EP3362592A1 - Inclusion of chip elements in a core yarn - Google Patents

Inclusion of chip elements in a core yarn

Info

Publication number
EP3362592A1
EP3362592A1 EP16794691.2A EP16794691A EP3362592A1 EP 3362592 A1 EP3362592 A1 EP 3362592A1 EP 16794691 A EP16794691 A EP 16794691A EP 3362592 A1 EP3362592 A1 EP 3362592A1
Authority
EP
European Patent Office
Prior art keywords
core
microelectronic chip
chip
polymeric material
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16794691.2A
Other languages
German (de)
French (fr)
Inventor
Jean Brun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3362592A1 publication Critical patent/EP3362592A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • D02G3/362Cored or coated yarns or threads using hollow spindles
    • D02G3/365Cored or coated yarns or threads using hollow spindles around which a reel supporting feeding spool rotates
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/38Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/404Yarns or threads coated with polymeric solutions
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/18Physical properties including electronic components

Definitions

  • the invention relates to microelectronic chip elements and more particularly to microelectronic chips, the largest dimension of which may be less than one millimeter.
  • the invention relates more particularly to a method of packaging such chip elements to facilitate storage and handling.
  • FIG. 1 schematically represents a miniaturized radiofrequency transmission-reception device, serving for example for a contactless identification (RFID type device).
  • the device comprises a chip element 10, of parallelepipedal general shape, incorporating a chip that integrates all the RFID functions.
  • the device comprises a dipole antenna formed of two sections of conducting wire 11a and 11b. These sections, secured to two opposite faces of the element 10, are connected to terminals of the chip and depart in opposite directions.
  • the larger side of the chip element 10 may be smaller than 1 mm, these devices are not manufactured and manipulated by the methods used for larger devices.
  • US 2013-0092742 discloses a method of attaching chip elements to a core to form a gimped wire.
  • the chip elements are caught by a cladding fiber which fixes the chip elements on the core by compressing them.
  • GB2472025 proposes to secure a semiconductor chip with a wire.
  • the fastening can be carried out by means of a resin.
  • the resin may be applied over the entire length of the wire, on the chip or on a substrate supporting the chip. It is also possible to use an additional element comprising the resin. This additional element is disposed between the wire and the chip.
  • GB2472026 discloses an assembly of a semiconductor chip provided with conductive elements within a wire. Conductor wires can be introduced to provide power. The chip is inserted inside a carousel whose periphery contains a multitude of thread. The wires can be coated with resin.
  • GB2426255 also discloses an assembly of a semiconductor chip provided with conductive elements within a wire.
  • the chip is disposed in a volume of resin which is closed at its periphery by contiguous wires.
  • JP2013-189718 proposes to put an electronic article on a wire and to surround the electronic article and the wire by an additional wire to secure them.
  • a method of producing a covered yarn comprising the following steps: • Provide a core and at least one microelectronic chip associated with wire stretches;
  • the method is remarkable in that a polymeric material is present between the core and the microelectronic chip before winding the cladding fiber around the microelectronic chip and the core and in that the cladding fiber is wrapped around it of the microelectronic chip and the core so as to force the creep of the polymeric material through the turns of the cladding fiber to form a protective coating around the microelectronic chip.
  • wrapped wire comprising a core around which is wound at least one cladding fiber, at least one microelectronic chip taken between the core and the cladding fiber.
  • the wrapped yarn is remarkable in that it comprises a polymeric material encapsulating the microelectronic chip, the cladding fiber comprising a peripheral zone devoid of polymeric material.
  • FIG. 1 previously described, schematically represents a chip element provided with a dipole antenna;
  • FIGS. 2a, 2b and 2c schematically represent different steps of a wrapping process in a wrapping installation for incorporating chip elements on a wire provided with a sticky zone;
  • FIGS. 3a, 3b and 3c schematically represent different steps of a wrapping process in a wrapping installation used to incorporating chip elements on a wire, the chip element being at least partially covered with a sticky zone;
  • FIG. 1 previously described, schematically represents a chip element provided with a dipole antenna;
  • FIGS. 2a, 2b and 2c schematically represent different steps of a wrapping process in a wrapping installation for incorporating chip elements on a wire provided with a sticky zone;
  • FIGS. 3a, 3b and 3c schematically represent different steps of a wrapping process in a wrapping installation used to incorporating chip elements on a wire, the chip element being at least partially covered with a sticky zone;
  • FIG. 4 schematically represents a covering installation for incorporating chip elements on a wire
  • - Figure 5 schematically shows an alternative covering installation for incorporating chip elements on a wire
  • FIG. 6 diagrammatically represents yet another variant of a covering installation for incorporating chip elements on a wire
  • - Figure 7 schematically shows a section of wire covered with the previous Pinstallations facilities.
  • chip elements In order to facilitate the handling of individual chip elements of very small size (which may be less than 1 mm), it is proposed to incorporate them spaced apart in a gimped wire.
  • the chip elements will be taken between the core of the wire and a cladding fiber wound helically around the core, that is to say in the form of turns. It is also possible to use several different or identical cladding fibers wound successively helically around the core. Coiling fiber turns are made around the assembly formed by the core and the microelectronic chip.
  • the core wire has a longitudinal axis which is identical or substantially identical to the longitudinal axis of the assembly which is not the case of the cladding fiber.
  • This embodiment is more advantageous than the formation of a sheath around the chip by means of a plurality of cladding fibers without using a core because the position of the chip is better controlled and the behavior over time is improved. .
  • Using a core wire ensures the guidance of the microelectronic chip during the wrapping of the cladding fiber. By guiding the cladding fiber around the chip placed on the core, it is possible to reduce the risk of random winding and the risk of folding antennas when they are present on the chip. So that the chip elements also called microelectronic chips do not tend to escape between the consecutive turns of the cladding fiber, they are advantageously provided with sections of wire also taken between the core and the cladding fiber. These wire segments may advantageously be the dipole chip element antennas integrating radiofrequency or RFID transmission-reception functions.
  • the wrapped thread, wound on a spool, is easily manipulated.
  • the yarn can be used to make fabrics, it can be cut and incorporated into other objects, manually or automatically, limiting the risk of losing the chip elements or twist the dipole antennas.
  • the core may be formed by a monofilament or by multi-filaments, advantageously the multi-filaments are braided.
  • the polymer material 12 will also ensure the attachment between the microelectronic chip 10, the core 13 and the turns of the cladding fiber 14 which improves the resistance over time of the guiped wire by reducing friction between the turns. This friction can induce damage to the cladding fibers 14, for example a cut. Once the cladding fibers 14 are cut, chip slip may be possible out of the wrapped wire.
  • the cladding fiber can completely cover the core 13 or partially so as to define covered areas and open areas.
  • the coated zone advantageously comprises a microelectronic chip.
  • the protective coating of polymer material 12 is hermetic so as to prevent moisture from reaching the microelectronic chip 10.
  • a simple way to protect the chip 10 is to make the wrapped wire then to come and coat the assembly in the polymer material 12. The coating is then performed after the microelectronic chip 10 is brought into contact with the core 13 and after that the turns of cladding fibers 14 are formed. It has been observed that this type of encapsulation is not completely satisfactory because the polymer material 12 has difficulties to infiltrate through the turns and reach the microelectronic chip 10. Holes exist where the polymer material 12 is absent. which facilitates, for example, the infiltration of moisture. It has also been observed that the level of protection is even lower than the polymer material 12 is disposed, far from the microelectronic chip 10, outside the covered wire and therefore in an area that is particularly subject to the wear.
