press plate for coating wood-based panels in hydraulic press systems.

Die beschichteten Holzwerkzeugplatten werden zum Beispiel als Möbelplatten oder Fußbodenplatten eingesetzt, deren Oberflächen mit Kunstharzfilmen ausgerüstet sind. Die Kunstharzfilme bestehen in der Regel aus bedruckten oder unifarbigen Edelzellstoffpapieren und werden in sogenannten Imprägnierungsanlagen mit den vorkondensierten Harzen durchtränkt und anschließend in einer beheizten Trockenzone weiter kondensiert, bis zu einem bestimmten Feuchtigkeitsgehalt der bei ca. 8% liegt. Die Kunstharzfilme bestehen z.B. aus sogenannten Aminoplastharzen auf Basis von Melamin und Formaldehyd oder auch aus Mischharzen von Melamin/Hamstoff und Formaldehyd. Diese Mischungen werden bei einer bestimmten Kondensationstemperatur und einem pH-Wert in einem Reaktionsbehälter mit Rührwerk zunächst vorkondensiert, bis sie die gewünschte Viskosität und den Vernetzungsgrad erreicht haben. Diese sogenannten Vorkondensate werden für die Papierimprägnierung eingesetzt. Die Imprägnierung der Papiere erfolgt im Tränkverfahren. Daran schließt sich die Trocknung in horizontalen Tragluftkanälen bei ca. 125 bis 155°C an. Dieser Prozessschritt stellt zunächst eine weitere Polykondensation dar die nach der Trocknungszone unterbrochen wird. Die Kunstharzfilme sind zunächst fest und gut transportierbar, sodass man sie in den hydraulischen Pressenanlagen gut verarbeiten kann. Die Beschichtung der Holzwerkstoffplatten die als MDF-, HDF-, Span- oder Sperrholzplatten formuliert sind, geschieht in sogenannten hydraulisch, beheizbaren Pressenanlagen. Die Heizplatten werden mit entsprechenden Pressblechen, deren Oberflächen strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet sind fixiert. Zwischen den Heizplatten und den Pressblechen werden Presspolster aus elastischen Materialien eingesetzt, die zum Druckausgleich dienen und die Dickentoleranzen der Pressbleche und Pressenanlage ausgleichen sollen. Das Beschichtungsgut, welches aus den Kunstharzfilmen und den Holzwerkstoffplatten besteht, wird in den aufgeheizten Pressenanlagen eingefahren, die Anlage schließt und wird mit dem entsprechend benötigten Pressdruck beaufschlagt. Dabei werden die vorkondensierten Aminoplastharze wieder flüssig, die Kondensation der Harze und somit die räumliche Vernetzung schreitet weiter fort. Es erhöht sich dabei die Viskosität der Harze, bis sie nach einer bestimmten Zeit in den festen und irreversiblen Zustand überführt sind. Bei diesem Vorgang wird ebenfalls die Oberfläche der Harze ausgebildet und sie übernimmt genau die entsprechende Oberfläche der eingesetzten Pressbleche in Struktur und Glanzgrad. Nach dem Stand der Technik werden grundsätzlich metallische Pressbleche eingesetzt, die aus einem Messingwerkstoff der Werkstoffgruppe MS 64 oder aus Chromstählen nach DIN 1.4024 entsprechend AISI 410 oder DIN 1.4542 entsprechend AISI 630 bestehen. Andere metallische Werkstoffe lassen sich aufgrund ihrer Reinheit, Oberflächenausbildung oder deren technischen Daten nicht als Pressbleche einsetzen. Bei der Oberflächenbearbeitung spielt zum Beispiel die Reinheit des Materials eine ganz entscheidende Rolle. Die eingesetzten Chromstähle dürfen keine Lunker aufweisen damit bei der späteren Oberflächenbearbeitung keine Fehlerstellen auftreten. Die aufgeführten Chromstähle sind Vakuum erschmolzen und zeigen daher beim Walzprozess einheitliches und sauberes Metallgefüge. Für die Herstellung der Pressbleche müssen die gewalzten Rohbleche zunächst geschliffen werden, um eine bestimmte Dickentoleranz zu erreichen. Die sollte nach Möglichkeit klein sein, in der Regel werden Toleranzen von 0,10 bis 0,15 mm erzielt. Weitere Stufen der Bearbeitung sind danach der Pflock- oder Feinstschliff um die Schleifriefen des Toleranzschliffs möglichst zu eliminieren. Eine anschließende Politur bildet die Vorbereitungsstufe für die Oberflächenausgestaltung. Will man die Oberfläche mit einer Struktur versehen, so können diese nach dem Stand der Technik in einem chemischen Ätzverfahren mit einer Ätzsäure bestehend aus FeCl3 hergestellt werden. Es ist aber auch der Metallabtrag, der zur Strukturierung notwendig wird, mittels eines Lasers möglich. Dazu werden Feststofflaser eingesetzt, wobei die Ablationszeiten sehr lang sind und daher für die großen Blechformate zur Zeit noch unwirtschaftlich sind. Eine weitere theoretische Methode ist der Metallauftrag und damit der Strukturauftrag im 3D-Druckverfahren denkbar. Beide aufgeführten Methoden werden zur Zeit noch nicht angewandt. Daher bleibt die Ätzmethode die zur Zeit produktive Methode. Bei dem chemischen Ätzverfahren wird zunächst auf der vorbereiteten Blechoberfläche eine Ätzreserve mittels Siebdruck, Walzendruck oder digital mit einem Tintenstrahldruckkopf aufgetragen. Eine ältere Methode mit einer Photoschicht die anschließend belichtet und fixiert wird, ist heute kaum noch in Gebrauch. Nachdem die Ätzreserve aufgetragen ist, wird das Blech in einem Säurebad mit FeCl3 entsprechend behandelt. Dabei werden die freien unbedruckten Flächen ohne Ätzreserve von der Säure angegriffen und es erfolgt ein Metallabtrag entsprechend der gewünschten Strukturtiefe. In weiteren Prozessschritten können die Strukturen noch verrundet oder entsprechend ausgestaltet werden. Die Glanzgradeinstellung der strukturierten Blechoberflächen erfolgt in einem Strahlverfahren mit unterschiedlichen Strahlmedien und Strahldücken, entsprechend des gewünschten Glanzgrades.The coated wooden tool panels are used, for example, as furniture panels or floor panels, the surfaces of which are equipped with synthetic resin films. The synthetic resin films usually consist of printed or plain-colored fine cellulose papers and are soaked in the so-called impregnation plants with the pre-condensed resins and then further condensed in a heated drying zone until they reach a certain moisture content of around 8%. The synthetic resin films consist, for example, of so-called aminoplast resins based on melamine and formaldehyde or also of mixed resins of melamine / urea and formaldehyde. These mixtures are precondensed at a certain condensation temperature and pH in a reaction vessel with an agitator until they have reached the desired viscosity and degree of crosslinking. These so-called pre-condensates are used for paper impregnation. The paper is impregnated using the impregnation process. This is followed by drying in horizontal air ducts at approx. 125 to 155 ° C. This process step initially represents another polycondensation which is interrupted after the drying zone. The synthetic resin films are initially firm and easy to transport, so that they can be processed well in the hydraulic press systems. The coating of the wood-based panels, which are formulated as MDF, HDF, chipboard or plywood, takes place in so-called hydraulic, heated press systems. The heating plates are fixed with appropriate press plates, the surfaces of which are structured or smooth with different degrees of gloss. Press pads made of elastic materials are used between the heating plates and the press plates, which serve to equalize the pressure and to compensate for the thickness tolerances of the press plates and press system. The coating material, which consists of the synthetic resin films and the wood-based panels, is run into the heated press systems, the system closes and is subjected to the required pressure. The precondensed aminoplast resins become liquid again, the condensation of the resins and thus the spatial crosslinking continues. It increases the viscosity of the resins until after a certain time they are converted into the solid and irreversible state. During this process, the surface of the resins is also formed and it takes on the exact structure and gloss level of the corresponding surface of the press plates used. According to the state of the art, metallic press plates are used, which consist of a brass material from the material group MS 64 or chrome steels according to DIN 1.4024 according to AISI 410 or DIN 1.4542 according to AISI 630. Other metallic materials cannot be used as press plates due to their purity, surface formation or their technical data. For example, the purity of the material plays a crucial role in surface processing. The chrome steels used must not have cavities so that there are no flaws in the subsequent surface treatment. The chrome steels listed are vacuum melted and therefore show a uniform and clean metal structure during the rolling process. For the production of the press plates, the rolled raw plates must first be ground in order to achieve a certain thickness tolerance. It should be as small as possible, as a rule tolerances of 0.10 to 0.15 mm are achieved. Further stages of processing are then the stake or very fine sanding in order to eliminate the sanding marks of the tolerance sanding as far as possible. A subsequent polish forms the preparation stage for the surface design. If you want to provide the surface with a structure, it can be produced according to the prior art in a chemical etching process using an etching acid consisting of FeCl 3 . However, metal removal, which is necessary for structuring, is also possible using a laser. Solid lasers are used for this, the ablation times being very long and therefore currently uneconomical for the large sheet formats. Another theoretical method is the metal application and thus the structure application in the 3D printing process. Neither of the methods listed are currently used. Therefore, the etching method remains the currently productive method. In the chemical etching process, an etching reserve is first applied to the prepared sheet metal surface by means of screen printing, roller printing or digitally using an inkjet printhead. An older method with a photo layer that is then exposed and fixed is hardly used today. After the etching reserve has been applied, the sheet is treated accordingly with FeCl 3 in an acid bath. The free unprinted areas are attacked by the acid without any etching reserve and metal is removed in accordance with the desired structure depth. In further process steps, the structures can be rounded or designed accordingly. The gloss level setting of the Structured sheet metal surfaces are done in a blasting process with different blasting media and blasting thicknesses, according to the desired degree of gloss.

