EP3369496B1 - Horizontal strip casting installation with optimised cooling - Google Patents

Horizontal strip casting installation with optimised cooling Download PDF

Info

Publication number
EP3369496B1
EP3369496B1 EP18158502.7A EP18158502A EP3369496B1 EP 3369496 B1 EP3369496 B1 EP 3369496B1 EP 18158502 A EP18158502 A EP 18158502A EP 3369496 B1 EP3369496 B1 EP 3369496B1
Authority
EP
European Patent Office
Prior art keywords
strip
cooling element
cooling
casting
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18158502.7A
Other languages
German (de)
French (fr)
Other versions
EP3369496A1 (en
Inventor
Peter PALZER
Thomas Evertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3369496A1 publication Critical patent/EP3369496A1/en
Application granted granted Critical
Publication of EP3369496B1 publication Critical patent/EP3369496B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0631Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a travelling straight surface, e.g. through-like moulds, a belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1243Accessories for subsequent treating or working cast stock in situ for cooling by using cooling grids or cooling plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/143Plants for continuous casting for horizontal casting

Definitions

  • the invention relates to a system for the horizontal strip casting of a pre-strip made of metal according to the preamble of claim 1.
  • a horizontal strip caster for producing a pre-strip from steel is known.
  • the belt caster has a melting vessel from which the melt is poured through a casting nozzle onto a horizontally rotating casting belt.
  • a cooling device is arranged under an upper run of the casting belt.
  • the applied melt solidifies to form a pre-belt.
  • the strip casting system has a housing into which a gas flow is introduced in order to form a reducing or oxidizing atmosphere or an inert gas atmosphere for the melted and the solidifying pre-strip.
  • the gas flow is introduced via nozzles which are arranged in a ceiling element of the housing.
  • the gas flow is varied with regard to its temperature and its speed and pressure profile.
  • DE 10 2008 031 476 A1 discloses a horizontal strip casting installation for casting a metal strip, in which the melt is poured onto a horizontally rotating strip and solidifies therefrom. Above the belt together with the metal belt solidifying on it as a casting belt, a cooling element is arranged which extends over almost the entire length of the casting belt between two guide rollers for deflecting the rotating belt.
  • U.S. 5,074,353 A relates to a cooling device by means of which liquid inert gas is sprayed from nozzles onto a cast strip to be cooled.
  • the bulging of the edge areas takes place at a point in time at which the cast pre-strip has not yet solidified and there is residual liquid melt on the surface.
  • the bulging then leads to the melt shifting in the direction of the middle of the belt and thus already solidified dendrites to come to the belt surface, on which no lid has been formed up to this point in time.
  • the present invention is based on the object of creating a system for the horizontal strip casting of a pre-strip made of metal, with which an improved quality of the pre-strip and an increased output is achieved.
  • the quality of the pre-strip and increased output are thereby improved achieves that a cooling element is arranged above the solidifying pre-strip for cooling the solidifying pre-strip from above.
  • This improved cooling of the pre-strip from above ensures that the solidifying pre-strip is cooled more evenly and this leads to a reduction in local stresses in the cast pre-strip.
  • These tensions are otherwise reduced by cracks in the edge area and / or warping of the strand (U-shape), ie the belt edges bulge due to the faster heat dissipation and the associated volume contraction of the structure on the belt underside and the belt edges.
  • the cooling element is arranged at a distance from the solidifying pre-strip and develops its cooling effect by absorbing the heat radiated from the pre-strip. Overall, the formation of a dense, non-open-pored surface of the sliver is achieved.
  • a cooling element is understood to mean a body extending over a large area, which over its area absorbs the heat given off by thermal radiation from the solidifying pre-strip.
  • the surface of the cooling element thus preferably essentially coincides with the surface of the casting belt or the surface of the solidifying pre-belt. It goes without saying that, for structural reasons, the length of the cooling element, viewed in the casting direction, can or must be shorter at the beginning and at the end of the casting belt.
  • the width of the cooling element can also be made narrower in the edge regions in relation to the casting belt in order to minimize the cooling effect in the edge regions.
  • the surface of the cooling element thus takes up at least 50%, preferably 75% of the surface of the casting belt or the surface of the solidifying pre-strip.
  • the cooling element is preferably metallic and cuboid, it being possible for a curved underside to be provided instead of a flat underside.
  • the cooling element is also preferably a hollow body.
  • the cooling element according to the invention does not include any cooling of the solidifying pre-strip by means of spray water cooling or charging with gases.
  • the cooling of the cooling element according to the invention per se can be active or passive - preferably via in the case of a hollow body an internal cooling with cooling liquid - take place in order to dissipate the absorbed heat from the encapsulated material.
  • Splash water cooling of an upper side of the cooling element, the arrangement of cooling fins, gas cooling or cooling via natural convection are also conceivable.
  • the cooling element is designed as a circumferential cooling belt or a circumferential cooling chain.
  • the use of the movable cold chain or the movable cooling belt as a cooling element offers the advantage of extensive control options for heat dissipation based on the direction of rotation or the speed of the cold chain or the cooling belt.
  • the cooling element is made of a material with a thermal conductivity of greater than 100 W / mK (at 40 ° C), in particular greater than 180 W / mK (at 40 ° C), at least in the area of an underside facing the solidifying pre-strip is.
  • Particularly suitable materials are aluminum, an aluminum alloy, copper or a copper alloy.
  • the cooling element is provided with a surface structure in the area of an underside facing the solidifying pre-strip and the surface structure is preferably a pyramid, diamond, bead or point pattern with a depth of 0.5 to 5 mm in the sense of embossments or elevations. This avoids or reduces the accumulation of dust on the cooling element. The back reflection of the thermal radiation is also reduced.
  • the gas flow introduced into a housing for a reducing, inert or adapted to the chemical composition of the cast steel - in contrast to a smooth surface - is directed.
  • the cooling element in the area of an underside facing the solidifying pre-strip is provided in edge areas with a coating that preferably contains BN, ZrO 2 , Al 2 O 3 or AlN and particularly preferably a fireproof fiber material with a Al 2 O 3 content of more than 50% by weight, in particular with an Al 2 O 3 content of greater than or equal to 72% by weight.
  • a coating that preferably contains BN, ZrO 2 , Al 2 O 3 or AlN and particularly preferably a fireproof fiber material with a Al 2 O 3 content of more than 50% by weight, in particular with an Al 2 O 3 content of greater than or equal to 72% by weight.
  • cooling element is arched in the area of an underside facing the solidifying pre-strip, viewed in cross section, in the direction of the solidifying pre-strip and the arching, viewed in a casting direction, is centered on the cooling element.
  • the new cross-sectional shape also leads to a homogenization of the cooling conditions over the width of the width.
  • the reduced heat dissipation in the edge areas reduces the formation of pores and cavities in the edge areas.
  • the cooling element is divided into individual segments viewed in the casting direction, which have at least one cooling circuit over a width of the cooling element and which, viewed in the casting direction, preferably have a length of 15 to 150 cm.
  • the measurement technology is modified to the extent that, viewed in the casting direction, the exact location of the solidification of the surface of the pre-strip in relation to the casting strip can be determined by evaluating the cooling water temperatures of individual cooling segments.
  • the cooling element is at a distance of 10 to a maximum of 25 mm from the top of the solidifying pre-strip in the area of a center of the solidifying pre-strip and, viewed in a casting direction, at an appropriate distance from the melt feed, preferably at least 0 , 5 m away from the melt feed in the casting direction.
  • the cooling element can be raised and lowered to set a distance between an underside of the cooling element and an upper side of the solidifying pre-strip.
  • the pre-strip or hot strip produced has no pores in the edge area and overall significantly fewer edge defects, the otherwise at least partially required trimming of the pre-strip or hot strip is significantly reduced and the cost-effectiveness of production is increased.
  • the reduced heat dissipation leads to a reduction in strip warpage (for example the known U-shape) of the pre-strip produced.
  • This belt warping is caused, among other things, by excessive local heat dissipation in the area of the belt edges.
  • hot strip or sheet material in the desired thickness of 6 to 25 mm (measured in the middle of the strip) with good geometry and an improved surface can be produced from high-manganese or high-aluminum or high-silicon lightweight steels, electrical sheets or Hadfield steel.
  • FIG. 1 The schematic side view shown of a horizontal strip casting installation 1 essentially consists of a melting vessel 2, a casting nozzle 3, a casting belt 4 and a housing 5 with a cooling element 6, which can also be referred to as a top cooler.
  • a melting vessel 2 liquid melt S, in particular metal melt, is applied to the casting belt 4 in the form of a strand or solidifying pre-strip V via an adjoining casting nozzle 3.
  • the endless casting belt 4 runs in a casting direction G around a front deflection roller 4a and a rear deflection roller 4b spaced therefrom in the casting direction G and thus conveys the solidifying pre-strip V in the casting direction G.
  • the casting belt 4 runs essentially horizontally in the area of the upper run 4c and is cooled from below in the area of the upper run 4c by means of a cooling device 7, which with the exception of short areas at the transition to the deflection rollers 4a, 4b from below Coolant, preferably water, applied.
  • a cooling device 7 which with the exception of short areas at the transition to the deflection rollers 4a, 4b from below Coolant, preferably water, applied.
  • Coolant preferably water
  • the housing 5 of the horizontal strip caster 1 encloses the solidifying sliver V in an area between the casting nozzle 3 and an outlet 5b for the solidified sliver V from the housing 5.
  • the housing 5 is usually provided to keep the melt S in a reducing atmosphere, an inert gas atmosphere or a casting atmosphere adapted to the chemical composition of the cast steel, to be cast and allowed to solidify to form the pre-strip V.
  • a gas supply line 5c and a gas discharge line 5d are connected to the housing 5 in the area of an upper and essentially horizontally extending ceiling element 5a.
  • the gas supply line 5c is located in the area of the outlet 5b and the gas discharge line 5d in the area of the casting nozzle, so that the gas flows counter to the casting direction G in countercurrent to the solidifying pre-strip V.
  • cooling element 6 In addition to cooling the solidifying preliminary strip V from below with the cooling device 7, which is in direct contact with the solidifying preliminary strip V via the casting belt 4, additional cooling of the solidifying preliminary strip V from above with a cooling element 6 is provided.
  • the cooling element 6 is arranged inside the housing 5 and above the solidifying pre-strip V. Viewed in the casting direction G, the cooling element 6 extends from an area that adjoins the casting nozzle 3 to an area in the vicinity of the exit 5b of the pre-strip V from the housing 5 and at least over the entire width of the solidifying pre-strip V and the Casting belt 4.
  • the cooling element 6 itself is a flat, cuboidal hollow body through which a coolant, preferably water, flows via a supply line 6a and discharge line 6b in countercurrent to the casting direction G or in the casting direction G. Since the cooling element 6 is arranged at a preselected distance a above the solidifying sliver V, the cooling element 6 dissipates the heat radiation emitted by the solidifying sliver V and thus contributes to the cooling of the solidifying sliver V from above.
  • the distance a extends perpendicularly between the upper side of the solidifying pre-strip V and the lower side 6c of the cooling element 6.
  • Materials such as aluminum, aluminum alloys, copper or copper alloys are suitable for producing the cooling element 6. These materials have a thermal conductivity of more than 100 W / mK (at 40 ° C), preferably more than 180 W / mK (at 40 ° C).
  • the cooling element 6 is provided on its underside 6c facing the solidifying pre-strip V with a surface structure instead of with a planar surface.
  • dusts are generated which essentially consist of Fe, Mn, Zn and Pb oxides as well as small amounts of C and Cl and are deposited in the form of a layer of dust on the underside 6c of the cooling element 6. Since the dust layer has a lower thermal conductivity than the cooling element 6, the cooling performance of the cooling element 6 is reduced as a result.
  • the surface structure of the underside 6c counteracts the settling of the dust layer, so that the heat dissipation through the dust layer is not hindered.
  • the surface structure can be used a pyramid, diamond, bead or dot pattern with a depth of 0.5 to 5 mm in the sense of embossments or elevations in question.
  • the depth of 0.5 to 5 mm is perpendicular to the part of the underside 6c of the cooling element 6 that is not provided with a surface structure.
  • the surface structure creates small turbulences in the atmosphere in the housing 5 in the area of the edges of the respective surface structure. This prevents the dust layer from settling evenly.
  • the dust that collects in deeper areas of the surface structure is automatically removed after reaching a critical thickness and is conveyed out or burned with the solidifying sliver V.
  • the surface structure also increases the surface area of the lower side 6c overall and thus the cooling surface.
  • the surface structure causes a change in the angle of reflection in relation to the thermal radiation from the solidifying pre-strip.
  • the heat radiated back onto the solidifying pre-strip V is reduced by at least 5%, as a result of which a higher cooling capacity of the cooling element 6 is achieved.
  • cooling element 6 is designed as a single cuboid hollow element extending in the casting direction G.
  • a vertical partial cross-section of the cooling element 6 of the strip casting installation 1 is shown in a first embodiment.
  • the underside 6c is provided with a curvature 6d in the first embodiment.
  • This curvature 6d viewed in the casting direction G and based on a center m of the cooling element 6, is symmetrical.
  • the distance a between the bottom 6c of the cooling element 6 at the center m of the cooling element 6 and the surface of the pre-strip V and the top of the casting belt 4 is minimal and increases in each case starting from the center m to the right and left side 6e of the cooling element 6 corresponding to the degree of curvature of the bulge 6d.
  • the degree of curvature of the curvature 6d preferably increases.
  • the curvature 6d does not end inwards in the region of the sides 6e of the cooling element 6 Distance from this and merges into an edge section 6f which is parallel to the casting belt 4 and which is not arched and therefore flat.
  • the Figure 2b shows a vertical partial cross-section of the cooling element 6 of the strip casting installation 1 in a second embodiment.
  • the design of the underside 6c of the cooling element 6 is comparable to that previously Figure 2a described. The only difference is that the curvature 6d in each case extends to the sides 6e and thus there are no flat edge sections 6f.
  • the degree of curvature of the curvature 6d preferably increases towards the sides 6e.
  • the resulting warmer edge areas 8 of the solidifying sliver V prevent or reduce warping of the sliver V, which results from a local temperature increase on the underside of the solidifying sliver V due to the lifting of the solidifying sliver V from the casting belt 4 in the area of the center M of the solidifying sliver V.
  • the aim is to reduce the heat dissipation in the edge regions 8 in conjunction with an increase in the heat dissipation in the center M of the solidifying sliver V.
  • the minimum distance a between the cooling element 6 and the solidifying sliver V preferably in the area of the center M of the solidifying sliver V, should be 10 to 35 mm.
  • the maximum distance a preferably in the edge regions 8 of the solidifying pre-strip V, should be 45 to 80 mm.
  • the underside 6c of the cooling element 6, seen in cross section and in the casting direction G, is curved downwards in an area around its center m - as described above - whereby the flow velocity of the atmosphere in the housing 5 is in the area of the center M of the solidifying sliver V increases and the direction of flow of the atmosphere is deflected from the center M of the solidifying sliver V in the direction of the edge regions 8. So that will dust deposits in the area of the center M of the underside 6c of the cooling element 6 are also counteracted.
  • the curvature 6d also leads to an increased deposition of dust in the edge areas 8 of the cooling element 6 and thus advantageously to a reduced heat dissipation in the edge areas 8 of the solidifying pre-strip V.
  • the cooling element 6 can also be subdivided into individual segments which have at least one cooling circuit over the width of the strip casting system 1 and have a length of 15 to 150 cm in the casting direction G.
  • the solidified upper side of the sliver V has a higher thermal emission coefficient compared to the molten surface, as a result of which the heat dissipation by radiation increases.
  • the edge area 8 of the cooling element 6 can additionally or alternatively be coated.
  • This coating reduces the thermal conductivity and the heat transfer and / or the thermal absorption coefficient of the cooling element 6 from the surface of the coating into the cooling element 6.
  • a coating with a reflective surface can be provided.
  • the heat dissipation can be limited, for example, by applying an insulating layer.
  • BN boron nitride, hexagonal
  • ZrO 2 , Al 2 O 3 or AlN are used as coatings for use at high temperatures.
  • Fireproof fiber material preferably with an Al 2 O 3 content of more than 50% by weight, in particular with an Al 2 O 3 content of 72% by weight, can be used as the insulating layer in the edge region 8.
  • the heat transfer is reduced by at least 5% compared to the uncoated areas.
  • the distance a of the cooling element 6 can also be reduced with a time delay by lowering the cooling element 6 only after casting has started, in order to avoid buildup due to casting effects and, at best, to ensure constant heat dissipation along the pre-strip V in the casting direction G.
  • An additional or alternative solution also provides for changing the flow direction of the atmosphere in the housing 5 to the extent that the atmosphere is introduced opposite to the casting direction G (countercurrent principle) and thus from the end of the housing 5 in the area of the outlet 5b in the direction of the casting nozzle 3 flows.
  • the deposition of a layer of dust hindering heat dissipation on the underside 6c of the cooling element 6, in particular in the area of the solidification of the surface of the solidifying pre-strip V is reduced.
  • Such horizontal strip casting systems 1 are particularly suitable for producing near-net-shape pre-strip with strip thicknesses in the range from 6 to 25 mm (measured in the middle of the strip) from high-manganese or high-aluminum or high-silicon lightweight steels, electrical sheets or Hadfield steel.
  • a Hadfield steel is generally understood to mean a manganese hard steel with carbon from 1 to 1.3% by weight and with manganese from 11 to 13% by weight.
  • the cooling element 6 is designed as a single cuboid hollow element extending in the casting direction G. In principle, it is possible, viewed in the casting direction G, to divide the cooling element 6 into several successive segments.
  • the cooling element 6 can also be designed as a ceiling element 5 a of the housing 5.
  • the cooling element is designed as a circumferential cooling chain or a circumferential cooling belt.
  • the circumferential cooling chain or the circumferential cooling belt are arranged at a discrete distance from the solidifying preliminary strip V and develop their cooling effect by absorbing the heat radiated from the preliminary strip V.
  • the width of the cold chain or the cooling belt is preferably somewhat smaller than the width of the cast pre-strip V and the cooling chain or the cooling belt are moved parallel to the casting belt 4 and / or in or against the casting direction G. Active cooling of the cold chain or the cooling belt with cooling liquid can be dispensed with if there is sufficient heat capacity - depending on the material and volume / mass of the cold chain or the cooling belt.
  • the cooling element 6 is cooled when the cooling chain or the cooling belt is returned on the side facing away from the solidifying pre-belt V.
  • spray or spray water cooling can be used during the return of the cooling chain or cooling belt in order to dissipate the heat from the cooling chain or cooling belt.
  • the cooling element 6 can also be cleaned when the cooling chain or the cooling belt is returned on the side facing away from the solidifying preliminary belt V.
  • the cooling belt used can have a thickness between 2 and 15 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft eine Anlage zum horizontalen Bandgießen eines Vorbandes aus Metall nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a system for the horizontal strip casting of a pre-strip made of metal according to the preamble of claim 1.

