EP3370856A1 - Dispositif de mélange de poudres par fluide cryogénique et génération de vibrations - Google Patents

Dispositif de mélange de poudres par fluide cryogénique et génération de vibrations

Info

Publication number
EP3370856A1
EP3370856A1 EP16791566.9A EP16791566A EP3370856A1 EP 3370856 A1 EP3370856 A1 EP 3370856A1 EP 16791566 A EP16791566 A EP 16791566A EP 3370856 A1 EP3370856 A1 EP 3370856A1
Authority
EP
European Patent Office
Prior art keywords
powders
cryogenic fluid
mixing
mixing chamber
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16791566.9A
Other languages
German (de)
English (en)
Other versions
EP3370856B1 (fr
Inventor
Méryl BROTHIER
Stéphane VAUDEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3370856A1 publication Critical patent/EP3370856A1/fr
Application granted granted Critical
Publication of EP3370856B1 publication Critical patent/EP3370856B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • B01F23/66Mixing solids with solids by evaporating or liquefying at least one of the components; using a fluid which is evaporated after mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • B01F23/69Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/806Evaporating a carrier, e.g. liquid carbon dioxide used to dissolve, disperse, emulsify or other components that are difficult to be mixed; Evaporating liquid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • B01F33/406Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2132Concentration, pH, pOH, p(ION) or oxygen-demand