Die letzte Bearbeitungsstufe ist die anschließende Verchromung, um die Blechoberflächen gegen Abrieb zu schützen und gegenüber den Aminoplastharzen eine gute Trennwirkung zu erzielen. Die Strukturherstellung nach dem chemischen Ätzverfahren ist ein komplexes und schwieriges Produktionsverfahren, da die Strukturtiefen zum Beispiel während des Ätzprozesses nicht messbar sind. Man richtet sich daher nach der Ätzzeit und nimmt an, dass die Strukturtiefe dann entsprechend immer gleich sein wird. In der Praxis hat sich aber gezeigt, dass dieses nicht der Fall ist, denn verschiedene Parameter haben einen erheblichen Einfluss auf die Ätzgeschwindigkeit und somit auf die Ätztiefe der Struktur. Säuretemperatur, Säuredruck bei der Sprühätzung, Säurekonzentration sind alles Faktoren die den Ätzprozess beeinflussen. Ein weiterer Nachteil von FeCl3 ist die Gesundheitsschädlichkeit, es reizt stark die Haut und besteht die Gefahr ernster Augenschäden.The final processing stage is the subsequent chrome plating in order to protect the sheet metal surfaces against abrasion and to achieve a good separation effect compared to the aminoplast resins. Structure fabrication using the chemical etching process is a complex and difficult production process, since the structure depths cannot be measured, for example, during the etching process. It is therefore based on the etching time and assumes that the structure depth will then always be the same. In practice, however, it has been shown that this is not the case, because various parameters have a considerable influence on the etching speed and thus on the etching depth of the structure. Acid temperature, acid pressure during spray etching, acid concentration are all factors that influence the etching process. Another disadvantage of FeCl 3 is that it is harmful to health, it is extremely irritating to the skin and there is a risk of serious damage to eyes.

