EP3371430B1 - Kühlmittelpumpe für eine verbrennungskraftmaschine - Google Patents

Kühlmittelpumpe für eine verbrennungskraftmaschine Download PDF

Info

Publication number
EP3371430B1
EP3371430B1 EP16785430.6A EP16785430A EP3371430B1 EP 3371430 B1 EP3371430 B1 EP 3371430B1 EP 16785430 A EP16785430 A EP 16785430A EP 3371430 B1 EP3371430 B1 EP 3371430B1
Authority
EP
European Patent Office
Prior art keywords
coolant pump
internal combustion
combustion engine
coolant
control slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16785430.6A
Other languages
English (en)
French (fr)
Other versions
EP3371430A1 (de
Inventor
Stephan Zielberg
Stefan Rothgang
Sebastian Cramer
Michael-Thomas Benra
Andreas Burger
Hendrik Ferner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP3371430A1 publication Critical patent/EP3371430A1/de
Application granted granted Critical
Publication of EP3371430B1 publication Critical patent/EP3371430B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • F04D15/0038Varying behaviour or the very pump by varying the effective cross-sectional area of flow through the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/086Sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/64Hydraulic actuators

Definitions

  • the invention relates to a coolant pump for an internal combustion engine with a drive shaft, a coolant pump impeller which is at least rotationally fixed on the drive shaft and via which coolant can be conveyed, an adjustable control slide via which a flow cross-section of an annular gap between an outlet of the coolant pump impeller and the surrounding conveying channel can be regulated is.
  • Such coolant pumps are used in internal combustion engines to regulate the amount of coolant delivered in order to prevent the internal combustion engine from overheating. These pumps are mostly driven by a belt or chain drive so that the coolant pump wheel is driven at the speed of the crankshaft or a fixed ratio to the speed of the crankshaft.
  • the amount of coolant delivered must be adapted to the coolant requirements of the internal combustion engine or the motor vehicle.
  • the engine's cold-running phase should be shortened. This takes place, among other things, in that the coolant flow is throttled or completely switched off during this phase.
  • a controllable coolant pump in which the control slide is hydraulically displaceable over the impeller by means of a working piston, while resetting takes place by means of a spring force.
  • the working piston is sealed in a sleeve by a profile seal.
  • EP 2 574 793 A2 a pump with a sliding impeller which can be pushed into or out of a guide plate. Seals are formed on the impeller opposite the guide plate or the housing.
  • the object is therefore to create a coolant pump for an internal combustion engine in which a leakage flow from a front side of the control slide valve to a rear side or vice versa is minimized as far as possible.
  • the control slide should be adjusted to all positions as precisely and with as little friction as possible can be guaranteed, so that only small actuating forces are required.
  • control slide has an inner hollow cylindrical peripheral wall, on the radial inside of which a radial groove is formed, in which a sealing ring is arranged and an outer hollow cylindrical peripheral wall, on the radial outside of which a radial groove is formed in which a sealing ring is arranged, the Both circumferential walls are connected to one another via a base and the base separates a first pressure chamber from a second pressure chamber, so that the control slide valve can be moved depending on a pressure difference between the two pressure chambers, a reliable seal between the front side of the slide valve and the rear side of the slide valve that minimizes leakage is created.
  • sealing rings can serve as sliding elements, so that a reliable two-sided guidance of the slide is achieved, by which tilting, which would disable the function of the control slide, is prevented and the frictional forces occurring during the adjustment are reduced.
  • large force application surfaces of the control slide can be used, so that even lower pressure differences are sufficient for adjustment.
  • return springs are not required.
  • the sealing rings are preferably PTFE (polytetrafluoroethylene) rings. These have a low coefficient of friction and also have a high level of wear resistance, including against corrosive liquids, such as coolants containing glycol.
  • PTFE polytetrafluoroethylene
  • the sealing rings have a slot. This facilitates the assembly of the sealing rings, which can initially be easily bent open in order to assemble them in the corresponding radial groove.
  • the open piston ring enables the one-piece design of the control slide, so that the manufacture of the control slide is simplified.
  • the slot runs obliquely to the central axis of the sealing ring. Due to the inclined course of the slot, it is automatically closed when there is a pressure difference or movement, as the two inclined surfaces are pressed against each other. Correspondingly, a high level of tightness is achieved despite the existing slot and the resulting simplified assembly.
  • the sealing ring arranged on the inside of the inner hollow-cylindrical peripheral wall slides on a machined outer surface of a cylindrical section of a first housing part of the coolant pump.
  • Such an inner guidance of the control slide produces a high degree of coaxiality, so that it can be manufactured with tight tolerances, which in turn leads to low leakages.
  • the existing friction is minimized because the control slide is moved on a surface that can be easily machined from the outside, which can be machined, for example, to a surface roughness with an average roughness of less than 0.3 ⁇ m.
  • sealing ring arranged on the outside of the outer hollow cylindrical peripheral wall slide on a machined inner surface of an axially extending annular projection of a second housing part of the coolant pump.