Definitions

  • the present invention relates to the field of the preparation of granular media, and more specifically to the mixture of powders, in particular actinide powders, and to their deagglomeration / reagglomeration to obtain a mixture of high homogeneity by means of a cryogenic fluid , also called median cryogenic.
  • a cryogenic fluid also called median cryogenic.
  • the invention thus preferably has its application for the mixture of actinide powders for the formation of nuclear fuel, in particular nuclear fuel pellets.
  • the invention thus proposes a device for mixing powders by cryogenic fluid, as well as a method for mixing powders associated therewith.
  • the implementation of the various stages of preparation of a granular medium, in particular from actinide powders, to form nuclear fuel pellets after forming by pressing, is essential because it mainly determines the control of the microstructure of the substrate. final product but also the presence or absence of defects of macroscopic aspects within a fuel pellet.
  • the mixture of actinide powders to allow the production of nuclear fuel is a key step in controlling the quality of the fuel pellet obtained, which is most often subject to compliance with stringent requirements in terms of microstructure and impurities.
  • the mixer in dry phase without internal media. It may in particular be a Turbula ® type mixer from the company WAB which by more or less complex movements of the tank containing the powders to be mixed, allows more or less uniform homogenization of the granular medium.
  • WAB Turbula ® type mixer
  • the efficiency of this type of mixer is limited. Indeed, depending on the type of powders to be mixed, there may remain heterogeneous areas, for which mixing does not occur or at least in an incorrect manner and not admissible.
  • the kinematics of this type of mixer is generally not complex enough to induce a thorough mixture, that is to say a mixture that is satisfactory in terms of homogeneity, without focusing itself, or a penalizing mixing time. at the industrial level.
  • the energy transmitted to the granular medium in this type of mixer does not allow deagglomeration to be sufficient to reach sufficient degrees of homogeneity in the case where the size of these agglomerates is too large (in particular to be compensated during the sintering step).
  • the principle of the media mixer is also known. According to this principle and to promote the mixing operation, one or more mobile can be used within the tank containing the powder to be mixed. These mobiles can be blades, turbines, shares, ribbons, worms, among others. To improve the mixing, the tank can itself be mobile. This type of mixer may be more efficient than the previous category but is still insufficient and suffers limitations. In fact, the stirring induces a modification of the granular medium by agglomeration or disagglomeration difficult to control, which induces a proliferation of powders and / or degradation of the flowability of the granular medium.
  • the use of mobile (media) for mixing causes pollution (contaminations) when it comes to mixing abrasive powders such as those to be implemented for the realization of nuclear fuel.
  • the mobiles implemented induce retentions that generate very high dose rates in the case of the development of nuclear fuel.
  • the aforementioned mixers are not fully satisfactory for mixing certain powders, such as actinide powders, and it is necessary to carry out a granulation step in order to obtain a flowable granular medium.
  • mixers are also known, implementing a multiphasic medium, namely fluid-solid phases. These mixers can be classified in two main categories described below.
  • the mixture is most often not effective or requires significant stirring speeds. Indeed, the take-off speed of a particle from the bottom of the agitator is directly related to the density difference between the particles constituting the powders and that of the liquid for suspending.
  • the so-called non-dimensional number of Archimedes must be greater than 10 (ie the viscosity forces are lower than the forces of gravity and inertia). Knowing that the constituent particles of the powders to be mixed have relatively small diameters, typically less than 10 ⁇ , it is not conceivable to make homogeneous and complete suspensions with this type of device without using complementary mixing means. In this sense, technologies, such as that described in patent application CA 2 882 302 A1, have been proposed but remain nonetheless ineffective for a mixture of actinide powders, the vibration means used not allowing sufficient homogenization in view of the homogenization objectives to be achieved and the peculiarities of the actinide powders.
  • the volume of the mixer must be limited, to prevent any risk of double loading that could lead to exceeding the critical mass allowable.
  • the particle density per volume of The tank can not be large unless it exceeds a stirring power that is too high, or undergoes slow mixing kinetics.
  • liquid phase powder mixers in particular of the type described in patent applications CA 2,882,302 A1, WO 2006/0111266 A1 and WO 1999/010092 A1, are not suitable for the problematics of a mixture of powders of actinide powders type, since they would require stirring speeds too high to hope to take off the powders from the bottom of the stirring tank and achieve homogeneity levels consistent with those sought in the industry nuclear.
  • the object of the invention is to at least partially remedy the needs mentioned above and the drawbacks relating to the embodiments of the prior art.
  • the subject of the invention is a device for mixing powders, in particular actinide powders, by cryogenic fluid, characterized in that it comprises:
  • a powder mixing chamber comprising a cryogenic fluid, provided with means for forming a bed of fluidized powders;
  • a powder supply chamber to allow the introduction of powders into the mixing chamber, a chamber for supplying cryogenic fluid to allow the introduction of the cryogenic fluid into the mixing chamber;
  • the powders are subjected to fluidization through the cryogenic fluid to obtain the fluidized bed of powders.
  • this bed of fluidized powders is subjected to the vibrations of the vibration generating system to preferentially obtain a major disorder in the suspension of powders and cryogenic fluid, these vibrations being controlled by means of the control system to optimize the mixed.
  • a cryogenic fluid here designates a liquefied gas kept in the liquid state at low temperature.
  • This liquefied gas is chemically inert under the conditions of implementation of the invention for the powders to be mixed and deagglomerated.
  • the powder mixing device according to the invention may further comprise one or more of the following characteristics taken separately or in any possible technical combinations.
  • the cryogenic fluid may comprise a weakly hydrogenated liquid, ie a liquid comprising at most one hydrogen atom per molecule of liquid, having a boiling point lower than that of water.
  • the device may further comprise an analysis system, in particular a system for measuring the solid concentration (ie powders) of the suspension of powders and of cryogenic fluid in the mixing chamber, the operation of which is in particular controlled by the system. piloting.
  • an analysis system in particular a system for measuring the solid concentration (ie powders) of the suspension of powders and of cryogenic fluid in the mixing chamber, the operation of which is in particular controlled by the system. piloting.
  • the mixing chamber may be configured in such a way that the introduction of cryogenic fluid into it allows fluidization of the powders to be mixed by percolating the cryogenic fluid through the thus fluidized bed of powders.
  • the mixing chamber may comprise a distribution system, in particular a sintered grid or part, cryogenic fluid through the fluidized bed of powders to allow a homogeneous distribution of the cryogenic fluid in the fluidized bed.
  • the vibration generating system may be at least partially located in the fluidized bed of powders.
  • the vibration generating system may comprise sonotrodes introduced into the fluidized bed of powders.
  • the sonotrodes can be controlled independently by the control system to induce a periodic phase shift of the phases between the sonotrodes to introduce unsteady interference improving mixing within the fluidized bed of powders.
  • the sonotrodes can still be configured to generate pseudo-chaotic oscillations, potentially for example by means of a Van der Pol type oscillation generator.
  • the mixing device may further comprise stirring means in the mixing chamber to promote the mixing of the powders placed in suspension in the cryogenic fluid, including in particular grinding means, for example of the balls, pebbles, among others .
  • the mixing device may also include a system for electrostatically charging the powders intended to be introduced into the mixing chamber.
  • Part of the powders may in particular be brought into contact with one part of the electrostatic charge system to be electrostatically charged in a positive manner and the other part of the powders may be brought into contact with the other part of the electrostatic charge system to be charged. Electrostatically negative, to allow differentiated local agglomeration. When mixing more than two types of powders, some powders may be either positively charged, or negatively charged, or without charge.
  • the cryogenic fluid may also be of any type, in particular being liquefied nitrogen or argon. It should be noted that the use of nitrogen is relevant because of its low price, but also because the glove boxes and processes used for the development of plutonium-based nuclear fuel are inerted with nitrogen and liquid nitrogen is itself fuel operations (BET measurement, ). The use of this type of cryogenic fluid does not therefore induce any additional particular risk in the production process.
  • another aspect of the invention relates to a process for mixing powders, in particular actinide powders, by cryogenic fluid, characterized in that it is implemented by means of a device as defined above, and in that it comprises the following steps:
  • the powders can advantageously be electrostatically charged in a different manner, in particular in an opposite manner in the presence of at least two types of powders, to promote differentiated local agglomeration.
  • the method may also include the step of controlling the vibration generating system through the control system, in particular according to the particle concentration of the suspension.
  • the device and method for mixing powders according to the invention may comprise any of the features set forth in the description, taken alone or in any technically possible combination with other characteristics.
  • FIG. 1 represents a diagram illustrating the general principle of a device for mixing powders by cryogenic fluid according to the invention
  • FIG. 2 partially represents an example of a device according to the invention
  • FIG. 3 illustrates a representation of interference lines induced by two vibratory sources having the same pulse frequency
  • FIGS. 4A and 4B illustrate the generation of stable oscillations induced by a Van der Pol type oscillator after convergence
  • FIGS. 5A and 5B illustrate the generation of quasi-chaotic oscillations of a Van der Pol type oscillator when its driving parameters are adapted
  • FIGS. 6, 7 and 8 respectively represent photographs of a first type of powders before mixing, of a second type of powders before mixing, and of the mixture obtained of the first and second types of powders after mixing by means of a device and a method according to the invention.
  • the P powders considered are actinide powders for the manufacture of nuclear fuel pellets.
  • the cryogenic fluid considered here is liquefied nitrogen.
  • the invention is not limited to these choices. Referring to Figure 1, there is shown a diagram illustrating the general principle of a device 1 for mixing powders P by cryogenic fluid according to the invention.
  • the device 1 comprises a mixing chamber E1, preferably heat-insulated, powders P provided with means for forming a bed of fluidized powders Lf, visible in Figure 2 described below.
  • the device 1 comprises a feed enclosure A1 in powders P to allow the introduction of powders P into the mixing chamber E1, and a feed chamber B1 in cryogenic fluid FC to allow the introduction of the fluid In this way, it is possible to obtain a suspension of powders P and cryogenic fluid FC in the mixing chamber E 1 forming a fluidized bed Lf.
  • the feed chamber B 1 in cryogenic fluid FC may correspond to a distribution chamber or an enclosure for recirculating cryogenic fluid FC.
  • This supply chamber B1 can allow the distribution and / or recycling of cryogenic fluid FC. It can in particular partly rely on a pressurization of a liquefied gas supply tank.
  • the device 1 also comprises a vibration generation system Vb in the fluidized bed of powders Lf, a control system Sp of this vibration generation system Vb, and a concentration analysis system Ac of the suspension of powders P and cryogenic fluid FC in the mixing chamber E1, the operation of which is controlled by the control system Sp.
  • the control system Sp can in particular make it possible to control the operation of the device 1 and the data processing, in particular in terms of powder supply conditions P, FC cryogenic fluid and / or in terms of amplitude of the vibrations.
  • the mixing chamber E1 is configured such that the introduction of cryogenic fluid FC into the latter makes it possible to fluidize the powders P with mixing by percolation of the cryogenic fluid FC through the bed of powders and fluidized Lf.
  • FIG. 2 precisely, there is shown partially and schematically an example of mixing device 1 according to the invention.
  • This mixing device 1 comprises a mixing chamber E1 forming a vertical main axis reservoir advantageously having a symmetry of revolution, in particular in the form of a cylinder, and being advantageously insulated to minimize thermal losses as its purpose is to receive a phase of circulating liquefied gas.
  • cryogenic fluid FC (liquefied gas) is introduced into the lower part of the mixing chamber E1, at the inlet of the fluidized bed Lf of powders P, by means of a distribution system Sd, in particular in the form of gate or sintered part, for distributing the cryogenic fluid FC homogeneously on the passage section of the fluidized bed Lf.
  • the mixing chamber E1 can be equipped with a diverging zone so as to disengage the smaller powder particles P and allow them to remain in the zone of the fluidized bed Lf.
  • a system for analyzing the concentration Ac of the suspension of powders P and cryogenic fluid FC in the mixing chamber E1 comprising in particular an optical sensor Co making it possible to observe the fluidized bed Lf powder P through a viewing port H.
  • the Ac system is thus interfaced through the fluidized bed Lf.
  • the concentration analysis system Ac equipped with the optical sensor Co, can make it possible to analyze the concentration of the powders P, or even to analyze the granulometry of the granular medium formed in the mixing chamber E1.
  • the concentration analysis system Ac may comprise an optical fiber of emitting type (light source illuminating the fluidized bed Lf) and receiver (sensor). It can still include a camera. It should be noted that the concentration of the particles is a function of the distance between the emitting fiber and the receiving fiber, the particle size distribution, the refractive index of the granular medium, and the wavelength of the incident beam in the dispersion medium.
  • the device 1 comprises the vibration generation system Vb.
  • This system advantageously comprises sonotrodes So.
  • Vb is introduced to the right of the fluidized bed Lf closest to the introduction of cryogenic fluid FC.
  • the sonotrodes So can dive within the fluidized bed Lf.
  • FIG. 3 illustrates a representation of the interference lines induced by two vibratory sources S1 and S2 having the same pulse frequency.
  • the interferences can move a distance equivalent to the order of magnitude of the wavelength of the vibrations injected into the fluidized bed Lf. This then allows an additional degree of mixing.
  • the feed enclosure Al of the powders P can allow gravity feeding, or even a worm-type device, or even by way of a vibrating bed, for example.
  • the powders P can be electrostatically charged with opposite charges to allow during the suspension to obtain a differentiated reagglomeration.
  • Table 1 below also gives an example of sizing of a device 1 according to the invention.
  • FIGS. 6, 7 and 8 respectively represent photographs of a first type of powders before mixing, of a second type of powders before mixing, and of the mixture obtained of the first and second types of powders after mixing through a device 1 and a method according to the invention.
  • FIG. 6 represents aggregates of cerium dioxide powders C0 2
  • FIG. 7 represents aggregates of alumina powders AI 2 O 3
  • FIG. 8 represents the mixture of these powders obtained with a mixing time of about 30 seconds.
  • the invention thus exploits various technical effects that make it possible in particular to reach the desired level of homogenization, such as those described below:

Abstract

L'objet principal de l'invention est un dispositif (1) de mélange de poudres (P) par fluide cryogénique, caractérisé en ce qu'il comporte: une enceinte de mélange (E1) des poudres (P), comportant un fluide cryogénique (FC), pourvue de moyens pour former un lit de poudres fluidisé; une enceinte d'alimentation (A1) en poudres (P) pour permettre l'introduction des poudres (P) dans l'enceinte de mélange (E1); une enceinte d'alimentation (B1) en fluide cryogénique (FC) pour permettre l'introduction du fluide cryogénique (FC) dans l'enceinte de mélange (E1); un système de génération de vibrations (Vb) dans le lit de poudres fluidisé; et un système de pilotage (Sp) du système de génération de vibrations (Vb).

Description

DISPOSITIF DE MÉLANGE DE POUDRES PAR FLUIDE CRYOGÉNIQUE ET GÉNÉRATION DE
VIBRATIONS
DESCRIPTION DOMAINE TECHNIQUE
La présente invention se rapporte au domaine de la préparation de milieux granulaires, et plus précisément au mélange de poudres, notamment de poudres d'actinides, et à leur désagglomération/réagglomération pour obtenir un mélange de haute homogénéité par le biais d'un fluide cryogénique, encore appelé médian cryogénique.
De manière privilégiée, elle s'applique à des poudres de forte densité et/ou cohésives, telles que les poudres d'actinides. L'invention trouve ainsi préférentiellement son application pour le mélange de poudres d'actinides permettant la formation de combustible nucléaire, notamment des pastilles de combustible nucléaire.
L'invention propose ainsi un dispositif de méla nge de poudres par fluide cryogénique, ainsi qu'un procédé de mélange de poudres associé.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
La mise en œuvre des différentes étapes de préparation d'un milieu granulaire, en particulier à partir de poudres d'actinides pour former des pastilles de combustible nucléaire après mise en forme par pressage, est essentielle car elle conditionne majoritairement la maîtrise de la microstructure du produit final mais aussi la présence ou non de défauts d'aspects macroscopiques au sein d'une pastille de combustible. En particulier, le mélange de poudres d'actinides pour permettre la production de combustible nucléaire constitue une étape clé dans la maîtrise de la qualité de la pastille de combustible obtenue, qui le plus souvent est soumise au respect d'exigences sévères en termes de microstructure et d'impuretés.
Le procédé industriel, classique et historique de métallurgie des poudres appliqué à l'élaboration de combustible nucléaire s'appuie sur des étapes de mélange, broyage et/ou granulation, toutes réalisées en voie sèche. En effet, la mise en œuvre de liquide dans l'industrie nucléaire induit la génération d'effluents pouvant être difficiles à traiter. Aussi, pour la préparation d'un milieu granulaire en vue d'élaborer du combustible nucléaire, il n'est pas exploité classiquement de procédés autres que ceux utilisant la voie sèche.
Pour réaliser le mélange des poudres, divers dispositifs sont connus de l'art antérieur, qui peuvent se décomposer selon les familles décrites ci-après.
Tout d'abord, il existe le principe du mélangeur en phase sèche sans média interne. Il peut notamment s'agir d'un mélangeur de type Turbula® de la société WAB qui par des mouvements plus ou moins complexes de la cuve contenant les poudres à mélanger, permet une homogénéisation plus ou moins importante du milieu granulaire. Généralement, l'efficacité de ce type de mélangeur est limitée. En effet, en fonction du type de poudres à mélanger, il peut subsister des zones hétérogènes, pour lesquelles le mélange ne s'opère pas ou du moins d'une manière incorrecte et non admissible. La cinématique de ce type de mélangeur n'est généralement pas assez complexe pour induire un mélange poussé, c'est-à-dire un mélange satisfaisant en termes d'homogénéité, sans mise au point elle-même poussée ou une durée de mélange pénalisante au niveau industriel. Par ailleurs, l'énergie transmise au milieu granulaire dans ce type de mélangeur ne permet pas de réaliser une désagglomération suffisante pour atteindre des degrés d'homogénéité suffisante dans le cas où la taille de ces agglomérats est trop importante (notamment pour être compensée lors de l'étape de frittage).
On connaît également le principe du mélangeur à média. Selon ce principe et afin de favoriser l'opération de mélange, un ou plusieurs mobiles peuvent être utilisés au sein de la cuve contenant la poudre à mélanger. Ces mobiles peuvent être des pales, des turbines, des socs, des rubans, des vis sans fin, entre autres. Pour améliorer le mélange, la cuve peut être elle-même mobile. Ce type de mélangeur peut être plus efficace que la catégorie précédente mais reste encore insuffisant et pâtit de limitations. En effet, le brassage induit une modification du milieu granulaire par agglomération ou une désagglomération difficilement maîtrisable, ce qui induit un foisonnement des poudres et/ou une dégradation de la coulabilité du milieu granulaire. Par ailleurs, l'utilisation de mobiles (média) pour le mélange entraîne des pollutions (contaminations) lorsqu'il s'agit de mélanger des poudres abrasives comme celles devant être mises en œuvre pour la réalisation de combustible nucléaire. De plus, les mobiles mis en œuvre induisent des rétentions qui génèrent des débits de doses très impactants dans le cas de l'élaboration de combustible nucléaire.
Il existe également le principe du mélangeur de type broyeur. En effet, en fonction du mode d'utilisation et du type de technologie de certains broyeurs, il est possible de réaliser des mélanges de poudres par co-broyage. Ce type d'opération permet d'obtenir un mélange satisfaisant, d'un point de vue de l'homogénéité, mais nécessite un temps de broyage relativement long, typiquement de plusieurs heures, et induit également des phénomènes de broyage qui font diminuer la taille des particules de poudres. Ceci provoque la génération de fines particules et une modification de la surface spécifique qui a également un impact sur la possibilité d'utiliser ultérieurement les poudres après leur mélange (modification de la coulabilité, de la réactivité (possible oxydation), de la frittabilité des poudres, ...). Dans le cadre de la fabrication de combustible nucléaire, l'opération de co-broyage, en générant des fines particules provoque un impact radiologique non négligeable, du fait de la rétention et de la propension des fines particules à se disperser. Par ailleurs, des phénomènes de colmatage peuvent être induits.
Après l'utilisation de ces différents types de mélangeur, il est souvent nécessaire de réaliser une agglomération ou granulation. De plus, ces dispositifs sont généralement discontinus, ce qui peut être problématique dans des procédés industriels.
D'une manière générale, les mélangeurs précités ne sont pas pleinement satisfaisants pour mélanger certaines poudres, comme les poudres d'actinides, et il est nécessaire d'y faire succéder une étape de granulation pour pouvoir obtenir un milieu granulaire coulable.