Stahl- oder Messingbleche lassen sich aufgrund ihres Gewichtes schlecht in den Pressenanlagen fixieren, speziell bei den Oberblechen benötigt man sehr hohe Spanndrücke. Hohe Spanndrücke können aber auch zu Verspannungen der Bleche führen, wenn sie unsachgemäß in den Anlagen eingebaut werden. Bedingt durch die Schwere der Bleche entsteht ein großer Durchhang, beim Schließen der Presse werden sie in die waagerechte Haltung gezwungen und erleiden dadurch eine Ausdehnung. Eine weitere Ausdehnung erfolgt unter Druck da die Heizplattentemperatur wesentlich höher ist als die Blechtemperatur. Können sich die Bleche in den Spannvorrichtungen, die sich außerhalb der Heizplatten befinden, nicht ausdehnen, kommt es zu den bekannten plastischen Blechverspannungen. Im kalten Zustand sind die Bleche nicht mehr plan und können deshalb auch nicht wieder aufgearbeitet und müssen verschrottet werden. Beim Einsatz von Stahlblechen hat sich gezeigt, dass der Verschleiß der Presspolster sehr ungünstig ist. Die Rückseiten der Stahlbleche weisen eine bestimmte Rauhigkeit auf, da während des Pressvorgangs Relativbewegungen auftreten, reiben die Blechrückseiten über die Presspolster die mit weichen Metallfäden in Form von Cu- oder Ms-Fäden ausgerüstet sind. Die Metallfäden sind notwendig um den Wärmetransport von Heizplatte über das Pressblech auf das Pressgut zu übertragen. Der Abrieb führt dann zu dünnen Metallfäden, die die hohen Zugspannungen innerhalb der Polster nicht mehr auffangen können und zerreißen. Die Polster werden dadurch unbrauchbar. Der Einsatz von metallischen Pressblechen bei der Beschichtung von Holzwerkstoffplatten ist daher nicht zufriedenstellend.Steel or brass sheets are difficult to fix in the press systems due to their weight, especially with the top sheets you need very high clamping pressures. High clamping pressures can also lead to tension in the sheets if they are improperly installed in the systems. Due to the weight of the sheets, there is a large sag. When the press is closed, they are forced into a horizontal position and thereby expand. A further expansion takes place under pressure since the heating plate temperature is significantly higher than the sheet temperature. If the sheets in the clamping devices, which are located outside of the heating plates, cannot expand, the known plastic sheet tensions occur. When cold, the sheets are no longer flat and therefore cannot be reconditioned and must be scrapped. When using steel sheets, it has been shown that the wear of the press pads is very unfavorable. The backs of the steel sheets have a certain roughness, since relative movements occur during the pressing process, the backs of the sheets rub over the press pads, which are equipped with soft metal threads in the form of copper or brass threads. The metal threads are necessary to transfer the heat transfer from the heating plate to the material to be pressed via the press plate. The abrasion then leads to thin metal threads that can no longer absorb the high tensile stresses within the upholstery and tear. The upholstery become unusable. The use of metallic press plates in the coating of wood-based panels is therefore unsatisfactory.

EP 0611 638 A1 offenbart ein Presswerkzeug gemäss dem Oberbegriff des Anspruchs 1. EP 0611 638 A1 discloses a pressing tool according to the preamble of claim 1.

Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes, als Pressblech ausgebildetes Presswerkzeug anzugeben.The invention is therefore based on the object of specifying an improved press tool designed as a press plate.

Die Aufgabe der Erfindung wird gelöst durch ein Presswerkzeug zur Beschichtung von Holzwerkstoffplatten in hydraulischen Heizpressen mit den Merkmalen des Anspruchs 1.The object of the invention is achieved by a pressing tool for coating wood-based panels in hydraulic heating presses with the features of claim 1.

