EP3365615B1 - Procédé et dispositif pour faire fonctionner un circuit frigorifique comprenant un sublimateur pour du dioxyde de carbone utilisé comme fluide frigorigène - Google Patents

Procédé et dispositif pour faire fonctionner un circuit frigorifique comprenant un sublimateur pour du dioxyde de carbone utilisé comme fluide frigorigène Download PDF

Info

Publication number
EP3365615B1
EP3365615B1 EP16797721.4A EP16797721A EP3365615B1 EP 3365615 B1 EP3365615 B1 EP 3365615B1 EP 16797721 A EP16797721 A EP 16797721A EP 3365615 B1 EP3365615 B1 EP 3365615B1
Authority
EP
European Patent Office
Prior art keywords
sublimator
carbon dioxide
refrigerant path
cross
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16797721.4A
Other languages
German (de)
English (en)
Other versions
EP3365615A1 (fr
Inventor
Robin Langebach
Ullrich Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Original Assignee
Technische Universitaet Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden filed Critical Technische Universitaet Dresden
Publication of EP3365615A1 publication Critical patent/EP3365615A1/fr
Application granted granted Critical
Publication of EP3365615B1 publication Critical patent/EP3365615B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Definitions

  • the invention relates to a method for operating a refrigeration cycle with carbon dioxide as a refrigerant, wherein the refrigeration takes place below the triple pressure in a sublimator.
  • the invention further relates to a device for carrying out the aforementioned method.
  • Carbon dioxide also referred to as R744 or CO 2
  • R744 or CO 2 is an ideal and widely used natural refrigerant, which is used in the temperature range up to about -40 ° C.
  • the advantageous properties of carbon dioxide as a refrigerant are, in particular, that it is non-combustible and, under normal conditions, also non-toxic.
  • the triple point of carbon dioxide is about -56 ° C and 5.2 bar. Below the triple temperature, it is in solid or gaseous state.
  • the conventional cold vapor process with other refrigerants usually runs in the two-phase region of the gaseous and liquid state of the refrigerant.
  • the pressure in the circuit In order to achieve temperatures below -56 ° C with CO 2 as refrigerant, the pressure in the circuit must be lowered below the triple point, whereby at least partially carbon dioxide must be used as a solid.
  • the usable temperature level can be made accessible up to about -78 ° C or even lower.
  • the evaporator Compared to the conventional cold vapor process, when the sublimation line falls below the triple pressure, the evaporator becomes a sublimator. Due to the sublimation of the carbon dioxide from the solid into the gaseous phase, the useful cooling is created while absorbing heat.
  • a chiller refrigeration system which discloses a servo-controlled evaporator pressure control valve for a refrigeration system.
  • the DE 27 48 796 A1 discloses a method and apparatus for cooling materials using stored cryogenic cooling, particularly using carbon dioxide as the refrigerant.
  • the object of the invention is therefore to provide a method for operating a circuit with a sublimator with carbon dioxide as a refrigerant and a device available that largely prevents or reduces the problem of forming blockages or deposits of solid carbon dioxide in the sublimator.
  • the object of the invention is achieved in particular by a method for operating a refrigeration cycle with a sublimator for carbon dioxide as a refrigerant, wherein the refrigeration cycle is operated below the triple point.
  • the special feature is that in the sublimator the sublimation line of the carbon dioxide is exceeded below the triple point.
  • a cleaning of the sublimator of blockages with solid CO 2 or deposits of solid CO 2 by a targeted reduction of the cross section of the refrigerant path after the sublimator.
  • the pressure in the sublimator is raised above the triple pressure and the solid carbon dioxide is converted into liquid carbon dioxide.
  • the blockages and deposits of solid CO 2 are dissolved.
  • the refrigerant path is at least partially increased again and distributed the liquid carbon dioxide in the sublimator by the pressure drop and after falling below the Tripeldruckes converted back into solid or gaseous carbon dioxide.
  • the change in the cross section of the refrigerant path is carried out in dependence on control or regulating signals.
  • the invention is advantageously further developed in that the sublimator is filled discontinuously with liquid carbon dioxide above the triple pressure.
  • solid and gaseous carbon dioxide is produced in a uniform distribution in the sublimator.
  • the filling of the sublimator with liquid carbon dioxide is preferably carried out when the cleaning of the sublimator of solid carbon dioxide is carried out by cross-sectional constriction after the sublimator.
  • the reduction of the cross section of the refrigerant path is carried out until the refrigerant path is completely closed, in which case a pressure increase associated with the liquefaction of the solid carbon dioxide can be achieved.