Aus der deutschen Patentschrift DE 44 07 873 C2 ist eine horizontale Bandgießanlage zum Erzeugen eines Vorbandes aus Stahl bekannt. Die Bandgießanlage hat ein Schmelzgefäß, aus der Schmelze über eine Gießdüse auf ein horizontal umlaufendes Gießband aufgegeben wird. Für eine Kühlung des Gießbandes ist unter einem oberen Trum des Gießbandes eine Kühleinrichtung angeordnet. Auf dem gekühlten Gießband erstarrt die aufgegebene Schmelze zu einem Vorband. In dem Bereich zwischen der Gießdüse und dem durcherstarrten Vorband weist die Bandgießanlage eine Einhausung auf, in die ein Gasstrom eingeleitet wird, um für die aufgegebene Schmelze und das erstarrende Vorband eine reduzierende oder oxidierende Atmosphäre oder eine Inertgasatmosphäre zu bilden. Der Gasstrom wird über Düsen, die in einem Deckenelement der Einhausung angeordnet sind, eingeleitet. Um auf die Oberfläche des erstarrenden Vorbandes Einfluss nehmen zu können, wird der Gasstrom in Hinblick auf seine Temperatur und sein Geschwindigkeits- und Druckprofil variiert.From the German patent specification DE 44 07 873 C2 a horizontal strip caster for producing a pre-strip from steel is known. The belt caster has a melting vessel from which the melt is poured through a casting nozzle onto a horizontally rotating casting belt. For cooling the casting belt, a cooling device is arranged under an upper run of the casting belt. On the cooled casting belt, the applied melt solidifies to form a pre-belt. In the area between the casting nozzle and the solidified pre-strip, the strip casting system has a housing into which a gas flow is introduced in order to form a reducing or oxidizing atmosphere or an inert gas atmosphere for the melted and the solidifying pre-strip. The gas flow is introduced via nozzles which are arranged in a ceiling element of the housing. In order to be able to influence the surface of the solidifying sliver, the gas flow is varied with regard to its temperature and its speed and pressure profile.