Polyetheretherketone sind relativ leicht und in ihrer Handhabung vorteilhafter, für die Strukturierung stehen mehrere Prozesse zur Verfügung, die gesundheitsfreundlicher und prozesssicherer sind und die negativen Eigenschaften der metallischen Pressbleche damit eliminiert werden können. Überraschenderweise zeigten die PEEK Bleche eine hohe Festigkeit trotz wesentlich geringerer Dichte von 1,31 kg/dm3 und PEEK mit 30% CA von 1,41 kg/dm3. Ein Stahlblech der Qualität DIN 1.4542 oder AISI 630 zeigt eine Dichte von 7,8 kg/dm3. Das bedeutet ein Pressblech von dem Format 6200 × 2400 mm in 5 mm Dicke, ergibt ein Gesamtgewicht von ca. 580 kg, während ein PEEK Blech in gleicher Größenordnung hingegen nur 97 kg bzw. ein PEEK Blech mit 30% CA 105 kg wiegt. Man sieht, dass das Stahlblech fast 6 mal schwerer ist als ein Kunststoffblech. Daher lassen sich die Kunststoffbleche wesentlich leichter in der Pressenanlage mechanisch fixieren und führen nicht zu den beschriebenen Problemen, die bei den metallischen Pressblechen auftreten können. Es ist aber auch möglich die Kunststoffbleche in der Pressenanlage direkt mit den Presspolstern über einen chemischen Mechanismus zu fixieren. Bedingt durch den geringen Durchhang der Bleche und den günstigen Reibungsfaktor werden die Presspolster, speziell deren Metallfäden gegen Abrieb geschützt und somit die Lebensdauer der Polster verlängert. Bei der Strukturierung der Oberflächen stehen bei den Kunststoffblechen verschiedene Produktionsprozesse zur Verfügung. Da sie nicht mit Ätzmedien wie zum Beispiel FeCl3 behandelt werden, sind die Methoden umweltfreundlich und nicht gesundheitsgefährlich. Eine Strukturierungsart ist die Fused Deposition Modeling FDM Methode auch als Schmelzschichtung Fused Filament Fabrication FFF bezeichnet. Im Schmelzschichtverfahren wird zunächst, ähnlich wie bei einem normalen Drucker, ein Raster von Punkten auf eine Fläche aufgetragen, wobei die Punkte durch die Verflüssigung eines drahtförmigen Kunststoffs durch Erwärmung, der Aufbringung durch Extrudieren mittels einer Düse, sowie einer anschließenden Erhärtung durch Abkühlung an der gewünschten Position in einem Raster der Arbeitsebene entstehen. Der Aufbau der Struktur erfolgt üblich indem wiederholt, jeweils zeilenweise eine Arbeitsebene abgefahren und dann die Arbeitsebene stapelnd nach oben verschoben wird, sodass eine Struktur schichtweise entsteht. Die Schichtdicken liegen je nach gewünschter Strukturtiefe zwischen 25 bis 1250 µm. Die Datenübertagung geschieht mittels CAD Technologie.Polyether ether ketones are relatively light and more convenient to handle. There are several processes available for structuring that are healthier and more reliable, and which can thus eliminate the negative properties of the metal press plates. Surprisingly, the PEEK sheets showed high strength despite a much lower density of 1.31 kg / dm 3 and PEEK with 30% CA of 1.41 kg / dm 3 . A steel sheet of quality DIN 1.4542 or AISI 630 shows a density of 7.8 kg / dm 3 . This means a press plate of the format 6200 × 2400 mm in 5 mm thickness results in a total weight of approx. 580 kg, whereas a PEEK plate of the same size weighs only 97 kg or a PEEK plate with 30% CA 105 kg. You can see that the steel sheet is almost 6 times heavier than a plastic sheet. Therefore, the plastic sheets can be mechanically fixed much easier in the press system and do not lead to the described problems that can occur with the metal press sheets. But it is also possible to fix the plastic sheets in the press system directly with the press pads using a chemical mechanism. Due to the low sag of the sheets and the favorable friction factor, the press pads, especially their metal threads, are protected against abrasion and thus extends the life of the upholstery. Various production processes are available for structuring the surfaces of plastic sheets. Since they are not treated with etching media such as FeCl 3 , the methods are environmentally friendly and not dangerous to health. One type of structuring is the fused deposition modeling FDM method, also known as fused filament fabrication FFF. In the melt-layer process, a grid of dots is first applied to a surface, similar to a normal printer, the dots being liquefied by heating a wire-shaped plastic, applied by extrusion using a nozzle, and then hardened by cooling to the desired one Position in a grid of the working plane. The structure of the structure is usually done by repeating one working level line by line and then shifting the working level upwards in a stack so that a structure is created in layers. Depending on the desired structure depth, the layer thicknesses are between 25 and 1250 µm. The data transfer is done using CAD technology.

Das Pressblech ist aus Polyetheretherketon PEEK mit mindestens 10 bis 50% mit einer Karbonfaser oder mit mindestens 10 bis 50% eines Graphitpulvers oder mit mindestens 10 bis 50% eines wärmeleitfähigen Materials angereichert.The press plate is made of polyether ether ketone PEEK with at least 10 to 50% with a carbon fiber or with at least 10 to 50% of a graphite powder or with at least 10 to 50% of a thermally conductive material.

In einem Ausführungsbeispiel nicht Teil der Erfindung, kann das Pressblech aus einem Polyimid PI, einem Polyamidimid PAI, einem Polyetherketon PEK, einem Polyetherketonetherketonketon PEKEKK, einem Polyphenylensulfid PPS, einem Polyaryletherketon PAEK, einem Polybenzimidazol PBI oder einem Liquid Cristal Polymer LCP bestehen.In one embodiment, not part of the invention, the press plate can consist of a polyimide PI, a polyamideimide PAI, a polyether ketone PEK, a polyether ketone ether ketone ketone PEKEKK, a polyphenylene sulfide PPS, a polyaryl ether ketone PAEK, a polybenzimidazole PBI or a liquid cristal polymer LCP.

