EP3368192B1 - Procédé et système pour éliminer du dioxyde de soufre à partir de gaz de fumée - Google Patents

Procédé et système pour éliminer du dioxyde de soufre à partir de gaz de fumée Download PDF

Info

Publication number
EP3368192B1
EP3368192B1 EP15907450.9A EP15907450A EP3368192B1 EP 3368192 B1 EP3368192 B1 EP 3368192B1 EP 15907450 A EP15907450 A EP 15907450A EP 3368192 B1 EP3368192 B1 EP 3368192B1
Authority
EP
European Patent Office
Prior art keywords
ammonium chloride
chloride solution
solution
potassium sulfate
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15907450.9A
Other languages
German (de)
English (en)
Other versions
EP3368192A1 (fr
EP3368192A4 (fr
Inventor
Eli Gal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marsulex Environmental Technologies LLC
Original Assignee
Marsulex Environmental Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marsulex Environmental Technologies LLC filed Critical Marsulex Environmental Technologies LLC
Publication of EP3368192A1 publication Critical patent/EP3368192A1/fr
Publication of EP3368192A4 publication Critical patent/EP3368192A4/fr
Application granted granted Critical
Publication of EP3368192B1 publication Critical patent/EP3368192B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/06Preparation of sulfates by double decomposition
    • C01D5/08Preparation of sulfates by double decomposition with each other or with ammonium sulfate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/108Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention generally relates to processes, systems, and equipment capable of removing gases and particulate matter and gases from flue gases.
  • the invention particularly relates to wet flue gas desulfurization (FGD) processes, systems, and equipment with which potassium sulfate can be produced as a byproduct of sulfur dioxide removal from flue gases using an ammonia-containing solution.
  • FGD wet flue gas desulfurization
  • Gas-liquid contactors and absorbers are widely used to remove substances such as gases and particulate matter from combustion or flue gases produced by utility and industrial plants. Often of particular concern are sulfur dioxide (SO 2 ) and other acidic gases produced by the combustion of fossil fuels and various industrial operations. Such gases are known to be hazardous to the environment, and their emission into the atmosphere is regulated by clean air statutes. Methods by which these gases are removed with gas-liquid contactors and absorbers have been referred to as wet flue gas desulfurization.
  • the cleansing action produced by a gas-liquid contactor is generally derived from the passage of gas through a tower cocurrently or countercurrently to a descending liquid that cleans the gas.
  • Wet flue gas desulfurization processes have typically involved the use of calcium-based slurries or sodium-based or ammonia-based solutions.
  • Examples of calcium-based slurries are limestone (calcium carbonate; CaCO 3 ) slurries and hydrated lime (calcium hydroxide; Ca(OH) 2 ) slurries formed by action of water on lime (calcium oxide; CaO).
  • Such alkaline slurries react with the acidic gases to form precipitates that can be collected for disposal or recycling.
  • U.S. Patent No. 5,624,649 discloses a process capable of enhancing economic aspects of desulfurization processes by producing a byproduct having of greater market value than ammonium sulfate.
  • U.S. Patent No. 5,624,649 discloses reacting flue gases with ammonia to form an ammonium sulfate solution, and then reacting the ammonium sulfate solution with potassium chloride (KCI) to produce potassium sulfate (K 2 SO 4 ) in a manner than is capable of achieving a high yield of both potassium and sulfate.
  • KCI potassium chloride
  • the resulting potassium sulfate crystals may be small (for example, an average major dimension of 0.2 mm or less) and therefore somewhat difficult to filter and subsequently handle.
  • certain steps of the process involve handling a solution, slurry, or other material that may contain a high concentration of free ammonia (NH 3 ), which can lead to higher operating costs in order to contain the ammonia and/or may, under some circumstances, result in ammonia losses.
  • the potassium chloride salt is dissolved at ambient temperature to maintain the free ammonia in solution, resulting in a relatively slow dissolution rate that may be offset in part with the use of a relatively large and expensive reaction vessel.
  • WO2015/051400 discloses a method and apparatus for removing carbon dioxide, as well as SOx, from flue gas by contacting it with an ammoniated solution.
  • the present invention provides processes, systems, and equipment capable of producing potassium sulfate as a byproduct of a desulfurization process, for example, during the removal of sulfur dioxide from flue gases produced by utility and industrial facilities.
  • a process for removing sulfur dioxide from a flue gas includes absorbing the sulfur dioxide from the flue gas using an ammonia-containing solution to produce an ammonium sulfate solution that contains dissolved ammonium sulfate. At least a first portion of the ammonium sulfate solution is heated and delivered to a vessel in which the ammonium sulfate solution dissolves potassium chloride and first potassium sulfate crystals precipitate to form a slurry that contains the first potassium sulfate crystals and an ammonium chloride solution.
