EP3367399B1 - Ensemble à haute tension - Google Patents

Ensemble à haute tension Download PDF

Info

Publication number
EP3367399B1
EP3367399B1 EP17158498.0A EP17158498A EP3367399B1 EP 3367399 B1 EP3367399 B1 EP 3367399B1 EP 17158498 A EP17158498 A EP 17158498A EP 3367399 B1 EP3367399 B1 EP 3367399B1
Authority
EP
European Patent Office
Prior art keywords
conservator
high voltage
compartment
voltage assembly
compressible fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17158498.0A
Other languages
German (de)
English (en)
Other versions
EP3367399A1 (fr
Inventor
Tobias Stirl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Priority to EP17158498.0A priority Critical patent/EP3367399B1/fr
Priority to ES17158498T priority patent/ES2808276T3/es
Publication of EP3367399A1 publication Critical patent/EP3367399A1/fr
Application granted granted Critical
Publication of EP3367399B1 publication Critical patent/EP3367399B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling

Definitions

  • the present invention relates to a high voltage assembly.
  • Known high voltage assemblies like oil immersed power transformers or oil immersed reactors comprise a conservator which is adapted to receive an expansion volume of an insulation liquid.
  • the insulation liquid surrounds at least partly an active component in a compartment.
  • JP H10 149922 A discloses an oil-immersed electric apparatus
  • JP 2002 184625 a nitrogen-sealed oil-filled transformer
  • AT 96108 B showing an oil-immersed transformer with a laterally disposed expansion vessel.
  • a hermetically sealed high voltage assembly is defined in claim 1.
  • the high voltage assembly comprises: a hermetically sealed compartment delimited by rigid walls, wherein the compartment contains an active component at least partly surrounded by an insulation liquid; a hermetically sealed conservator delimited by rigid walls, wherein a level of insulation liquid inside the conservator is at or below a level of e.g. a cover of the compartment; and a liquid connection between the conservator and the compartment.
  • an area above the cover of the compartment can be used for other purposes or simply remains free.
  • the proposed high voltage assembly may be constructed to present a more compact design in the sense that single components can be arranged close together. Therefore, it is established a degree of freedom with regard to the location of the conservator.
  • a reception volume of the conservator is equal to or greater than one fifth, especially one quarter, and especially one third of a volume of the insulation liquid in the high voltage assembly.
  • the proposed volume of the conservator provides a sufficient fluid cushion for the expanding insulation liquid with a flexibility regarding the position of the conservator. This degree of freedom allows further components, for example the bushings, to be placed at a technically favorable position.
  • the dimensions of the high voltage assembly may increase but can be favorably adapted.
  • the proposed high voltage assembly can be equipped with an oil-to-air cooler or an oil-to-water cooler.
  • the hermetical seal of the high voltage assembly prevents ageing of the paper insulation as moisture and oxygen are kept away from the insulation liquid.
  • the conservator is partly filled with a compressible fluid in direct contact with the insulation liquid.
  • a compressible fluid in direct contact with the insulation liquid.
  • operating conditions of the compressible fluid comprise an absolute pressure of the compressible fluid between a lower pressure limit and an upper pressure limit. These operating conditions allow operating the conservator with under pressure of the compressible fluid and therefore provide a limit for the size of the conservator.
  • the conservator comprises a pressure relief valve which is adapted to discharge the compressible fluid to the environment if an absolute pressure of the compressible fluid rises above the upper pressure limit.
  • the conservator comprises an intake unit which is adapted to supply the conservator with the compressible fluid if an absolute pressure of the compressible fluid drops below the lower pressure limit. This ensures safe operation of the high voltage assembly by limiting the pressure of the compressible fluid.
  • the supplied fluid is dry air or nitrogen originating from a fluid reservoir.
  • the proposed supplied fluid advantageously does not negatively interfere with the insulation liquid.
  • the conservator is arranged besides the compartment.
  • this embodiment provides a favorable position for the conservator as an area above the cover is not used for the conservator.
  • the conservator can be arranged in direct neighborhood to the compartment.
  • a level of insulation liquid inside the conservator is above a level of the cover of the compartment.
  • the conservator is arranged above the compartment.
  • Figures 1 to 5 show schematically a hermetically sealed high voltage assembly, respectively.
  • FIG. 1 shows schematically a hermetically sealed high voltage assembly 2.
  • the high voltage assembly 2 can be a high voltage transformer, a high voltage reactor or a vacuum-type tap changer.