DE 10 2008 031 476 A1 offenbart eine horizontale Bandgießanlage zum Gießen eines Metallbandes, bei der die Schmelze auf ein horizontal umlaufendes Band gegossen wird und daraus erstarrt. Oberhalb des Bandes samt dem darauf als Gießband erstarrenden Metallband ist ein Kühlelement angeordnet, welches sich über nahezu die gesamte Länge des Gießbandes zwischen zwei Führungsrollen zur Umlenkung des umlaufenden Bandes erstreckt. DE 10 2008 031 476 A1 discloses a horizontal strip casting installation for casting a metal strip, in which the melt is poured onto a horizontally rotating strip and solidifies therefrom. Above the belt together with the metal belt solidifying on it as a casting belt, a cooling element is arranged which extends over almost the entire length of the casting belt between two guide rollers for deflecting the rotating belt.

US 5 074 353 A betrifft eine Kühlvorrichtung, durch die flüssiges Inertgas aus Düsen auf ein abzukühlendes gegossenes Band gesprüht wird. U.S. 5,074,353 A relates to a cooling device by means of which liquid inert gas is sprayed from nozzles onto a cast strip to be cooled.

Es ist allgemein bekannt, dass es zeitweise bei der Herstellung von Vorband in einer Banddicke von 6 bis 25 mm durch eine gegenüber dem gekühlten Gießband geringere Wärmeabfuhr an der Oberseite des Vorbandes zu einer Aufwölbung des gegossenen Vorbandes in seitlichen Randbereichen oder einem stellenweisen Abheben des gegossenen Vorbandes von dem Gießband kommen kann. Die Aufwölbungen und das Abheben bedingen ein inhomogenes Profil des gegossenen Vorbandes und größere Lunker, sowie Risse und Poren, was die Weiterverarbeitung deutlich erschwert und das Ausbringen verringert. Die Risse treten in den Randbereichen des gegossenen Vorbandes vermehrt auf und sind in etwa 30 mm bis 100 mm von dem äußeren Rand entfernt. Des Weiteren findet die Aufwölbung der Randbereiche zu einem Zeitpunkt statt, an dem das gegossene Vorband noch nicht durcherstarrt ist und sich auf der Oberfläche flüssige Restschmelze befindet. Das Aufwölben führt dann dazu, dass die Schmelze sich in Richtung Bandmitte verlagert und dadurch bereits erstarrte Dendriten an die Bandoberfläche treten, an der bis zu diesem Zeitpunkt noch keine Deckelbildung stattgefunden hat. Dies führt zu einer offenen Porosität bevorzugt in den Randbereichen, welche bei der Verarbeitung des Bandes zu Oberflächen- und Gefügefehlern führt. Diese Risse mit Oberflächenkontakt führen ebenso zu Materialfehlern während der Weiterverarbeitung, weshalb das Material besäumt werden muss und die Wirtschaftlichkeit sinkt.It is generally known that during the production of pre-strip in a strip thickness of 6 to 25 mm, lower heat dissipation on the upper side of the pre-strip than in the cooled casting tape results in a bulging of the cast pre-strip in the lateral edge areas or a local lifting of the cast pre-strip can come off the casting belt. The bulges and the lifting cause an inhomogeneous profile of the cast pre-strip and larger voids, as well as cracks and pores, which makes further processing significantly more difficult and reduces the output. The cracks occur increasingly in the edge areas of the cast pre-strip and are approximately 30 mm to 100 mm away from the outer edge. Furthermore, the bulging of the edge areas takes place at a point in time at which the cast pre-strip has not yet solidified and there is residual liquid melt on the surface. The bulging then leads to the melt shifting in the direction of the middle of the belt and thus already solidified dendrites to come to the belt surface, on which no lid has been formed up to this point in time. This leads to an open porosity, preferably in the edge areas, which leads to surface and structural defects when the tape is processed. These cracks with surface contact also lead to material defects during further processing, which is why the material has to be trimmed and profitability is reduced.

Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, eine Anlage zum horizontalen Bandgießen eines Vorbandes aus Metall zu schaffen, mit der eine verbesserte Qualität des Vorbandes und ein erhöhtes Ausbringen erreicht wird.The present invention is based on the object of creating a system for the horizontal strip casting of a pre-strip made of metal, with which an improved quality of the pre-strip and an increased output is achieved.

Diese Aufgabe wird durch eine Anlage zum horizontalen Bandgießen eines Vorbandes aus Metall mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen sind in den Ansprüchen 2 bis 9 angegebenThis object is achieved by a system for horizontal strip casting of a pre-strip made of metal with the features of claim 1. Advantageous refinements are given in claims 2 to 9

Bei einer Anlage zum horizontalen Bandgießen eines Vorbandes aus Metall wird eine verbesserte Qualität des Vorbandes und ein erhöhtes Ausbringen dadurch erreicht, dass oberhalb des erstarrenden Vorbandes ein Kühlelement zur Kühlung des erstarrenden Vorbandes von oben angeordnet ist. Durch diese verbesserte Kühlung des Vorbandes von oben wird erreicht, dass das erstarrende Vorband gleichmäßiger gekühlt wird und dies zu einer Herabsetzung von lokalen Spannungen im gegossenen Vorband führt. Diese Spannungen werden sonst durch Risse im Randbereich und/oder Verwerfungen des Stranges (U-Form) abgebaut, d.h. die Bandkanten wölben sich aufgrund der schnelleren Wärmeabfuhr und der damit verbundenen Volumenkontraktion des Gefüges an der Bandunterseite und den Bandkanten auf. Insgesamt wird eine Verbesserung der Qualität, der Oberfläche und der Geometrie eines erzeugten Vorbandes erreicht. Auch wird das Ausbringen erhöht und damit verbunden die Wirtschaftlichkeit. Das Kühlelement ist hierbei mit Abstand zu dem erstarrendem Vorband angeordnet und entfaltet seine Kühlwirkung über Aufnahme der von dem Vorband abgestrahlten Wärme. Insgesamt wird eine Ausbildung einer dichten, nicht offenporigen Oberfläche des Vorbandes erreicht.In the case of a system for horizontal strip casting of a pre-strip made of metal, the quality of the pre-strip and increased output are thereby improved achieves that a cooling element is arranged above the solidifying pre-strip for cooling the solidifying pre-strip from above. This improved cooling of the pre-strip from above ensures that the solidifying pre-strip is cooled more evenly and this leads to a reduction in local stresses in the cast pre-strip. These tensions are otherwise reduced by cracks in the edge area and / or warping of the strand (U-shape), ie the belt edges bulge due to the faster heat dissipation and the associated volume contraction of the structure on the belt underside and the belt edges. Overall, an improvement in the quality, the surface and the geometry of a pre-strip produced is achieved. The output is also increased and, associated with it, the profitability. The cooling element is arranged at a distance from the solidifying pre-strip and develops its cooling effect by absorbing the heat radiated from the pre-strip. Overall, the formation of a dense, non-open-pored surface of the sliver is achieved.

Im Zusammenhang mit der vorliegenden Erfindung wird unter einem Kühlelement ein sich über eine große Fläche erstreckender Körper verstanden, welcher über seine Fläche die durch Wärmestrahlung vom erstarrenden Vorband abgegebene Wärme aufnimmt. Bevorzugt stimmt somit die Fläche des Kühlelements im Wesentlichen mit der Oberfläche des Gießbandes beziehungsweise der Oberfläche des erstarrenden Vorbandes überein. Es ist selbstverständlich, dass hierbei aus konstruktiven Gründen in Gießrichtung gesehen die Länge des Kühlelements am Beginn und am Ende des Gießbandes kürzer ausfallen kann beziehungsweise muss. Auch kann die Breite des Kühlelements bezogen auf das Gießband in den Randbereichen schmaler ausgebildet sein, um die Kühlwirkung in den Randbereichen zu minimieren. Die Fläche des Kühlelements nimmt somit mindestens 50% vorzugsweise 75% der Oberfläche des Gießbandes beziehungsweise der Oberfläche des erstarrenden Vorbandes ein. Das Kühlelement ist bevorzugt metallisch und quaderförmig, wobei anstatt einer flachen Unterseite auch eine gewölbte Unterseite vorgesehen sein kann. Auch ist das Kühlelement bevorzugt ein Hohlkörper. Das erfindungsgemäße Kühlelement umfasst keine Kühlung des erstarrenden Vorbandes durch Spritzwasserkühlung oder Beschickung mit Gasen. Die Kühlung des erfindungsgemäßen Kühlelementes an sich kann aktiv oder passiv - bevorzugt bei einem Hohlkörper über eine Innenkühlung mit Kühlflüssigkeit - erfolgen, um die aufgenommene Wärme aus dem vergossenen Material abzuführen. Auch eine Spritzwasserkühlung einer Oberseite des Kühlelementes, die Anordnung von Kühlrippen, eine Gaskühlung oder eine Kühlung über natürliche Konvektion sind denkbar.In connection with the present invention, a cooling element is understood to mean a body extending over a large area, which over its area absorbs the heat given off by thermal radiation from the solidifying pre-strip. The surface of the cooling element thus preferably essentially coincides with the surface of the casting belt or the surface of the solidifying pre-belt. It goes without saying that, for structural reasons, the length of the cooling element, viewed in the casting direction, can or must be shorter at the beginning and at the end of the casting belt. The width of the cooling element can also be made narrower in the edge regions in relation to the casting belt in order to minimize the cooling effect in the edge regions. The surface of the cooling element thus takes up at least 50%, preferably 75% of the surface of the casting belt or the surface of the solidifying pre-strip. The cooling element is preferably metallic and cuboid, it being possible for a curved underside to be provided instead of a flat underside. The cooling element is also preferably a hollow body. The cooling element according to the invention does not include any cooling of the solidifying pre-strip by means of spray water cooling or charging with gases. The cooling of the cooling element according to the invention per se can be active or passive - preferably via in the case of a hollow body an internal cooling with cooling liquid - take place in order to dissipate the absorbed heat from the encapsulated material. Splash water cooling of an upper side of the cooling element, the arrangement of cooling fins, gas cooling or cooling via natural convection are also conceivable.