  • the ammonium chloride solution contains dissolved ammonium chloride and a first residual amount of the dissolved potassium sulfate.
  • the slurry is then cooled to precipitate second potassium sulfate crystals from the first residual amount of the dissolved potassium sulfate in the ammonium chloride solution, after which the first and second potassium sulfate crystals are removed from the ammonium chloride solution to yield a first residual ammonium chloride solution that contains the dissolved ammonium chloride and a second residual amount of the dissolved potassium sulfate.
  • Ammonia is then absorbed into the first residual ammonium chloride solution to precipitate third potassium sulfate crystals from the second residual amount of the dissolved potassium sulfate in the first residual ammonium chloride solution, and the third potassium sulfate crystals are removed from the first residual ammonium chloride solution to yield a second residual ammonium chloride solution that contains free ammonia and the dissolved ammonium chloride and is substantially free of the dissolved potassium sulfate.
  • Another aspect of the invention is a system configured and adapted with means for performing the steps of the process described above, the system is as defined in claim 10.
  • Technical effects of a process and system as described above preferably include the ability to reduce the complexity and/or cost of producing potassium sulfate as a byproduct of a desulfurization process.
  • the process and system are capable of producing relatively large potassium sulfate crystals that can be more easily filtered and handled, and such crystals tend to contain little if any free ammonia.
  • the process and system are further capable of dissolving potassium chloride at a sufficiently high temperature that can dramatically increase the rate of dissolution, which offers the potential advantages of using a dissolution vessel of smaller size while still achieving complete dissolution of potassium chloride and the production of a chloride-free potassium sulfate byproduct.
  • Further technical effects include the ability to reduce risks of ammonia losses by limiting the presence and amounts of free ammonia within the system and process steps.
  • FIGS. 1 and 2 are schematic representations of flue gas desulfurization systems and processes in accordance with nonlimiting embodiments of the invention.
  • FIGS. 1 and 2 schematically represent flue gas desulfurization (FGD) systems and processes adapted to remove gaseous sulfur dioxide that is entrained in a flue gas through the use of an ammonia-containing solution to produce potassium sulfate as a useful byproduct.
  • Feed chemicals utilized in the process include sulfur dioxide (present in a flue gas), potassium chloride (potash), and ammonia.
  • the potassium sulfate byproduct is of high purity, fully soluble, and in the form of large crystals that are easy to filter, handle, and use as a fertilizer. As will be discussed in reference to FIG.
  • the process and system can also produce a high concentration ammonium chloride (NH 4 Cl) solution that can be used to produce ammonium chloride crystals that are also suitable for use as fertilizer.
  • NH 4 Cl ammonium chloride
  • the process and system can be adapted to use lime or hydrated lime to recover free ammonia from the ammonium chloride solution and produce a highly concentrated calcium chloride (CaCl 2 ), which can be further processed to produce solid calcium chloride salt for various applications.
  • FIG. 1 is a schematic view of a flue gas desulfurization system 10 in accordance with a first nonlimiting embodiment of this invention.
  • an absorber 12 is supplied with a flue gas through an inlet 14, and sulfur dioxide in the flue gas is reacted within the absorber 12 to produce ammonium sulfate. More particularly, sulfur dioxide is reacted with ammonia introduced into the absorber 12 through an inlet stream 16, with the initial reaction producing ammonium sulfite ((NH 4 ) 2 SO 3 ) and/or ammonium bisulfite (NH 4 HSO 3 ).
  • FIG. 1 is a schematic view of a flue gas desulfurization system 10 in accordance with a first nonlimiting embodiment of this invention.
  • an absorber 12 is supplied with a flue gas through an inlet 14, and sulfur dioxide in the flue gas is reacted within the absorber 12 to produce ammonium sulfate. More particularly, sulfur dioxide is reacted with ammonia introduced into the absorber 12 through an inlet
  • the absorber 12 may be operated to generate an aqueous ammonium sulfate solution that contains dissolved ammonium sulfate.
  • the aqueous ammonium sulfate solution may contain about 25 to about 45 weight percent dissolved ammonium sulfate in water, with the water being present as a result of being introduced into the absorber 12 to provide a wash solution.
  • the source of the flue gas may be any process involving the combustion of fossil fuels or various industrial operations by which undesirable gases or particulate matter are produced, encompassing a wide variety of potential environmental pollutants and contaminants.