  • the high voltage assembly 2 comprises a hermetically sealed compartment 4 delimited by rigid walls, hermetically sealed conservator 6 and a liquid connection 8 connecting the conservator 6 with the compartment 4.
  • the liquid connection 8 serves to exchange insulation liquid 10 surrounding at least partly an active component 12 in the compartment 4.
  • the active component 12 comprises a core and windings.
  • Most of the insulation liquid 10 resides inside the compartment 4 and the conservator 6 is intended to receive an expansion volume of the insulation liquid 10 as the insulation liquid 10 is subject to temperature differences which results in changes of the volume of the insulation liquid 10.
  • the volume V4 of the compartment 4 is split into a number of five volume parts V4_1 to V4_5.
  • the volume V4 approximately reflects a volume of the whole insulation liquid 10 in the high voltage assembly 2 including the insulation liquid 10 residing in the conservator 6 and the liquid connection 8.
  • a reception volume V6 of the conservator 6 is equal or greater than one fifth especially one quarter, and especially one third of the volume V4 of the insulation liquid 10 in the whole high voltage assembly 2.
  • the reception volume V6 is an inner volume for receiving the insulation liquid 10 and a compressible fluid.
  • the reception volume V6 of the conservator 6 is smaller than one third of the volume V4 of the insulation liquid 10.
  • FIG. 2 shows schematically the hermetically sealed high voltage assembly 2 according to an embodiment.
  • the conservator 6 is partly filled with the compressible fluid 14.
  • the compressible fluid 14 provides a fluid cushion in the sense that when temperature of the insulation liquid 10 rises the insulation liquid 10 expands. This expansion of the insulation liquid 10 results in the insulation liquid 10 flowing from the compartment 4 to the conservator 6. Therefore, the volume of the compressible fluid 14 in the conservator 6 decreases and the pressure of the compressible fluid 14 increases.
  • the compressible fluid 14 is in direct contact with the insulation liquid 10.
  • Examples for the compressible fluid 14 are dried air or nitrogen.
  • the conservator 6 is partly filled with the compressible fluid 14.
  • the conservator 6 comprises a pressure relief valve 16 for discharging the compressible fluid 14 to the environment if an absolute pressure of the compressible fluid 14 rises above the upper pressure limit, for example 1.8 bar, especially above 1.6 bar, and especially above 1.5 bar. Furthermore, the conservator 6 comprises an intake unit 18 being adapted to supply the conservator 6 with fluid if an absolute pressure of the compressible fluid 14 drops below the lower pressure limit, for example 0.9 bar, especially below 0.8 bar, and especially below 0.6 bar.
  • the intake unit 18 comprises a valve 20 which is adapted to open a liquid connection between the conservator 6 and a fluid reservoir 22 if the absolute pressure of the compressible fluid 14 inside the conservator 6 drops below the lower pressure limit, for example 0.9 bar, especially below 0.8 bar, and especially below 0.6 bar.
  • the fluid reservoir 22 contains dry air or nitrogen with a pressure above the upper pressure limit, for example above 0.9 bar, especially above 0.8 bar, and especially above 0.6 bar.
  • a pressure sensor 24 determines a pressure P of the compressible fluid 14 in the conservator 6.
  • a level sensor 26 determines a level L of insulation liquid 10 inside the conservator 6.
  • a control unit 28 monitors the pressure P and/or the level L and determines a failure F in dependence on the pressure P and/or the level L.
  • the compartment 4 comprises a ground 30 and a cover 32.
  • a Buchholz relay 34 is arranged above a level L32 of the cover 32.
  • the conservator 6 is arranged besides the compartment 4.
  • the conservator 6 does not necessarily occupy an area 36 above the cover 32 of the compartment 4.
  • the level L of insulation liquid 10 inside the conservator 6 remains below the level L32 of the cover 32.
  • the conservator 6 and the compartment 4 share a joint wall 38.
  • the conservator 6 and the compartment 4 can be also embodied as separate containers.
  • An opening 40 of the liquid connection 8 is arranged at a lower part of the conservator 6 to inhibit compressible fluid 14 from flowing into the compartment 4.
  • An opening 42 of the liquid connection 8 is arranged at a lower part of the compartment 4. In another embodiment the opening 42 is arranged at the middle or upper part of the compartment 4.
  • Figure 3 is shows schematically an embodiment of the high voltage assembly 2. With difference to figure 2 the conservator 6 is arranged inside the compartment 4.
  • Figure 4 shows schematically an example of the high voltage assembly 2. With difference to figure 2 the conservator 6 is arranged above the compartment 4.
  • Figure 5 shows schematically an embodiment of the high voltage assembly 2. With difference to figure 2 the conservator 6 is arranged below the compartment 4.
  • All embodiments of the high voltage assembly 2 comprise a joint wall 38 shared between the conservator 6 and the compartment 4.
  • the conservator 6 can be also arranged separately inside or outside the compartment 4 without having such a joint wall 38.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Claims (9)