  • These coolant pumps are often installed in an unmachined housing section of the crankcase Internal combustion engine used, which can lead to leaks. Due to the arrangement of the sealing ring within the housing to be inserted, an effective seal can nevertheless be achieved in all positions of the control slide, including on its outer circumference.
  • the outer hollow cylindrical circumferential wall has a shoulder from which the outer hollow cylindrical circumferential wall extends with an enlarged outer circumference in the direction of the coolant pump impeller, the outer diameter of this section with an enlarged diameter being essentially the outer diameter of the axially extending annular projection of the corresponds to the second housing part.
  • a pump can be inserted into a cylindrical recess in the crankcase. On the one hand, the tightness of the slide is ensured and, on the other hand, excessively large gaps on the slide or a necessary downsizing of the coolant pump impeller is avoided.
  • the shoulder rests axially against one end of the annular projection of the second housing part in the fully retracted position of the control slide.
  • the two pressure chambers are advantageously sealed off from the other pressure chamber by the two sealing rings.
  • the leakages between the two pressure chambers are significantly reduced in comparison to known designs for precise and quick adjustment with minimal effort.
  • a coolant pump for an internal combustion engine is thus created in which the pressure chambers of the control slide are sealed on all sides in such a way that only a minimized leakage flow occurs. At the same time, the control slide is guided precisely so that all gaps can be minimized.
  • the sealing rings used have an increased service life.
  • the coolant pump according to the invention consists of an outer housing 10 in which a spiral-shaped delivery channel 12 is formed, in which a coolant is sucked in via an axial pump inlet 14 also formed in the outer housing 10, which coolant is drawn in via the delivery channel 12 to a tangential pump outlet 16 and formed in the outer housing 10 is conveyed into a cooling circuit of the internal combustion engine.
  • This outer housing 10 can, for example, be designed in one piece with the crankcase or the cylinder head of an internal combustion engine.
  • a coolant pump impeller 20 is fastened radially inside the conveying channel 12 on a drive shaft 18, which is designed as a radial pump impeller, through the rotation of which the coolant is conveyed in the conveying channel 12.
  • a Control pump impeller 22 is formed, which is rotated accordingly with the coolant pump impeller 20.
  • This regulating pump impeller 22 has blades 23 which are arranged axially opposite one another in the form of a side channel 24, which is formed in a first inner housing part 26.
  • An inlet (not shown) and an outlet (also not shown) are formed in this first housing part 26, so that the control pump impeller 22 forms a control pump 28 with the flow channel 24, via which the pressure of the coolant is increased from the inlet of the control pump 28 to the outlet.
  • the coolant pump impeller 20 and the control pump impeller 22 are driven via a belt which engages in a belt wheel 30 which is attached to the axial end of the drive shaft 18 opposite to the coolant pump impeller 20.
  • the belt wheel 30 is mounted via a two-row ball bearing 32, the outer ring 34 of which is pressed onto the belt wheel 30 and the inner ring 36 of which is pressed onto a second stationary housing part 38.
  • the second housing part 38 has an inner axial through opening 40 through which the drive shaft 18 protrudes with a shaft seal 42 in between and into which an inner annular projection 44 of the first housing part 26 protrudes, via which the first housing part 26 is centered on the second housing part 38.
  • the first housing part 26 is fastened to the second housing part 38 by means of screws 46 which axially penetrate the first housing part 26.
  • the second housing part 38 is fastened to the outer housing 10 with a seal 48 in between.
  • the outer housing 10 has, at its axial end opposite the pump inlet 14, a receiving opening 50 of constant diameter, into which an annular projection 52 of the second housing part 38 protrudes, a groove 56 on its delimiting flange-shaped wall 54, which rests axially against the outer housing 10 is formed, in which the seal 48 is arranged.
  • This projection 52 also serves as a rear stop for a control slide 58, the radially outer hollow cylindrical peripheral wall 60 of which can be pushed over the coolant pump impeller 20 in such a way that a free cross section of an annular gap 62 between an outlet 64 of the coolant pump impeller 20 and the feed channel 12 is regulated.
  • the coolant flow conveyed through the coolant circuit is thus regulated in accordance with the position of this control slide 58.
  • This circumferential wall 60 accordingly has a shoulder 66, from which the circumferential wall 60 extends axially with an enlarged diameter in the direction of the annular gap 62.
  • this section 68 corresponds approximately to the outer diameter of the annular projection 52, so that the annular projection 52 and this section 68 of the peripheral wall 60 are formed directly opposite an inner wall 70 of the receiving opening 50 of the outer housing 10, whereby gaps in this area are minimized .
  • a radial groove 74 is formed in which a sealing ring 76 made of PTFE is arranged.
  • the sealing ring 76 is arranged such that it rests against a machined inner surface 78 of the annular projection 52 of the second housing part 38 in every position of the control slide 58.
  • this inner surface 78 has a very low roughness, so that it serves as a low-friction sliding and sealing surface for the sealing ring 76.
  • control slide 58 has a base 80 with an inner opening 82, from the outer circumference of which the circumferential wall 60 extends axially and from the inner circumference of which a shorter inner hollow cylindrical circumferential wall 84 extends in the direction of the Coolant pump impeller 20 extends.