  • the ammonia introduced into the absorber 12 through the inlet stream 16 is represented in FIG. 1 as being supplied with ammonia from multiple sources, which in the particular nonlimiting embodiment includes ammonia streams 80 and 82 that draw ammonia from a pair of ammonia strippers 68 and 78, the former of which may also supplemented through a makeup ammonia stream 86. While a single inlet stream 16 is shown, it is foreseeable that ammonia and air could be supplied to the absorber 12 separately or in other combinations through any number of streams.
  • the absorber 12 may physically operate in a generally conventional manner for the purpose of contacting the flue gas and removing sulfur dioxide therefrom, such that the sulfur dioxide is reacted to form ammonium sulfate.
  • the absorption process may involve spraying the ammonia into the absorber 12 so as to provide intimate contact with the flue gas that promotes the absorption of sulfur dioxide and other acid gases, such as hydrogen chloride (HCI) and hydrogen fluoride (HF) if present in the flue gas. If hydrogen chloride and/or hydrogen fluoride are present in the flue gas, as is often the case with flue gas produced by the combustion of coal, these acidic gases may be reacted within the absorber 12 to form ammonium chloride and ammonium fluoride.
  • HCI hydrogen chloride
  • HF hydrogen fluoride
  • the scrubbed flue gas can be delivered to a stack or other suitable equipment (not shown) through an outlet 18 located at the upper end of the absorber 12.
  • the absorber 12 preferably operates at high efficiency to produce a clean flue gas that has a low sulfur dioxide content, as a nonlimiting example, about 1 to about 10 percent of the sulfur dioxide introduced in the inlet stream 14.
  • the flue gases may also be contacted with an aqueous ammonium sulfate solution introduced into the absorber 12, in which case the ammonium sulfate solution may serve as a liquid vehicle for delivering the ammonia to the absorber 12, yielding an ammonia-containing solution.
  • an ammonium sulfate solution may also serve to control the pH in the absorber 12 within a suitable range, for example, about 4 to 6 pH range, such that the solution is highly reactive for high efficient capture of sulfur dioxide.
  • a fraction 25 of the ammonium sulfate solution produced in the absorber 12 is sent to a dissolution vessel 20, to which potassium chloride (KCI) 22 is also introduced and dissolved.
  • the vessel 20 is preferably an agitated vessel or a series of vessels.
  • the ammonium sulfate solution, shown as drawn as a stream 24 from the absorber 12, is typically at an elevated temperature, a nonlimiting example being a range of about 50 to about 60°C.
  • FIG. 1 represents the temperature of the ammonium sulfate solution stream 24 as being increased by heating in a heat exchanger 26.
  • Increasing the temperature of the ammonium sulfate solution serves to increase the rate of potassium chloride dissolution in the vessel 20, thereby reducing the size of the vessel 20 required to dissolve the potassium chloride 22.
  • the potassium chloride 22 introduced into the vessel 20 dissolves and potassium sulfate precipitates within the vessel 20, resulting in the formation of a slurry 28 that is drawn from the vessel 20.
  • the slurry 28 comprises an ammonium chloride solution that contains dissolved ammonium (NH 4 + ), chloride (Cl - ), potassium (K + ), and sulfate (SO 4 - ) ions, but little if any free ammonia (NH 3 ).
  • the chloride content of the potassium sulfate precipitates in the slurry 28 can be minimized by ensuring complete dissolution of the potassium chloride.
  • the potassium sulfate precipitates that form in the slurry 28 tend to be relatively large crystals, for example, preferably having an average major dimension of at least 0.7mm, typically in the range of about 1 to 3 mm, and therefore can be readily separated from the ammonium chloride solution by filtering.
  • the potassium sulfate precipitates that form in the slurry 28 tend to be much larger than those produced by the process of U.S. Patent No. 5,624,649 as a result of the presence of free ammonia in the solution of the latter and little if any free ammonia in the ammonium chloride solution that forms in the vessel 20. In the absence of free ammonia, potassium sulfate crystals tend to be much larger due to slower precipitation.
  • potassium sulfate is relatively low compared to that of other salts in the slurry 28, it is estimated that roughly 10 to 25 percent of the total potassium sulfate produced in the dissolution vessel 20 remains in the ammonium chloride solution of the slurry 28.
  • Further precipitation of potassium sulfate can be achieved by cooling the slurry 28 with a heat exchanger 32, yielding a cooler slurry 30, as a nonlimiting example, at about 60°C or lower, such as about 20 to about 60°C. Because a saturated solution may result in scale on surfaces of the heat exchanger 32, in preferred embodiments the heat exchanger 32 is a direct contact cooler with cooling air.
  • FIG. 1 shows the cooled slurry 30 being delivered to a filter unit 34, where the large potassium sulfate crystals are separated from the ammonium chloride solution within the slurry 30 to yield a stream of potassium sulfate crystals 36 and a filtrate (mother liquor) stream 38, the latter of which is largely an ammonium chloride solution that contains dissolved ammonium chloride (i.e., chloride and ammonium ions) but also contains dissolved potassium sulfate that did not precipitate in the vessel 20 and heat exchanger 32.