  1. Ensemble à haute tension fermé hermétiquement (2) comprenant :
    - un compartiment fermé hermétiquement (4) délimité par des parois rigides, dans lequel le compartiment (4) contient un composant actif (12) au moins partiellement entouré par un liquide d'isolation (10) ;
    - un conservateur fermé hermétiquement (6) délimité par des parois rigides, dans lequel un niveau (L) de liquide d'isolation (10) à l'intérieur du conservateur (6) est au niveau ou en-dessous d'un niveau (L32) d'un couvercle (32) du compartiment (4) ; et
    - une connexion de liquide (8) entre le conservateur (6) et le compartiment (4), dans lequel le conservateur (6) est rempli partiellement avec un fluide compressible (14) en contact direct avec le liquide d'isolation (10), dans lequel l'ensemble à haute tension est adapté de sorte que des conditions de fonctionnement du fluide compressible (14) comprennent une pression absolue du fluide compressible (14) entre une limite de pression inférieure et une limite de pression supérieure, et en ce que le conservateur (6) comprend une unité d'entrée (18) qui est adaptée pour alimenter le conservateur (6) avec le fluide compressible si une pression absolue du fluide compressible (14) descend en-dessous de la limite de pression inférieure.
  2. Ensemble à haute tension (2) selon la revendication 1, dans lequel un volume de réception (V6) du conservateur (6) est égal à ou supérieur à un cinquième, en particulier un quart, et en particulier un tiers d'un volume (V4) du liquide d'isolation (10) dans l'ensemble à haute tension (2).
  3. Ensemble à haute tension (2) selon l'une des revendications précédentes, dans lequel le compartiment (4) et le conservateur (6) ont une paroi jointe (38).
  4. Ensemble à haute tension (2) selon l'une des revendications précédentes, dans lequel le conservateur (6) comprend une soupape de sécurité (16) qui est adaptée pour évacuer le fluide compressible (14) dans l'environnement si une pression absolue du fluide compressible (14) dépasse la limite de pression supérieure.
  5. Ensemble à haute tension (2) selon la revendication 1, dans lequel le fluide compressible est de l'air sec ou de l'azote provenant d'un réservoir de fluide (22).
  6. Ensemble à haute tension (2) selon l'une des revendications précédentes, dans lequel le conservateur (6) est disposé à côté du compartiment (4).
  7. Ensemble à haute tension (2) selon les revendications 1 à 5, dans lequel le conservateur (6) est disposé à l'intérieur du compartiment (4).
  8. Ensemble à haute tension (2) selon les revendications 1 à 5, dans lequel le conservateur (6) est disposé en-dessous du compartiment (4).
  9. Ensemble à haute tension (2) selon l'une des revendications précédentes, dans lequel la limite de pression inférieure est 0,9 x 105 Pa (0,9 bar) et la limite de pression supérieure est 1,8 x 105 Pa (1,8 bar).
EP17158498.0A 2017-02-28 2017-02-28 Ensemble à haute tension Active EP3367399B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17158498.0A EP3367399B1 (fr) 2017-02-28 2017-02-28 Ensemble à haute tension
ES17158498T ES2808276T3 (es) 2017-02-28 2017-02-28 Conjunto de alta tensión

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17158498.0A EP3367399B1 (fr) 2017-02-28 2017-02-28 Ensemble à haute tension