  • the reduction of the cross section of the refrigerant path takes place as a function of a pressure loss limit value above the sublimator.
  • the reduction of the cross section of the refrigerant path takes place as a function of the compressor suction pressure.
  • a further advantage is the reduction of the refrigerant path as a function of a limit value for the temperature spread, which can be measured on the air side or on the secondary side via the sublimator.
  • the reduction of the cross section of the refrigerant path can be determined as a function of a limit value for the temperature spread on the refrigerant side.
  • the reduction of the cross section of the refrigerant path after a predetermined time interval in the manner of a control is achieved.
  • a particularly advantageous embodiment of the invention results from the fact that the reduction of the cross section of the refrigerant path in response to a combination of several of the aforementioned control and regulation signals.
  • the reduction of the cross section of the refrigerant path can be carried out according to an advantageous embodiment of the invention between 5 and 30 seconds.
  • the object of the invention is further achieved by a device with which the above-described method can be realized, which is characterized in that a shut-off device for changing the cross section of the refrigerant path is arranged after the sublimator in the refrigerant path. Furthermore, at least one sensor and a control and regulating device for controlling and regulating the shut-off device are provided for regulation and control.
  • An advantage of the invention is in particular that it is now possible to dissolve solid carbon dioxide deposits in the designed as a sublimator heat exchanger by a cleaning procedure during operation or distribute. By temporally minimal delays of the dissolution process, a substantially continuous cycle operation of a carbon dioxide cycle can be ensured below the triple point with constant heat transfer performance.
  • the sublimator is continuously supplied with carbon dioxide from the circulation by the upstream throttling element of the circuit.
  • the short-term supply of the sublimator with CO 2 at higher pressure can also be realized from another reservoir, for example from other plant zones, which are at a higher pressure level due to the process.
  • shut-off device for example in the form of a solenoid valve
  • the pressure in the sublimator rises. If the pressure briefly exceeds the triple pressure of the carbon dioxide of 5.18 bar, all carbon dioxide solids components dissolve immediately due to physical reasons and liquid carbon dioxide forms. Thereafter, the shut-off can be completely or partially reopened, whereby the liquid esters are distributed by the pressure drop and converted back to solid or gaseous CO 2 and fed to the main stream.
  • the shut-off device after the sublimator should just be opened so far that the pressure in the sublimator during the filling is still above the triple pressure.
  • the sublimator is filled with refrigerant, similar to a conventional evaporator.
  • the shut-off device is selectively opened after the sublimator and the pressure in the sublimator is lowered below the triple pressure.
  • a preferably homogeneous distribution of solid and gaseous CO 2 is formed in the sublimator, which can be used for providing the cold.
  • the cleaning procedure preferably takes only a few seconds, so that the effect of the short-term increase in temperature and pressure on the continuous provision of cooling in the sublimator is extremely low.
  • Control technology is the start signal for the cleaning procedure, ie the operation of the shut-off device for reducing or blocking the cross-section of the refrigerant path, by different sizes alone or in combination triggered.
  • Another advantage of the invention is that with the downstream Shut-off the pressure level in the sublimator can be maintained until complete filling with preferably liquid CO 2, the pressure above the triple conditions and then a rapid pressure drop below the triple conditions is possible.
  • the sublimator is then ideally filled evenly with solid and gaseous CO 2 .
  • control and regulating device is regulated via a pressure loss limit value above the sublimator.
  • Further control and regulation parameters are the triggering of the reduction of the cross section of the refrigerant path, the compressor suction pressure, a limit for the temperature spread or the outlet temperature on the air side, as well as a limit value for the temperature spread or the exit temperature on the refrigerant side and the absolute pressure at different points in the sublimator itself.
  • the cleaning procedure can be triggered, for example, after a predetermined time interval.
  • the cleaning procedure has a special technical condition, especially with sublimators in multi-pass design. Here, even with blocking or unwanted cross-sectional narrowing of individual passes, there is no other way to free the sublimator of its blockages. However, in order to dissolve and distribute individual solid carbon dioxide deposits or to ensure a homogeneous filling, the use of the cleaning procedure is also advantageous in the case of a passable design of the heat exchanger as a sublimator.