  • the probability of obtaining a coating reaching the microelectronic chip 10 is even lower as the viscosity of the polymer material is high, for example in the range 5000mP / s - 50000mP / s. Such a viscosity value can be obtained during the deposition of the polymer material 12 which can take place at ambient temperature, for example between 20 ° C. and 30 ° C.
  • the probability of obtaining a coating reaching the microelectronic chip 10 is also a function of the wettability which is a parameter dependent on the surface state of the gimped wire, the core and the microelectronic chip.
  • the wrapping is made by surrounding the cladding fiber 14 around the assembly formed by the core 13 and the chip 10.
  • This embodiment makes it possible to better control the pressure applied by the cladding fiber and therefore to better control the expulsion of the polymer material.
  • Such mastering of the expulsion of the resin is difficult to obtain in the embodiment of GB2472026 which does not provide for the rotation of the fibers, nor even the use of a core wire.
  • the charges can not perform their function near the microelectronic chip 10 because they are absent or in small quantities.
  • the pile of loads may form an extra thickness which can be inconvenient for future applications of yarn guiped.
  • This cluster will also be used more quickly because it is in overthickness around the turns.
  • a first way is to apply pressure around the wrapped wire covered with polymer material 12 to force its infiltration through the turns. This implementation is particularly complex to achieve and it does not allow to place any charges of the polymer material 12 as close to the microelectronic chip 10.
  • An advantageous embodiment is to place the polymer material 12 between the core 13 and the microelectronic chip 10 before the wrapping step, that is to say before forming the turns of cladding fiber 14.
  • the cladding fiber is formed by a monofilament or a multi-filament, advantageously the multi-filaments are braided. This embodiment makes it possible to keep a large quantity of the charges in the immediate vicinity of the chip. In such an embodiment, it is possible to obtain a concentration of charges which is decreasing from the chip 10 to the periphery of the assembly.
  • thermomechanical properties of the polymer material 12 it is advantageous to choose fillers that are configured to improve the thermomechanical properties of the polymer material 12 and in particular to bring the thermomechanical properties of the polymer material 12 together with its charges to the equivalent thermomechanical properties of the microelectronic chip 10.
  • fillers that are configured to improve the thermomechanical properties of the polymer material 12 and in particular to bring the thermomechanical properties of the polymer material 12 together with its charges to the equivalent thermomechanical properties of the microelectronic chip 10.
  • the coefficient of thermal expansion is for example the coefficient of linear thermal expansion.
  • the protective coating around the chip is able to place charges in the immediate vicinity of the chip to effectively protect against moisture and the loads also reduce mechanical stress when the temperature of the chip and the protective coating evolve.
  • the charges have an optionally linear coefficient of thermal expansion and / or a coefficient of thermal conduction which are strictly lower than that of the polymer material and which are advantageously less than or equal to that of the microelectronic chip 10 and even more advantageously which are less than or equal to that of the microelectronic chip 10. It is also possible to provide that the charges are formed by different materials, for example with a first part of the charges which has a coefficient of thermal conduction between that of the polymer material 12 and that of the microelectronic chip 10 and / or a second part which has a coefficient of thermal conduction equal to that of the microelectronic chip 10 and / or a third part which has a coefficient of thermal conduction lower than that of the microelectronic chip 10.
  • the coefficient of thermal expansion In the case where the chip 10 is formed on a silicon substrate, it is advantageous to use charges which have a coefficient of thermal expansion and / or thermal conduction equal to or substantially equal to those of silicon.
  • the polymer material 12 covers the core 10 and the microelectronic chip 14 is placed on the polymer material 12.
  • the core 13 may be completely or partially covered by the polymeric material 12.
  • the zone of polymer material 12 In the case of partial coverage, it is advantageous to use the zone of polymer material 12 as a receiving zone to place the microelectronic chip 10.
  • the cladding fiber 14 is advantageously provided to from a roll 16.
  • FIG. 2a illustrates the provision of a core partially covered by the polymer material 12 and the provision of a microelectronic chip 10.
  • FIG. 2b illustrates the placement of the chip 10 on the core 13.
  • the chip 10 is fixed by means of of the polymeric material 12 which ensures the bonding between the chip 10 and the core 13.
  • FIG. 2c illustrates the formation of the turns of cladding fibers 14 which will compress the polymer material.
  • the polymeric material will flow to form a protective wrapper around the chip 10.
  • the polymer material 12 covers the microelectronic chip 10 and the microelectronic chip 10 covered is placed on the core 13. According to the embodiments, the chip 10 can be completely or partially covered by the polymer material 12.
  • FIG. 3a illustrates the supply of a core 13 and the supply of a microelectronic chip 10 partially covered by the polymeric material 12.
  • FIG. 3b illustrates the placement of the chip 10 on the core 13.
  • the chip 10 is fixed at means of the polymeric material which ensures the bonding between the chip 10 and the core 13.
  • FIG. 3c illustrates the formation of the turns of cladding fibers 14 which will compress the polymer material.
  • the polymeric material will flow to form a protective wrapper around the chip 10.
  • microelectronic chip 10 and the core 13 are covered by a polymer material 12. It is possible to use the same polymeric material or two different polymeric materials for covering the core 13 and the microelectronic chip 10.
  • the microelectronic chip 10 is placed on the core 13 by means of a polymer material 12 which ensures the retention of these two elements during the formation of the turns.
  • the polymeric material 12 is advantageously an adhesive.
  • the chip 10 may be placed on the core 13 when the core 13 is moving or when the core 13 is stopped.
  • the polymer material 12 is present between the core 13 and the microelectronic chip 10 and it will flow through the turns of the cladding fiber 14 so as to form the protective layer. If the cladding fiber 14 is multi-filaments, the polymeric material 12 advantageously flows between the filaments of the fiber 14.
  • the polymer material 12 is closer to the microelectronic chip and the core.
  • the polymeric material will coat the core and the chip before or during the infiltration of the polymeric material through the turns of cladding fiber 14.
  • the polymer material advantageously goes between the turns of the cladding fiber 14.
  • the protective layer around the microelectronic chip 10 and around the core 13 is of better quality because it is more continuous.
  • the probability of having a hole favoring the arrival of moisture or impurities is reduced.
  • This effect is particularly pronounced when the polymer material 12 has a high viscosity, for example in the range indicated above.
  • the polymer material 12 comprises charges, for example the charges indicated above, the latter are mainly concentrated around the microelectronic chip and the core 13 because the spiral-shaped cladding fiber 14 slows down their progression towards the outside of the gimped yarn. In this configuration, the extra thicknesses are reduced or non-existent.
  • the polymeric material 12 fixes the microelectronic chip 10 with the core 13 and the turns which allows to increase the service life of the covered yarn.
  • the voltage applied by the cladding fiber 14 during the formation of the turns and the polymer material 12 are configured to flow a portion of the polymer material 12 through the turns during the step of forming the turns. turns.
  • the turn applies a stress on the assembly formed by the core 13, the microelectronic chip 10 and the polymer material 12. Annealing may be applied to the assembly so as to fluidize the polymer material 12 which will flow more easily through the turns. The increase in temperature will accentuate the phenomenon of infiltration of the polymer material 12 in a manner analogous to an improvement in the wettability.
  • the sheath fiber 14 is at a first temperature in the coil 16 and wound on the core 13 at a second temperature which may be the same or different from the first temperature.
  • the annealing step advantageously results in an increase of the temperature of at least 5 ° C, preferably at least 10 ° C.