Publications (2)

Publication Number Publication Date
EP3367399A1 EP3367399A1 (fr) 2018-08-29
EP3367399B1 true EP3367399B1 (fr) 2020-07-08

Family

ID=58266842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17158498.0A Active EP3367399B1 (fr) 2017-02-28 2017-02-28 Ensemble à haute tension

Country Status (2)

Country Link
EP (1) EP3367399B1 (fr)
ES (1) ES2808276T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3964803A1 (fr) * 2020-09-04 2022-03-09 Siemens Gamesa Renewable Energy A/S Système de détection des gaz défectueux pour un transformateur haute tension rempli de liquide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT96108B (de) 1922-03-02 1924-02-25 Janka A Spol Spolecnost S R O Öltransformator mit seitlich angeordnetem Ausdehnungsgefäß.
GB199535A (en) * 1922-04-12 1923-06-28 Gen Electric Improvements in and relating to oil-cooled x-ray apparatus
GB322534A (en) * 1928-09-08 1929-12-09 John Bentley Hansell Improvements in or relating to oil tanks for oil-immersed electrical apparatus such as transformers
JPH0378216A (ja) * 1989-08-21 1991-04-03 Daihen Corp 油入変圧器
JPH10149922A (ja) * 1996-11-19 1998-06-02 Toshiba Fa Syst Eng Kk 油入電気機器
JP2002184625A (ja) * 2000-12-15 2002-06-28 Daihen Corp 窒素密封形油入式変圧器
WO2007009961A1 (fr) * 2005-07-17 2007-01-25 Siemens Aktiengesellschaft Appareil electrique ferme de maniere etanche
ATE475974T1 (de) * 2008-04-15 2010-08-15 Gatron Gmbh VERFAHREN ZUR REDUZIERUNG DER LUFTZUFÜHRUNG AUS DER ATMOSPHÄRE IN DAS AUSDEHNUNGSGEFÄß VON MIT ISOLIERFLÜSSIGKEIT GEFÜLLTEN HOCHSPANNUNGSANLAGEN UND VORRICHTUNG ZUR DURCHFÜHRUNG DES VERFAHRENS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3367399A1 (fr) 2018-08-29
ES2808276T3 (es) 2021-02-26

Similar Documents

Publication Publication Date Title
CA2726873C (fr) Transformateur de puissance avec commutateur a gradins
US7847189B2 (en) Electrical Component
US7902951B2 (en) Hermetically sealed electrical apparatus
US10629356B2 (en) Transformer with temperature-dependent cooling function
JPH06105654B2 (ja) 電気機器
EP3367399B1 (fr) Ensemble à haute tension
FI108087B (fi) Muuntaja
US11212931B2 (en) Subsea installation
US20170025213A1 (en) Take-up device for the take-up of insulating fluid and housing having the take-up device
EP3404678B1 (fr) Ensemble à haute tension et procédé de fonctionnement de l'ensemble à haute tension
EP3109871B1 (fr) Agencement de transformateur pour contrôler la pression dans un transformateur rempli de liquide
JP5209581B2 (ja) 変圧器
CN109478458B (zh) 高压组件和操作该高压组件的方法
US10014140B2 (en) Medium voltage circuit breaker for the use in high pressure environments
WO2021064098A1 (fr) Compensateur de pression et ensemble comprenant une installation sous-marine et un tel compensateur de pression
JP2007317931A (ja) 電磁誘導機器
US20150325387A1 (en) On-load tap changer with connection to oil reservoir of a transformer
JP2008270330A (ja) 電気機器
CN104282416A (zh) 具有微正压特性的金属波纹膨胀储油柜
JPH0922822A (ja) 油入電器の油劣化防止装置
JP2002184625A (ja) 窒素密封形油入式変圧器
JP2017183394A (ja) 油入電気機器
JP2017208467A (ja) ガス絶縁型負荷時タップ切換装置
JPH02257607A (ja) 油入電気機器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20190228

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20190321

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1289352

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017019211

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1289352

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2808276

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017019211

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230119

Year of fee payment: 7

Ref country code: ES

Payment date: 20230301

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 7

Ref country code: GB

Payment date: 20230121

Year of fee payment: 7

Ref country code: DE

Payment date: 20230119

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708