D'autres mélangeurs sont également connus, mettant en œuvre un milieu multiphasique, à savoir des phases fluide-solide. Ces mélangeurs peuvent être classés en deux principales catégories décrites ci-après. Tout d'abord, il existe les mélangeurs du type liquides/solides. Ces mélangeurs ne sont pas opérants pour la mise en œuvre de poudres solubles avec la phase liquide utilisée dans le mélangeur ou bien si les poudres sont modifiées par le contact avec le fluide. Par ailleurs, pour des poudres possédant une forte densité comparativement au liquide introduit dans le mélangeur, le mélange n'est le plus souvent pas efficace ou nécessite des vitesses d'agitation importantes. En effet, la vitesse de décollage d'une particule du fond de l'agitateur est directement liée à l'écart de densité entre les particules constituant les poudres et celle du liquide permettant la mise en suspension. Dans ce cas, il peut être utilisé des liquides visqueux mais cela induit une demande en énergie accrue, et ce proportionnellement à l'augmentation de viscosité avant d'atteindre un régime turbulent pour favoriser le mélange. Par ailleurs, dans ce cas de mélangeur du type liquides/solides, se pose également la question de la séparation de la phase liquide et de la phase solide après mélange. Dans le cas du mélange de poudres d'actinides, ce type de mélangeur induirait des effluents contaminés très lourds à retraiter, ce qui est rédhibitoire. En outre, en pratique, la mise en suspension complète et homogène ne peut être atteinte lorsque des poudres de faible granulométrie sont à mélanger. Plus précisément, pour atteindre une homogénéisation optimale, le nombre adimensionnel dit d'Archimède doit être supérieur à 10 (i.e. les forces de viscosités sont inférieures aux forces de gravité et d'inertie). Sachant que les particules constitutives des poudres à mélanger ont des diamètres relativement faibles, typiquement inférieurs à 10 μιη, il n'est pas envisageable de réaliser des suspensions homogènes et complètes avec ce type de dispositif sans utiliser de moyens de mélange complémentaires. En ce sens, des technologies, comme celle décrite dans la demande de brevet CA 2 882 302 Al, ont été proposées mais restent néanmoins inopérantes pour une application de mélange de poudres d'actinides, les moyens de vibration utilisés ne permettant pas une homogénéisation suffisante au vu des objectifs d'homogénéisation à atteindre et des particularités des poudres d'actinides. De plus, pour des raisons de maîtrise de la criticité, le volume du mélangeur doit être limité, afin de prévenir tout risque de double chargement qui pourrait induire un dépassement de la masse critique admissible. En effet, dans un mélangeur liquide/solide classique, la densité de particules par volume de cuve ne peut être importante, à moins de soit dépasser une puissance d'agitation trop importante, soit de subir une cinétique de mélange trop lente.
A noter enfin que les mélangeurs de poudres en phase liquide, en particulier de type de ceux décrits dans les demandes de brevet CA 2 882 302 Al, WO 2006/0111266 Al et WO 1999/010092 Al, ne sont pas adaptés pour la problématique d'un mélange de poudres de type poudres d'actinides, car ils nécessiteraient des vitesses d'agitation trop importantes pour espérer décoller les poudres du fond de la cuve d'agitation et atteindre des niveaux d'homogénéité conformes à ceux recherchés dans l'industrie nucléaire. De plus, encore une fois, ils induiraient des effluents contaminés, difficiles à gérer industriellement mais aussi des risques de criticité, voire de radiolyse de la phase liquide utilisée du fait de la nature des poudres à mettre en œuvre (au-delà du fait que ces dernières peuvent interagir chimiquement avec le liquide utilisé).
Ensuite, il existe également les mélangeurs du type gaz/solides. Ce type de mélangeur peut être opérant et n'induit pas de risque de criticité. Cependant, ce type de mélangeur n'est que peu opérant pour des poudres n'ayant pas de propriétés de fluidisation suffisantes, classiquement des poudres de type C selon la classification de D. Geldart telle que décrite dans la publication Powder Technology, Vol.7, 1973. Or, cette caractéristique de mauvaise fluidisation se rencontre pour les poudres d'actinides cohésives comme celles mises en œuvre pour fabriquer du combustible nucléaire. Par ailleurs, au-delà de la difficulté de la fluidisation, au vu des densités des poudres à fluidiser pour le mélange, la vitesse superficielle du gaz devrait être importante et au moins égale à la vitesse minimale de fluidisation. Aussi, ce type de mélangeur n'apparaît que peu adapté au mélange de poudres cohésives et a fortiori de forte densité.
EXPOSÉ DE L'INVENTION II existe ainsi un besoin pour proposer un nouveau type de dispositif de mélange de poudres pour la préparation de milieux granulaires, et notamment pour le mélange de poudres d'actinides.
En particulier, il existe un besoin pour pouvoir concomitamment : - désagglomérer les poudres à mélanger sans nécessairement en modifier leur surface spécifique et générer de fines particules,
- mélanger les poudres avec un niveau d'homogénéité suffisant pour obtenir un mélange de poudres répondant aux spécifications, notamment en termes d'homogénéité (i.e. permettant notamment d'obtenir un volume élémentaire représentatif (VER) au sein du milieu granulaire de l'ordre de quelques micromètres cubes à environ 10 μιη3),
- ne pas induire de pollution des poudres à mélanger, ni de modification de la chimie de surface, ni générer d'effluents liquides difficiles à traiter,
- ne pas induire de risque de criticité spécifique,
- ne pas induire de risque de radiolyse spécifique,
- ne pas induire d'échauffement des poudres à mélanger,
- s'appuyer sur un mélangeur à diamètre limité pour maîtriser le risque de criticité même en cas d'erreur de chargement du mélangeur,
- réaliser l'opération de mélange en limitant autant que possible l'énergie dépensée et ce en un temps relativement court par rapport aux autres mélangeurs, soit de l'ordre de quelques minutes comparativement à quelques heures (pour d'autres systèmes de mélange comme les broyeurs à boulets), pour une même quantité de matière à mélanger,
- disposer d'un procédé de mélange continu ou quasiment continu.
L'invention a pour but de remédier au moins partiellement aux besoins mentionnés précédemment et aux inconvénients relatifs aux réalisations de l'art antérieur.
L'invention a pour objet, selon l'un de ses aspects, un dispositif de mélange de poudres, notamment de poudres d'actinides, par fluide cryogénique, caractérisé en ce qu'il comporte :
- une enceinte de mélange des poudres, comportant un fluide cryogénique, pourvue de moyens pour former un lit de poudres fluidisé,
- une enceinte d'alimentation en poudres pour permettre l'introduction des poudres dans l'enceinte de mélange, - une enceinte d'alimentation en fluide cryogénique pour permettre l'introduction du fluide cryogénique dans l'enceinte de mélange,
- un système de génération de vibrations, notamment par ondes ultrasonores, dans le lit de poudres fluidisé,
- un système de pilotage du système de génération de vibrations.
De façon avantageuse, au sein de l'enceinte de mélange, les poudres sont soumises à une fluidisation par le biais du fluide cryogénique pour obtenir le lit de poudres fluidisé.
En outre, ce lit de poudres fluidisé est soumis aux vibrations du système de génération de vibrations pour préférentiellement obtenir un désordre important au niveau de la suspension de poudres et de fluide cryogénique, ces vibrations étant pilotées par le biais du système de pilotage pour optimiser le mélange.
Il est à noter que, de façon habituelle, un fluide cryogénique désigne ici un gaz liquéfié conservé à l'état liquide à basse température. Ce gaz liquéfié est inerte chimiquement dans les conditions de mise en œuvre de l'invention, pour les poudres à mélanger et désagglomérer.
Le dispositif de mélange de poudres selon l'invention peut en outre comporter l'une ou plusieurs des caractéristiques suivantes prises isolément ou suivant toutes combinaisons techniques possibles.
Le fluide cryogénique peut comporter un liquide faiblement hydrogéné, soit un liquide comportant au plus un atome d'hydrogène par molécule de liquide, présentant une température d'ébullition inférieure à celle de l'eau.
Le dispositif peut en outre comporter un système d'analyse, notamment un système de mesure de concentration en solide (i.e. poudres) de la suspension de poudres et de fluide cryogénique dans l'enceinte de mélange, dont le fonctionnement est notamment piloté par le système de pilotage.