  • an annealing step is performed after the formation of the covered yarn.
  • the annealing is configured so as to cause the polymerization of the polymer material which will permanently fix the microelectronic chip 10 with the core 13 and the turns.
  • Annealing may also be used to accelerate the polymerization.
  • the annealing step advantageously results in an increase of the temperature of at least 5 ° C, preferably at least 10 ° C. This embodiment is particularly advantageous for crosslinking or accelerating the crosslinking of the polymer material 12 and preventing its deformation over time.
  • the polymer material 12 is for example a partially cross-linked thermosetting material or an adhesive.
  • the polymer material may for example be an epoxy adhesive capable of being shaped twice, for example with a hot impregnation followed by an annealing step.
  • This type of epoxy glue is used for example to form high density printed circuits.
  • the term "temperature close to the glass transition” advantageously means a temperature of between + 10 ° C. and -10 ° C. with respect to the glass transition temperature and even more advantageously a temperature of between + 5 ° C. and -5 ° C. compared to the glass transition temperature.
  • a second anneal at a higher temperature is carried out so as to finalize the crosslinking.
  • the polymerization of the adhesive is advantageously carried out between 130 ° C. and 220 ° C.
  • the adhesive may be an epoxy adhesive, for example a TC420 epoxy adhesive marketed by Polytech PT or an epoxy adhesive E514 sold by EPOTECNY.
  • the covered yarn after the formation of the covered yarn, it is particularly advantageous to wind the wrapped yarn to form a coil.
  • This first annealing is intended to achieve a partial polymerization of the polymer material for example glue.
  • This first annealing is advantageously carried out in a temperature range of between 130 ° C. and 200 ° C.
  • the covered yarn may be reeled and a second annealing is preferably performed on the spool of yarn. This second annealing is configured to complete the polymerization of the adhesive and preferably to obtain a total polymerization of the adhesive.
  • the second annealing is advantageously carried out in a temperature range of between 150 ° C. and 220 ° C.
  • the temperature of the second annealing is greater than the temperature of the first annealing. It is particularly advantageous to carry out the first annealing during the winding phase, which allows a better management of the viscosity.
  • This embodiment is particularly advantageous for epoxy glues whose viscosity decreases during a rise in temperature, for example from 40 ° C. to 80 ° C., for a few seconds before increasing again under the effect of crosslinking. There is then increased impregnation of the glue in the inner part of the yarn then a blocking of diffusion towards the outside because the polymer material reacted.
  • the polymer material 12 is a thermoplastic material. It is particularly advantageous to heat the thermoplastic material before placing the microelectronic chip on the core by means of of a first annealing. Heating the thermoplastic material makes it softer and increase its tackiness.
  • the microelectronic chip 10 is bonded to the core 13 by means of the polymer material 12 during the covering step, which is particularly advantageous for ensuring proper placement of the microelectronic chip 10 on the core 13.
  • the first annealing is advantageously carried out in a temperature range of between 150 ° C. and 200 ° C.
  • the annealing can be carried out by heating the coil 16 or advantageously by heating the polymer material 12 between the exit of the coil and the securing with the core.
  • a second annealing is then performed after the covering step, so as to flow the polymer material around the microelectronic chip 10 and around the core 13 to reach the cladding fiber 14.
  • the second annealing is advantageously achieved in a temperature range between 160 ° C and 240 ° C.
  • the temperature of the second annealing may be higher or lower than the temperature of the first annealing because the objective is to put the polymer material in the pasty state.
  • the temperature difference between the two anneals is advantageously at least 5 ° C, preferably at least 10 ° C.
  • the polymer material 12 may be chosen from polyurethanes or silicones.
  • the core 13 and the polymer material 12 are made of thermoplastic materials or comprise a thermoplastic material. According to the embodiments, the same thermoplastic material or two different thermoplastic materials can be used to form the core 13 and the polymer material 12. If the core 13 is a multi-filament, it is advantageous to provide at least one filament in thermoplastic material and advantageously in the same thermoplastic material as that used for the polymer material 12. It is also advantageous to use different materials, for example different thermoplastic materials that will flow differently, which preserves the mechanical properties of the soul 13 or polymer during the realization.
  • the soul 13 can be formed completely by a thermoplastic material.
  • the second annealing may be configured to flow the polymer material 12 and a portion of the core 13 around the microelectronic chip 10 until it reaches the cladding fiber 14.
  • the core 13 is formed by thermosetting material filaments and the polymeric material 12 is formed in the core 13 by thermoplastic filaments.
  • the thermoplastic material is present in the core 13 and also at its periphery. During the two previous anneals, the thermoplastic material reacts to stick the microelectronic chip and then to encapsulate it.
  • the core 13 is for example made of multi-filaments Co-Polyester (Co PES) or Co-Polyamide (Co PA), such a yarn is for example sold by the company DISTRICO under the name GRILON® thermocollant thread. It is possible to use yarns formed by a polyamide / polyester core associated with a Co-Polyester (Co PES) or Co-Polyamide sheath. These yarns are sold under the name GRILON® two-component yarns. It is still possible to use a core 13 for example made of multi-filaments Co-Polyester (Co PES) or Co-Polyamide (Co PA) associated with a non-fusible core wire and sold under the name GRILON® combi wire fusible .
  • Co PES multi-filaments Co-Polyester
  • Co PA Co-Polyamide
  • the amount of polymer material 12 it is then possible to choose the amount of polymer material 12 so that the polymer material 12 does not overflow beyond the last layer of cladding fiber turns 14 during creep. It is even more advantageous to choose the amount of polymer material 12 so that the polymer material 12 leaves, on the different turns surrounding the microelectronic chip 10, an outer zone devoid of polymeric material 12. For example, for a unit of given length, the volume of polymer material 12 is less than the volume of wrapping fiber 14 wound. This outer zone may have the shape of a continuous ring around the chip 10.
  • microelectronic chip 10 comprises an RFID device provided with an antenna.
  • the antenna is fixed to the core by means of a specific zone of polymer material 12.
  • Figure 4 schematically shows a conventional covering installation that can be used to incorporate chip elements 10 in a wire covered with simple modifications.
  • a core 13 unwinds from a supply spool 15, axially passes through two successive rollers, 16 and 17, and ends wound on a take-up spool 18.
  • Each of the rollers 16 and 17 stores a cladding fiber and is associated with a mechanism turning around the soul being scrolled, and wrapping around it the sheathing fiber.
  • the two winding mechanisms rotate in opposite directions, from which it follows that the outgoing guiped yarn comprises two layers of cladding fiber, formed of helices of opposite directions.
  • the ratio of the running speeds of the core and the rotation of the winding mechanisms defines the pitch of the propellers.
  • an insertion device 19 is provided, preferably at the level of the first roller 16. This insertion device 19, for example in the form of a tube of diameter adapted to the chip elements 10, guides them to an attachment zone 20 where the chip is fixed on the core 13.
  • the chip fixed on the core 13 then arrives at a wrapping area 21 where the cladding fiber of the roll 16 is wrapped around the core 13.
  • This tube passes through the roll 16 from bottom to top and opens near the area 21.
  • the guide tube may be replaced by a chute, that is to say a half-tube in the longitudinal direction, or by a roller guide system.
  • the individual elements are, for example, projected with compressed air through the tube 19 to bond to the core by means of the polymeric material.
  • the core then moves to the area 21 where the chips 10 and the core 13 are compressed by the cladding fiber during winding.
  • the microelectronic chip 10 is brought parallel to the core 13.
  • Figure 5 shows another possible configuration of the roller 16 with its winding mechanism.