  • the concept of the invention consists in briefly triggering an increase in pressure above the triple pressure of carbon dioxide by means of an additional shut-off device in the flow direction downstream of the sublimator according to predetermined control and / or control signals and dissolving or distributing carbon dioxide solid matter deposits formed thereby.
  • the short-term desired increase in pressure can alternatively or cumulatively by supplying CO 2 from a reservoir with higher Pressure level done.
  • Fig. 1 is a phase diagram for carbon dioxide shown schematically.
  • the state of aggregation of CO 2 depends not only on its temperature but also on the pressure.
  • all three phases are fixed (f), liquid (fl) and gaseous (g) in equilibrium.
  • the triple pressure is 581 kPa and thus far above atmospheric pressure, the associated temperature is approximately - 56 ° C.
  • CO 2 can be present under normal conditions only as gas or in solid state as dry ice.
  • dry ice passes directly from solid (f) to gaseous (g), sublimating.
  • the line in the phase diagram which marks the transition from the solid to the liquid state, is also called the sublimation line.
  • Fig. 2 is a section of a refrigeration system with a sublimator 1 shown for generating lower temperatures with carbon dioxide as the refrigerant.
  • the sublimator 1 is a heat exchanger, which is specially designed to use the sublimation heat in the transition from solid carbon dioxide to gaseous carbon dioxide.
  • the heat exchanger shown is designed multi-pass, so that there are several parallel channels within the refrigerant path through the sublimator 1 therethrough.
  • the refrigerant path 2 thus branches at the input into the sublimator 1 and is recombined at the output of the sublimator 1.
  • the expansion element 4 for generating the solid carbon dioxide is arranged in front of the sublimator 1 in the flow path 2 and leads to the formation of solid carbon dioxide in the sublimator 1.
  • the additional shut-off device 3 is arranged, which with a control, not shown. and control device is connected. Furthermore, in Fig. 2 an optionally usable bypass 6 with throttling device is shown, via which carbon dioxide can be fed to the sublimator 1 at a pressure above the triple pressure in order to accelerate the process of pressure increase in the sublimator 1. A subsequent pressure reduction leads to a conversion of the liquid carbon dioxide into gaseous and solid carbon dioxide.
  • various sensors 5 are indicated in the circuit, which communicate state and process variables of various kinds to the control and regulating device, whereupon from the control device, a corresponding control or regulating signal to the shut-off device 3 for Close or open the same is transmitted.
  • Fig. 3 is a single-stage refrigeration system with internal heat exchanger 7 shown schematically.
  • the refrigeration plant is next to the in Fig. 2 already designated components in the flow direction of the refrigerant from the compressor components 9, a heat exchanger 8 for heat dissipation, which is referred to depending on the function and condition of the refrigerant as a recooler, gas cooler or condenser and the inner heat exchanger.
  • a heat exchanger 8 for heat dissipation which is referred to depending on the function and condition of the refrigerant as a recooler, gas cooler or condenser and the inner heat exchanger. 7
  • the bypass 6 taps the already present in the circulation higher pressure level on the high pressure side directly.
  • throttle body in the bypass 6 can preferably be designed so that it allows a release of the opening cross section only to just above the triple pressure. This allows the components on the low pressure side of the circuit to be additionally protected against excessive pressure increase.
  • the required control and regulation of the throttle body in the bypass 6 can preferably also be effected by the relevant state and process variables about the sublimator 1.
  • Fig. 4 is a two-stage refrigeration system with internal heat exchanger 7 shown schematically. Accordingly, an additional compressor 9, an additional expansion element 4 for the high-pressure stage, a recooler 8 at medium pressure level and a medium-pressure vessel 10 are provided in the circuit for the compression to medium pressure.
  • Another special feature is that two bypasses 6 are provided for the supply of carbon dioxide in the sublimator 1, wherein a bypass 6 from the medium-pressure level and a bypass 6 from the high-pressure level with the sublimator 1 is connected.
  • the plant represents a possible, particularly efficient variant for a sublimation cycle with CO 2 .
  • In the preferred process can be tapped with the bypass 6 and the medium pressure level of the circuit. This is particularly advantageous in that the relaxation of the carbon dioxide from the high pressure to the medium pressure level has already taken place and the liquid fraction of carbon dioxide thus obtained has already been supplied to the separator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (12)