L'enceinte de mélange peut être configurée de telle sorte que l'introduction de fluide cryogénique dans celle-ci permette une mise en fluidisation des poudres à mélanger par percolation du fluide cryogénique au travers du lit de poudres ainsi fluidisé. Par ailleurs, l'enceinte de mélange peut comporter un système de distribution, notamment une grille ou une pièce frittée, du fluide cryogénique au travers du lit fluidisé de poudres pour permettre une répartition homogène du fluide cryogénique dans le lit fluidisé.
Le système de génération de vibrations peut être au moins partiellement situé dans le lit fluidisé de poudres. En particulier, le système de génération de vibrations peut comporter des sonotrodes introduites dans le lit fluidisé de poudres.
Les sonotrodes peuvent être pilotées de manière indépendante par le système de pilotage pour induire un déphasage périodique des phases entre les sonotrodes afin d'introduire des interférences instationnaires améliorant le mélange au sein du lit fluidisé de poudres.
Les sonotrodes peuvent encore être configurés pour générer des oscillations pseudo-chaotiques, potentiellement par exemple par le biais d'un générateur d'oscillation de type de Van der Pol.
Le dispositif de mélange peut en outre comporter des moyens d'agitation dans l'enceinte de mélange pour favoriser le mélange des poudres mises en suspension dans le fluide cryogénique, comportant notamment des moyens de broyage, par exemple de type boulets, galets, entre autres.
De plus, le dispositif de mélange peut également comporter un système de charge électrostatique des poudres destinées à être introduites dans l'enceinte de mélange.
Une partie des poudres peut notamment être mise en contact avec une partie du système de charge électrostatique pour être chargée électrostatiquement de manière positive et l'autre partie des poudres peut être mise en contact avec l'autre partie du système de charge électrostatique pour être chargée électrostatiquement de manière négative, afin de permettre une agglomération locale différenciée. En cas de mélange de plus de deux types de poudres, certaines poudres peuvent être soit chargées positivement, soit chargées négativement, soit sans charge.
Le fluide cryogénique peut par ailleurs être de tout type, étant notamment de l'azote liquéfié ou de l'argon. Il est à noter que l'emploi de l'azote est pertinent du fait de son faible prix mais aussi du fait que les boîtes à gants et les procédés mis en œuvre pour l'élaboration du combustible nucléaire à base de plutonium sont inertés à l'azote et que l'azote liquide est lui-même mis en œuvre dans certaines opérations sur le combustible (mesure BET,...). L'usage de ce type de fluide cryogénique n'induit donc pas de risque particulier supplémentaire dans le procédé d'élaboration.
En outre, l'invention a encore pour objet, selon un autre de ses aspects, un procédé de mélange de poudres, notamment de poudres d'actinides, par fluide cryogénique, caractérisé en ce qu'il est mis en œuvre au moyen d'un dispositif tel que défini précédemment, et en ce qu'il comporte les étapes suivantes :
a) introduction de poudres destinées à être mélangées dans l'enceinte de mélange par le biais de l'enceinte d'alimentation en poudres,
b) introduction de fluide cryogénique destiné à permettre la fluidisation du lit fluidisé de poudres dans l'enceinte de mélange par le biais de l'enceinte d'alimentation en fluide cryogénique,
c) mise en vibration de la suspension de poudres et de fluide cryogénique dans l'enceinte de mélange par le biais du système de génération de vibrations,
d) obtention d'un mélange formé à partir des poudres après évaporation du fluide cryogénique.
Au cours de la première étape a), les poudres peuvent avantageusement être chargées électrostatiquement de manière différente, notamment de manière opposée en présence d'au moins deux types de poudres, pour favoriser l'agglomération locale différentiée.
Le procédé peut également comporter l'étape de pilotage du système de génération de vibrations par le biais du système de pilotage, suivant notamment la concentration en particules de la suspension.
Le dispositif et le procédé de mélange de poudres selon l'invention peuvent comporter l'une quelconque des caractéristiques énoncées dans la description, prises isolément ou selon toutes combinaisons techniquement possibles avec d'autres caractéristiques. BRÈVE DESCRIPTION DES DESSINS
L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'exemples de mise en œuvre non limitatifs de celle-ci, ainsi qu'à l'examen des figures, schématiques et partielles, du dessin annexé, sur lequel :
- la figure 1 représente un schéma illustrant le principe général d'un dispositif de mélange de poudres par fluide cryogénique conforme à l'invention,
- la figure 2 représente partiellement un exemple de dispositif conforme à l'invention,
- la figure 3 illustre une représentation de lignes d'interférences induites par deux sources vibratoires ayant la même fréquence de pulsation,
- les figures 4A et 4B illustrent la génération d'oscillations stables induites par un oscillateur de type Van der Pol après convergence, et les figures 5A et 5B illustrent la génération d'oscillations quasi chaotiques d'un oscillateur de type Van der Pol lorsque ses paramètres de pilotage sont adaptés, et
- les figures 6, 7 et 8 représentent respectivement des photographies d'un premier type de poudres avant mélange, d'un deuxième type de poudres avant mélange, et du mélange obtenu des premier et deuxième types de poudres après mélange par le biais d'un dispositif et d'un procédé conformes à l'invention.
Dans l'ensemble de ces figures, des références identiques peuvent désigner des éléments identiques ou analogues.
De plus, les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Il est noté que dans les exemples de réalisation décrits ci-après, les poudres P considérées sont des poudres d'actinides permettant la fabrication de pastilles de combustible nucléaire. De plus, le fluide cryogénique considéré est ici de l'azote liquéfié. Toutefois, l'invention n'est pas limitée à ces choix. En référence à la figure 1, on a représenté un schéma illustrant le principe général d'un dispositif 1 de mélange de poudres P par fluide cryogénique selon l'invention.
Selon ce principe, le dispositif 1 comporte une enceinte de mélange El, préférentiellement calorifugée, des poudres P pourvue de moyens pour former un lit de poudres fluidisé Lf, visible sur la figure 2 décrite par la suite.
De plus, le dispositif 1 comporte une enceinte d'alimentation Al en poudres P pour permettre l'introduction des poudres P dans l'enceinte de mélange El, et une enceinte d'alimentation Bl en fluide cryogénique FC pour permettre l'introduction du fluide cryogénique FC dans l'enceinte de mélange El. De cette façon, il est possible d'obtenir une suspension de poudres P et du fluide cryogénique FC dans l'enceinte de mélange El formant un lit fluidisé Lf.
L'enceinte d'alimentation Bl en fluide cryogénique FC peut correspondre à une enceinte de distribution ou une enceinte de recirculation de fluide cryogénique FC. Cette enceinte d'alimentation Bl peut permettre la distribution et/ou le recyclage de fluide cryogénique FC. Elle peut en particulier pour partie s'appuyer sur une mise en pression d'un réservoir d'alimentation en gaz liquéfié.
Par ailleurs, de façon avantageuse, le dispositif 1 comporte également un système de génération de vibrations Vb dans le lit de poudres fluidisé Lf, un système de pilotage Sp de ce système de génération de vibrations Vb, et un système d'analyse de concentration Ac de la suspension de poudres P et de fluide cryogénique FC dans l'enceinte de mélange El, dont le fonctionnement est piloté par le système de pilotage Sp.