Eine weitere Technologie der Strukturherstellung bietet die Lasertechnologie. Anders als bei der metallischen Pressblechherstellung kann bei dem PEEK-Blech ein CO2-Laser eingesetzt werden, der wesentlich höhere Ablationszeiten hat als bei einem metallischen Abtrag. Bei der metallischen Blechherstellung wird laut der EP 2 289 708 B1 die Strukturierung mittels eines Lasers vorgeschlagen, wobei der Laser ein gepulster Faserlaser ist. In der Praxis hat sich aber gezeigt, dass die Abtraggeschwindigkeit bei dem gepulsten Faserlaser sehr klein ist. Wie jeder Laser basiert auch der CO2-Laser darauf, dass ein sogenanntes laseraktives Medium, in diesem Fall Kohlendioxid CO2, durch äußere Energiezufuhr gepumpt wird. Im Medium selber laufen dann atomare Prozesse ab, welche unter Ausnutzung eines komplexen Geräteaufbaus letztendlich eine Kettenreaktion und damit die Emission von Laserlicht bewirken. Den CO2-Laser bezeichnet man auch als Gaslaser. Beim Gaslaser lässt sich wesentlich leichter, als beispielsweise beim Festlaser, ein größeres Volumen des laseraktiven Materials realisieren, indem man einfach das Behältnis dafür groß genug dimensioniert und entsprechend viel Gas einströmen lässt. Das Volumen hat direkten Einfluss auf die erreichbare Intensität des Lasers, dadurch können auch hohe Leistungen erreicht werden. Der CO2-Laser besitzt eine lange Wellenlänge, daher wird er von Kunststoffen gut absorbiert während Metalloberflächen stärken reflektieren und daher der Abtrag geringer ist. Eine Leistung von 200 bis 300 Watt ist schon für Kunststoffe ausreichend um gute Abtragsraten zu erzielen. Mittels Erstellung digitalisierten Daten einer 3-D Topographie einer zuvor abgenommenen Struktur, wird die Steuerung des Lasers in einer x- und einer γ-Koordinate vorgenommen die Tiefe bestimmt die z-Koordinate der 3-D Topographie senkrecht zur Oberflächenstruktur.Another technology of structure production is offered by laser technology. In contrast to the production of metallic pressed sheet metal, a CO 2 laser can be used with the PEEK sheet, which has significantly longer ablation times than with metal removal. When it comes to metal sheet production, according to EP 2 289 708 B1 structuring by means of a laser is proposed, the laser being a pulsed fiber laser. In practice, however, it has been shown that the removal rate is very low with the pulsed fiber laser. Like every laser, the CO 2 laser is based on the fact that a so-called laser-active medium, in this case carbon dioxide CO 2 , is pumped by external energy supply. Atomic processes then take place in the medium itself, which take advantage of a complex device structure ultimately cause a chain reaction and thus the emission of laser light. The CO 2 laser is also known as a gas laser. With the gas laser, it is much easier to realize a larger volume of the laser-active material than, for example, with the fixed laser, simply by dimensioning the container large enough and allowing a corresponding amount of gas to flow in. The volume has a direct influence on the achievable intensity of the laser, which means that high powers can also be achieved. The CO 2 laser has a long wavelength, which is why it is well absorbed by plastics, while metal surfaces reflect stronger and therefore the removal is less. A power of 200 to 300 watts is sufficient for plastics to achieve good removal rates. By creating digitized data of a 3-D topography of a previously removed structure, the laser is controlled in an x- and a γ-coordinate, the depth determines the z-coordinate of the 3-D topography perpendicular to the surface structure.

Eine weitere Strukturherstellungsvariante ist die Matrizenpressung. Anders als bei Metallen können bei Kunststoffen Strukturen durch Temperatur- und Druckeinwirkung hergestellt werden. Zunächst wird in einem Stahlblech eine negative Struktur die als Urmuster dient hergestellt. Dieses Urmuster dient als Strukturgeber für alle weiteren Kunststoffpressbleche. Unter Druck und Temperatur die unter dem Schmelzpunkt des Kunststoffes liegt, aber noch über den Erweichungspunkt, wird die Negativstruktur in das Kunststoffblech eingeprägt und erhält somit eine Positivstruktur. Unter Druck kühlt man das Pressgut soweit bis kurz unter dem Erweichungspunkt des eingesetzten Kunststoffes ab und entnimmt dann das Pressgut.Another structure production variant is die pressing. In contrast to metals, structures can be produced by the action of temperature and pressure. First, a negative structure is used in a steel sheet that serves as a master sample. This master sample serves as a structure generator for all other plastic press plates. Under pressure and temperature that is below the melting point of the plastic, but still above the softening point, the negative structure is embossed into the plastic sheet and thus receives a positive structure. The press material is cooled under pressure until it is just below the softening point of the plastic used and then the press material is removed.