  • a stream 39 of wash water can be used to wash the potassium sulfate crystals 36 and filtrate stream 38, and thereafter the potassium sulfate crystals 36 may be sent to a dryer and to storage (not shown).
  • Recovery of the potassium sulfate that remains dissolved in the filtrate stream 38 can be achieved by salting it out of the ammonium chloride solution in the filtrate stream 38 using free ammonia.
  • the free ammonia is introduced with an ammonia absorber 40 to yield a free ammonia-containing slurry 54, as discussed in more detail below.
  • the free ammonia causes precipitation of the potassium sulfate, yielding additional potassium sulfate crystals that can be removed with a second filter unit 44 to yield a second stream (filter cake) of potassium sulfate crystals 42 and a free ammonia-containing filtrate (mother liquor) stream 46, the latter of which is largely an ammonium chloride solution that contains chloride and ammonium ions but little if any potassium sulfate (for example, less than 1 weight percent).
  • the potassium sulfate crystals 42 tend to be significantly smaller than the crystals 36 previously filtered with the first filter unit 34, for example, an average major dimension of 0.2 mm or less, as a result of the presence of free ammonia in the slurry 54.
  • a small portion 48 of the filtrate stream 38 can be used to wash the potassium sulfate crystals 42.
  • the balance of the filtrate stream 38 is fed to the ammonia absorber 40, where anhydrous ammonia, introduced via a stream 50, is absorbed in the filtrate stream 38 to provide the free ammonia for precipitating the potassium sulfate, yielding the slurry 54 that contains free ammonia, as a nonlimiting example, about 5 to about 30% by weight of free ammonia.
  • FIG. 1 represents the ammonia and filtrate stream 38 within the absorber 40 as combined with a recycled slurry 52 that contains the slurry 54 drawn from the absorber 40 and the filtrate stream 46 exiting the second filter unit 44.
  • the recycled slurry 52 contains free ammonia as a result of the slurry 54 and filtrate stream 46 containing free ammonia.
  • the free ammonia concentration in the resulting solution within the absorber 40 dramatically reduces the solubility of dissolved salts (including potassium sulfate) introduced into the absorber 40 by the filtrate stream 38 and recycled slurry 52, such that most of the potassium sulfate in the solution within the absorber 40 precipitates.
  • FIG. 1 represents the optional use of a hydroclone 58 to concentrate the recycled slurry portion 56 and yield a concentrated slurry stream 60, which reduces the volume of the slurry fed to the filter unit 44.
  • the portion 48 of the filtrate stream 38 can be used to wash the resulting free ammonia-containing filtrate stream 46 from the potassium sulfate crystals 42, which are fed to a dissolution vessel 62 (discussed below). Except for a bleed stream 66, the filtrate stream 46 is returned to the absorber 40 with the recycled slurry 54 as described above.
  • FIG. 1 also shows an overflow stream 64 of the hydroclone 58 as being returned to the absorber 40. As discussed below, the bleed stream 66 of the filtrate stream 46 is sent to the ammonia stripper 68 for recovery of free ammonia.
  • Another fraction of the ammonium sulfate produced in the SO 2 absorber 12 can be sent to the dissolution vessel 62 to dissolve the washed potassium sulfate potassium sulfate crystals 42 exiting the filter unit 44.
  • the potassium sulfate crystals 42 precipitated in the absorber 40, filtered in the filter unit 44, and then dissolved in the vessel 62 represents the aforementioned roughly 10 to 25% of the total potassium sulfate that was produced in the dissolution vessel 20 but remained dissolved in the ammonium chloride solution of the slurry 28.
  • the crystals 42 In addition to being typically smaller than the crystals 36 precipitated in the vessel 20 and filtered in the filter unit 34, after being washed in the filter unit 44 the crystals 42 typically have a residual concentration of chlorides and a very low concentration of free ammonia.
  • the potassium sulfate crystals 42 are dissolved in the dissolution vessel 62 in a portion 70 of the stream 24 of ammonium sulfate solution drawn from the absorber 12.
  • the ammonium sulfate solution drawn from the absorber 12 will typically be in a temperature range of about 50 to about 60°C, and the temperature of the ammonium sulfate solution may be increased to a temperature of about 60 to about 120°C by heating the solution in the heat exchanger 26.
  • the temperature of the ammonium sulfate solution delivered to the dissolution vessel 62 is also elevated, which increases the rate of potassium sulfate dissolution in the vessel 62.
  • the resulting ammonium sulfate solution can be drawn from the vessel 62 and returned to the dissolution vessel 20 via the stream 88.
  • the ammonia stripper 68 that receives the bleed stream 66 of the filtrate stream 46 for recovery of free ammonia can be a conventional ammonia stripper, for example, by utilizing steam that is directly injected at a lower end of the stripper 68 as live steam as shown in FIG. 1 , and/or with the use of a heat exchanger reboiler (not shown).
  • the free ammonia stripped from the bleed stream 66 preferably enters a condenser separator 72, from which the resulting anhydrous ammonia can be recycled to the ammonia absorber 40 via the stream 50 as well as recycled to the absorber 12 via the stream 80. As represented in FIG.