Le système de pilotage Sp peut notamment permettre le pilotage du fonctionnement du dispositif 1 et le traitement de données, notamment en termes de conditions d'alimentation en poudres P, en fluide cryogénique FC et/ou en termes d'amplitude des vibrations.
De façon avantageuse, comme il apparaîtra plus clairement en référence à la figure 2, l'enceinte de mélange El est configurée de telle sorte que l'introduction de fluide cryogénique FC dans celle-ci permette une mise en fluidisation des poudres P à mélanger par percolation du fluide cryogénique FC au travers du lit de poudres ainsi fluidisé Lf.
En référence à la figure 2 justement, on a représenté partiellement et schématiquement un exemple de dispositif de mélange 1 conforme à l'invention.
Ce dispositif de mélange 1 comporte une enceinte de mélange El formant un réservoir d'axe principal vertical ayant avantageusement une symétrie de révolution, notamment sous la forme d'un cylindre, et étant avantageusement calorifugé pour minimiser les pertes thermiques comme sa vocation est de recevoir une phase de gaz liquéfié circulante.
De façon avantageuse, le fluide cryogénique FC (gaz liquéfié) est introduit dans la partie basse de l'enceinte de mélange El, en entrée du lit fluidisé Lf de poudres P, par le biais d'un système de distribution Sd, notamment sous forme de grille ou de pièce frittée, permettant de répartir le fluide cryogénique FC de manière homogène sur la section de passage du lit fluidisé Lf.
Par ailleurs, l'enceinte de mélange El peut être équipée d'une zone divergente afin de désengager les particules de poudres P les plus petites et leur permettre de rester dans la zone du lit fluidisé Lf.
En outre, un système d'analyse de concentration Ac de la suspension de poudres P et de fluide cryogénique FC dans l'enceinte de mélange El est également prévu, ce système Ac comportant notamment un capteur optique Co permettant d'observer le lit fluidisé Lf de poudres P au travers d'un hublot de vision H. Le système Ac est ainsi interfacé au travers du lit fluidisé Lf.
Le système d'analyse de concentration Ac, équipé du capteur optique Co, peut permettre d'analyser la concentration des poudres P, voire également d'analyser la granulométrie du milieu granulaire formé dans l'enceinte de mélange El.
Le système d'analyse de concentration Ac peut comporter une fibre optique de type émettrice (source de lumière éclairant le lit fluidisé Lf) et réceptrice (capteur). I l peut encore comporter une caméra. Il est alors à noter que la concentration des particules est fonction de la distance entre la fibre émettrice et la fibre réceptrice, de la distribution granulométrique des particules, de l'indice de réfraction du milieu granulaire, et de la longueur d'onde du faisceau incident dans le milieu de dispersion.
Par ailleurs, le dispositif 1 comporte le système de génération de vibrations Vb. Ce système comporte avantageusement des sonotrodes So.
Comme on peut le voir sur la figure 2, le système de génération de vibrations
Vb est introduit au droit du lit fluidisé Lf au plus près de l'introduction de fluide cryogénique FC. En particulier, les sonotrodes So peuvent plonger au sein du lit fluidisé Lf.
Les sonotrodes So peuvent être pilotées de manière indépendante par le système de pilotage Sp (non représenté sur la figure 2) pour induire un déphasage périodique des phases entre les sources de vibrations afin d'introduire des interférences instationnaires, de sorte à améliorer le mélange au sein du lit fluidisé Lf de poudres P. A ce titre, la figure 3 illustre une représentation des lignes d'interférences induites par deux sources vibratoires SI et S2 ayant la même fréquence de pulsation.
Par ailleurs, de façon avantageuse, le pilotage des vibrations par le biais du système de pilotage Sp peut induire des signaux vibratoires quasi-chaotiques. Ceci peut être atteint en pilotant les sonotrodes So comme autant d'oscillateurs du type de Van der Pol ayant des paramètres de réglage instationnaires. A ce titre, les figures 4A-4B et 5A-5B illustrent les formes des interférences au sein de la suspension de poudres P induites par deux sources ayant la même phase de pulsation, ces phases étant constantes. Plus précisément, les figures 4A et 4B illustrent la génération d'oscillations stables après convergence (paramètres de l'oscillateur choisis : a = 2,16, b = 2,28 et wo = 3 pour une équation de mouvement de type x" + ax'.(x2/b2 - 1) + wo2.x = 0), tandis que les figures 5A et 5B illustrent la génération d'oscillations quasi chaotiques d'un oscillateur de type Van der Pol, d'équation du type x" + ax'.(x2/b2 - 1) + wo2.x = 0, par variation temporelle de la pulsation wo.
Il est à noter que, en faisant varier les phases des sources de vibrations, les interférences peuvent se déplacer d'une distance équivalente à l'ordre de grandeur de la longueur d'onde des vibrations injectées au sein du lit fluidisé Lf. Ceci permet alors un degré de mélange supplémentaire. L'application de vibrations selon des oscillations complexes, notamment quasi chaotiques, œuvre à un effet de mélange quasiment idéal.
Par ailleurs, il est également à noter que l'enceinte d'alimentation Al des poudres P (non représentée sur la figure 2) peut permettre une alimentation par gravité, voire par un dispositif de type vis sans fin, voire encore par le biais d'un lit vibrant, par exemple.
De plus, de façon avantageuse, les poudres P peuvent être chargées électrostatiquement avec des charges opposées pour permettre lors de la mise en suspension d'obtenir une réagglomération différenciée.
Le tableau 1 ci-après donne par ailleurs un exemple de dimensionnement d'un dispositif 1 conforme à l'invention.
Tableau 1
L'efficacité du mélange pouvant être atteint par le biais de la présente invention peut se caractériser par l'homogénéité du milieu granulaire obtenu après mélange. Ainsi, les figures 6, 7 et 8 représentent respectivement des photographies d'un premier type de poudres avant mélange, d'un deuxième type de poudres avant mélange, et du mélange obtenu des premier et deuxième types de poudres après mélange par le biais d'un dispositif 1 et d'un procédé conformes à l'invention.
Plus précisément, la figure 6 représente des agrégats de poudres de dioxyde de cérium Ce02, la figure 7 représente des agrégats de poudres d'alumine AI2O3, et la figure 8 représente le mélange de ces poudres obtenu avec une durée de mélange d'environ 30 secondes.
On constate alors une bonne homogénéité du milieu granulaire après mélange (de deux poudres mises en œuvre avec des masses équivalentes). En effet, sur la figure 8, on peut constater que pour une échelle de quelques dizaines de microns, les agrégats des deux poudres sont présents d'une manière relativement équirépartie et la taille des agrégats n'a que peu variée (voisine de celle des poudres initiales à mélanger, soit ici avec une dimension voisine de 5 μιη).
L'invention exploite ainsi différents effets techniques permettant notamment d'atteindre le niveau d'homogénéisation souhaité, tels que ceux décrits ci-après :
- la désagglomération, au moins partielle, améliorée des poudres P lorsque celles-ci sont mises en suspension dans le liquide cryogénique FC,
- l'amélioration de la mouillabilité des poudres P en utilisant le gaz liquéfié constitué par le fluide cryogénique FC, qui est un liquide à faible tension de surface, comparativement à l'eau, celui-ci pouvant être avantageusement employé sans utilisation d'additif difficile à éliminer,
- l'agitation proche du régime d'un réacteur parfaitement agité mise en œuvre par le mouvement des moyens d'agitation, pouvant ou non utiliser la mise en vibration de la suspension comme décrit par la suite, ces vibrations étant alors avantageusement instationnaires pour limiter les zones d'hétérogénéités.
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation qui viennent d'être décrits. Diverses modifications peuvent y être apportées par l'homme du métier.