  1. Procédé d'exploitation d'un circuit frigorifique avec un sublimateur
    (1) pour le dioxyde de carbone en tant qu'agent frigorifique, caractérisé en ce que
    le circuit frigorifique fonctionne en deçà de la pression du point triple et en ce qu'un nettoyage du sublimateur (1) pour éliminer les bouchons ou les dépôts de dioxyde de carbone solide se traduisant par un rétrécissement de la section transversale du trajet de l'agent frigorifique (2) est effectué après le sublimateur (1), la pression dans le sublimateur (1) étant élevée au-delà de la pression du point triple et le dioxyde de carbone solide étant transformé en dioxyde de carbone liquide et les bouchons et dépôts étant décollés, après quoi le trajet de l'agent frigorifique (2) se ré-élargit au moins partiellement et le dioxyde de carbone liquide dans le sublimateur (1) se répand grâce à la chute de pression, puis se retransforme en dioxyde de carbone solide ou gazeux une fois la pression du point triple dépassée, la modification de la section transversale du trajet de l'agent frigorifique (2) intervenant en fonction des signaux de commande ou de réglage.
  2. Procédé selon la revendication 1, caractérisé en ce que le dioxyde de carbone liquide est acheminé dans le sublimateur (1).
  3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) se déroule jusqu'à l'obstruction du trajet de l'agent frigorifique (2).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) intervient en fonction d'une valeur limite de perte de pression dans le sublimateur (1).
  5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) dépend de la pression d'aspiration du compresseur.
  6. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) intervient en fonction d'une valeur limite d'écart de température de l'air.
  7. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) intervient en fonction d'une valeur limite d'écart de température au niveau de l'agent frigorifique.
  8. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) intervient au terme d'un intervalle de temps déterminable en amont.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) dépend d'une combinaison de plusieurs signaux de commande et de réglage.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la réduction de la section transversale du trajet de l'agent frigorifique (2) prend entre 5 et 30 secondes.
  11. Dispositif d'exécution d'un procédé selon l'une quelconque des revendications précédentes, comprenant un compresseur (9), un échangeur de chaleur (8) pour l'évacuation de la chaleur, ainsi qu'un échangeur de chaleur interne (7) et un sublimateur (1), caractérisé en ce qu'un dispositif de coupure (3) est prévu pour la modification de la section transversale du trajet de l'agent frigorifique (2) après le sublimateur (1) dans le trajet de l'agent frigorifique (2) et un bypass (6) avec un dispositif d'étranglement est prévu pour l'organe d'expansion (4) avant le sublimateur (1) et en ce qu'au moins un capteur (5) et un dispositif de commande et de réglage sont prévus pour la commande et le réglage du dispositif de coupure (3).
  12. Dispositif selon la revendication 11, caractérisé en ce que plusieurs sublimateurs (1) sont prévus et branchés en parallèle dans le circuit frigorifique.
EP16797721.4A 2015-10-23 2016-10-20 Procédé et dispositif pour faire fonctionner un circuit frigorifique comprenant un sublimateur pour du dioxyde de carbone utilisé comme fluide frigorigène Active EP3365615B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015118105.3A DE102015118105B4 (de) 2015-10-23 2015-10-23 Verfahren und Vorrichtung zum Betreiben eines Kältekreislaufes mit einem Sublimator für Kohlendioxid als Kältemittel
PCT/DE2016/100488 WO2017067543A1 (fr) 2015-10-23 2016-10-20 Procédé et dispositif pour faire fonctionner un circuit frigorifique comprenant un sublimateur pour du dioxyde de carbone utilisé comme fluide frigorigène