  • a radial groove 86 is formed on the radial inside of this peripheral wall 84, in which a sealing ring 88 made of PTFE is also arranged, which is insensitive to the coolant and has good sliding properties.
  • the peripheral wall 84 slides on a likewise machined outer surface 89 of an axially extending cylindrical section 90 of the first housing part 26, which is formed between the annular projection 44 and the section of the first housing part 26 that forms the flow channel 24.
  • the section 90 serves to support the control slide 58.
  • the two machined surfaces 78, 89 have a mean roughness value of approximately 0.3 ⁇ m to ensure low-friction guidance. As a result, when the control slide 58 moves, only small actuating forces are required and a high degree of tightness between the front and the rear of the control slide 58 is achieved.
  • a first pressure chamber 92 is formed on the side of the control slide 58 facing away from the coolant pump impeller 20, which is axially through the second housing part 38 and the bottom 80 of the control slide 58 and radially outwards through the annular projection 52 of the second housing part 38 and is limited radially inward by the first housing part 26 and on the side of the bottom 80 facing the coolant pump impeller 20, a second pressure chamber 94 is formed, which is axially through the bottom plate 80 and the first housing part 26, and radially outward through the peripheral wall 60 of the control slide 58 and is delimited radially inward by section 90 of first housing part 26.
  • the slots 96, 98 are designed in such a way that the sealing rings are opened on the circumference through this slot 96, 98 so that it can be bent open for assembly.
  • the slots 96, 98 do not run in the axial direction, but are formed inclined by at least 30 ° to the central axis. This has the result that when a pressure difference is present, the two opposite ends of the sealing rings 76, 88 are pressed against one another and thus have a tightness comparable to that of a closed sealing ring.
  • the pressure difference required for this is generated by the control pump 28 and fed to the respective pressure chamber 92, 94 by means of a valve 100, which is designed as a solenoid valve.
  • a valve 100 which is designed as a solenoid valve.
  • correspondingly arranged channels not visible in the figures are formed in the two housing parts 26, 38, via which pressurized coolant can be fed to the respective pressure chamber or can be drained from it, so that as a result of this pressure difference the control slide 58 for reduction the conveyed amount of coolant is pushed into the annular gap 62 or is pushed out of this to maximize the amount of coolant conveyed into the cooling circuit.
  • the coolant pump described has a very precise inner guide so that, despite the small gap, only small actuating forces are required, which is reinforced by the good sliding properties of the sliding surfaces opposite the sealing rings.
  • the pressure chambers are reliably sealed from one another by the long-lasting and easy-sliding sealing rings used, so that the control slide can be adjusted with low actuating forces and a pressure equalization between the pressure chambers takes place with a great delay in time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Kühlmittelpumpe für eine Verbrennungskraftmaschine mit einer Antriebswelle, einem Kühlmittelpumpenlaufrad, welches auf der Antriebswelle zumindest drehfest angeordnet ist und über welches Kühlmittel förderbar ist, einem verstellbaren Regelschieber, über den ein Durchströmungsquerschnitt eines Ringspalts zwischen einem Austritt des Kühlmittelpumpenlaufrades und dem umgebenden Förderkanal regelbar ist.
  • Derartige Kühlmittelpumpen dienen in Verbrennungsmotoren zur Mengenregelung des geförderten Kühlmittels, um ein Überhitzen des Verbrennungsmotors zu verhindern. Der Antrieb dieser Pumpen erfolgt zumeist über einen Riemen- oder Kettentrieb, so dass das Kühlmittelpumpenrad mit der Drehzahl der Kurbelwelle oder einem festen Verhältnis zur Drehzahl der Kurbelwelle angetrieben wird.
  • In modernen Verbrennungsmotoren ist die geförderte Kühlmittelmenge an den Kühlmittelbedarf des Verbrennungsmotors oder des Kraftfahrzeugs anzupassen. Zur Vermeidung erhöhter Schadstoffemissionen und Minderung des Kraftstoffverbrauchs sollte insbesondere die Kaltlaufphase des Motors verkürzt werden. Dies erfolgt unter anderem dadurch, dass der Kühlmittelstrom während dieser Phase gedrosselt oder vollkommen abgeschaltet wird.
  • Zur Regelung der Kühlmittelmenge sind verschiedene Pumpenausführungen bekannt geworden. Neben elektrisch angetriebenen Pumpen sind Pumpen bekannt, die über Kupplungen, insbesondere hydrodynamische Kupplungen an ihren Antrieb angekoppelt oder von diesem getrennt werden können. Eine besonders kostengünstige und einfach aufgebaute Möglichkeit zur Regelung des geförderten Kühlmittelstroms ist jedoch die Verwendung eines axial verschiebbaren Regelschiebers, der über das Kühlmittelpumpenlaufrad geschoben wird, so dass zur Reduzierung des Kühlmittelstroms der Durchströmungsquerschnitt des Ringspaltes, über den das Pumpenlaufrad das Kühlmittel in den umliegenden Förderkanal pumpt, verringert oder vollständig geschlossen wird.
  • Die Regelung dieser Schieber erfolgt ebenfalls in unterschiedlicher Weise. Neben einer rein elektrischen Verstellung hat sich vor allem eine hydraulische Verstellung der Schieber bewährt. Hierzu befindet sich an der zum Pumpenlaufrad abgewandten Seite des Schiebers ein Druckraum, der mit einer unter Druck stehenden hydraulischen Flüssigkeit gefüllt wird, um eine Druckdifferenz über den Schieber zu erzeugen, die zu einer Verschiebung des Regelschiebers führt. Eine Rückstellung des Schiebers erfolgt durch Öffnen des Kolbenraums zu einem Auslass, was zumeist über ein Magnetventil erfolgt sowie unter Einwirkung einer Feder, die die Kraft zur Rückstellung des Schiebers zur Verfügung stellt. Der hydraulische Druck kann beispielsweise durch eine auf der Antriebswelle angeordnete Sekundärpumpe erzeugt werden, so dass das Kühlmittel auch zur Verstellung des Regelschiebers genutzt wird.