Claims

REVENDICATIONS
1. Dispositif (1) de mélange de poudres (P) par fluide cryogénique, caractérisé en ce qu'il comporte :
- une enceinte de mélange (El) des poudres (P), comportant un fluide cryogénique (FC), pourvue de moyens pour former un lit de poudres fluidisé (Lf),
- une enceinte d'alimentation (Al) en poudres (P) pour permettre l'introduction des poudres (P) dans l'enceinte de mélange (El),
- une enceinte d'alimentation (Bl) en fluide cryogénique (FC) pour permettre l'introduction du fluide cryogénique (FC) dans l'enceinte de mélange (El),
- un système de génération de vibrations (Vb) dans le lit de poudres fluidisé (Lf),
- un système de pilotage (Sp) du système de génération de vibrations
( b).
2. Dispositif selon la revendication 1, caractérisé en ce que les poudres (P) à mélanger sont des poudres d'actinides.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le fluide cryogénique (FC) comporte un liquide faiblement hydrogéné, soit un liquide comportant au plus un atome d'hydrogène par molécule de liquide, présentant une température d'ébullition inférieure à celle de l'eau.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte en outre un système d'analyse de concentration (Ac) de la suspension de poudres (P) et de fluide cryogénique (FC) dans l'enceinte de mélange (El), dont le fonctionnement est notamment piloté par le système de pilotage (Sp).
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enceinte de mélange (El) est configurée de telle sorte que l'introduction de fluide cryogénique (FC) dans celle-ci permette une mise en fluidisation des poudres (P) à mélanger par percolation du fluide cryogénique (FC) au travers du lit de poudres ainsi fluidisé (Lf).
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'enceinte de mélange (El) comporte un système de distribution (Sd), notamment une grille ou une pièce frittée, du fluide cryogénique (FC) au travers du lit fluidisé (Lf) de poudres (P) pour permettre une répartition homogène du fluide cryogénique (FC) dans le lit fluidisé (Lf).
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le système de génération de vibrations (Vb) est au moins partiellement situé dans le lit fluidisé (Lf) de poudres (P).
8. Dispositif selon la revendication 7, caractérisé en ce que le système de génération de vibrations (Vb) comporte des sonotrodes (So) introduites dans le lit fluidisé (Lf) de poudres (P).
9. Dispositif selon la revendication 8, caractérisé en ce que les sonotrodes (So) sont pilotées de manière indépendante par le système de pilotage (Sp) pour induire un déphasage périodique des phases entre les sonotrodes (So) afin d'introduire des interférences instationnaires améliorant le mélange au sein du lit fluidisé (Lf) de poudres (P).
10. Dispositif selon la revendication 7 ou 8, caractérisé en ce que les sonotrodes (So) sont configurées pour générer des oscillations pseudo-chaotiques de type de Van der Pol.
11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre des moyens d'agitation dans l'enceinte de mélange (El) pour permettre le mélange des poudres (P) mises en suspension dans le fluide cryogénique (FC), comportant notamment des moyens de broyage.
12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un système de charge électrostatique des poudres (P) destinées à être introduites dans l'enceinte de mélange (El).
13. Dispositif selon la revendication 12, caractérisé en ce qu'une partie des poudres (P) est mise en contact avec une partie du système de charge électrostatique pour être chargée électrostatiquement de manière positive et en ce que l'autre partie des poudres (P) est mise en contact avec l'autre partie du système de charge électrostatique pour être chargée électrostatiquement de manière négative, afin de permettre une agglomération locale différenciée.
14. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide cryogénique (FC) est de l'azote liquéfié.
15. Procédé de mélange de poudres (P) par fluide cryogénique, caractérisé en ce qu'il est mis en œuvre au moyen d'un dispositif (1) selon l'une quelconque des revendications précédentes, et en ce qu'il comporte les étapes suivantes :
a) introduction de poudres (P) destinées à être mélangées dans l'enceinte de mélange (El) par le biais de l'enceinte d'alimentation (Al) en poudres (P), b) introduction de fluide cryogénique (FC) destiné à permettre la fluidisation du lit fluidisé (Lf) de poudres (P) dans l'enceinte de mélange (El) par le biais de l'enceinte d'alimentation (Bl) en fluide cryogénique (FC),
c) mise en vibration de la suspension de poudres (P) et de fluide cryogénique (FC) dans l'enceinte de mélange (El) par le biais du système de génération de vibrations (Vb), d) obtention d'un mélange formé à partir des poudres (P) après évaporation du fluide cryogénique (FC).
16. Procédé selon la revendication 15, caractérisé en ce qu'au cours de la première étape a), les poudres sont chargées électrostatiquement de manière différente, notamment de manière opposée, pour favoriser l'agglomération locale différentiée.
17. Procédé selon la revendication 15 ou 16, caractérisé en ce qu'il comporte également l'étape de pilotage du système de génération de vibrations (Vb) par le biais du système de pilotage (Sp).
EP16791566.9A 2015-11-04 2016-11-03 Dispositif de mélange de poudres par fluide cryogénique et génération de vibrations et procédé Active EP3370856B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560571A FR3042986B1 (fr) 2015-11-04 2015-11-04 Dispositif de melange de poudres par fluide cryogenique et generation de vibrations
PCT/EP2016/076508 WO2017076945A1 (fr) 2015-11-04 2016-11-03 Dispositif de mélange de poudres par fluide cryogénique et génération de vibrations