Erfindungsgemäß ist das Kühlelement als umlaufendes Kühlband oder umlaufende Kühlkette ausgebildet. Die Nutzung der beweglichen Kühlkette oder des beweglichen Kühlbandes als Kühlelement bietet den Vorteil weitgehender Regelmöglichkeiten der Wärmeabfuhr aufgrund der Drehrichtung oder der Geschwindigkeit der Kühlkette oder des Kühlbandes.According to the invention, the cooling element is designed as a circumferential cooling belt or a circumferential cooling chain. The use of the movable cold chain or the movable cooling belt as a cooling element offers the advantage of extensive control options for heat dissipation based on the direction of rotation or the speed of the cold chain or the cooling belt.

Vorzugsweise ist vorgesehen, dass das Kühlelement zumindest im Bereich einer dem erstarrenden Vorband zugewandten Unterseite aus einem Werkstoff mit einer Wärmeleitfähigkeit von größer 100 W/mK (bei 40 °C), insbesondere von größer 180 W/mK (bei 40 °C), hergestellt ist. Als Werkstoffe eignen sich besonders Aluminium, eine Aluminiumlegierung, Kupfer oder eine Kupferlegierung.It is preferably provided that the cooling element is made of a material with a thermal conductivity of greater than 100 W / mK (at 40 ° C), in particular greater than 180 W / mK (at 40 ° C), at least in the area of an underside facing the solidifying pre-strip is. Particularly suitable materials are aluminum, an aluminum alloy, copper or a copper alloy.

In einer alternativen oder zusätzlichen Ausführung ist vorgesehen, dass das Kühlelement im Bereich einer dem erstarrenden Vorband zugewandten Unterseite mit einer Oberflächenstruktur versehen ist und die Oberflächenstruktur vorzugsweise ein Pyramiden-, Rauten-, Sicken- oder Punktmuster mit einer Tiefe von 0,5 bis 5 mm im Sinne von Einprägungen oder Erhebungen aufweist. Hierdurch werden Anlagerungen von Staub an das Kühlelement vermieden oder verringert. Auch die Rückreflektion der Wärmestrahlung wird verringert. Zusätzlich wird der für eine reduzierende, inerte oder auf die chemische Zusammensetzung des vergossenen Stahls angepasste Gießatmosphäre in eine Einhausung eingebrachte Gasstrom - im Gegensatz zu einer glatten Oberfläche - gelenkt.In an alternative or additional embodiment it is provided that the cooling element is provided with a surface structure in the area of an underside facing the solidifying pre-strip and the surface structure is preferably a pyramid, diamond, bead or point pattern with a depth of 0.5 to 5 mm in the sense of embossments or elevations. This avoids or reduces the accumulation of dust on the cooling element. The back reflection of the thermal radiation is also reduced. In addition, the gas flow introduced into a housing for a reducing, inert or adapted to the chemical composition of the cast steel - in contrast to a smooth surface - is directed.

Eine weitere alternative oder zusätzliche Ausführung sieht vor, dass das Kühlelement im Bereich einer dem erstarrenden Vorband zugewandten Unterseite in Randbereichen mit einer Beschichtung versehen ist, die vorzugsweise BN, ZrO2, Al2O3 oder AIN enthält und besonders vorzugsweise ein feuerfestes Fasermaterial mit einem Al2O3-Gehalt von mehr als 50 Gew.-%, insbesondere mit einem Al2O3-Gehalt von größer gleich 72 Gew.-%, ist. Hierdurch wird eine Homogenisierung der Abkühlbedingungen über die Bandbreite erreicht und somit eine Verformung des abkühlenden Materials (U-Shape) verhindert.Another alternative or additional embodiment provides that the cooling element in the area of an underside facing the solidifying pre-strip is provided in edge areas with a coating that preferably contains BN, ZrO 2 , Al 2 O 3 or AlN and particularly preferably a fireproof fiber material with a Al 2 O 3 content of more than 50% by weight, in particular with an Al 2 O 3 content of greater than or equal to 72% by weight. This achieves a homogenization of the cooling conditions across the bandwidth and thus prevents deformation of the cooling material (U-shape).

Noch eine weitere alternative oder zusätzliche Ausführung sieht vor, dass das Kühlelement im Bereich einer dem erstarrenden Vorband zugewandten Unterseite im Querschnitt gesehen in Richtung des erstarrenden Vorband gewölbt ist und die Wölbung in einer Gießrichtung gesehen mittig zum Kühlelement ausgerichtet ist. Die neue Querschnittsform führt auch zu einer Homogenisierung der Abkühlbedingungen über die Brandbreite. Die verringerte Wärmeabfuhr in den Kantenbereichen bewirkt eine Verminderung der Poren- und Lunkerbildung in den Randbereichen.Yet another alternative or additional embodiment provides that the cooling element is arched in the area of an underside facing the solidifying pre-strip, viewed in cross section, in the direction of the solidifying pre-strip and the arching, viewed in a casting direction, is centered on the cooling element. The new cross-sectional shape also leads to a homogenization of the cooling conditions over the width of the width. The reduced heat dissipation in the edge areas reduces the formation of pores and cavities in the edge areas.

In einer alternativen oder zusätzlichen Ausführung ist vorgesehen, dass das Kühlelement in Gießrichtung gesehen in einzelne Segmente unterteilt ist, die über eine Breite des Kühlelements mindestens einen Kühlkreislauf aufweisen und die in Gießrichtung gesehen vorzugsweise eine Länge von 15 bis 150 cm aufweisen. Des Weiteren wird die Messtechnik insofern modifiziert, dass in Gießrichtung gesehen der genaue Ort der Erstarrung der Oberfläche des Vorbandes bezogen auf das Gießband durch Auswertung der Kühlwassertemperaturen einzelner Kühlsegmente bestimmt werden kann.In an alternative or additional embodiment it is provided that the cooling element is divided into individual segments viewed in the casting direction, which have at least one cooling circuit over a width of the cooling element and which, viewed in the casting direction, preferably have a length of 15 to 150 cm. Furthermore, the measurement technology is modified to the extent that, viewed in the casting direction, the exact location of the solidification of the surface of the pre-strip in relation to the casting strip can be determined by evaluating the cooling water temperatures of individual cooling segments.

Ferner sieht eine weitere alternative oder zusätzliche Ausführung vor, dass das Kühlelement in einem Abstand von 10 bis maximal 25 mm zur Oberseite des erstarrenden Vorbandes im Bereich einer Mitte des erstarrenden Vorbandes und in einer Gießrichtung gesehen in einem angemessenen Abstand von der Schmelzenaufgabe, vorzugsweise mindestens 0,5 m in Gießrichtung von der Schmelzenaufgabe entfernt, angeordnet ist. Bevorzugt ist in diesem Zusammenhang vorgesehen, dass das Kühlelement zur Einstellung eines Abstandes zwischen einer Unterseite des Kühlelements und einer Oberseite des erstarrenden Vorbandes anhebbar und absenkbar ist.Furthermore, a further alternative or additional embodiment provides that the cooling element is at a distance of 10 to a maximum of 25 mm from the top of the solidifying pre-strip in the area of a center of the solidifying pre-strip and, viewed in a casting direction, at an appropriate distance from the melt feed, preferably at least 0 , 5 m away from the melt feed in the casting direction. In this context, it is preferably provided that the cooling element can be raised and lowered to set a distance between an underside of the cooling element and an upper side of the solidifying pre-strip.

Hierdurch lässt sich tafelförmiges Vorband mit guter Geometrie und einer verbesserten Oberfläche herstellen. Insbesondere werden Kantenrisse und eine Offenporigkeit der Oberfläche des Vorbandes reduziert beziehungsweise verhindert. Dies bedeutet die Erzeugung eines Vorbandes mit geringeren Fehlern, wodurch ein Ausbringen der horizontalen Bandgießanlage erhöht und damit eine wesentliche Verbesserung von deren Wirtschaftlichkeit erreicht wird.This allows sheet-like pre-strip to be produced with good geometry and an improved surface. In particular, there are edge cracks and open pores the surface of the sliver is reduced or prevented. This means the production of a pre-strip with fewer defects, as a result of which the output of the horizontal strip caster is increased and thus a significant improvement in its economic efficiency is achieved.

Da das erzeugte Vorband beziehungsweise Warmband keine Poren im Randbereich und insgesamt wesentlich geringere Kantenfehler aufweist, wird das sonst zumindest teilweise erforderliche Besäumen des Vorbandes beziehungsweise Warmbandes deutlich reduziert und die Wirtschaftlichkeit der Herstellung erhöht.Since the pre-strip or hot strip produced has no pores in the edge area and overall significantly fewer edge defects, the otherwise at least partially required trimming of the pre-strip or hot strip is significantly reduced and the cost-effectiveness of production is increased.

Insgesamt führt die verminderte Wärmeabfuhr zu einer Verminderung von Bandverwerfungen (beispielsweise die bekannte U-Form) des erzeugten Vorbandes. Diese Bandverwerfungen entstehen unter anderem durch zu hohe lokale Wärmeabfuhr im Bereich der Bandkanten.Overall, the reduced heat dissipation leads to a reduction in strip warpage (for example the known U-shape) of the pre-strip produced. This belt warping is caused, among other things, by excessive local heat dissipation in the area of the belt edges.