  • Problematisch bei diesen Kühlmittelpumpen mit Regelschieber ist es, dass dieser in den von Kühlmittel durchströmten Raum geschoben wird, was zur Folge hat, dass Kühlmittel entlang der Spalte in den Raum hinter den Regelschieber strömen kann. Bei rein hydraulisch aktuierten Regelschiebern muss eine Dichtheit des Druckraums gewährleistet werden, um die zur Verstellung notwendigen Drücke aufzubauen. Auch bei Regelschiebern mit gegenüberliegenden und lediglich durch den Regelschieber voneinander getrennten Druckräumen müssen diese gegeneinander abgedichtet werden, um einen schleichenden Druckausgleich zu verhindern, das Förderorgan zu entlasten und ein Verstellen des Schiebers bei geringen Drehzahlen und daraus resultierend geringen Seitenkanaldrücken und Volumenströmen zu gewährleisten.
  • Aus der DE 10 2004 054 637 A1 ist es bekannt, am radialen Außenumfang des Regelschiebers in einer Nut einen Kolbenring anzuordnen, um zu verhindern, dass Kühlmittel zwischen dem Außengehäuse und dem Schieber in den Raum hinter dem Schieber eindringen kann. Allerdings tritt bei dieser Ausführung weiterhin Kühlmittel durch das radial Innere des Schiebers in Richtung des Elektromagneten, so dass davon auszugehen ist, dass der Kolbenring vor allem zur Führung im Außengehäuse dient,
  • Des Weiteren ist aus der DE 10 2007 042 866 A1 eine regelbare Kühlmittelpumpe bekannt, bei der der Regelschieber über einen Arbeitskolben hydraulisch über das Laufrad verschiebbar ist, während eine Rückstellung mittels einer Federkraft erfolgt. Der Arbeitskolben ist über einen Profildichtung in einer Hülse abgedichtet.
  • Zusätzlich offenbart die EP 2 574 793 A2 eine Pumpe mit einem verschiebbaren Laufrad, welches in ein Leitblech eingeschoben oder aus diesem herausgeschoben werden kann. Am Laufrad sind Dichtungen gegenüber dem Leitblech beziehungsweise gegenüber dem Gehäuse ausgebildet.
  • Es stellt sich daher die Aufgabe, eine Kühlmittelpumpe für eine Verbrennungskraftmaschine zu schaffen, bei der ein Leckagestrom von einer Vorderseite des Regelschiebers zu einer Rückseite oder umgekehrt weitestgehend minimiert wird. Zusätzlich soll eine möglichst exakte und reibungsarme Verstellung des Regelschiebers in alle Positionen gewährleistet werden, so dass lediglich geringe Stellkräfte benötigt werden.
  • Diese Aufgabe wird durch eine Kühlmittelpumpe mit den Merkmalen des Hauptanspruchs 1 gelöst.
  • Dadurch, dass der Regelschieber eine innere hohlzylindrische Umfangswand, an deren radialen Innenseite eine Radialnut ausgebildet ist, in der ein Dichtring angeordnet ist und eine äußere hohlzylindrische Umfangswand aufweist, an deren radialen Außenseite eine Radialnut ausgebildet ist, in der ein Dichtring angeordnet ist, wobei die beiden Umfangswände über einen Boden miteinander verbunden sind und der Boden einen ersten Druckraum von einem zweiten Druckraum trennt, so dass der Regelschieber in Abhängigkeit einer Druckdifferenz zwischen den beiden Druckräumen verschiebbar ist, wird eine zuverlässige und eine die Leckage minimierende Abdichtung der Schiebervorderseite zur Schieberrückseite geschaffen. Zusätzlich können die Dichtringe als Gleitelemente dienen, so dass eine zuverlässige beidseitige Führung des Schiebers erreicht wird, durch die ein Verkanten, durch das die Funktion des Regelschiebers außer Kraft gesetzt würde, verhindert wird und die bei der Verstellung auftretenden Reibungskräfte reduziert werden. In einer solchen Ausführung können große Kraftangriffsflächen des Regelschiebers genutzt werden, so dass bereits geringere Druckdifferenzen zur Verstellung genügen. Bei einer Ausführung mit zwei aktiv befüllbaren Druckräumen können Rückstellfedern entfallen.
  • Vorzugsweise sind die Dichtringe PTFE (Polytetrafluorethylen)-Ringe. Diese weisen einen niedrigen Reibungskoeffizienten auf und weisen zusätzliche eine hohe Verschleißbeständigkeit auch gegenüber korrosiven Flüssigkeiten, wie Glykol enthaltendes Kühlmittel auf.
  • In einer vorteilhaften Ausbildung der Erfindung weisen die Dichtringe einen Schlitz auf. Dieser erleichtert die Montage der Dichtringe, die zunächst leicht aufgebogen werden könne, um sie in der entsprechenden Radialnut zu montieren. Zudem ermöglicht der geöffnete Kolbenring die einteilige Gestaltung des Regelschiebers, so dass die Fertigung des Regelschiebers vereinfacht wird.
  • In einer hierzu weiterführenden bevorzugten Ausführungsform verläuft der Schlitz zur Mittelachse des Dichtrings schräg. Durch den schrägen Verlauf des Schlitzes wird dieser bei anliegender Druckdifferenz oder bei Bewegung automatisch geschlossen, da die beiden schrägen Flächen gegeneinander gedrückt werden. Entsprechend wird eine hohe Dichtigkeit trotz des vorhandenen Schlitzes und der daraus folgenden vereinfachten Montage erreicht.
  • Zusätzlich ist es vorteilhaft, wenn der an der Innenseite der inneren hohlzylindrischen Umfangswand angeordnete Dichtring auf einer bearbeiteten Außenfläche eines zylindrischen Abschnitts eines ersten Gehäuseteils der Kühlmittelpumpe gleitet. Durch eine derartige innere Führung des Regelschiebers wird eine hohe Koaxialität erzeugt, so dass mit engen Toleranzen gefertigt werden kann, was wiederum zu geringen Leckagen führt. Des Weiteren wird die vorhandene Reibung minimiert, da der Regelschieber auf einer einfach von außen zu bearbeitenden Fläche bewegt wird, die beispielswiese auf eine Oberflächenrauhigkeit mit einem Mittenrauwert von unter 0,3µm bearbeitet werden kann.
  • Des Weiteren ist es zusätzlich oder alternativ vorteilhaft, den an der Außenseite der äußeren hohlzylindrischen Umfangswand angeordneten Dichtring auf einer bearbeiteten Innenfläche eines sich axial erstreckenden ringförmigen Vorsprungs eines zweiten Gehäuseteils der Kühlmittelpumpe gleiten zu lassen. Diese Kühlmittelpumpen werden häufig in einen nicht bearbeiteten Gehäuseabschnitt des Kurbelgehäuses des Verbrennungsmotors eingesetzt, was zu Undichtigkeiten führen kann. Durch die Anordnung des Dichtrings innerhalb des einzusteckenden Gehäuses kann dennoch eine wirksame Abdichtung in allen Positionen des Regelschiebers auch an seinem Außenumfang erreicht werden.