  • the winding of the cladding fiber around the core 13 takes place at the entrance of the roll (in the running direction of the core 13).
  • the wrapping area 21 is therefore located at the entrance of the roll 16.
  • This configuration makes it possible to use a shorter insertion device 19 since it no longer has to traverse the roll 16. This facilitates the feeding of the device. insertion into chip elements 10.
  • FIG. 6 shows yet another possible configuration where a coil of cladding fiber moves around the core wire 13 by unwinding itself so that the cladding fiber wraps around the core 13.
  • the movement of the coil 16 around the soul 13 is represented by the arrow.
  • the core 13 leaves the coil 15 devoid of polymeric material 12.
  • a zone for depositing the material polymer is present between the coil 15 and the zone 20 where the chip 10 is fixed to the core 13.
  • the deposition machine 22 comes to deposit polymer material on the core 13.
  • the deposition of the polymer material 12 can be carried out according to any known technique.
  • the polymeric material 12 may be continuously deposited to cover the entire length of the core 13 or discontinuously to form zones of polymer material 12 separated by zones devoid of polymeric material 12.
  • the discontinuous deposit can be made by depositing one or more drops of polymer material 12 on the core 13. It is also possible to deposit the polymer material 12 on the core 13 by projection, for example by means of a jet of polymeric material 12. A discontinuous deposition of polymeric material 12 can be further achieved by coating.
  • the deposition of material 12 or the formation of drops can be obtained by means of equipment marketed by the company Nordson Asymtek.
  • the formation of drops can also be obtained by dipping a tip in the polymer material 12 in the liquid state and then transfer on the core 13 by contact between the core 13 and the tip or possibly the liquid polymer material 12.
  • the polymer material 12 may be deposited on the moving core 13 or the core 13 is stopped in order to place the polymer material 12.
  • FIG. 7 shows a section of guiped wire obtained at the output of the first roller 16, illustrating a chip element 10, with its wire sections 11a and 11b, taken between the core 13 and the spirally wound cladding fiber, coming from the roller 16. It is sought to have the wire sections 1 1a and 1 1b substantially parallel to the core 13, as shown.
  • microelectronic chip 10 it is advantageous to use several different zones of polymeric material in order to fix the chip to the core in the desired configuration. For example, three separate areas of polymeric material are used. A first zone of polymeric material is used to fix and encapsulate the chip 10. Two additional zones of polymeric material are preferably used at the ends of the wire sections 11a and 11b in order to fix the orientation of the chip antennas. 10. The amount of polymer material can be reduced which limits the final volume occupied by the polymeric material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The invention relates to a method for producing a core yarn which comprises the following steps: moving a core (13) axially through a reaming area (21); winding a sheathing fibre (14) around the core at the reaming area; and presenting, in the reaming area (21), a microelectronic chip (10) attached to the core (13). A polymer material is provided between the microelectronic chip (10) and the core (13) during the reaming step. The polymer material then flows during the reaming step in order to form a protective shell.

Description

INCORPORATION D'ELEMENTS A PUCE DANS  INCORPORATION OF CHIP ELEMENTS IN
UN FIL GUIPE  GUIPE WIRE
Domaine technique de l'invention Technical field of the invention
L'invention est relative à des éléments à puce microélectronique et plus particulièrement à des puces microélectroniques, dont la plus grande dimension peut être inférieure au millimètre. L'invention concerne plus particulièrement un procédé de conditionnement de tels éléments à puce pour en faciliter le stockage et la manipulation. The invention relates to microelectronic chip elements and more particularly to microelectronic chips, the largest dimension of which may be less than one millimeter. The invention relates more particularly to a method of packaging such chip elements to facilitate storage and handling.
État de la technique La figure 1 représente schématiquement un dispositif d'émission-réception radiofréquence miniaturisé, servant par exemple à une identification sans contact (dispositif de type RFID). Le dispositif comprend un élément à puce 10, de forme générale parallélépipédique, incorporant une puce qui intègre toutes les fonctions RFID. Le dispositif comprend une antenne dipôle formée de deux tronçons de fil conducteur 1 1 a et 1 1 b. Ces tronçons, solidaires de deux faces opposées de l'élément 10, sont connectés à des bornes de la puce et partent dans des directions opposées. STATE OF THE ART FIG. 1 schematically represents a miniaturized radiofrequency transmission-reception device, serving for example for a contactless identification (RFID type device). The device comprises a chip element 10, of parallelepipedal general shape, incorporating a chip that integrates all the RFID functions. The device comprises a dipole antenna formed of two sections of conducting wire 11a and 11b. These sections, secured to two opposite faces of the element 10, are connected to terminals of the chip and depart in opposite directions.
Le plus grand côté de l'élément à puce 10 pouvant être inférieur à 1 mm, ces dispositifs ne sont pas fabriqués et manipulés par les procédés utilisés pour des dispositifs plus grands. The larger side of the chip element 10 may be smaller than 1 mm, these devices are not manufactured and manipulated by the methods used for larger devices.
La demande de brevet WO2009004243 décrit un exemple de procédé de réalisation de dispositifs RFID du type de la figure 1 . Une fois réalisés, ces dispositifs doivent être incorporés dans les objets à identifier. Cela pose des problèmes de manipulation, car les antennes doivent rester sensiblement rectilignes, ou du moins ne pas être tordues jusqu'à entrer en court-circuit. The patent application WO2009004243 describes an exemplary method for producing RFID devices of the type of FIG. Once realized, these devices must be incorporated into the objects to be identified. This poses handling problems, because the antennas must remain substantially straight, or at least not be twisted to short circuit.
Le document US 2013-0092742 décrit une méthode de fixation des éléments à puce sur une âme pour former un fil guipé. Les éléments à puce sont happés par une fibre de gainage qui vient fixer les éléments à puce sur l'âme en les comprimant. De manière alternative, le document GB2472025 propose de solidariser une puce semiconductrice avec un fil. La solidarisation peut être réalisée au moyen d'une résine. Selon les modes de réalisation, la résine peut être appliquée sur toute la longueur du fil, sur la puce ou sur un substrat supportant la puce. Il est également possible d'utiliser un élément additionnel comportant la résine. Cet élément additionnel est disposé entre le fil et la puce. US 2013-0092742 discloses a method of attaching chip elements to a core to form a gimped wire. The chip elements are caught by a cladding fiber which fixes the chip elements on the core by compressing them. Alternatively, GB2472025 proposes to secure a semiconductor chip with a wire. The fastening can be carried out by means of a resin. According to the embodiments, the resin may be applied over the entire length of the wire, on the chip or on a substrate supporting the chip. It is also possible to use an additional element comprising the resin. This additional element is disposed between the wire and the chip.
Le document GB2472026 décrit un assemblage d'une puce semiconductrice munie d'éléments conducteurs à l'intérieur d'un fil. Des fils conducteurs peuvent être introduits pour assurer l'alimentation électrique. La puce est introduite à l'intérieur d'un carrousel dont la périphérie contient une multitude de fil. Les fils peuvent être enduits de résine. GB2472026 discloses an assembly of a semiconductor chip provided with conductive elements within a wire. Conductor wires can be introduced to provide power. The chip is inserted inside a carousel whose periphery contains a multitude of thread. The wires can be coated with resin.
Le document GB2426255 décrit également un assemblage d'une puce semiconductrice munie d'éléments conducteurs à l'intérieur d'un fil. La puce est disposée dans un volume de résine qui est refermé à sa périphérie par des fils jointifs. GB2426255 also discloses an assembly of a semiconductor chip provided with conductive elements within a wire. The chip is disposed in a volume of resin which is closed at its periphery by contiguous wires.