Insgesamt kann mit der erfindungsgemäßen horizontalen Bandgießanlage Warmband beziehungsweise Tafelmaterial in der angestrebten Dicke von 6 bis 25 mm (gemessen in der Bandmitte) mit guter Geometrie und verbesserter Oberfläche aus hochmanganhaltigen oder hochaluminiumhaltigen oder hochsiliziumhaltigen Leichtbaustählen, Elektroblechen oder Hadfield-Stahl hergestellt werden.Overall, with the horizontal strip caster according to the invention, hot strip or sheet material in the desired thickness of 6 to 25 mm (measured in the middle of the strip) with good geometry and an improved surface can be produced from high-manganese or high-aluminum or high-silicon lightweight steels, electrical sheets or Hadfield steel.

Nachfolgend wird ein statisch angeordnetes Kühlelement anhand von Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Seitenansicht einer horizontalen Bandgießanlage mit einem statischen Kühlelement,
Figur 2a
einen vertikalen Teil-Querschnitt des Kühlelementes der Bandgießanlage aus Figur 1 in einer ersten Ausführungsform und
Figur 2b
einen vertikalen Teil-Querschnitt des Kühlelementes in einer zweiten Ausführungsform.
A statically arranged cooling element is explained in more detail below with reference to drawings. Show it:
Figure 1
a schematic side view of a horizontal strip caster with a static cooling element,
Figure 2a
a vertical partial cross-section of the cooling element of the strip caster Figure 1 in a first embodiment and
Figure 2b
a vertical partial cross-section of the cooling element in a second embodiment.

Die in Figur 1 gezeigte schematische Seitenansicht einer horizontalen Bandgießanlage 1 besteht im Wesentlichen aus einem Schmelzgefäß 2, einer Gießdüse 3, einem Gießband 4 und einer Einhausung 5 mit einem Kühlelement 6, das auch als Topcooler bezeichnet werden kann. Über das Schmelzgefäß 2 wird flüssige Schmelze S, insbesondere Metallschmelze, über eine sich hieran anschließende Gießdüse 3 auf das Gießband 4 in Form eines Stranges beziehungsweise erstarrenden Vorbandes V aufgegeben. Hierbei läuft das endlose Gießband 4 in einer Gießrichtung G um eine vordere Umlenkrolle 4a und eine hiervon in Gießrichtung G beabstandete hintere Umlenkrolle 4b um und fördert das erstarrende Vorband V somit in Gießrichtung G. Entsprechenderweise lässt sich das Gießband 4 in ein oberes Trum 4c, auf dem das Vorband V erstarrt und das sich oben zwischen den vorderen und hinteren Umlenkrollen 4a, 4b erstreckt, und ein unteres Trum 4d aufteilen, das sich unten zwischen den vorderen und hinteren Umlenkrollen 4a, 4b erstreckt. Das Gießband 4 verläuft im Bereich des oberen Trums 4c im Wesentlichen horizontal und ist im Bereich des oberen Trums 4c mittels einer Kühlvorrichtung 7 von unten gekühlt, die nahezu das gesamte Obertrum 4c unter Ausnahme kurzer Bereiche am Übergang zu den Umlenkrollen 4a, 4b von unten mit Kühlmittel, vorzugsweise Wasser, beaufschlagt. Aus Gründen der Übersichtlichkeit sind üblicher Weise vorhandene und sich in Gießrichtung G erstreckende Seitenbegrenzungselemente für das auf dem Obertrum 4c erstarrende Vorband V nicht dargestellt. Die Einhausung 5 der horizontalen Bandgießanlage 1 umschließt das erstarrende Vorband V in einem Bereich zwischen der Gießdüse 3 und einem Austritt 5b für das durcherstarrte Vorband V aus der Einhausung 5. Die Einhausung 5 ist in üblicherweise vorgesehen, um die Schmelze S in einer reduzierenden Atmosphäre, einer Inertgasatmosphäre oder einer auf die chemische Zusammensetzung des vergossenen Stahls angepassten Gießatmosphäre, zu vergießen und zu dem Vorband V erstarren zu lassen. Hierfür sind an die Einhausung 5 im Bereich eines oberen und im Wesentlichen sich horizontal erstreckenden Deckenelements 5a eine Gaszuleitung 5c und eine Gasableitung 5d angeschlossen. Die Gaszuleitung 5c befindet sich im Bereich des Austritts 5b und die Gasableitung 5d im Bereich der Gießdüse, so dass das Gas entgegen der Gießrichtung G im Gegenstrom zu dem erstarrenden Vorband V strömt.In the Figure 1 The schematic side view shown of a horizontal strip casting installation 1 essentially consists of a melting vessel 2, a casting nozzle 3, a casting belt 4 and a housing 5 with a cooling element 6, which can also be referred to as a top cooler. Via the melting vessel 2, liquid melt S, in particular metal melt, is applied to the casting belt 4 in the form of a strand or solidifying pre-strip V via an adjoining casting nozzle 3. Here, the endless casting belt 4 runs in a casting direction G around a front deflection roller 4a and a rear deflection roller 4b spaced therefrom in the casting direction G and thus conveys the solidifying pre-strip V in the casting direction G. which the sliver V solidifies and which extends at the top between the front and rear deflection rollers 4a, 4b, and dividing a lower strand 4d, which extends below between the front and rear deflection rollers 4a, 4b. The casting belt 4 runs essentially horizontally in the area of the upper run 4c and is cooled from below in the area of the upper run 4c by means of a cooling device 7, which with the exception of short areas at the transition to the deflection rollers 4a, 4b from below Coolant, preferably water, applied. For the sake of clarity, side delimitation elements which are usually present and extend in the casting direction G for the sliver V solidifying on the upper run 4c are not shown. The housing 5 of the horizontal strip caster 1 encloses the solidifying sliver V in an area between the casting nozzle 3 and an outlet 5b for the solidified sliver V from the housing 5. The housing 5 is usually provided to keep the melt S in a reducing atmosphere, an inert gas atmosphere or a casting atmosphere adapted to the chemical composition of the cast steel, to be cast and allowed to solidify to form the pre-strip V. For this purpose, a gas supply line 5c and a gas discharge line 5d are connected to the housing 5 in the area of an upper and essentially horizontally extending ceiling element 5a. The gas supply line 5c is located in the area of the outlet 5b and the gas discharge line 5d in the area of the casting nozzle, so that the gas flows counter to the casting direction G in countercurrent to the solidifying pre-strip V.

Neben der Kühlung des erstarrenden Vorbandes V mit der Kühlvorrichtung 7 von unten, die mit dem erstarrenden Vorband V über das Gießband 4 direkt in Kontakt steht, ist eine zusätzliche Kühlung des erstarrenden Vorbandes V von oben mit einem Kühlelement 6 vorgesehen. Das Kühlelement 6 ist innerhalb der Einhausung 5 und oberhalb des erstarrenden Vorbandes V angeordnet. In Gießrichtung G gesehen erstreckt sich das Kühlelement 6 von einem Bereich, der sich an die Gießdüse 3 anschließt, bis zu einem Bereich in der Nähe des Austritts 5b des Vorbandes V aus der Einhausung 5 und mindestens über die gesamte Breite des erstarrenden Vorbandes V sowie des Gießbandes 4. Das Kühlelement 6 an sich ist ein flacher quaderförmiger Hohlkörper, der von einem Kühlmittel, vorzugsweise Wasser, über eine Zuleitung 6a und Ableitung 6b im Gegenstrom zur Gießrichtung G oder in Gießrichtung G durchströmt wird. Da das Kühlelement 6 in einem vorgewählten Abstand a oberhalb des erstarrenden Vorbandes V angeordnet ist, führt das Kühlelement 6 die von dem erstarrenden Vorband V abgegebene Wärmestrahlung ab und trägt somit zur Kühlung des erstarrenden Vorbandes V von oben bei. Der Abstand a erstreckt sich hierbei lotrecht zwischen der Oberseite des erstarrenden Vorbandes V und der Unterseite 6c des Kühlelements 6.In addition to cooling the solidifying preliminary strip V from below with the cooling device 7, which is in direct contact with the solidifying preliminary strip V via the casting belt 4, additional cooling of the solidifying preliminary strip V from above with a cooling element 6 is provided. The cooling element 6 is arranged inside the housing 5 and above the solidifying pre-strip V. Viewed in the casting direction G, the cooling element 6 extends from an area that adjoins the casting nozzle 3 to an area in the vicinity of the exit 5b of the pre-strip V from the housing 5 and at least over the entire width of the solidifying pre-strip V and the Casting belt 4. The cooling element 6 itself is a flat, cuboidal hollow body through which a coolant, preferably water, flows via a supply line 6a and discharge line 6b in countercurrent to the casting direction G or in the casting direction G. Since the cooling element 6 is arranged at a preselected distance a above the solidifying sliver V, the cooling element 6 dissipates the heat radiation emitted by the solidifying sliver V and thus contributes to the cooling of the solidifying sliver V from above. The distance a extends perpendicularly between the upper side of the solidifying pre-strip V and the lower side 6c of the cooling element 6.

Für die Herstellung des Kühlelements 6 sind Werkstoffe wie Aluminium, Aluminiumlegierungen, Kupfer oder Kupferlegierung geeignet. Diese Werkstoffe haben eine Wärmeleitfähigkeit von mehr als 100 W/mK (bei 40 °C), vorzugsweise von mehr als 180 W/mK (bei 40 °C).Materials such as aluminum, aluminum alloys, copper or copper alloys are suitable for producing the cooling element 6. These materials have a thermal conductivity of more than 100 W / mK (at 40 ° C), preferably more than 180 W / mK (at 40 ° C).