  • Besonders vorteilhaft ist es, wenn die äußere hohlzylindrische Umfangswand einen Absatz aufweist, von dem aus sich die äußere hohlzylindrische Umfangswand mit vergrößertem Außenumfang in Richtung des Kühlmittelpumpenlaufrades erstreckt, wobei der Außendurchmesser dieses Abschnitts mit vergrößertem Durchmesser im Wesentlichen dem Außendurchmesser des sich axial erstreckenden ringförmigen Vorsprungs des zweiten Gehäuseteils entspricht. Eine derartige Pumpe kann in eine zylinderförmige Ausnehmung des Kurbelgehäuses eingesetzt werden. Dabei wird einerseits die Dichtigkeit des Schiebers sichergestellt und andererseits zu große auftretende Spalte am Schieber oder eine notwendige Verkleinerung des Kühlmittelpumpenlaufrades vermieden.
  • In einer weiterführenden Ausführungsform liegt der Absatz in der vollständig zurückgezogenen Position des Regelschiebers axial gegen ein Ende des ringförmigen Vorsprungs des zweiten Gehäuseteils an. Dadurch wird eine vergrößerte Anlagefläche des Schiebers in seinem Bodenbereich in seiner zurückgezogenen Position, die zu erhöhten Schließkräften führen könnte, zuverlässig vermieden.
  • Bei einer derartigen Ausführung werden vorteilhafterweise die beiden Druckräume durch die beiden Dichtringe gegenüber dem jeweils anderen Druckraum abgedichtet. Die Leckagen zwischen den beiden Druckräumen werden entsprechend zur genauen und schnellen Verstellung mit minimiertem Kraftaufwand im Vergleich zu bekannten Ausführungen deutlich reduziert.
  • Es wird somit eine Kühlmittelpumpe für eine Verbrennungskraftmaschine geschaffen, bei der die Druckräume des Regelschiebers allseitig so abgedichtet sind, dass lediglich ein minimierter Leckagestrom entsteht. Gleichzeitig wird eine exakte Führung des Regelschiebers erreicht, so dass alle Spalte minimiert werden können. Die verwendeten Dichtringe weisen dabei eine erhöhte Lebensdauer auf.
  • Ein Ausführungsbeispiel einer erfindungsgemäßen Kühlmittelpumpe für einen Verbrennungsmotor ist in den Figuren dargestellt und wird nachfolgend beschrieben.
    • Figur 1 zeigt eine Seitenansicht einer erfindungsgemäßen Kühlmittelpumpe in geschnittener Darstellung.
    • Figur 2 zeigt eine zu Figur 1 gedrehte Seitenansicht der erfindungsgemäßen Kühlmittelpumpe in geschnittener Darstellung.
  • Die erfindungsgemäße Kühlmittelpumpe besteht aus einem Außengehäuse 10, in dem ein spiralförmiger Förderkanal 12 ausgebildet ist, in dem über einen ebenfalls im Außengehäuse 10 ausgebildeten axialen Pumpeneinlass 14 ein Kühlmittel angesaugt wird, welches über den Förderkanal 12 zu einem im Außengehäuse 10 ausgebildeten tangentialen Pumpenauslass 16 und in einen Kühlkreislauf der Verbrennungskraftmaschine gefördert wird. Dieses Außengehäuse 10 kann beispielsweise einstückig mit dem Kurbelgehäuse oder dem Zylinderkopf einer Verbrennungskraftmaschine ausgebildet sein.
  • Hierzu ist radial innerhalb des Förderkanals 12 auf einer Antriebswelle 18 ein Kühlmittelpumpenlaufrad 20 befestigt, welches als Radialpumpenrad ausgebildet ist, durch dessen Drehung die Förderung des Kühlmittels im Förderkanal 12 erfolgt. An der zum Pumpeneinlass 14 entgegengesetzten axialen Seite des Kühlmittelpumpenlaufrades 20 ist ein Regelpumpenlaufrad 22 ausgebildet, welches entsprechend mit dem Kühlmittelpumpenlaufrad 20 gedreht wird. Dieses Regelpumpenlaufrad 22 weist Schaufeln 23 auf, die axial gegenüberliegend zu einem als Seitenkanal ausgebildeten Strömungskanal 24 angeordnet sind, der in einem ersten inneren Gehäuseteil 26 ausgebildet ist. In diesem ersten Gehäuseteil 26 sind ein nicht dargestellter Einlass und ein ebenfalls nicht dargestellter Auslass ausgebildet, so dass das Regelpumpenlaufrad 22 mit dem Strömungskanal 24 eine Regelpumpe 28 bildet, über welche der Druck des Kühlmittels vom Einlass der Regelpumpe 28 zum Auslass erhöht wird.
  • Der Antrieb des Kühlmittelpumpenlaufrades 20 und des Regelpumpenlaufrades 22 erfolgt über einen Riemen, der in ein Riemenrad 30 greift, welches am zum Kühlmittelpumpenlaufrad 20 entgegengesetzten axialen Ende der Antriebswelle 18 befestigt ist. Das Riemenrad 30 ist über ein zweireihiges Kugellager 32 gelagert, dessen Außenring 34 am Riemenrad 30 und dessen Innenring 36 auf einem zweiten feststehenden Gehäuseteil 38 aufgepresst ist. Das zweite Gehäuseteil 38 weist eine innere axiale Durchgangsöffnung 40 auf, durch die die Antriebwelle 18 unter Zwischenlage einer Wellendichtung 42 ragt und in die ein innerer ringförmiger Vorsprung 44 des ersten Gehäuseteils 26 ragt, über den das erste Gehäuseteil 26 zum zweiten Gehäuseteil 38 zentriert ist. Das erste Gehäuseteil 26 wird über Schrauben 46, welche das erste Gehäuseteil 26 axial durchdringen am zweiten Gehäuseteil 38 befestigt. Das zweite Gehäuseteil 38 ist unter Zwischenlage einer Dichtung 48 am Außengehäuse 10 befestigt. Hierzu weist das Außengehäuse 10 an seinem zum Pumpeneinlass 14 entgegengesetzten axialen Ende eine Aufnahmeöffnung 50 konstanten Durchmessers auf, in die ein ringförmiger Vorsprung 52 des zweiten Gehäuseteils 38 ragt, an dessen begrenzender flanschförmiger Wand 54, die axial gegen das Außengehäuse 10 anliegt, eine Nut 56 ausgebildet ist, in der die Dichtung 48 angeordnet ist.
  • Dieser Vorsprung 52 dient gleichzeitig als rückwärtiger Anschlag für einen Regelschieber 58, dessen radial äußere hohlzylindrische Umfangswand 60 derart über das Kühlmittelpumpenlaufrad 20 geschoben werden kann, dass ein freier Querschnitt eines Ringspalts 62 zwischen einem Austritt 64 des Kühlmittelpumpenlaufrades 20 und dem Förderkanal 12 geregelt wird. Entsprechend der Stellung dieses Regelschiebers 58 wird somit der durch den Kühlmittelkreislauf geförderte Kühlmittelstrom geregelt. Diese Umfangswand 60 weist entsprechend einen Absatz 66 auf, von dem aus sich die Umfangswand 60 mit einem vergrößerten Durchmesser weiter axial in Richtung des Ringspaltes 62 erstreckt. Der Außendurchmesser dieses Abschnitts 68 entspricht dabei etwa dem Außendurchmesser des ringförmigen Vorsprungs 52, so dass der ringförmige Vorsprung 52 und dieser Abschnitt 68 der Umfangswand 60 unmittelbar gegenüberliegend zu einer Innenwand 70 der Aufnahmeöffnung 50 des Außengehäuses 10 ausgebildet sind, wodurch Spalte in diesem Bereich minimiert werden.