Le document JP2013-189718 propose de poser un article électronique sur un fil et d'entourer l'article électronique et le fil par un fil additionnel afin de les solidariser. JP2013-189718 proposes to put an electronic article on a wire and to surround the electronic article and the wire by an additional wire to secure them.
Il apparaît que dans ces différents modes de réalisation et pour certaines applications, la fonctionnalité du fil guipé est réduite dans le temps. Des défaillances sont observées ce qui réduit l'intérêt de cette innovation pour certaines applications. It appears that in these various embodiments and for some applications, the functionality of the covered yarn is reduced in time. Failures are observed which reduces the interest of this innovation for certain applications.
Résumé de l'invention Ainsi, on a besoin d'une solution pour accroître la tenue dans le temps des fonctionnalités du fil guipé tout en conservant la faculté de manipuler des éléments à puce par groupe ou individualisés, en particulier lorsqu'ils sont de très petite taille, notamment lorsque ceux-ci sont munis de tronçons de fil. SUMMARY OF THE INVENTION Thus, a solution is needed to increase the durability of the guiped yarn functions while retaining the ability to manipulate group-based or individualized chip elements, in particular when they are very difficult. small size, especially when they are equipped with stretches of wire.
Pour tendre à satisfaire ce besoin, on prévoit un procédé de réalisation d'un fil guipé, comprenant les étapes suivantes : • Fournir une âme et au moins une puce microélectronique associée à des tronçons de fils ; To tend to satisfy this need, there is provided a method of producing a covered yarn, comprising the following steps: • Provide a core and at least one microelectronic chip associated with wire stretches;
• Mettre en contact la puce microélectronique et les tronçons de fils avec l'âme ; · Enrouler au moins une fibre de gainage autour de la puce microélectronique, des tronçons de fils et de l'âme au niveau d'au moins une zone de guipage pour former le fil guipé ; • Put the microelectronic chip and the wire sections in contact with the core; · Winding at least one cladding fiber around the microelectronic chip, wire sections and the core at at least one wrapping zone to form the wrapped wire;
Le procédé est remarquable en ce qu'un matériau polymère est présent entre l'âme et la puce microélectronique avant d'enrouler la fibre de gainage autour de la puce microélectronique et de l'âme et en ce que la fibre de gainage est enroulée autour de la puce microélectronique et de l'âme de manière à forcer le fluage du matériau polymère à travers les spires de la fibre de gainage pour former un enrobage de protection autour de la puce microélectronique. The method is remarkable in that a polymeric material is present between the core and the microelectronic chip before winding the cladding fiber around the microelectronic chip and the core and in that the cladding fiber is wrapped around it of the microelectronic chip and the core so as to force the creep of the polymeric material through the turns of the cladding fiber to form a protective coating around the microelectronic chip.
On prévoit également un fil guipé comprenant une âme autour de laquelle est enroulée au moins une fibre de gainage, au moins une puce microélectronique prise entre l'âme et la fibre de gainage. Le fil guipé est remarquable en ce qu'il comporte un matériau polymère enrobant la puce microélectronique, la fibre de gainage comportant une zone périphérique dépourvue de matériau polymère. It also provides a wrapped wire comprising a core around which is wound at least one cladding fiber, at least one microelectronic chip taken between the core and the cladding fiber. The wrapped yarn is remarkable in that it comprises a polymeric material encapsulating the microelectronic chip, the cladding fiber comprising a peripheral zone devoid of polymeric material.
Description sommaire des dessins D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation donnés à titre d'exemples non limitatifs et illustrés à l'aide des dessins annexés, dans lesquels : la figure 1 , précédemment décrite, représente schématiquement un élément à puce muni d'une antenne dipolaire ; les figures 2a, 2b et 2c représentent schématiquement différentes étapes d'un procédé de guipage dans une installation de guipage servant à incorporer des éléments à puce sur un fil pourvu d'une zone collante; les figures 3a, 3b et 3c représentent schématiquement différentes étapes d'un procédé de guipage dans une installation de guipage servant à incorporer des éléments à puce sur un fil, l'élément à puce étant au moins partiellement recouvert d'une zone collante; la figure 4 représente schématiquement une installation de guipage servant à incorporer des éléments à puce sur un fil ; - la figure 5 représente schématiquement une variante d'installation de guipage servant à incorporer des éléments à puce sur un fil ; la figure 6 représente schématiquement encore une autre variante d'installation de guipage servant à incorporer des éléments à puce sur un fil ; - la figure 7 représente schématiquement un tronçon de fil guipé réalisé à l'aide des Pinstallations précédentes. BRIEF DESCRIPTION OF THE DRAWINGS Other advantages and features will emerge more clearly from the following description of particular embodiments given by way of nonlimiting examples and illustrated with the aid of the appended drawings, in which: FIG. 1, previously described, schematically represents a chip element provided with a dipole antenna; FIGS. 2a, 2b and 2c schematically represent different steps of a wrapping process in a wrapping installation for incorporating chip elements on a wire provided with a sticky zone; FIGS. 3a, 3b and 3c schematically represent different steps of a wrapping process in a wrapping installation used to incorporating chip elements on a wire, the chip element being at least partially covered with a sticky zone; FIG. 4 schematically represents a covering installation for incorporating chip elements on a wire; - Figure 5 schematically shows an alternative covering installation for incorporating chip elements on a wire; FIG. 6 diagrammatically represents yet another variant of a covering installation for incorporating chip elements on a wire; - Figure 7 schematically shows a section of wire covered with the previous Pinstallations facilities.
Description d'un mode de réalisation préféré de l'invention Description of a preferred embodiment of the invention
Afin de faciliter la manipulation d'éléments à puce individualisés de très petite taille (pouvant être inférieure à 1 mm), on propose de les incorporer de manière espacée dans un fil guipé. Les éléments à puce seront pris entre l'âme du fil et une fibre de gainage enroulée en hélice autour de l'âme, c'est-à-dire sous la forme de spires. Il est également possible d'utiliser plusieurs fibres de gainage différentes ou identiques enroulées successivement en hélice autour de l'âme. Des spires de fibre de gainage sont réalisées autour de l'ensemble formé par l'âme et la puce microélectronique. Le fil d'âme présente un axe longitudinal qui est identique ou sensiblement identique à l'axe longitudinal de l'assemblage ce qui n'est pas le cas de la fibre de gainage. In order to facilitate the handling of individual chip elements of very small size (which may be less than 1 mm), it is proposed to incorporate them spaced apart in a gimped wire. The chip elements will be taken between the core of the wire and a cladding fiber wound helically around the core, that is to say in the form of turns. It is also possible to use several different or identical cladding fibers wound successively helically around the core. Coiling fiber turns are made around the assembly formed by the core and the microelectronic chip. The core wire has a longitudinal axis which is identical or substantially identical to the longitudinal axis of the assembly which is not the case of the cladding fiber.