  • aqueous ammonia from the condenser separator 72 can be used as a reflux for the ammonia stripper 68.
  • Makeup ammonia is represented as being added to the absorber 40 via the makeup ammonia stream 86. While represented as being introduced through the reflux stream 74, such that makeup ammonia is also provided to the absorber 40 via the stream 50 and to the absorber 12 via the stream 80, the makeup ammonia can be added at various different locations, including directly into the absorber 40 or directly to the stream 50 that recycles the anhydrous ammonia to the ammonia absorber 40.
  • the amount of makeup ammonia required by the system 10 should ordinarily be minimal due to very low levels of ammonia losses from the system 10. As such, the desulfurization process is capable of reducing the need to transport and store large quantities of ammonia on site.
  • the filtrate stream 46 is largely an ammonium chloride solution that contains free ammonia, chloride, and ammonium ions and little if any potassium sulfate.
  • the stripper 68 produces a stream 76 of an ammonium chloride solution with reduced free ammonia and very low concentrations of potassium and sulfate ions. Further removal of residual ammonia from this ammonium chloride solution can optionally be performed with the ammonia stripper 78 using oxidation air, for example, supplied by a compressor 84 that also supplies the air for the inlet stream 16 to the absorber 12 as shown.
  • the stream 82 of the residual ammonia stripped from the stream 66 of ammonium chloride solution can then be fed to the absorber 12 along with the oxidation air via the inlet stream 16.
  • the strippers 68 and 78 preferably operate so that essentially all of the free ammonia (e.g., 50, 80 and 82) within the system 10 is used in the absorber 12 to absorb sulfur dioxide from the flue gas 14 and/or used in the absorber 40 to precipitate the potassium sulfate crystals 42.
  • the resulting stream 90 obtained from the stripper 78 is an ammonium chloride solution that contains practically no free ammonia and may be used as a fertilizer solution or crystalized for use in a solid form.
  • FIG. 2 depicts a system 110 that offers the ability to produce calcium chloride (CaCl 2 ) as an alternative or in addition to ammonium chloride.
  • the system 110 provides this capability with the addition of an agitated dissolution vessel (or vessels) 112 in which lime (calcium oxide; CaO) and/or hydrated lime (calcium hydroxide; Ca(OH) 2 ) can be used to recover ammonia from the stream 66 of ammonium chloride solution and produce highly concentrated calcium chloride which can be further processed to produce solid calcium chloride salt for various applications.
  • FIG. 2 shows the lime or hydrated lime as being combined with a bleed stream 114 drawn from the stream 76 produced by the ammonia stripper 68.
  • the ammonium chloride reacts with the lime or hydrated lime to produce a lime solution, which is then introduced into the ammonia stripper 68 to react with the ammonium chloride solution therein and produce calcium chloride and ammonia as follows: Ca(OH) 2 + 2NH 4 Cl ⁇ CaCl 2 + 2NH 3 + 2H 2 O
  • Both free ammonia and ammonia from the ammonium chloride and lime solutions are preferably stripped in the ammonia stripper 68, such that the resulting streams 76, 114, and 116 are essentially highly concentrated calcium chloride solutions.
  • further removal of residual ammonia from the ammonium chloride solution 116 can optionally be performed with the ammonia stripper 78, such that the resulting stream 118 is essentially a highly concentrated calcium chloride solution that contains practically no free ammonia and may be used as a fertilizer solution or crystalized for use as a solid calcium chloride product.
  • Table 1 below provides an estimated material balance that is based on an ammonium sulfate solution (drawn from the absorber 12 via the stream 24) that contains 1000 grams (55.556 gmole) of water and 550 grams (4.167 molal) of dissolved ammonium sulfate.
  • the ammonium sulfate solution within the stream 24 is heated by the heat exchanger 26 to 100°C and introduced into the vessel 20, where ammonium sulfate solution dissolves most of the potassium chloride 22 introduced into the vessel 20.
  • the resulting slurry 28 contains 0.82 molal of potassium sulfate, of which 88 percent is dissolved in the ammonium sulfate solution.
  • the balance of the potassium sulfate precipitation still dissolved in the filtrate stream 38 of largely ammonium chloride (in this example, about 20 percent of the total potassium sulfate formed in the vessel 20) precipitates in the absorber 40 where 14.705 molal of free ammonia is added to the filtrate stream 38, forming the slurry 54 from which the finer potassium sulfate precipitates are separated with the filter unit 4.
  • the stream 76 of residual ammonium chloride solution contains less than 1 weight percent of the potassium and sulfate originally introduced into the system 10.
  • Table 1 The mass balance of Table 1 shows that 550 grams of ammonium sulfate consumed 625 gram potassium chloride to produce 705 grams of potassium sulfate and about 1450 grams of ammonium chloride solution containing 450 grams of dissolved ammonium chloride salts in 1000 grams of water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Claims (15)