  • Am sich vom Absatz 66 in entgegengesetzter Richtung zum Kühlmittelpumpenlaufrad 22 erstreckenden Abschnitt 72 der äußeren Umfangswand 60 ist an der radialen Außenseite eine Radialnut 74 ausgebildet, in der ein Dichtring 76 angeordnet ist, der aus PTFE hergestellt ist. Der Dichtring 76 ist derart angeordnet, dass er in jeder Position des Regelschiebers 58 an einer bearbeiteten Innenfläche 78 des ringförmigen Vorsprungs 52 des zweiten Gehäuseteils 38 anliegt. Durch die maschinelle Bearbeitung weist diese Innenfläche 78 eine sehr geringe Rauigkeit auf, so dass sie als reibungsarme Gleit- und Dichtfläche für den Dichtring 76 dient.
  • Der Regelschieber 58 weist neben der Umfangswand 60 einen Boden 80 mit einer inneren Öffnung 82 auf, von dessen Außenumfang aus sich die Umfangswand 60 axial erstreckt und von dessen inneren Umfang sich eine kürzere innere hohlzylindrische Umfangswand 84 in Richtung zum Kühlmittelpumpenlaufrad 20 erstreckt. An der radialen Innenseite dieser Umfangswand 84 ist eine Radialnut 86 ausgebildet, in der ebenfalls ein Dichtring 88 aus PTFE angeordnet ist, welches gegen das Kühlmittel unempfindlich ist und gute Gleiteigenschaften aufweist. Die Umfangswand 84 gleitet auf einer ebenfalls bearbeiteten Außenfläche 89 eines sich axial erstreckenden zylindrischen Abschnitts 90 des ersten Gehäuseteils 26, der zwischen dem ringförmigen Vorsprung 44 und dem den Strömungskanal 24 bildenden Abschnitt des ersten Gehäuseteils 26 ausgebildet ist. Der Abschnitt 90 dient zur Lagerung des Regelschiebers 58. Die beiden bearbeiteten Flächen 78, 89 weisen zur Sicherstellung einer reibungsarmen Führung einen Mittenrauwert von etwa 0,3 µm auf. Dies hat zur Folge, dass bei Bewegung des Regelschiebers 58 lediglich geringe Stellkräfte erforderlich sind und eine hohe Dichtigkeit zwischen der Vorderseite und der Rückseite des Regelschiebers 58 erreicht wird.
  • Dies ist wichtig, da an der vom Kühlmittelpumpenlaufrad 20 abgewandten Seite des Regelschiebers 58 ein erster Druckraum 92 ausgebildet ist, der axial durch das zweite Gehäuseteil 38 und den Boden 80 des Regelschiebers 58 und radial nach außen durch den ringförmigen Vorsprung 52 des zweiten Gehäuseteils 38 und nach radial innen durch das erste Gehäuseteil 26 begrenzt wird und an der zum Kühlmittelpumpenlaufrad 20 gewandten Seite des Bodens 80 ein zweiter Druckraum 94 ausgebildet ist, der axial durch die Bodenplatte 80 und das erste Gehäuseteil 26, nach radial außen durch die Umfangswand 60 des Regelschiebers 58 und nach radial innen durch den Abschnitt 90 des ersten Gehäuseteils 26 begrenzt wird. Je nach am Boden 80 des Regelschiebers 58 in den beiden Druckräumen 92, 94 anliegender Druckdifferenz wird die äußere Umfangswand 60 des Regelschiebers 58 entsprechend in den Ringspalt 62 hinein- oder aus dem Ringspalt 62 herausgeschoben, so dass zur Vermeidung eines Druckausgleichs zwischen den beiden Druckräumen 92, 94 eine hohe Dichtigkeit der Druckräume 92, 94 zueinander erforderlich ist, welche durch die PTFE-Dichtringe 76, 88 erreicht wird. Diese Dichtigkeit wird durch die anliegende Druckdifferenz noch verstärkt, da einerseits die Dichtringe 76, 88 gegen die jeweilige die Radialnut 74, 86 begrenzende Axialwand belastet werden und andererseits ein zur Montage der Dichtringe 76, 88 notwendiger Schlitz 96, 98 geschlossen wird. Die Schlitze 96, 98 sind so ausgebildet, dass die Dichtringe am Umfang durch diesen Schlitz 96, 98 geöffnet sind, so dass ein Aufbiegen zur Montage möglich ist. Die Schlitze 96, 98 verlaufen jedoch nicht in axialer Richtung, sondern sind zur Mittelachse um mindestens 30° geneigt ausgebildet. Dies führt dazu, dass bei anliegender Druckdifferenz die beiden gegenüberliegenden Enden der Dichtringe 76, 88 gegeneinander gepresst werden und somit eine mit einem geschlossenen Dichtring vergleichbare Dichtigkeit aufweisen.
  • Die hierzu notwendige Druckdifferenz wird durch die Regelpumpe 28 erzeugt und mittels eines Ventils 100, welches als Magnetventil ausgebildet ist, dem jeweiligen Druckraum 92, 94 zugeführt. Hierzu sind in den beiden Gehäuseteilen 26, 38 entsprechend angeordnete und in den Figuren nicht sichtbare Kanäle ausgebildet, über die unter Druck stehendes Kühlmittel dem jeweiligen Druckraum zugeführt werden kann beziehungsweise aus diesem abgelassen werden kann, so dass als Folge dieser Druckdifferenz der Regelschieber 58 zur Reduzierung der geförderten Kühlmittelmenge in den Ringspalt 62 geschoben oder zur Maximierung der in den Kühlkreislauf geförderten Kühlmittelmenge aus diesem herausgeschoben wird.
  • Die beschriebene Kühlmittelpumpe weist eine sehr exakte innere Führung auf, so dass trotz geringer Spalte lediglich kleine Stellkräfte erforderlich sind, was durch die guten Gleiteigenschaften der den Dichtringen gegenüberliegenden Gleitflächen noch verstärkt wird. Durch die verwendeten, lang haltbaren und gut gleitenden Dichtringe werden die Druckräume zuverlässig gegeneinander abgedichtet, so dass eine Verstellung des Regelschiebers mit geringen Stellkräften möglich ist und dabei ein Druckausgleich zwischen den Druckräumen zeitlich stark verzögert erfolgt.
  • Es sollte deutlich sein, dass der Schutzbereich des Hauptanspruchs nicht auf das beschriebene Ausführungsbeispiel begrenzt ist. Insbesondere sind andere Gehäuseteilungen oder eine andere Art der Aktuierung des Regelschiebers denkbar. Neben einer rein hydraulischen Verstellung sind auch elektrische Verstellungen oder eine Vorspannung mittels Druckfedern denkbar. Auch können gegebenenfalls andere Dichtringe mit guten Gleit- und Dichteigenschaften verwendet werden, die unempfindlich gegen Korrosion bei verwendeten Kältemitteln wie Glykol sind.