Es können nach dieser Methode reproduzierbare Strukturen hergestellt werden. Entgegen der Strukturherstellung bei metallischen Pressblechen im chemischen Ätzverfahren sind diese Strukturen alle identisch und zeigen keine Abweichungen. Auf diese Art und Weise wird eine Strukturherstellung möglich, die prozesssicher ist und keine Gesundheitsgefährdung darstellt. Nach der Strukturierung können die Blechoberflächen ebenfalls wie bei den metallischen Pressblechen weiterbearbeitet werden. Die Glanzgradeinstellung erfolgt mittels Strahlmedien bei einem bestimmten Strahldruck, je nach gewünschtem Glanzgrad. Zum Schutz der Oberflächen können die Kunststoffbleche ebenfalls verchromt werden, es empfiehlt sich aber vorher eine Cu-Schicht aufzutragen. Diese kann zum Beispiel durch eine reduktive Verkupferung für Kunststoffe erfolgen oder man wendet die stromlose Verkupferung von Kunststoffen an, mit den Produkten Baymetec und Baycoflex. Nach der Verkupferung kann die übliche Verchromung in galvanischen Bädern erfolgen. Es hat sich in den Versuchen gezeigt, dass nicht jeder Kunststoff für den Einsatz von Pressblechen in hydraulischen Heizpressen zur Kunststoffbeschichtung geeignet ist. Der Erweichungspunkt der Kunststoffe muss weit über die Verarbeitungstemperatur die in den Heizpressen vorherrschen liegen. Diese beträgt in der Regel zwischen 190 und 220°C. Der Kunststoff Polyetheretherketon PEEK mit einer Anreicherung von ca. 30% Karbonfaser oder Graphit hat sich überraschenderweise gut für die Herstellung von Pressblechen geeignet. Obwohl Kunststoffe gegenüber Metallen über eine schlechtere Wärmeleitfähigkeit verfügen, konnten diese Unterschiede durch eine Anreicherung einer Karbonfaser oder durch Graphitpulver weitestgehend kompensiert werden. Weiterhin zeigen die Kunststoffbleche bedingt durch ihre Leichtigkeit eine bessere und engere Fixierung an den Heizplatten, sodass der Wärmeverlust der bei den metallischen Pressblechen, bedingt durch den großen Durchhang, auftritt, hier nicht stattfindet. Diese Vorteile kompensieren ebenfalls die unterschiedlichen Wärmeleitzahlen.Reproducible structures can be produced using this method. Contrary to the structure production with metallic press plates in the chemical etching process, these structures are all identical and show no deviations. In this way, it is possible to manufacture a structure that is reliable and does not pose a health risk. After structuring, the sheet metal surfaces can also be further processed as with the metallic press sheets. The level of gloss is adjusted using blasting media at a specific jet pressure, depending on the desired level of gloss. The plastic sheets can also be chrome-plated to protect the surfaces, but it is advisable to apply a Cu layer beforehand. This can be done, for example, by reductive copper plating for plastics, or the electroless copper plating of plastics is also used the products Baymetec and Baycoflex. After the copper plating, the usual chrome plating can be carried out in galvanic baths. It has been shown in the tests that not every plastic is suitable for the use of press plates in hydraulic heating presses for plastic coating. The softening point of the plastics must be far above the processing temperature that prevails in the heating presses. This is usually between 190 and 220 ° C. The plastic polyetheretherketone PEEK with an enrichment of approx. 30% carbon fiber or graphite has surprisingly been well suited for the production of press plates. Although plastics have poorer thermal conductivity than metals, these differences could be largely compensated for by an enrichment of carbon fiber or graphite powder. Furthermore, due to their lightness, the plastic sheets show a better and closer fixation to the heating plates, so that the heat loss that occurs with the metallic press sheets due to the large sag does not take place here. These advantages also compensate for the different thermal coefficients.

Die verschiedenen Glanzgrade können auch durch verschiedene Beschichtungen der Oberfläche des Pressbleches aus einem hochtemperaturbeständigen Kunststoff der Provenienz Polyetheretherketon erreicht werden, ähnlich wie in der EP 2 060 658 B1 beschrieben.The different degrees of gloss can also be achieved by different coatings of the surface of the press plate made of a high-temperature-resistant plastic of provenance polyether ether ketone, similar to that in EP 2 060 658 B1 described.

Ein Ausführungsbeispiel der Erfindung ist in der beigefügten schematischen Figur gezeigt, die ein als Pressblech 1 ausgebildetes Presswerkzeug zeigt.An embodiment of the invention is shown in the attached schematic figure, which shows a press tool designed as a press plate 1.

Das Pressblech 1 besteht aus einem hochtemperaturbeständigen Polyetheretherketon Kunststoff und umfasst eine Oberfläche 2, die strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet ist.The press plate 1 consists of a high-temperature-resistant polyether ether ketone plastic and comprises a surface 2 which is structured or smooth with different degrees of gloss.

Im Falle des vorliegenden Ausführungsbeispiels ist das Pressblech 1 mit mindestens 10 bis 50% einer Karbonfaser oder mit mindestens 10 bis 50% eines Graphitpulvers oder mit mindestens 10 bis 50% eines wärmeleitfähigen Materials angereichert.In the case of the present exemplary embodiment, the press plate 1 is enriched with at least 10 to 50% of a carbon fiber or with at least 10 to 50% of a graphite powder or with at least 10 to 50% of a thermally conductive material.

Das Pressblech 1 kann beispielsweise aus einem Polyimid, einem Polyamidimid, einem Polyetherketon, einem Polyetherketonetherketonketon, einem Polyphenylensulfid, einem Polyaryletherketon, einem Polybenzimidazol, oder einem Liquid Cristal Polymer LCP bestehen.The press plate 1 can consist, for example, of a polyimide, a polyamideimide, a polyether ketone, a polyether ketone ether ketone ketone, a polyphenylene sulfide, a polyaryl ether ketone, a polybenzimidazole, or a Liquid Cristal Polymer LCP.