Insbesondere ist zusätzlich oder alternativ vorgesehen, das Kühlelement 6 an seiner dem erstarrenden Vorband V zugewandten Unterseite 6c mit einer Oberflächenstruktur anstatt mit einer planen Oberfläche zu versehen. Während des Gießprozesses entstehen Stäube, die im Wesentlichen aus Fe-, Mn-, Zn- und Pb-Oxiden sowie geringen Mengen an C und Cl bestehen und sich in Form einer Staubschicht an der Unterseite 6c des Kühlelements 6 absetzen. Da die Staubschicht eine geringere Wärmeleitfähigkeit als das Kühlelement 6 aufweist, wird hierdurch die Kühlleistung des Kühlelements 6 herabgesetzt. Die Oberflächenstruktur der Unterseite 6c wirkt dem Absetzen der Staubschicht entgegen, so dass die Wärmeabfuhr durch die Staubschicht nicht behindert wird. Als Oberflächenstruktur kommen beispielsweise ein Pyramiden-, Rauten-, Sicken- oder Punktmuster mit einer Tiefe von 0,5 bis 5 mm im Sinne von Einprägungen oder Erhebungen in Frage. Die Tiefe von 0,5 bis 5 mm ist hierbei lotrecht auf den nicht mit einer Oberflächenstruktur versehenen Teil der Unterseite 6c des Kühlelements 6 bezogen. Durch die Oberflächenstruktur entstehen kleine Verwirbelungen der Atmosphäre in der Einhausung 5 im Bereich der Kanten der jeweiligen Oberflächenstruktur. Hierdurch wird das gleichmäßige Absetzen der Staubschicht verhindert. Zusätzlich löst sich der Staub, welcher sich in tieferen Bereichen der Oberflächenstruktur sammelt, nach Erreichen einer kritischen Dicke selbsttätig ab und wird mit dem erstarrendem Vorband V ausgefördert beziehungsweise verbrennt. Auch vergrößert die Oberflächenstruktur die Oberfläche der Unterseite 6c insgesamt und somit die Kühlfläche. Ferner bewirkt die Oberflächenstruktur eine Veränderung der Reflektionswinkel in Bezug auf die Wärmestrahlung von dem erstarrenden Vorband. Hierdurch wird die zurückgestrahlte Wärme auf das erstarrende Vorband V um mindestens 5 % verringert, wodurch eine höhere Kühlleistung des Kühlelements 6 erzielt wird. Alternativ ist es möglich, den Gasstrom durch eine Topographie mit Sicken (Längsnuten) zu lenken.In particular, it is additionally or alternatively provided that the cooling element 6 is provided on its underside 6c facing the solidifying pre-strip V with a surface structure instead of with a planar surface. During the casting process, dusts are generated which essentially consist of Fe, Mn, Zn and Pb oxides as well as small amounts of C and Cl and are deposited in the form of a layer of dust on the underside 6c of the cooling element 6. Since the dust layer has a lower thermal conductivity than the cooling element 6, the cooling performance of the cooling element 6 is reduced as a result. The surface structure of the underside 6c counteracts the settling of the dust layer, so that the heat dissipation through the dust layer is not hindered. For example, the surface structure can be used a pyramid, diamond, bead or dot pattern with a depth of 0.5 to 5 mm in the sense of embossments or elevations in question. The depth of 0.5 to 5 mm is perpendicular to the part of the underside 6c of the cooling element 6 that is not provided with a surface structure. The surface structure creates small turbulences in the atmosphere in the housing 5 in the area of the edges of the respective surface structure. This prevents the dust layer from settling evenly. In addition, the dust that collects in deeper areas of the surface structure is automatically removed after reaching a critical thickness and is conveyed out or burned with the solidifying sliver V. The surface structure also increases the surface area of the lower side 6c overall and thus the cooling surface. Furthermore, the surface structure causes a change in the angle of reflection in relation to the thermal radiation from the solidifying pre-strip. As a result, the heat radiated back onto the solidifying pre-strip V is reduced by at least 5%, as a result of which a higher cooling capacity of the cooling element 6 is achieved. Alternatively, it is possible to direct the gas flow through a topography with beads (longitudinal grooves).

In der Figur 1 ist das Kühlelement 6 als ein einzelnes sich in Gießrichtung G erstreckendes quaderförmiges Hohlelement ausgebildet.In the Figure 1 the cooling element 6 is designed as a single cuboid hollow element extending in the casting direction G.

In der Figur 2a ist ein vertikaler Teil-Querschnitt des Kühlelementes 6 der Bandgießanlage 1 in einer ersten Ausführungsform dargestellt. Anstatt einer quaderförmigen Querschnittsform mit einer planen Unterseite 6c ist die Unterseite 6c in der ersten Ausführungsform mit einer Wölbung 6d versehen. Diese Wölbung 6d ist, in Gießrichtung G gesehen und auf eine Mitte m des Kühlelementes 6 bezogen, symmetrisch. Der Abstand a zwischen der Unterseite 6c des Kühlelementes 6 an der Mitte m des Kühlelementes 6 und der Oberfläche des Vorbandes V sowie der Oberseite des Gießbandes 4 ist minimal und steigt jeweils ausgehend von der Mitte m zu der rechten und der linken Seite 6e des Kühlelementes 6 entsprechend dem Krümmungsgrad der Wölbung 6d an. Ausgehend von der Mitte m zu den Seiten 6e hin nimmt der Krümmungsgrad der Wölbung 6d vorzugsweise zu. Zusätzlich endet die Wölbung 6d nicht im Bereich der Seiten 6e des Kühlelementes 6 nach innen mit Abstand hierzu und geht in einer zu dem Gießband 4 parallelen Randabschnitt 6f über, der nicht gewölbt und somit plan ist.In the Figure 2a a vertical partial cross-section of the cooling element 6 of the strip casting installation 1 is shown in a first embodiment. Instead of a cuboid cross-sectional shape with a flat underside 6c, the underside 6c is provided with a curvature 6d in the first embodiment. This curvature 6d, viewed in the casting direction G and based on a center m of the cooling element 6, is symmetrical. The distance a between the bottom 6c of the cooling element 6 at the center m of the cooling element 6 and the surface of the pre-strip V and the top of the casting belt 4 is minimal and increases in each case starting from the center m to the right and left side 6e of the cooling element 6 corresponding to the degree of curvature of the bulge 6d. Starting from the center m towards the sides 6e, the degree of curvature of the curvature 6d preferably increases. In addition, the curvature 6d does not end inwards in the region of the sides 6e of the cooling element 6 Distance from this and merges into an edge section 6f which is parallel to the casting belt 4 and which is not arched and therefore flat.

Die Figur 2b zeigt einen vertikalen Teil-Querschnitt des Kühlelementes 6 der Bandgießanlage 1 in einer zweiten Ausführungsform. Die Ausgestaltung der Unterseite 6c des Kühlelementes 6 ist vergleichbar mit der zuvor zu Figur 2a beschriebenen. Der einzige Unterschied besteht darin, dass die Wölbung 6d jeweils bis an die Seiten 6e reicht und somit keine planen Randabschnitte 6f vorhanden sind. Auch hier nimmt, ausgehend von der Mitte m, zu den Seiten 6e hin der Krümmungsgrad der Wölbung 6d vorzugsweise zu.The Figure 2b shows a vertical partial cross-section of the cooling element 6 of the strip casting installation 1 in a second embodiment. The design of the underside 6c of the cooling element 6 is comparable to that previously Figure 2a described. The only difference is that the curvature 6d in each case extends to the sides 6e and thus there are no flat edge sections 6f. Here too, starting from the center m, the degree of curvature of the curvature 6d preferably increases towards the sides 6e.

Die in den Figuren 2a und 2b beschriebenen Querschnittsformen des Kühlelementes 6 haben gemeinsam, dass eine verringerte Wärmeabfuhr in den seitlichen Randbereichen 8 des erstarrenden Vorbandes V - in Gießrichtung G gesehen - sowie eine verbesserte Wärmeabfuhr in der Mitte M des erstarrenden Vorbandes V - in Gießrichtung G gesehen - erfolgt. Hierdurch wird einem etwaigen Aufwölben des Randbereiches 8 des Vorbandes V - sogenannter U-Shape - entgegenwirkt. Die dadurch wärmeren Randbereiche 8 des erstarrenden Vorbandes V verhindern oder verringern eine Verwerfung des Vorbandes V, welche aus einer lokalen Temperaturerhöhung der Unterseite des erstarrenden Vorbandes V aufgrund eines Abhebens des erstarrenden Vorbandes V vom Gießband 4 im Bereich der Mitte M des erstarrenden Vorbandes V resultiert. Ziel ist es, eine Verringerung der Wärmeabfuhr in den Randbereichen 8 in Verbindung mit einer Erhöhung der Wärmeabfuhr in der Mitte M des erstarrenden Vorbandes V zu erreichen. Der minimale Abstand a zwischen Kühlelement 6 und erstarrendem Vorband V, vorzugsweise im Bereich der Mitte M des erstarrenden Vorbandes V, soll 10 bis 35 mm betragen. Der maximale Abstand a, vorzugsweise in den Randbereichen 8 des erstarrenden Vorbandes V, soll 45 bis 80 mm betragen. Um dies zu erreichen, wird die Unterseite 6c des Kühlelements 6, im Querschnitt und in Gießrichtung G gesehen, in einem Bereich um seine Mitte m - wie zuvor beschrieben - nach unten gewölbt, wodurch die Strömungsgeschwindigkeit der Atmosphäre in der Einhausung 5 im Bereich der Mitte M des erstarrenden Vorbandes V steigt und die Strömungsrichtung der Atmosphäre von der Mitte M des erstarrenden Vorbandes V in Richtung der Randbereiche 8 gelenkt wird. Damit wird zusätzlich auch Staubablagerungen im Bereich der Mitte M der Unterseite 6c des Kühlelements 6 entgegengewirkt. Weiterhin positiv führt die Wölbung 6d zu einem verstärkten Absetzen des Staubes in den Randbereichen 8 des Kühlelements 6 und somit vorteilhaft zu einer verringerten Wärmeabfuhr in Randbereichen 8 des erstarrenden Vorbandes V. Außerdem wird ein Risiko, dass ein sich im Randbereich 8 aufwölbendes Vorband V das Kühlelement 6 berührt, verringert.The ones in the Figures 2a and 2b The cross-sectional shapes of the cooling element 6 described have in common that a reduced heat dissipation in the lateral edge areas 8 of the solidifying sliver V - seen in the casting direction G - and an improved heat dissipation in the center M of the solidifying sliver V - seen in the casting direction G - takes place. This counteracts any bulging of the edge area 8 of the sliver V - so-called U-shape. The resulting warmer edge areas 8 of the solidifying sliver V prevent or reduce warping of the sliver V, which results from a local temperature increase on the underside of the solidifying sliver V due to the lifting of the solidifying sliver V from the casting belt 4 in the area of the center M of the solidifying sliver V. The aim is to reduce the heat dissipation in the edge regions 8 in conjunction with an increase in the heat dissipation in the center M of the solidifying sliver V. The minimum distance a between the cooling element 6 and the solidifying sliver V, preferably in the area of the center M of the solidifying sliver V, should be 10 to 35 mm. The maximum distance a, preferably in the edge regions 8 of the solidifying pre-strip V, should be 45 to 80 mm. In order to achieve this, the underside 6c of the cooling element 6, seen in cross section and in the casting direction G, is curved downwards in an area around its center m - as described above - whereby the flow velocity of the atmosphere in the housing 5 is in the area of the center M of the solidifying sliver V increases and the direction of flow of the atmosphere is deflected from the center M of the solidifying sliver V in the direction of the edge regions 8. So that will dust deposits in the area of the center M of the underside 6c of the cooling element 6 are also counteracted. The curvature 6d also leads to an increased deposition of dust in the edge areas 8 of the cooling element 6 and thus advantageously to a reduced heat dissipation in the edge areas 8 of the solidifying pre-strip V. In addition, there is a risk that a pre-strip V bulging in the edge region 8 will damage the cooling element 6 touched, decreased.