Publications (2)

Publication Number Publication Date
EP3370856A1 true EP3370856A1 (fr) 2018-09-12
EP3370856B1 EP3370856B1 (fr) 2019-12-04

Family

ID=55806428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16791566.9A Active EP3370856B1 (fr) 2015-11-04 2016-11-03 Dispositif de mélange de poudres par fluide cryogénique et génération de vibrations et procédé

Country Status (7)

Country Link
US (1) US10688459B2 (fr)
EP (1) EP3370856B1 (fr)
JP (1) JP6929280B2 (fr)
CN (1) CN108348873B (fr)
FR (1) FR3042986B1 (fr)
RU (1) RU2718717C2 (fr)
WO (1) WO2017076945A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3072378B1 (fr) * 2017-10-12 2019-11-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procede de fabrication de pieces en ceramique par voie cryogenique
EP4008452A1 (fr) * 2020-12-02 2022-06-08 Linde GmbH, Linde Engineering Procédé de traitement de la poudre
FR3121365A1 (fr) 2021-04-02 2022-10-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé pour transporter des poudres
FR3137590A1 (fr) 2022-07-11 2024-01-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de dosage de poudres

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758901A (fr) * 1969-05-19 1971-04-16 Anderson Robert Neil Reacteur nucleaire a combustible comprenant une masse critique de nitrure d'actinide et procede de conduite de ce
US4474905A (en) * 1982-09-30 1984-10-02 General Technology Applications, Inc. Freeze blending of reactive liquids and solids
US4571086A (en) * 1984-09-26 1986-02-18 Rockwell International Corporation Mixing of ceramic powders
SU1393464A1 (ru) * 1986-09-18 1988-05-07 Специальное Конструкторское Бюро По Подземному Самоходному Горному Оборудованию Вибросмеситель
US4917834A (en) * 1988-11-16 1990-04-17 General Technology Applications, Inc. Method for forming homogeneous blends of particulate materials
SU1713632A1 (ru) * 1990-01-05 1992-02-23 Ленинградский Технологический Институт Им.Ленсовета Смеситель сыпучих материалов
GB9313442D0 (en) * 1993-06-30 1993-08-11 Bp Chem Int Ltd Method of mixing heterogegeous systems
SE9400335D0 (sv) * 1994-02-02 1994-02-02 Astra Ab Powder mixing
FR2767720B1 (fr) 1997-08-27 1999-11-19 Denis Melangeur liquide(s)/solide(s) rotatif, en continu, a oeil ouvert
US6916389B2 (en) * 2002-08-13 2005-07-12 Nanotechnologies, Inc. Process for mixing particulates
US7090391B2 (en) * 2002-09-25 2006-08-15 Reika Kogyo Kabushiki Kaisha Apparatus and method for mixing by agitation in a multichambered mixing apparatus including a pre-agitation mixing chamber
FR2870841B1 (fr) * 2004-05-28 2007-02-09 Commissariat Energie Atomique Procede de coprecipitation d'actinides a des etats d'oxydation distincts et procede de preparation de composes mixtes d'actinides
US7473405B2 (en) * 2004-10-13 2009-01-06 Chevron U.S.A. Inc. Fluid distribution apparatus for downflow multibed poly-phase catalytic reactor
WO2006104227A1 (fr) * 2005-03-29 2006-10-05 Kajima Corporation Procédé consistant à ajuster la teneur en eau d'une matière
US20090061059A1 (en) 2005-04-21 2009-03-05 Daniel Anthony Jarvis Method for moulding a food product
US7703698B2 (en) * 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
CN101432063B (zh) * 2006-05-02 2013-02-13 尼罗有限公司 凝聚装置及用于制造凝聚颗粒的方法
RU2353424C1 (ru) * 2007-12-03 2009-04-27 Государственное Учреждение Институт металлургии Уральского отделения Российской Академии Наук (ГУ ИМЕТ УрО РАН) Способ смешивания сыпучих материалов
FI122098B (fi) * 2010-03-18 2011-08-31 Outotec Oyj Reaktori ja menetelmä prosessiliuoksen puhdistamiseksi
WO2014031425A1 (fr) 2012-08-20 2014-02-27 Banus Christopher T Appareil à vibrations pour le mélange de liquides non miscibles et pour le mélange de poudres avec des liquides ou d'autres poudres
FR3029002B1 (fr) 2014-11-25 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de transfert de poudre a ecoulement ameliore
FR3030500B1 (fr) 2014-12-18 2019-07-05 Areva Nc Procede de fabrication d'une pastille d'au moins un oxyde metallique, son utilisation comme combustible nucleaire

Also Published As

Publication number Publication date
US10688459B2 (en) 2020-06-23
RU2018120108A3 (fr) 2020-02-07
EP3370856B1 (fr) 2019-12-04
RU2018120108A (ru) 2019-12-04
CN108348873A (zh) 2018-07-31
FR3042986A1 (fr) 2017-05-05
CN108348873B (zh) 2020-11-10
RU2718717C2 (ru) 2020-04-14
FR3042986B1 (fr) 2017-12-15
JP6929280B2 (ja) 2021-09-01
US20180318779A1 (en) 2018-11-08
WO2017076945A1 (fr) 2017-05-11
JP2018533474A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
EP3370856B1 (fr) Dispositif de mélange de poudres par fluide cryogénique et génération de vibrations et procédé
EP3370855B1 (fr) Dispositif de mélange de poudres par fluide cryogénique et procédé
WO2017076950A1 (fr) Dispositif de granulation de poudres par atomisation cryogénique
FR3072308B1 (fr) Dispositif et procede de broyage cryogenique avec media de broyage sous forme de gaz cryogenique solidifie
FR2968582A1 (fr) Procede et dispositif de generation de gouttelettes a faible vitesse de generation et a spectre granulometrique modulable
CN101495237A (zh) 使集簇材料解附聚和/或解聚集的方法、系统和设备
WO2000030978A1 (fr) Preparation par atomisation-sechage d'une poudre coulable de bioxyde d'uranium obtenu par conversion en voie seche de l'uf¿6?
WO2005045848A2 (fr) Procede de fabrication de pastilles de combustible nucleaire
EP1971987B1 (fr) Procede de fabrication d'une matiere particulaire
EP2648834B1 (fr) Procede de granulation en voie seche de particules de tailles nanometriques
EP1971986B1 (fr) Procede de fabrication d'un materiau dense pour combustible nucleaire
FR3072378B1 (fr) Dispositif et procede de fabrication de pieces en ceramique par voie cryogenique
WO2013098340A1 (fr) Procede de production en voie seche de granules composites nanoparticules inorganiques/nanotubes de carbone, de tailles micrometriques ou millimetriques
FR3018807A1 (fr) Procede d'obtention de charges de cristaux d'hexanitrohexaazaisowurtzitane (cl20) de granulometrie monomodale submicronique, lesdites charges et leur utilisation comme charges d'ensemencement
EP2534101A2 (fr) Alumine alpha, utilisation, procédé de synthèse et dispositif associés.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190628

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1208691

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016025711

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016025711

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1208691

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191204

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26N No opposition filed

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016025711

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003180000

Ipc: B01F0023600000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 8

Ref country code: DE

Payment date: 20231120

Year of fee payment: 8