  1. Procédé pour enlever le dioxyde de soufre d'un gaz de carneau, le procédé comprenant :
    l'absorption (12) du dioxyde de soufre d'un gaz de carneau (14) en utilisant une solution contenant de l'ammoniac pour produire une solution de sulfate d'ammonium (24) qui contient du sulfate d'ammonium dissous ;
    le chauffage (26) et la fourniture d'au moins une première partie (25) de la solution de sulfate d'ammonium (24) à un récipient (20) dans lequel la solution de sulfate d'ammonium (24) dissout le chlorure de potassium (22) et un premier précipité de cristaux de sulfate de potassium (36) pour former une bouillie (28) qui contient les premiers cristaux de sulfate de potassium (36) et une solution de chlorure d'ammonium, la solution de chlorure d'ammonium contenant du chlorure d'ammonium dissous et une première quantité résiduelle du sulfate de potassium dissous ;
    le refroidissement (32) de la bouillie (28) pour précipiter les deuxièmes cristaux de sulfate de potassium (36) de la première quantité résiduelle du sulfate de potassium dissous dans la solution de chlorure d'ammonium ;
    l'enlèvement (34) des premiers et deuxièmes cristaux de sulfate de potassium (36) de la solution de chlorure d'ammonium pour donner une première solution de chlorure d'ammonium résiduelle (38,48) qui contient le chlorure d'ammonium dissous et une deuxième quantité résiduelle du sulfate de potassium dissous ;
    l'absorption (40) de l'ammoniac (50) dans la première solution de chlorure d'ammonium résiduelle (38) pour précipiter des troisièmes cristaux de sulfate de potassium (42) de la deuxième quantité résiduelle du sulfate de potassium dissous dans la première solution de chlorure d'ammonium résiduelle (38); et
    l'enlèvement (44) des troisièmes cristaux de sulfate de potassium (42) de la première solution de chlorure d'ammonium résiduelle (38,48,60) pour donner une deuxième solution de chlorure d'ammonium résiduelle (46) qui contient de l'ammoniac libre et le chlorure d'ammonium dissous et est essentiellement exempte du sulfate de potassium dissous.
  2. Procédé selon la revendication 1, comprenant en outre l'introduction d'air (16) pendant l'absorption (12) du dioxyde de soufre du gaz de carneau (14) pour produire la solution de sulfate d'ammonium (24).
  3. Procédé selon la revendication 1, comprenant en outre le lavage (39) des premiers et deuxièmes cristaux de sulfate de potassium (36) pour enlever les chlorures qui y sont contenus.
  4. Procédé selon la revendication 1, comprenant en outre le lavage (48) des troisièmes cristaux de sulfate de potassium (42) pour donner la deuxième solution de chlorure d'ammonium (46) résiduelle.
  5. Procédé selon la revendication 1, comprenant en outre :
    la dissolution (62) des troisièmes cristaux de sulfate de potassium (42) dans une deuxième partie (70) de la solution de sulfate d'ammonium (24) ; et
    la fourniture (88) de la deuxième partie (70) de la solution de sulfate d'ammonium (24) au récipient (20) dans lequel le chlorure de potassium (22) a été dissous dans la solution de sulfate d'ammonium (24).
  6. Procédé selon la revendication 1, comprenant en outre la récupération (68) d'au moins une partie (50,80) de l'ammoniac libre de la deuxième solution de chlorure d'ammonium résiduelle (46,66) pour produire une troisième solution de chlorure d'ammonium résiduelle (76) qui contient le chlorure d'ammonium dissous et une quantité réduite d'ammoniac libre, optionnellement dans lequel la récupération (68) de la partie (50,80) de l'ammoniac libre de la deuxième solution de chlorure d'ammonium résiduelle (46,66) comprend l'injection de vapeur dans la deuxième solution de chlorure d'ammonium résiduelle (46,66).
  7. Procédé selon la revendication 6, comprenant en outre la récupération (78) d'une partie supplémentaire (82) de l'ammoniac libre de la troisième solution de chlorure d'ammonium résiduelle (76) pour produire une solution de chlorure d'ammonium exempte d'ammoniac (90) qui contient le chlorure d'ammonium dissous, optionnellement dans lequel la récupération (78) de la partie restante (82) de l'ammoniac libre de la troisième solution de chlorure d'ammonium résiduelle (76) comprend :
    la désorption de la partie restante (82) de l'ammoniac libre avec de l'air (84) ; puis
    la fourniture de la partie restante (82) et de l'air (84) pour contribuer à l'absorption (12) du dioxyde de soufre du gaz de carneau (14) pour produire la solution de sulfate d'ammonium (24).
  8. Procédé selon la revendication 1, comprenant en outre la réaction (112) de la deuxième solution de chlorure d'ammonium résiduelle (46,66) avec de la chaux vive et/ou de l'hydroxyde de calcium pour récupérer (72) au moins une partie (50,80) de l'ammoniac libre (50,80) et des ions d'ammonium qui en proviennent et produire une solution de chlorure de calcium (116), le procédé comprenant en outre optionnellement la récupération (78) de toute partie restante (82) de l'ammoniac libre de la solution de chlorure de calcium (116) pour produire une solution de chlorure de calcium exempte d'ammoniac (118).
  9. Procédé selon la revendication 1, dans lequel :
    i) les troisièmes cristaux de sulfate de potassium (42) sont plus petits que les premiers cristaux de sulfate de potassium (36) ;
    ii) les premiers cristaux de sulfate de potassium (36) ont une grande dimension moyenne d'au moins 0,7 mm, et les troisièmes cristaux de sulfate de potassium (42) ont une grande dimension moyenne de 0,2 mm ou moins ;
    iii) la première partie (25) de la solution de sulfate d'ammonium (24) est chauffée (26) à une température dans une gamme de 60 à 120°C avant d'être fournie au récipient (20) ;