Auch kann zusätzlich oder alternativ das Kühlelement 6 in einzelne Segmente unterteilt werden, welche über die Breite der Bandgießanlage 1 mindestens einen Kühlkreislauf aufweisen und in Gießrichtung G eine Länge von 15 bis 150 cm aufweisen. Die erstarrte Oberseite des Vorbandes V weist einen im Vergleich zur schmelzflüssigen Oberfläche höheren thermischen Emissionskoeffizienten auf, wodurch die Wärmeabfuhr durch Strahlung ansteigt. Durch die Messung der Kühlwassertemperaturen der einzelnen Segmente und die daraus berechnete aufgenommene Wärmemenge kann verlässlich festgestellt werden, in welchem Bereich oder an welchem Ort der Bandgießanlage 1 die Erstarrung der Oberfläche des erstarrenden Vorbandes V erfolgt. Hierdurch kann die Gießgeschwindigkeit für die jeweiligen Legierungen und Gießdicken optimal angepasst werden, so auch zur exakten Positionierung der Resterstarrung.In addition or as an alternative, the cooling element 6 can also be subdivided into individual segments which have at least one cooling circuit over the width of the strip casting system 1 and have a length of 15 to 150 cm in the casting direction G. The solidified upper side of the sliver V has a higher thermal emission coefficient compared to the molten surface, as a result of which the heat dissipation by radiation increases. By measuring the cooling water temperatures of the individual segments and the amount of heat absorbed calculated therefrom, it can be reliably determined in which area or at which location of the strip casting installation 1 the solidification of the surface of the solidifying pre-strip V takes place. As a result, the casting speed can be optimally adapted for the respective alloys and casting thicknesses, including for the exact positioning of the residual solidification.

Des Weiteren kann zusätzlich oder alternativ eine Beschichtung des Randbereiches 8 des Kühlelements 6 vorgenommen werden. Diese Beschichtung vermindert die Wärmeleitfähigkeit und den Wärmeübergang und/oder den thermischen Absorptionskoeffizienten des Kühlelements 6 von der Oberfläche der Beschichtung in das Kühlelement 6. Beispielsweise kann eine Beschichtung mit spiegelnder Oberfläche vorgesehen werden. Die Wärmeabfuhr kann beispielsweise durch Aufbringen einer Isolierschicht begrenzt werden. Als Beschichtung für die Anwendung bei hohen Temperaturen kommen dabei insbesondere BN (Bornitrid, hexagonal), ZrO2, Al2O3 oder AIN zum Einsatz. Als Isolierschicht in dem Randbereich 8 kommt feuerfestes Fasermaterial, vorzugsweise mit einem Al2O3-Gehalt von mehr als 50 Gew.-%, insbesondere mit einem Al2O3-Gehalt von ≥ 72 Gew.-%, in Frage. Der Wärmeübergang wird dabei im Vergleich zu den nicht beschichteten Bereichen um mindestens 5 % gesenkt.Furthermore, the edge area 8 of the cooling element 6 can additionally or alternatively be coated. This coating reduces the thermal conductivity and the heat transfer and / or the thermal absorption coefficient of the cooling element 6 from the surface of the coating into the cooling element 6. For example, a coating with a reflective surface can be provided. The heat dissipation can be limited, for example, by applying an insulating layer. In particular, BN (boron nitride, hexagonal), ZrO 2 , Al 2 O 3 or AlN are used as coatings for use at high temperatures. Fireproof fiber material, preferably with an Al 2 O 3 content of more than 50% by weight, in particular with an Al 2 O 3 content of 72% by weight, can be used as the insulating layer in the edge region 8. The heat transfer is reduced by at least 5% compared to the uncoated areas.

Wiederum zusätzlich oder alternativ kann der Abstand a des Kühlelementes 6 zur Oberseite des erstarrenden Vorbandes V im Bereich der Mitte M des Vorbandes V in einem angemessenen Abstand von der Schmelzenaufgabe, vorzugsweise mindestens 0,5 m vom Aufgabepunkt der Schmelze entfernt, auf 10 bis maximal 25 mm verringert werden, wodurch die Gasströmungsgeschwindigkeit der Atmosphäre in der Einhausung 5 im Bereich des abgesenkten Kühlelements 6 erhöht und eine Ablagerung von Oxiden und Stäuben an der Unterseite 6c des Kühlelements 6 zusätzlich vermindert wird. Die Verringerung des Abstands a des Kühlelements 6 kann dabei auch zeitverzögert durch ein Absenken des Kühlelements 6 erst nach Gießbeginn erfolgen, um Anhaftungen infolge von Angießeffekten zu vermeiden und eine bestenfalls konstante Wärmeabfuhr entlang des Vorbandes V in Gießrichtung G zu gewährleisten.Again, additionally or alternatively, the distance a of the cooling element 6 to the top of the solidifying sliver V in the area of the center M of the sliver V at an appropriate distance from the melt feed, preferably at least 0.5 m from the feed point of the melt, to 10 to a maximum of 25 mm, whereby the gas flow rate of the atmosphere in the housing 5 in the area of the lowered cooling element 6 is increased and a deposition of oxides and dust on the underside 6c of the cooling element 6 is additionally reduced. The distance a of the cooling element 6 can also be reduced with a time delay by lowering the cooling element 6 only after casting has started, in order to avoid buildup due to casting effects and, at best, to ensure constant heat dissipation along the pre-strip V in the casting direction G.

Auch eine zusätzliche oder alternative Lösung sieht vor, die Atmosphäre in der Einhausung 5 in ihrer Strömungsrichtung insofern zu ändern, dass die Atmosphäre entgegengesetzt zur Gießrichtung G eingebracht wird (Gegenstromprinzip) und somit vom Ende der Einhausung 5 im Bereich des Austritts 5b in Richtung der Gießdüse 3 strömt. Damit wird neben der Vermeidung von für die Wärmeabfuhr ungünstigen Strömungsgrenzschichten in Gießrichtung G parallel die Ablagerung einer die Wärmeabfuhr behindernden Staubschicht an der Unterseite 6c des Kühlelements 6, insbesondere im Bereich der Erstarrung der Oberfläche des erstarrenden Vorbandes V, vermindert.An additional or alternative solution also provides for changing the flow direction of the atmosphere in the housing 5 to the extent that the atmosphere is introduced opposite to the casting direction G (countercurrent principle) and thus from the end of the housing 5 in the area of the outlet 5b in the direction of the casting nozzle 3 flows. Thus, in addition to avoiding flow boundary layers in the casting direction G that are unfavorable for heat dissipation, the deposition of a layer of dust hindering heat dissipation on the underside 6c of the cooling element 6, in particular in the area of the solidification of the surface of the solidifying pre-strip V, is reduced.

Derartige horizontale Bandgießanlagen 1 eignen sich besonders zur Erzeugung von endabmessungsnahem Vorband mit Banddicken im Bereich von 6 bis 25 mm (gemessen in der Bandmitte) aus hochmanganhaltigen oder hochaluminiumhaltigen oder hochsiliziumhaltigen Leichtbaustählen, Elektroblechen oder Hadfield-Stahl. Unter einem Hadfield-Stahl wird im Allgemeinen ein Mangan-Hartstahl verstanden mit Kohlenstoff von 1 bis 1,3 Gew.-% und mit Mangan von 11 bis 13 Gew.-%.Such horizontal strip casting systems 1 are particularly suitable for producing near-net-shape pre-strip with strip thicknesses in the range from 6 to 25 mm (measured in the middle of the strip) from high-manganese or high-aluminum or high-silicon lightweight steels, electrical sheets or Hadfield steel. A Hadfield steel is generally understood to mean a manganese hard steel with carbon from 1 to 1.3% by weight and with manganese from 11 to 13% by weight.

In dem vorliegenden Ausführungsbeispiel ist das Kühlelement 6 als ein einzelnes sich in Gießrichtung G erstreckendes quaderförmiges Hohlelement ausgebildet. Grundsätzlich ist es möglich, in Gießrichtung G gesehen das Kühlelement 6 in mehrere aufeinander folgende Segmente aufzuteilen. Auch kann das Kühlelement 6 als Deckenelement 5a der Einhausung 5 ausgebildet sein.In the present exemplary embodiment, the cooling element 6 is designed as a single cuboid hollow element extending in the casting direction G. In principle, it is possible, viewed in the casting direction G, to divide the cooling element 6 into several successive segments. The cooling element 6 can also be designed as a ceiling element 5 a of the housing 5.