Claims (9)

  1. Kühlmittelpumpe für eine Verbrennungskraftmaschine mit
    einer Antriebswelle (18),
    einem Kühlmittelpumpenlaufrad (20), welches fest auf der Antriebswelle (18) zumindest drehfest angeordnet ist und über welches Kühlmittel förderbar ist,
    einem verstellbaren Regelschieber (58), über den ein Durchströmungsquerschnitt eines Ringspalts (62) zwischen einem Austritt (64) des Kühlmittelpumpenlaufrades (20) und dem umgebenden Förderkanal (12) regelbar ist, wobei der Regelschieber (58) eine äußere hohlzylindrische Umfangswand (60) aufweist, an deren radialen Außenseite eine Radialnut (74) ausgebildet ist, in der ein Dichtring (76) angeordnet ist, dadurch gekennzeichnet, dass
    der Regelschieber (58) eine innere hohlzylindrische Umfangswand (84), an deren radialen Innenseite eine Radialnut (86) ausgebildet ist, in der ein Dichtring (88) angeordnet ist wobei die beiden Umfangswände (60, 84) über einen Boden (80) miteinander verbunden sind und der Boden (80) einen ersten Druckraum (92) von einem zweiten Druckraum (94) trennt, so dass der Regelschieber (58) in Abhängigkeit einer Druckdifferenz zwischen den beiden Druckräumen (92, 94) verschiebbar ist.
  2. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Dichtringe (76, 88) aus PTFE (Polytetrafluorethylen) sind.
  3. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass
    die Dichtringe (76, 88) jeweils einen Schlitz (96, 98) aufweisen.
  4. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach Anspruch 3,
    dadurch gekennzeichnet, dass
    der Schlitz (96, 98) zur Mittelachse des jeweiligen Dichtrings (76, 88) geneigt verläuft.
  5. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach einem der vorhergehenden Ansprüchen,
    dadurch gekennzeichnet, dass
    der an der Innenseite der inneren hohlzylindrischen Umfangswand (84) angeordnete Dichtring (88) auf einer bearbeiteten Außenfläche (89) eines zylindrischen Abschnitts (90) eines ersten Gehäuseteils (26) der Kühlmittelpumpe gleitet.
  6. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der an der Außenseite der äußeren hohlzylindrischen Umfangswand (60) angeordnete Dichtring (76) auf einer bearbeiteten Innenfläche (78) eines sich axial erstreckenden ringförmigen Vorsprungs (52) eines zweiten Gehäuseteils (38) der Kühlmittelpumpe gleitet.
  7. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die äußere hohlzylindrische Umfangswand (60) einen Absatz (66) aufweist, von dem aus sich die äußere hohlzylindrische Umfangswand (60) mit vergrößertem Außenumfang in Richtung des Kühlmittelpumpenlaufrades (22) erstreckt, wobei der Außendurchmesser dieses Abschnitts (68) mit vergrößertem Durchmesser im Wesentlichen dem Außendurchmesser des sich axial erstreckenden ringförmigen Vorsprungs (52) des zweiten Gehäuseteils (38) entspricht.
  8. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach Anspruch 7,
    dadurch gekennzeichnet, dass
    der Absatz (66) in der vollständig zurückgezogenen Position des Regelschiebers (58) axial gegen ein Ende des ringförmigen Vorsprungs (52) des zweiten Gehäuseteils (26) anliegt.
  9. Kühlmittelpumpe für eine Verbrennungskraftmaschine nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die beiden Druckräume (92, 94) durch die beiden Dichtringe (76, 88) gegenüber dem jeweils anderen Druckraum (92, 94) abgedichtet sind.
EP16785430.6A 2015-11-06 2016-10-19 Kühlmittelpumpe für eine verbrennungskraftmaschine Active EP3371430B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015119093.1A DE102015119093A1 (de) 2015-11-06 2015-11-06 Kühlmittelpumpe für eine Verbrennungskraftmaschine
PCT/EP2016/075079 WO2017076647A1 (de) 2015-11-06 2016-10-19 Kühlmittelpumpe für eine verbrennungskraftmaschine