    iv) la bouillie (28) est refroidie (32) à une température dans une gamme de 20 à 60°C pour précipiter les deuxièmes cristaux de sulfate de potassium (36) ;
    v) tout l'ammoniac libre utilisé dans le procédé est soit utilisé pour absorber (12) le dioxyde de soufre du gaz de carneau (14) soit absorbé (40) dans la première solution de chlorure d'ammonium résiduelle (38) pour précipiter les troisièmes cristaux de sulfate de potassium (42) ; ou
    vi) toute combinaison de i) à v) ci-dessus.
  10. Système (10, 110) pour enlever le dioxyde de soufre d'un gaz de carneau, le système (10, 110) comprenant :
    un moyen pour absorber (12) le dioxyde de soufre d'un gaz de carneau (14) en utilisant une solution contenant de l'ammoniac pour produire une solution de sulfate d'ammonium (24) qui contient du sulfate d'ammonium dissous ;
    un moyen pour chauffer (26) et fournir au moins une première partie (25) de la solution de sulfate d'ammonium (24) à un récipient (20) dans lequel la solution de sulfate d'ammonium (24) dissout le chlorure de potassium (22) et les premiers cristaux de sulfate de potassium se précipitent (36) pour former une bouillie (28) qui contient les premiers cristaux de sulfate de potassium (36) et une solution de chlorure d'ammonium, la solution de chlorure d'ammonium contenant du chlorure d'ammonium dissous et une première quantité résiduelle du sulfate de potassium dissous ;
    un moyen pour refroidir (32) la bouillie (28) pour précipiter les deuxièmes cristaux de sulfate de potassium (36) de la première quantité résiduelle du sulfate de potassium dissous dans la solution de chlorure d'ammonium ;
    un moyen pour enlever (34) les premiers et deuxièmes cristaux de sulfate de potassium (36) de la solution de chlorure d'ammonium pour donner une première solution de chlorure d'ammonium résiduelle (38,48) qui contient le chlorure d'ammonium dissous et une deuxième quantité résiduelle du sulfate de potassium dissous ;
    un moyen pour absorber (40) l'ammoniac (50) dans la première solution de chlorure d'ammonium résiduelle (38) pour précipiter les troisièmes cristaux de sulfate de potassium (42) de la deuxième quantité résiduelle du sulfate de potassium dissous dans la première solution de chlorure d'ammonium résiduelle (38) ; et
    un moyen pour enlever (44) les troisièmes cristaux de sulfate de potassium (42) de la première solution de chlorure d'ammonium résiduelle (38,48,60) pour donner une deuxième solution de chlorure d'ammonium résiduelle (46) qui contient de l'ammoniac libre et le chlorure d'ammonium dissous et est essentiellement exempte du sulfate de potassium dissous.
  11. Système (10, 110) selon la revendication 10, comprenant en outre
    un moyen pour dissoudre (62) les troisièmes cristaux de sulfate de potassium (42) dans une deuxième partie (70) de la solution de sulfate d'ammonium (24) ; et
    un moyen pour fournir (88) la deuxième partie (70) de la solution de sulfate d'ammonium (24) au récipient (20) dans lequel le chlorure de potassium (22) a été dissous dans la solution de sulfate d'ammonium (24).
  12. Système (10, 110) selon la revendication 10, comprenant en outre un moyen pour récupérer (68) au moins une partie (50,80) de l'ammoniac libre de la deuxième solution de chlorure d'ammonium résiduelle (46,66) pour produire une troisième solution de chlorure d'ammonium résiduelle (76) qui contient le chlorure d'ammonium dissous et une quantité réduite d'ammoniac libre, optionnellement le système comprenant en outre optionnellement la récupération (78) d'une partie supplémentaire (82) de l'ammoniac libre de la troisième solution de chlorure d'ammonium résiduelle (76) pour produire une solution de chlorure d'ammonium exempte d'ammoniac (90) qui contient le chlorure d'ammonium dissous.
  13. Système (10,110) selon la revendication 12, dans lequel la récupération (78) de la partie restante (82) de l'ammoniac libre de la troisième solution de chlorure d'ammonium résiduelle (76) comprend :
    la désorption de la partie restante (82) de l'ammoniac libre avec de l'air (84) ; puis
    la fourniture de la partie restante (82) et de l'air (84) pour contribuer à l'absorption (12) du dioxyde de soufre du gaz de carneau (14) pour produire la solution de sulfate d'ammonium (24).
  14. Système (10, 110) selon la revendication 10, comprenant en outre un moyen pour faire réagir (112) la deuxième solution de chlorure d'ammonium résiduelle (46,66) avec de la chaux vive et/ou de l'hydroxyde de calcium pour récupérer (72) au moins une partie (50,80) de l'ammoniac libre (50,80) et des ions d'ammonium qui en proviennent et produire une solution de chlorure de calcium (116), le système comprenant en outre optionnellement la récupération (78) de toute partie restante (82) de l'ammoniac libre de la solution de chlorure de calcium (116) pour produire une solution de chlorure de calcium exempte d'ammoniac (118).
  15. Système (10,110) selon la revendication 10, dans lequel tout l'ammoniac libre contenu dans le système (10,110) est soit utilisé pour absorber (12) le dioxyde de soufre du gaz de carneau (14) soit absorbé (40) dans la première solution de chlorure d'ammonium résiduelle (38) pour précipiter les troisièmes cristaux de sulfate de potassium (42).
EP15907450.9A 2015-10-27 2015-10-28 Procédé et système pour éliminer du dioxyde de soufre à partir de gaz de fumée Active EP3368192B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/923,730 US10046272B2 (en) 2015-10-27 2015-10-27 Process and system for removing sulfur dioxide from flue gas
PCT/US2015/057796 WO2017074347A1 (fr) 2015-10-27 2015-10-28 Procédé et système pour éliminer du dioxyde de soufre à partir de gaz de carneau