Ce mode de réalisation est plus avantageux que la formation d'une gaine autour de la puce au moyen d'une pluralité de fibres de gainage sans utiliser d'âme car la position de la puce est mieux maîtrisée et la tenue dans le temps est améliorée. Utiliser un fil d'âme permet d'assurer le guidage de la puce microélectronique lors du guipage de la fibre de gainage. En guipant la fibre de gainage autour de la puce posée sur l'âme, il est possible de réduire les risques de bobinage aléatoire ainsi que les risques de pliage des antennes lorsque ces dernières sont présentes sur la puce. Afin que les éléments à puce également appelés puces microélectroniques ne tendent pas à s'échapper entre les spires consécutives de la fibre de gainage, ceux-ci sont avantageusement munis de tronçons de fil également pris entre l'âme et la fibre de gainage. Ces tronçons de fil pourront avantageusement être les antennes dipôle d'éléments à puce intégrant des fonctions d'émission- réception radiofréquence ou RFID. This embodiment is more advantageous than the formation of a sheath around the chip by means of a plurality of cladding fibers without using a core because the position of the chip is better controlled and the behavior over time is improved. . Using a core wire ensures the guidance of the microelectronic chip during the wrapping of the cladding fiber. By guiding the cladding fiber around the chip placed on the core, it is possible to reduce the risk of random winding and the risk of folding antennas when they are present on the chip. So that the chip elements also called microelectronic chips do not tend to escape between the consecutive turns of the cladding fiber, they are advantageously provided with sections of wire also taken between the core and the cladding fiber. These wire segments may advantageously be the dipole chip element antennas integrating radiofrequency or RFID transmission-reception functions.
Le fil guipé, enroulé sur une bobine, est facilement manipulable. Outre le fait que le fil pourra servir à confectionner des tissus, il pourra être découpé et incorporé dans d'autres objets, manuellement ou de façon automatisée, en limitant les risques de perdre les éléments à puce ou de tordre les antennes dipôle. The wrapped thread, wound on a spool, is easily manipulated. In addition to the fact that the yarn can be used to make fabrics, it can be cut and incorporated into other objects, manually or automatically, limiting the risk of losing the chip elements or twist the dipole antennas.
L'âme peut être formée par un mono-filament ou par des multi-filaments, avantageusement les multi-filaments sont tressés. The core may be formed by a monofilament or by multi-filaments, advantageously the multi-filaments are braided.
Comme illustré aux figures 2c, 3c et 7, afin de protéger les puces microélectroniques 10 contre les agressions de l'environnement extérieur, il est particulièrement avantageux de les protéger au moyen d'un matériau polymère 12 qui va former un enrobage de protection, c'est-à-dire une carapace. As illustrated in FIGS. 2c, 3c and 7, in order to protect the microelectronic chips against the aggressions of the external environment, it is particularly advantageous to protect them by means of a polymer material 12 which will form a protective coating, that is, a carapace.
Le matériau polymère 12 va également assurer la fixation entre la puce microélectronique 10, l'âme 13 et les spires de la fibre de gainage 14 ce qui permet d'améliorer la tenue dans le temps du fil guipé en réduisant les frottements entre les spires. Ces frottements peuvent induire un endommagement des fibres de gainage 14, par exemple une coupure. Une fois que les fibres de gainage 14 sont coupées, un glissement de la puce peut être possible hors du fil guipé. Selon les modes de réalisation, la fibre de gainage peut recouvrir complètement l'âme 13 ou alors partiellement de manière à définir des zones recouvertes et des zones découvertes. La zone recouverte comporte avantageusement une puce microélectronique. The polymer material 12 will also ensure the attachment between the microelectronic chip 10, the core 13 and the turns of the cladding fiber 14 which improves the resistance over time of the guiped wire by reducing friction between the turns. This friction can induce damage to the cladding fibers 14, for example a cut. Once the cladding fibers 14 are cut, chip slip may be possible out of the wrapped wire. According to the embodiments, the cladding fiber can completely cover the core 13 or partially so as to define covered areas and open areas. The coated zone advantageously comprises a microelectronic chip.
De manière particulièrement avantageuse, l'enrobage de protection en matériau polymère 12 est hermétique de manière à empêcher l'humidité d'atteindre la puce microélectronique 10. Une manière simple de protéger la puce 10 est de réaliser le fil guipé puis de venir enrober l'ensemble dans le matériau polymère 12. L'enrobage est alors réalisé après que la puce microélectronique 10 soit mise en contact avec l'âme 13 et après que les spires en fibres de gainage 14 soient formées. II a été observé que ce type d'encapsulation n'est pas complètement satisfaisant car le matériau polymère 12 a des difficultés pour s'infiltrer à travers les spires et atteindre la puce microélectronique 10. Des trous existent où le matériau polymère 12 est absent ce qui facilite, par exemple, l'infiltration d'humidité. Il a été également observé que le niveau de protection est d'autant plus faible que le matériau polymère 12 est disposé, loin de la puce microélectronique 10, à l'extérieur du fil guipé et donc dans une zone qui est particulièrement sujette à l'usure. Particularly advantageously, the protective coating of polymer material 12 is hermetic so as to prevent moisture from reaching the microelectronic chip 10. A simple way to protect the chip 10 is to make the wrapped wire then to come and coat the assembly in the polymer material 12. The coating is then performed after the microelectronic chip 10 is brought into contact with the core 13 and after that the turns of cladding fibers 14 are formed. It has been observed that this type of encapsulation is not completely satisfactory because the polymer material 12 has difficulties to infiltrate through the turns and reach the microelectronic chip 10. Holes exist where the polymer material 12 is absent. which facilitates, for example, the infiltration of moisture. It has also been observed that the level of protection is even lower than the polymer material 12 is disposed, far from the microelectronic chip 10, outside the covered wire and therefore in an area that is particularly subject to the wear.
Il a encore été observé que la probabilité d'obtenir un enrobage atteignant la puce microélectronique 10 est d'autant plus faible que la viscosité du matériau polymère est élevée, par exemple dans la gamme 5000mP/s - 50000mP/s. Une telle valeur de viscosité peut être obtenue lors du dépôt du matériau polymère 12 qui peut avoir lieu à température ambiante, par exemple entre 20°C et 30°C. La probabilité d'obtenir un enrobage atteignant la puce microélectronique 10 est également fonction de la mouillabilité qui est un paramètre dépendant de l'état de surface du fil guipé, de l'âme et de la puce microélectronique. It has further been observed that the probability of obtaining a coating reaching the microelectronic chip 10 is even lower as the viscosity of the polymer material is high, for example in the range 5000mP / s - 50000mP / s. Such a viscosity value can be obtained during the deposition of the polymer material 12 which can take place at ambient temperature, for example between 20 ° C. and 30 ° C. The probability of obtaining a coating reaching the microelectronic chip 10 is also a function of the wettability which is a parameter dependent on the surface state of the gimped wire, the core and the microelectronic chip.
Comme indiqué plus haut, le guipage est réalisé en entourant la fibre de gainage 14 autour de l'ensemble formé par l'âme 13 et la puce 10. Ce mode de réalisation permet de mieux maîtriser la pression appliquée par la fibre de gainage et donc de mieux maîtriser l'expulsion du matériau polymère. Une telle maîtrise de l'expulsion de la résine est difficile à obtenir dans le mode de réalisation du document GB2472026 qui ne prévoit pas la rotation des fibres, ni même l'utilisation d'un fil d'âme. As indicated above, the wrapping is made by surrounding the cladding fiber 14 around the assembly formed by the core 13 and the chip 10. This embodiment makes it possible to better control the pressure applied by the cladding fiber and therefore to better control the expulsion of the polymer material. Such mastering of the expulsion of the resin is difficult to obtain in the embodiment of GB2472026 which does not provide for the rotation of the fibers, nor even the use of a core wire.