Die Strukturierung der Oberfläche 2 des Pressblechs 1 wurde im Falle des vorliegenden Ausführungsbeispiels mittels eines CO2-Lasers 3 hergestellt. Insbesondere wurden digitalisierte Daten einer 3-D Topographie einer zuvor abgenommenen, der Strukturierung der Oberfläche 2 zugeordneten Struktur für eine Steuerung von X-, Y- und Z-Koordinaten des CO2-Lasers 3 verwendet werden.The structuring of the surface 2 of the press plate 1 was produced in the case of the present exemplary embodiment by means of a CO 2 laser 3. In particular, digitized data of a 3-D topography of a previously removed structure assigned to the structuring of the surface 2 were used for controlling the X, Y and Z coordinates of the CO 2 laser 3.

Die Strukturierung der Oberfläche 2 des Pressblechs 3 kann auch mittels einer Matrizenpressung durchgeführt oder nach der Fused Depostion Modeling Methode hergestellt worden sein.The structuring of the surface 2 of the press plate 3 can also be carried out by means of a die pressing or produced using the fused deposition modeling method.

Claims (4)

  1. A pressing tool for coating wood panels in hydraulic heating presses, which is designed as a pressing plate (1) made from a high-temperature resistant plastic material of polyether ether ketone PEEK provenience and the surface (2) of which is structured or smooth with different degrees of gloss, characterized in that the pressing plate (1) made from polyether ether ketone PEEK is reinforced with at least 10 to 50% of a carbon fiber or with at least 10 to 50% of a graphite powder or with at least 10 to 50% of a thermally conductive material.
  2. The pressing tool according to claim 1, wherein the structuring of the surface (2) of the pressing plate (1) is applied by means of a die pressing operation.
  3. The pressing tool according to claim 1, wherein the structuring of the surface (2) of the pressing plate (1) is produced according to the fused deposition modeling FDM method.
  4. The pressing tool according to claim 1, wherein the structuring of the surface (2) of the pressing plate (1) is produced by means of a CO2 laser (3) and digitalized data of a 3D topography of a previously recorded structure assigned to the structuring of the surface (2) is used for controlling X-, Y- and Z-coordinates of the CO2 laser (3).
EP16797793.3A 2015-11-10 2016-11-08 Pressing tool designed as a press platen Active EP3374172B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16797793T PL3374172T3 (en) 2015-11-10 2016-11-08 Pressing tool designed as a press platen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202015007762.5U DE202015007762U1 (en) 2015-11-10 2015-11-10 Press tool formed as a press plate, which consists of a non-metallic material
PCT/EP2016/076984 WO2017081008A1 (en) 2015-11-10 2016-11-08 Pressing tool designed as a press platen

Publications (2)

Publication Number Publication Date
EP3374172A1 EP3374172A1 (en) 2018-09-19
EP3374172B1 true EP3374172B1 (en) 2020-04-01

Family

ID=55274276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16797793.3A Active EP3374172B1 (en) 2015-11-10 2016-11-08 Pressing tool designed as a press platen

Country Status (14)

Country Link
US (1) US20190077043A1 (en)
EP (1) EP3374172B1 (en)
JP (1) JP2019507684A (en)
CN (1) CN108349188B (en)
AU (1) AU2016353972B2 (en)
BR (1) BR112018008253B1 (en)
CA (1) CA3001639A1 (en)
CL (1) CL2018001060A1 (en)
DE (1) DE202015007762U1 (en)
DK (1) DK3374172T3 (en)
ES (1) ES2801075T3 (en)
PL (1) PL3374172T3 (en)
RU (1) RU2726133C2 (en)
WO (1) WO2017081008A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016000367U1 (en) * 2016-01-20 2016-02-05 Rolf Espe Press pad for single and multi-day presses whose silicone elastomer padding layer is applied in a 3D printing process.
DE102019127659A1 (en) * 2019-10-15 2021-04-15 Hueck Rheinische Gmbh Press tool and method of making a press tool
US12036784B2 (en) * 2020-07-09 2024-07-16 Välinge Innovation AB Glossy printing
RU2769396C1 (en) * 2020-11-19 2022-03-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Method of producing finishing agent, finished polyester-ether-ketone composite and method for production thereof
CN113978072B (en) * 2021-10-22 2023-06-30 山西省安瑞风机电气股份有限公司 Shape memory elastic composite material for fan impeller and manufacturing equipment thereof
DE102021131838A1 (en) 2021-12-02 2023-06-07 Hueck Rheinische Gmbh Method and printing device for producing a pressing tool