Publications (3)

Publication Number Publication Date
EP3368192A1 EP3368192A1 (fr) 2018-09-05
EP3368192A4 EP3368192A4 (fr) 2019-05-15
EP3368192B1 true EP3368192B1 (fr) 2020-05-13

Family

ID=58562150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15907450.9A Active EP3368192B1 (fr) 2015-10-27 2015-10-28 Procédé et système pour éliminer du dioxyde de soufre à partir de gaz de fumée

Country Status (7)

Country Link
US (2) US10046272B2 (fr)
EP (1) EP3368192B1 (fr)
BR (1) BR112018003324A2 (fr)
CA (1) CA3002655C (fr)
CL (1) CL2018000998A1 (fr)
PE (1) PE20181461A1 (fr)
WO (1) WO2017074347A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3019666C (fr) * 2016-04-14 2021-06-15 Veolia Water Technologies, Inc. Procede de traitement d'eau produite avec de l'oxyde de magnesium
CN110787604A (zh) * 2019-11-29 2020-02-14 湖南绿脉环保科技有限公司 一种含硫废烟气与电石渣的综合处理方法
CN111992017B (zh) * 2020-08-21 2023-03-10 中石化南京工程有限公司 一种组合式氨法脱硫生产方法及装置
CN115364646A (zh) * 2022-08-13 2022-11-22 中佰科技(云南)有限公司 一种氨再生循环利用的脱硫方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233841A (en) 1936-08-07 1941-03-04 Cons Mining & Smelting Company Process for recovery of sulphur dioxide from gases
US3927178A (en) 1972-12-08 1975-12-16 Tennessee Valley Authority Sulfur dioxide removal from stack gases
US4554151A (en) 1983-09-27 1985-11-19 Prodeco, Inc. Process for producing K3 H(SO4)2 crystals and potassium sulfate crystals
US5362458A (en) 1993-03-22 1994-11-08 General Electric Environmental Services, Incorporated Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
US5624649A (en) 1995-04-26 1997-04-29 General Electric Co. Process for reduction of sulfur dioxide emission from combustion gases combined with production of potassium sulfate
AU3842000A (en) * 1999-04-28 2000-11-17 Ebara Corporation Method and apparatus for producing fertilizer from flue gas containing sulfur oxides
US6277343B1 (en) 1999-09-23 2001-08-21 Marsulex Environmental Technologies, Llc Flue gas scrubbing method and apparatus therefor
DE10107761B4 (de) 2001-02-16 2007-08-30 Fisia Babcock Environment Gmbh Verfahren zur Entfernung von Quecksilber aus Rauchgasen
US6638342B2 (en) 2001-11-28 2003-10-28 Marsulex Environmental Technologies Process and facility for removing metal contaminants from fertilizer streams
US6803025B2 (en) 2002-12-05 2004-10-12 Frank B. Meserole Process for removing SO3/H2SO4 from flue gases
CN101428829A (zh) * 2008-11-18 2009-05-13 云南亚太环境工程设计研究有限公司 一种用低浓度烟气二氧化硫生产的硫酸钾及氯化铵钾肥
EP2322265A1 (fr) 2009-11-12 2011-05-18 Alstom Technology Ltd Système de traitement de gaz de fumée
US8329128B2 (en) 2011-02-01 2012-12-11 Alstom Technology Ltd Gas treatment process and system
US8858905B2 (en) 2011-02-16 2014-10-14 Anhui Huaihua Co. Ltd. System and process for trapping sulfur dioxide and carbon dioxide by ammonia absorption at atmospheric pressure
US8623314B2 (en) 2011-07-01 2014-01-07 Alstom Technology Ltd Chilled ammonia based CO2 capture system with ammonia recovery and processes of use
JP2016540626A (ja) * 2013-10-07 2016-12-28 リード システムズ(オーストラリア) ピーティーワイ エルティーディーReid Systems (Australia) Pty Ltd 排煙から二酸化炭素を除去する方法および装置
CN104671258A (zh) * 2015-01-22 2015-06-03 张波 锅炉烟气氨法脱硫副产硫酸铵联产复合肥方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10046272B2 (en) 2018-08-14
US10850230B2 (en) 2020-12-01
CA3002655A1 (fr) 2017-05-04
EP3368192A1 (fr) 2018-09-05
CL2018000998A1 (es) 2018-08-17
PE20181461A1 (es) 2018-09-13
US20170113183A1 (en) 2017-04-27
BR112018003324A2 (pt) 2018-09-18
WO2017074347A1 (fr) 2017-05-04
EP3368192A4 (fr) 2019-05-15
US20180353899A1 (en) 2018-12-13
CA3002655C (fr) 2020-06-02

Similar Documents

Publication Publication Date Title
US5624649A (en) Process for reduction of sulfur dioxide emission from combustion gases combined with production of potassium sulfate
US10850230B2 (en) Process and system for removing sulfur dioxide from flue gas
AU2017200643B2 (en) Regenerative recovery of sulfur dioxide from effluent gases
CN105854560B (zh) 烟气脱硫脱硝的方法
CA2343640C (fr) Procede servant a controler une fuite d'ammoniac lors de la reduction d'une emission de dioxyde de soufre
WO2003103803A2 (fr) Procede de desulfuration de gaz de carneau et appareil d'elimination d'oxydes d'azote
US4491461A (en) Method of desulfurization of flue gases
KR100364652B1 (ko) 석회암을사용하는습식배연가스탈황법
KR101937801B1 (ko) 배기가스로부터 이산화탄소 및 황산화물을 제거하는 방법 및 제거 장치
CN105233647B (zh) 一种硫化铵溶液脱硫脱硝的方法
CN111603915A (zh) 一种烟气净化工艺
CA2467845C (fr) Procede et installation permettant d'extraire des contaminants metalliques de flux de fertilisants
US5486342A (en) Clear liquor scrubbing of sulfur dioxide with forced oxidation in flue gas desulfurization system
US4231995A (en) Ammonia double-alkali process for removing sulfur oxides from stack gases
KR20230096892A (ko) 황산나트륨을 함유하는 산업부산물로부터 탄산수소나트륨의 제조장치
US4167578A (en) Method for removing sulfur and nitrogen compounds from a gas mixture
GB2106489A (en) Process for removal of sulphur oxides from waste gases
CN116328527A (zh) 二氧化碳回收方法
CN110813089A (zh) 用于锌冶炼系统的亚硫酸锌清液循环脱硫装置、方法及应用
JPS59193119A (ja) 湿式石灰石膏法排煙脱硫装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190412

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 53/50 20060101ALI20190408BHEP

Ipc: B01D 53/14 20060101AFI20190408BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20200311

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015052937

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1269502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200914

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200913

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1269502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015052937

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201028

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201028

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210924

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015052937

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503