Publications (2)

Publication Number Publication Date
EP3365615A1 EP3365615A1 (fr) 2018-08-29
EP3365615B1 true EP3365615B1 (fr) 2019-08-14

Family

ID=57345623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16797721.4A Active EP3365615B1 (fr) 2015-10-23 2016-10-20 Procédé et dispositif pour faire fonctionner un circuit frigorifique comprenant un sublimateur pour du dioxyde de carbone utilisé comme fluide frigorigène

Country Status (3)

Country Link
EP (1) EP3365615B1 (fr)
DE (1) DE102015118105B4 (fr)
WO (1) WO2017067543A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019113327A1 (de) * 2019-05-20 2020-11-26 Technische Universität Dresden Wärmeübertrager und Kühlungsverfahren
DE102019126214A1 (de) * 2019-09-27 2021-04-01 Technische Universität Dresden Vorrichtung zum Übertragen von Wärme in einem Fluidkreislauf und Verfahren zum Betreiben der Vorrichtung
DE102019127488A1 (de) * 2019-10-11 2021-04-15 Technische Universität Dresden Fluidkreislauf und Verfahren zum Betreiben des Fluidkreislaufs
DE102020130063A1 (de) * 2020-11-13 2022-05-19 CTS Clima Temperatur Systeme GmbH Temperieranlage und Verfahren zum Betreiben einer Temperieranlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848624A (en) 1972-09-29 1974-11-19 Hollymatic Corp Self-cleaning valve for refrigerating apparatus
US4127008A (en) * 1976-11-01 1978-11-28 Lewis Tyree Jr Method and apparatus for cooling material using liquid CO2
ES479676A1 (es) 1979-04-18 1980-01-01 Liquid Carbonic De Espana S A Un metodo de obtencion de bajas temperaturas.
DE3824235C1 (fr) * 1988-07-16 1989-10-26 Danfoss A/S, Nordborg, Dk
JP4973872B2 (ja) * 2005-10-17 2012-07-11 株式会社前川製作所 Co2冷凍機
JP2008224206A (ja) * 2008-04-02 2008-09-25 Mayekawa Mfg Co Ltd 2元冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3365615A1 (fr) 2018-08-29
WO2017067543A1 (fr) 2017-04-27
DE102015118105B4 (de) 2019-05-09
DE102015118105A1 (de) 2017-04-27

Similar Documents

Publication Publication Date Title
EP3365615B1 (fr) Procédé et dispositif pour faire fonctionner un circuit frigorifique comprenant un sublimateur pour du dioxyde de carbone utilisé comme fluide frigorigène
DE102006005035B3 (de) Kühlsystem
DE102014108989A1 (de) Verzweiger für einen Kältemittelstrom eines Kältemittelkreislaufs
DE102014108993A1 (de) Batteriekühlersystem
DE102011108970A1 (de) Niedertemperaturkraftwerk, sowie Verfahrenzum Betrieb desselben
DE102020130063A1 (de) Temperieranlage und Verfahren zum Betreiben einer Temperieranlage
EP1747413B1 (fr) Dispositif de commande pour une installation frigorifique ou de climatisation
DE102017110560B4 (de) Kältemittelkreislauf einer Kälteanlage mit einer Anordnung zum Abtauen eines Wärmeübertragers und Verfahren zum Betreiben des Kältemittelkreislaufs
DE102007046791B3 (de) Vorrichtung zum Erzeugen eines Strahls aus Trockeneis-Teilchen
WO2008074383A1 (fr) Soupape de détente thermostatique
EP2084722B1 (fr) Procédé de refroidissement d'aimants supraconducteurs
EP2792882B1 (fr) Compresseur d'air pour une installation d'air comprimé, notamment pour une installation de freinage à air comprimé d'un véhicule utilitaire
DE2111779A1 (de) Verfahren und Vorrichtung zum Reinigen von Helium
DE102014000541A1 (de) Vorrichtung zum Erhalt des unterkritischen Betriebszustandes bei hohen Gaskühlereintrittstemperaturen eines Druckluft-Kältetrockners
EP1350068B1 (fr) Procede pour reguler un appareil de refroidissement
DE102013008535A1 (de) Anlage zur Verringerung eines Kohlendioxidgehalts eines kohlendioxidhaltigen und kohlenwasserstoffreichen Gasstroms und entsprechendes Verfahren
DE10258524A1 (de) Kältemittelkreislauf für eine Kfz-Klimaanlage
DE69205546T2 (de) Kältegerät und Kälteverfahren.
DE102014108999A1 (de) Verfahren zum Betrieb eines Batteriekühlersystems und Batteriekühlersystem
DE102014214656A1 (de) Kompressionskälteanlage und Verfahren zum Betrieb einer Kompressionskälteanlage
DE102019001497B3 (de) Verfahren und Vorrichtung zum Trennen eines Diboran und Wasserstoff enthaltenden Gasgemisches
DE102015009255A1 (de) Verfahren zum Abkühlen eines Prozessstromes
EP3309478B1 (fr) Procédé de fonctionnement d'un cycle frigorifique
DE102017000060A1 (de) Kühl- und/oder Gefriergerät
EP3339785A1 (fr) Procédé et installation de refroidissement d'un milieu

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190313

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1167502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1167502

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211020

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231023

Year of fee payment: 8

Ref country code: FR

Payment date: 20231023

Year of fee payment: 8