Publications (2)

Publication Number Publication Date
EP3371430A1 EP3371430A1 (de) 2018-09-12
EP3371430B1 true EP3371430B1 (de) 2021-02-24

Family

ID=57199979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16785430.6A Active EP3371430B1 (de) 2015-11-06 2016-10-19 Kühlmittelpumpe für eine verbrennungskraftmaschine

Country Status (3)

Country Link
EP (1) EP3371430B1 (de)
DE (1) DE102015119093A1 (de)
WO (1) WO2017076647A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042530A1 (de) 2017-08-29 2019-03-07 Pierburg Pump Technology Gmbh Kühlmittelpumpe für eine verbrennungskraftmaschine
DE102019123646B4 (de) * 2019-09-04 2023-08-03 Schaeffler Technologies AG & Co. KG Kühlmittelregler mit einem Wellendichtring
WO2022073589A1 (en) * 2020-10-06 2022-04-14 Pierburg Pump Technology Gmbh Variable mechanical automotive coolant pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054637B4 (de) 2004-11-12 2007-04-26 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Regelbare Kühlmittelpumpe
DE102007042866A1 (de) * 2007-09-08 2009-03-12 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Regelbare Kühlmittelpumpe
DE102011012827B3 (de) * 2011-03-02 2012-04-19 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Vorrichtung u. Verfahren zur definierten Längsverschiebung einer in einer Antriebswelle mitdrehenden Verstellvorrichtung
DE102011083805A1 (de) * 2011-09-30 2013-04-04 Schaeffler Technologies AG & Co. KG Regelbare Kühlmittelpumpe mit integriertem Druckraum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3371430A1 (de) 2018-09-12
WO2017076647A1 (de) 2017-05-11
DE102015119093A1 (de) 2017-05-11

Similar Documents

Publication Publication Date Title
EP2821619B1 (de) Pleuel für eine zweistufige variable Verdichtung
EP3371460B1 (de) Kühlmittelpumpe für den kfz-bereich
EP1774177B1 (de) Kolbenpumpe mit verbessertem wirkungsgrad
EP2383457B1 (de) Gasventil
EP3371463B1 (de) Regelanordnung für eine mechanisch regelbare kühlmittelpumpe einer verbrennungskraftmaschine
EP3371430B1 (de) Kühlmittelpumpe für eine verbrennungskraftmaschine
DE10144641B4 (de) Entspannungsventil
EP3371465B1 (de) Kühlmittelpumpe für eine verbrennungskraftmaschine
EP2962022B1 (de) Überströmventil
EP2612030B1 (de) Kolbenpumpe zur förderung von fluiden und zugehörige fahrzeugbremsanlage
DE102016114976A1 (de) Rückschlagventil für ein Pleuel für eine Brennkraftmaschine mit variabler Verdichtung sowie Pleuel mit einem Rückschlagventil
EP3371462B1 (de) Kühlmittelpumpe für eine verbrennungskraftmaschine
EP1001196B1 (de) Druckbegrenzungsventil, insbesondere für Fahrzeuge
EP3217050A2 (de) Dichtungsanordnung für ein drehschieberventil
DE102016102562B4 (de) Abgasklappenvorrichtung für eine Verbrennungskraftmaschine
EP2906829A1 (de) Spaltring mit selbstregulierendem drosselspalt
EP2233751A2 (de) Druckmittelzylinder mit optimierter Kolbenführung
DE102019120480A1 (de) Pleuel für eine Brennkraftmaschine mit variabler Verdichtung
DE102017214108A1 (de) Kraftstoff-Hochdruckpumpe
EP2917622A1 (de) Strömungsgehäuse für ein ölventil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1364706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012464

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012464

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211019

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211019

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211019

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1364706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 8

Ref country code: FR

Payment date: 20231023

Year of fee payment: 8

Ref country code: DE

Payment date: 20231018

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224