Erfindungsgemäß ist das Kühlelement als umlaufende Kühlkette oder umlaufendes Kühlband ausgebildet. Genauso wie das statische Kühlelement 6 sind die umlaufende Kühlkette oder das umlaufende Kühlband hierbei mit diskretem Abstand zu dem erstarrenden Vorband V angeordnet und entfalten ihre Kühlwirkung über Aufnahme der von dem Vorband V abgestrahlten Wärme. Vorzugsweise ist die Breite der Kühlkette oder des Kühlbandes etwas geringer als die Breite des gegossenen Vorbandes V und die Kühlkette oder das Kühlband werden parallel zu dem Gießband 4 und/oder in beziehungsweise entgegen der Gießrichtung G bewegt. Auf eine aktive Kühlung der Kühlkette oder des Kühlbandes mit Kühlflüssigkeit kann bei ausreichender Wärmekapazität - abhängig vom Werkstoff sowie Volumen/Masse der Kühlkette oder des Kühlbandes - verzichtet werden. Eine Abkühlung des Kühlelements 6 erfolgt bei Rückführung der Kühlkette oder des Kühlbandes auf der dem erstarrenden Vorband V abgewandten Seite. Alternativ zur Kühlung durch Wärmestrahlung kann eine Spritz- oder Sprühwasserkühlung während der Rückführung der Kühlkette oder des Kühlbandes eingesetzt werden, um die Wärme aus der Kühlkette oder dem Kühlband abzuführen. Eine Reinigung des Kühlelements 6 kann ebenso bei Rückführung der Kühlkette oder des Kühlbandes auf der dem erstarrenden Vorband V abgewandten Seite erfolgen. Das eingesetzte Kühlband kann eine Dicke zwischen 2 und 15 mm aufweisen.According to the invention, the cooling element is designed as a circumferential cooling chain or a circumferential cooling belt. Just like the static cooling element 6, the circumferential cooling chain or the circumferential cooling belt are arranged at a discrete distance from the solidifying preliminary strip V and develop their cooling effect by absorbing the heat radiated from the preliminary strip V. The width of the cold chain or the cooling belt is preferably somewhat smaller than the width of the cast pre-strip V and the cooling chain or the cooling belt are moved parallel to the casting belt 4 and / or in or against the casting direction G. Active cooling of the cold chain or the cooling belt with cooling liquid can be dispensed with if there is sufficient heat capacity - depending on the material and volume / mass of the cold chain or the cooling belt. The cooling element 6 is cooled when the cooling chain or the cooling belt is returned on the side facing away from the solidifying pre-belt V. As an alternative to cooling by thermal radiation, spray or spray water cooling can be used during the return of the cooling chain or cooling belt in order to dissipate the heat from the cooling chain or cooling belt. The cooling element 6 can also be cleaned when the cooling chain or the cooling belt is returned on the side facing away from the solidifying preliminary belt V. The cooling belt used can have a thickness between 2 and 15 mm.

BezugszeichenlisteList of reference symbols

  • 1 horizontale Bandgießanlage1 horizontal strip caster
  • 2 Schmelzgefäß2 melting vessel
  • 3 Gießdüse3 pouring nozzle
  • 4 Gießband4 casting belt
  • 4a vordere Umlenkrolle4a front pulley
  • 4b hintere Umlenkrolle4b rear pulley
  • 4c oberes Trum4c upper run
  • 4d unteres Trum4d lower strand
  • 5 Einhausung5 enclosure
  • 5a Deckenelement5a ceiling element
  • 5b Austritt5b exit
  • 5c Gaszuleitung5c gas supply line
  • 5d Gasableitung5d gas discharge
  • 6 Kühlelement6 cooling element
  • 6a Zuleitung6a supply line
  • 6b Ableitung6b derivation
  • 6c Unterseite6c bottom
  • 6d Wölbung6d bulge
  • 6e Seite6e side
  • 6f Randabschnitt6f edge section
  • 7 Kühlvorrichtung7 cooling device
  • 8 Randbereich8 border area
  • a Abstanda distance
  • m Mittem middle
  • G GießrichtungG pouring direction
  • M MitteM middle
  • S SchmelzeS melt
  • V VorbandV opening act

Claims (9)

  1. Installation for horizontal strip casting of a pre-strip (V) of metal, wherein a cooling element (6) for cooling the hardening pre-strip (V) from above is arranged above the hardening pre-strip (V) at a spacing from the hardening pre-strip, characterised in that the cooling element (6) is configured as an encircling cooling belt or cooling chain.
  2. Installation according to claim 1, characterised in that the cooling element (6) at least in the region of a lower side (6c) facing the hardening pre-strip (V) is produced from a material with a thermal conductivity greater than 100 W/mK (at 40° C), particularly greater than 180 W/mK (at 40° C).
  3. Installation according to claim 2, characterised in that the material is aluminium, an aluminium alloy, copper or a copper alloy.
  4. Installation according to one or more of claims 1 to 3, characterised in that the cooling element (6) is provided with a surface structure in the region of a lower side (6c) facing the hardening pre-strip (V) and the surface structure preferably has a pyramidal, lozenge, bead or dot pattern with a depth of 0.5 to 5 millimetres in the sense of impressions or elevations.
  5. Installation according to one or more of claims 1 to 4, characterised in that the cooling element (6) is provided in the edge zone in the region of a lower side (6c) facing the hardening pre-strip (V) with a coating which preferably contains BN, ZrO2, Al2O3 or AIN and, in particular, preferably is a refractory fibre material with an Al2O3 content of more than 50 weight %, particularly with an Al2O3 content greater than or equal to 72 weight %.
  6. Installation according to any one of claims 1 to 5, characterised in that the cooling element (6) as seen in cross-section in the direction of the hardening pre-strip (V) is arched in the region of a lower side (6c) facing the hardening pre-strip (V) and the arching as seen in casting direction (G) is oriented centrally with respect to the cooling element (6).
  7. Installation according to any one of claims 1 to 6, characterised in that the cooling element (6) as seen in casting direction (G) is divided into individual segments which have at least one cooling circuit over a width of the cooling element (6) and which as seen in casting direction (G) preferably have a length of 15 to 150 centimetres.
  8. Installation according to any one of claims 1 to 7, characterised in that the cooling element (6) is arranged at a spacing (a) of 10 to at most 25 millimetres from the upper side of the hardening pre-strip (V) in the region of a centre (M) of the hardening pre-strip (V) and, as seen in casting direction (G), at an appropriate spacing from the melt delivery, preferably at least 0.5 metres from the melt delivery.
  9. Installation according to any one of claims 1 to 8, characterised in that the cooling element (6) can be raised for setting a spacing (a) between a lower side (6c) of the cooling element (6) and an upper side of the hardening pre-strip (V).
EP18158502.7A 2017-03-01 2018-02-26 Horizontal strip casting installation with optimised cooling Active EP3369496B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017104279.2A DE102017104279A1 (en) 2017-03-01 2017-03-01 Horizontal strip caster with optimized cooling

Publications (2)

Publication Number Publication Date
EP3369496A1 EP3369496A1 (en) 2018-09-05
EP3369496B1 true EP3369496B1 (en) 2021-05-12

Family

ID=61283028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18158502.7A Active EP3369496B1 (en) 2017-03-01 2018-02-26 Horizontal strip casting installation with optimised cooling

Country Status (2)

Country Link
EP (1) EP3369496B1 (en)
DE (1) DE102017104279A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1551755A (en) 1977-06-21 1979-08-30 British Steel Corp Continuous casting of metal strip
JPH0688106B2 (en) * 1990-02-19 1994-11-09 株式会社オー・シー・シー Horizontal continuous casting method for strip-shaped metal ingot and its equipment
US5299628A (en) 1991-07-03 1994-04-05 Olin Corporation Method and apparatus for the casting of molten metal
DE4407873C2 (en) * 1994-03-04 1997-04-10 Mannesmann Ag Method and device for cooling molten steel
DE19917250B4 (en) * 1999-04-16 2004-04-29 Mannesmann Ag Method and device for uniformizing a molten metal layer
DE102008031476A1 (en) * 2007-08-16 2009-02-19 Sms Demag Ag caster
DE102012010038B4 (en) 2012-05-16 2020-11-19 Salzgitter Flachstahl Gmbh Method for producing a metal belt on a moving conveyor belt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3369496A1 (en) 2018-09-05
DE102017104279A1 (en) 2018-09-06

Similar Documents

Publication Publication Date Title
DE3855653T2 (en) Device and method for direct casting of metal strip
EP2954085B1 (en) Device for hot-dip coating a metal strip
DE4306943C2 (en) Starting head for a vertical continuous caster
EP1736257A2 (en) Fluid cooled mould for continuous casting of metals
DE3783187T2 (en) COOLING REELS FOR THE CASTING OF FAST-FREEZING METAL SHEETS.
EP3369496B1 (en) Horizontal strip casting installation with optimised cooling
EP3375544B1 (en) Horizontal strip casting installation with optimised casting belt
DE60316568T3 (en) BAND TEMPERATURE REGULATION IN A CONTINUOUS BELT PLANT
DE69029467T2 (en) Continuous casting mold and process
WO2011018076A1 (en) Casting mold
EP0972590B1 (en) Continuous casting mould
EP0208890B1 (en) Process for the continuous casting of a metal strand, especially as a band or profile, and device for carrying out the process
DE69929382T2 (en) Cooling drum for a twin-roll continuous casting plant
AT526023A1 (en) Steel continuous casting plant
DE4344954C1 (en) Conveyor belt of a continuous strip caster for casting strips of metal
DE102010046292A1 (en) Continuous casting plant and process for continuous casting
DE2318639B2 (en) Casting pipe for pouring steel into a continuous casting mold
WO2015090564A1 (en) Casting mould for casting steel melt
DE1771331A1 (en) Swimming chamber for the production of sheet glass
EP2893993B1 (en) String moulding assembly and method for the string moulding of a metal string
EP1099497A1 (en) Mould for the continuous casting of metals with a funnel shaped entry
EP1561528B1 (en) Continuous casting mould for liquid metals, particularly for steel materials
AT402266B (en) CONTINUOUS CASTING PLANT
EP2219805A1 (en) Method and device for equalizing the solidification process of a fusible metal, particularly produced by means of strand or strip casting
EP0869853B1 (en) Method for continuous thin slab metal casting

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005196

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1391845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005196

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220226

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220226

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1391845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512