Il a également été observé que dans l'utilisation d'un matériau polymère 12 comportant des charges, par exemple des charges métalliques ou en alumine, ces dernières ont des difficultés à atteindre la puce microélectronique 10. Les charges sont très majoritairement présentes en surface du fil guipé, c'est-à-dire autour des fibres de gainage 14. Les charges ont des difficultés à passer au travers des spires pour atteindre l'intérieur du fil guipé, c'est-à-dire l'âme 13 et la puce microélectronique 10. It has also been observed that in the use of a polymer material 12 comprising fillers, for example metal or alumina fillers, the latter have difficulties in reaching the microelectronic chip 10. The charges are very predominantly present on the surface of the wrapped thread, that is to say around the sheathing fibers 14. The loads have difficulties to pass to through turns to reach the inside of the guiped wire, that is to say the core 13 and the microelectronic chip 10.
Dans ce cas de figure, les charges ne peuvent pas assurer leur fonction à proximité de la puce microélectronique 10 car elles sont absentes ou en faible quantité. En plus, l'amas de charges risque de former une surépaisseur ce qui peut être gênant pour les applications futures du fil guipé. Cet amas sera également usé plus rapidement car il se trouve en surépaisseur autour des spires. Afin de faciliter la pénétration du matériau polymère 12 au plus près de la puce microélectronique 10, différentes voies sont possibles. Une première voie est d'appliquer une pression autour du fil guipé recouvert de matériau polymère 12 afin de forcer son infiltration à travers les spires. Cette mise en œuvre est particulièrement complexe à réaliser et elle ne permet pas de placer les éventuelles charges du matériau polymère 12 au plus près de la puce microélectronique 10. In this case, the charges can not perform their function near the microelectronic chip 10 because they are absent or in small quantities. In addition, the pile of loads may form an extra thickness which can be inconvenient for future applications of yarn guiped. This cluster will also be used more quickly because it is in overthickness around the turns. In order to facilitate the penetration of the polymer material 12 as close as possible to the microelectronic chip 10, different paths are possible. A first way is to apply pressure around the wrapped wire covered with polymer material 12 to force its infiltration through the turns. This implementation is particularly complex to achieve and it does not allow to place any charges of the polymer material 12 as close to the microelectronic chip 10.
Un mode de réalisation avantageux est de placer le matériau polymère 12 entre l'âme 13 et la puce microélectronique 10 avant l'étape de guipage, c'est-à-dire avant de former les spires en fibre de gainage 14. Selon les modes de réalisation la fibre de gainage est formée par un mono-filament ou par un multi- filaments, avantageusement les multi-filaments sont tressés. Ce mode de réalisation permet de conserver une quantité importante des charges à proximité immédiate de la puce. Dans un tel mode de réalisation, il est possible d'obtenir une concentration en charges qui est décroissante depuis la puce 10 jusqu'à la périphérie de l'assemblage. An advantageous embodiment is to place the polymer material 12 between the core 13 and the microelectronic chip 10 before the wrapping step, that is to say before forming the turns of cladding fiber 14. According to the embodiments of FIG. The cladding fiber is formed by a monofilament or a multi-filament, advantageously the multi-filaments are braided. This embodiment makes it possible to keep a large quantity of the charges in the immediate vicinity of the chip. In such an embodiment, it is possible to obtain a concentration of charges which is decreasing from the chip 10 to the periphery of the assembly.
Il peut être avantageux d'utiliser des charges électriquement isolantes et/ou des charges formées à partir d'oxydes. It may be advantageous to use electrically insulating charges and / or charges formed from oxides.
Il est avantageux de choisir des charges qui sont configurées pour améliorer les propriétés thermomécaniques du matériau polymère 12 et notamment rapprocher les propriétés thermomécaniques du matériau polymère 12 accompagné de ses charges des propriétés thermomécaniques équivalentes de la puce microélectronique 10. De cette manière, en introduisant des charges spécifiques dans le matériau polymère 12, l'ensemble formé par le matériau polymère 12 et les charges présente des propriétés thermomécaniques plus proches de celles de la puce microélectronique 10. II est particulièrement avantageux de choisir des charges qui sont configurées pour rapprocher le coefficient de dilatation thermique de l'ensemble formé par le matériau polymère 12 et les charges du coefficient de dilatation thermique de la puce microélectronique 10. Le coefficient de dilatation thermique est par exemple le coefficient de dilatation thermique linéique. II est également avantageux de prévoir des charges qui sont configurées pour rapprocher le coefficient de conduction thermique de l'ensemble formé par le matériau polymère 12 et les charges du coefficient de conduction thermique de la puce microélectronique 10. It is advantageous to choose fillers that are configured to improve the thermomechanical properties of the polymer material 12 and in particular to bring the thermomechanical properties of the polymer material 12 together with its charges to the equivalent thermomechanical properties of the microelectronic chip 10. In this way, by introducing specific charges into the polymer material 12, the assembly formed by the polymer material 12 and the charges has thermomechanical properties closer to those of the microelectronic chip 10. It is particularly advantageous to choose charges which are configured to approximate the coefficient of thermal expansion of the assembly formed by the polymer material 12 and the charges of the thermal expansion coefficient of the microelectronic chip 10. The coefficient of thermal expansion is for example the coefficient of linear thermal expansion. It is also advantageous to provide charges which are configured to bring the coefficient of thermal conduction closer to the assembly formed by the polymer material 12 and the charges of the thermal conduction coefficient of the microelectronic chip 10.
Dans ces conditions, l'enrobage de protection qui se trouve autour de la puce est en mesure de placer des charges à proximité immédiate de la puce afin de la protéger efficacement contre l'humidité et les charges permettent également de réduire les contraintes mécaniques lorsque la température de la puce et de l'enrobage de protection évoluent. Under these conditions, the protective coating around the chip is able to place charges in the immediate vicinity of the chip to effectively protect against moisture and the loads also reduce mechanical stress when the temperature of the chip and the protective coating evolve.
Selon les modes de réalisation, les charges présentent un coefficient de dilatation thermique éventuellement linéique et/ou un coefficient de conduction thermique qui sont strictement inférieurs à celui/ceux du matériau polymère et qui sont avantageusement inférieurs ou égaux à celui/ceux de la puce microélectronique 10 et encore plus avantageusement qui sont inférieurs ou égaux à celui/ceux de la puce microélectronique 10. II est également possible de prévoir que les charges sont formées par des matériaux différents par exemple avec une première partie des charges qui présente un coefficient de conduction thermique compris entre celui du matériau polymère 12 et celui de la puce microélectronique 10 et/ou une deuxième partie qui présente un coefficient de conduction thermique égal à celui de la puce microélectronique 10 et/ou une troisième partie qui présente un coefficient de conduction thermique inférieur à celui de la puce microélectronique 10. Il peut en être de même pour le coefficient de dilatation thermique. Dans le cas où la puce 10 est formée sur un substrat en silicium, il est avantageux d'utiliser des charges qui présentent un coefficient de dilatation thermique et/ou de conduction thermique égaux ou sensiblement égaux à ceux du silicium. Dans un cas particulier de réalisation illustré aux figures 2a, 2b et 2c, le matériau polymère 12 recouvre l'âme 10 et la puce microélectronique 14 est placée sur le matériau polymère 12. Selon les cas de figure, l'âme 13 peut être complètement ou partiellement recouverte par le matériau polymère 12. En cas de couverture partielle, il est avantageux d'utiliser la zone en matériau polymère 12 comme une zone d'accueil pour venir placer la puce microélectronique 10. La fibre de gainage 14 est avantageusement fournie à partir d'un rouleau 16. According to the embodiments, the charges have an optionally linear coefficient of thermal expansion and / or a coefficient of thermal conduction which are strictly lower than that of the polymer material and which are advantageously less than or equal to that of the microelectronic chip 10 and even more advantageously which are less than or equal to that of the microelectronic chip 10. It is also possible to provide that the charges are formed by different materials, for example with a first part of the charges which has a coefficient of thermal conduction between that of the polymer material 12 and that of the microelectronic chip 10 and / or a second part which has a coefficient of thermal conduction equal to that of the microelectronic chip 10 and / or a third part which has a coefficient of thermal conduction lower than that of the microelectronic chip 10. It may be the same for the coefficient of thermal expansion. In the case where the chip 10 is formed on a silicon substrate, it is advantageous to use charges which have a coefficient of thermal expansion and / or thermal conduction equal to or substantially equal to those of silicon. In a particular embodiment illustrated in FIGS. 2a, 2b and 2c, the polymer material 12 covers the core 10 and the microelectronic chip 14 is placed on the polymer material 12. Depending on the case, the core 13 may be completely or partially covered by the polymeric material 12. In the case of partial coverage, it is advantageous to use the zone of polymer material 12 as a receiving zone to place the microelectronic chip 10. The cladding fiber 14 is advantageously provided to from a roll 16.