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169550A (en) * 1989-11-28 1991-07-23 Dainippon Printing Co Ltd Manufacture of wiping decorative material
ATE182507T1 (en) * 1993-02-18 1999-08-15 Eidai Co Ltd METHOD FOR STABILIZING A LIGNOCELLULOSE MATERIAL AND DEVICE THEREFOR
JP3107490B2 (en) * 1993-11-25 2000-11-06 永大産業株式会社 Method of consolidating wood
JPH11158388A (en) * 1997-11-26 1999-06-15 Asahi Chem Ind Co Ltd Plastic film suitable for laser printing
US6187234B1 (en) * 1998-06-23 2001-02-13 Masonite Corporation Method for steam pressing composite board having at least one finished surface
US20040072518A1 (en) * 1999-04-02 2004-04-15 Applied Materials, Inc. Platen with patterned surface for chemical mechanical polishing
JP2001018242A (en) * 1999-07-05 2001-01-23 Ichikawa Woolen Textile Co Ltd Heat-resistant cushioning material for molding press
WO2001081055A1 (en) * 2000-04-20 2001-11-01 Masonite Corporation Reverse molded panel
JP4597685B2 (en) * 2005-01-14 2010-12-15 ヤマウチ株式会社 Cushion material for hot press, method for producing the same, and method for producing laminated board
US7451696B2 (en) * 2005-09-28 2008-11-18 Weyerhaeuser Company Press unit for a manufactured wood product press
RU2322341C2 (en) * 2006-05-10 2008-04-20 Владимир Борисович Борноволоков Method of manufacturing plates
US8580174B2 (en) * 2006-12-29 2013-11-12 Sabic Innovative Plastics Ip B.V. Method for texturing polymeric films and articles comprising the same
WO2008152737A1 (en) * 2007-06-15 2008-12-18 Kitagawa Seiki Kabushiki Kaisha Substrate forming press apparatus and method of substrate forming pressing
CN201235623Y (en) * 2008-08-01 2009-05-13 佛山市科达石材机械有限公司 Pressboard equipment
US8299159B2 (en) * 2009-08-17 2012-10-30 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
RS52165B (en) 2009-08-26 2012-08-31 Indaffil Holding Ag Method for producing a surface structure of a metallic pressed sheet, continuous ribbon or embossing roller
US9278878B2 (en) * 2011-02-23 2016-03-08 Corning Incorporated Methods and apparatus for scoring thin glass
DE102011007837A1 (en) * 2011-04-21 2012-10-25 Evonik Degussa Gmbh Adhesive-free composite of a polyarylene ether ketone and a metal foil
CN102602080B (en) * 2012-03-13 2015-04-08 大连路阳科技开发有限公司 Steel-base polyether-ether-ketone composite plate and manufacturing method thereof
CN104723577A (en) * 2015-03-15 2015-06-24 吉林大学 Preparation method for carbon fibre fabric-reinforced polyetheretherketone polymer composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112018008253A2 (en) 2018-10-23
AU2016353972B2 (en) 2021-08-19
US20190077043A1 (en) 2019-03-14
RU2018118006A3 (en) 2020-02-17
DK3374172T3 (en) 2020-07-13
ES2801075T3 (en) 2021-01-08
CN108349188A (en) 2018-07-31
JP2019507684A (en) 2019-03-22
PL3374172T3 (en) 2020-10-19
WO2017081008A1 (en) 2017-05-18
DE202015007762U1 (en) 2016-01-18
RU2018118006A (en) 2019-12-16
CL2018001060A1 (en) 2018-06-15
CA3001639A1 (en) 2017-05-18
RU2726133C2 (en) 2020-07-09
CN108349188B (en) 2020-11-03
EP3374172A1 (en) 2018-09-19
BR112018008253B1 (en) 2021-11-30
AU2016353972A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
EP3374172B1 (en) Pressing tool designed as a press platen
EP3140129B2 (en) Method for producing a decorated wall or floor panel
EP2274485B1 (en) Paper layer for producing a planar printed or printable component
DE2722262A1 (en) PROCESS FOR THE CONTINUOUS PRODUCTION OF LAMINATES
EP3147135B1 (en) Method for producing a decorated wall or floor panel
EP2242646A1 (en) Method for producing a laminate
EP3356129B1 (en) Single- or multi-level hot press, method for producing a press pad
EP2829415A1 (en) Method for producing a decorated wall and floor panel
DE202012012798U1 (en) Roller coating, roller and method of its production
EP3405334B1 (en) Press pad for a hydraulic heat press, and method for producing it
DE10156956A1 (en) Building components, especially floor tiles, are produced by forming a laminate from a carrier and a decorative paper, and applying a duroplastic
EP3126144A1 (en) Laminate and method for producing same
EP3568298A1 (en) Process for producing a laminate for a floor covering
DE102013112275A1 (en) Method and device for producing a decorative laminate
EP2995467A1 (en) Method for producing a laminate and structure-providing film
EP2921293B1 (en) Hot press for wood material boards
DE10316882B4 (en) Method for producing a cladding panel
DE202020101130U1 (en) Double belt press
DE3818943C2 (en) Process for the production of thermosetting, chemically resistant apparatus, containers, pipes and the like
EP3126143B1 (en) Laminate and method for the production thereof
WO2021074135A1 (en) Press tool
EP3536517A1 (en) Support material on a mineral basis for decorated wall or floor panels
DE102010051678A1 (en) Semi-finished product made of resin-impregnated fiber composite material, is extended transversely or longitudinally towards main extension direction of continuous support surface and intermediate regions with different thickness
DE102015102347A1 (en) Process for producing a structured surface in or on HPL (high-pressure laminates) and embossing plate for producing HPL with a structured surface
DE202008006512U1 (en) Base Repair

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191022

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1250842

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009405

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABP PATENT NETWORK AG, CH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200707

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2801075

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009405

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230928

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230928

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231114

Year of fee payment: 8

Ref country code: LU

Payment date: 20231107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231205

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231025

Year of fee payment: 8

Ref country code: MT

Payment date: 20231025

Year of fee payment: 8

Ref country code: IT

Payment date: 20231115

Year of fee payment: 8

Ref country code: FR

Payment date: 20231009

Year of fee payment: 8

Ref country code: FI

Payment date: 20231108

Year of fee payment: 8

Ref country code: DK

Payment date: 20231003

Year of fee payment: 8

Ref country code: DE

Payment date: 20231017

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231003

Year of fee payment: 8

Ref country code: CH

Payment date: 20231201

Year of fee payment: 8

Ref country code: AT

Payment date: 20231004

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231023

Year of fee payment: 8

Ref country code: BE

Payment date: 20231009

Year of fee payment: 8