La figure 2a illustre la fourniture d'une âme partiellement recouverte par le matériau polymère 12 et la fourniture d'une puce microélectronique 10. La figure 2b illustre le placement de la puce 10 sur l'âme 13. La puce 10 est fixée au moyen du matériau polymère 12 qui assure le collage entre la puce 10 et l'âme 13. La figure 2c, illustre la formation des spires en fibres de gainage 14 ce qui va comprimer le matériau polymère. Le matériau polymère va fluer de manière à former une enveloppe de protection autour de la puce 10. FIG. 2a illustrates the provision of a core partially covered by the polymer material 12 and the provision of a microelectronic chip 10. FIG. 2b illustrates the placement of the chip 10 on the core 13. The chip 10 is fixed by means of of the polymeric material 12 which ensures the bonding between the chip 10 and the core 13. FIG. 2c illustrates the formation of the turns of cladding fibers 14 which will compress the polymer material. The polymeric material will flow to form a protective wrapper around the chip 10.
Dans une variante de réalisation illustrée aux figures 3a, 3b et 3c, le matériau polymère 12 recouvre la puce microélectronique 10 et la puce microélectronique 10 recouverte est placée sur l'âme 13. Selon les modes de réalisation, la puce 10 peut être complètement ou partiellement recouverte par le matériau polymère 12. In an alternative embodiment illustrated in FIGS. 3a, 3b and 3c, the polymer material 12 covers the microelectronic chip 10 and the microelectronic chip 10 covered is placed on the core 13. According to the embodiments, the chip 10 can be completely or partially covered by the polymer material 12.
La figure 3a illustre la fourniture d'une âme 13 et la fourniture d'une puce microélectronique 10 partiellement recouverte par le matériau polymère 12. La figure 3b illustre le placement de la puce 10 sur l'âme 13. La puce 10 est fixée au moyen du matériau polymère qui assure le collage entre la puce 10 et l'âme 13. La figure 3c, illustre la formation des spires en fibres de gainage 14 ce qui va comprimer le matériau polymère. Le matériau polymère va fluer de manière à former une enveloppe de protection autour de la puce 10. FIG. 3a illustrates the supply of a core 13 and the supply of a microelectronic chip 10 partially covered by the polymeric material 12. FIG. 3b illustrates the placement of the chip 10 on the core 13. The chip 10 is fixed at means of the polymeric material which ensures the bonding between the chip 10 and the core 13. FIG. 3c illustrates the formation of the turns of cladding fibers 14 which will compress the polymer material. The polymeric material will flow to form a protective wrapper around the chip 10.
Il est encore possible de prévoir une combinaison de ces deux modes de réalisation, c'est-à-dire que la puce microélectronique 10 et l'âme 13 sont recouvertes par un matériau polymère 12. Il est possible d'utiliser le même matériau polymère ou deux matériaux polymères différents pour recouvrir l'âme 13 et la puce microélectronique 10. It is still possible to provide a combination of these two embodiments, that is to say that the microelectronic chip 10 and the core 13 are covered by a polymer material 12. It is possible to use the same polymeric material or two different polymeric materials for covering the core 13 and the microelectronic chip 10.
La puce microélectronique 10 est donc placée sur l'âme 13 au moyen d'un matériau polymère 12 qui assure le maintien en place de ces deux éléments lors de la formation des spires. Le matériau polymère 12 est avantageusement une colle. La puce 10 peut être placée sur l'âme 13 lorsque l'âme 13 est en mouvement ou alors lorsque l'âme 13 est arrêtée. The microelectronic chip 10 is placed on the core 13 by means of a polymer material 12 which ensures the retention of these two elements during the formation of the turns. The polymeric material 12 is advantageously an adhesive. The chip 10 may be placed on the core 13 when the core 13 is moving or when the core 13 is stopped.
Lorsque la fibre de gainage 14 est enroulée autour de la puce microélectronique 10 et de l'âme 13 au niveau de la zone de guipage pour former le fil guipé, le matériau polymère 12 est présent entre l'âme 13 et la puce microélectronique 10 et il va fluer à travers les spires de la fibre de gainage 14 de manière à former la couche de protection. Si la fibre de gainage 14 est multi-filaments, le matériau polymère 12 flue avantageusement entre les filaments de la fibre 14. When the cladding fiber 14 is wrapped around the microelectronic chip 10 and the core 13 at the wrapping zone to form the wrapped wire, the polymer material 12 is present between the core 13 and the microelectronic chip 10 and it will flow through the turns of the cladding fiber 14 so as to form the protective layer. If the cladding fiber 14 is multi-filaments, the polymeric material 12 advantageously flows between the filaments of the fiber 14.
Dans cette configuration, le matériau polymère 12 est au plus près de la puce microélectronique et de l'âme. Lors du fluage, le matériau polymère va enrober l'âme et la puce avant ou pendant l'infiltration du matériau polymère à travers les spires en fibre de gainage 14. Le matériau polymère va avantageusement entre les spires de la fibre de gainage 14. In this configuration, the polymer material 12 is closer to the microelectronic chip and the core. During creep, the polymeric material will coat the core and the chip before or during the infiltration of the polymeric material through the turns of cladding fiber 14. The polymer material advantageously goes between the turns of the cladding fiber 14.
De cette manière, la couche de protection autour de la puce microélectronique 10 et autour de l'âme 13 est de meilleure qualité car elle est plus continue. La probabilité d'avoir un trou favorisant l'arrivé d'humidité ou d'impuretés est réduite. Cet effet est particulièrement marqué lorsque le matériau polymère 12 a une viscosité élevée, par exemple dans la gamme indiquée précédemment. Il apparaît également que lorsque le matériau polymère 12 comporte des charges, par exemple les charges indiquées précédemment, ces dernières sont majoritairement concentrées autour de la puce microélectronique et de l'âme 13 car la fibre de gainage 14 en forme de spire ralentit leur progression vers l'extérieur du fil guipé. Dans cette configuration, les surépaisseurs sont réduites voire inexistantes. Dans ces cas de figure, le matériau polymère 12 fixe la puce microélectronique 10 avec l'âme 13 et les spires ce qui permet d'augmenter la durée de vie du fil guipé. Dans un mode de réalisation particulier, la tension appliquée par la fibre de gainage 14 lors de la formation des spires et le matériau polymère 12 sont configurés pour faire fluer une partie du matériau polymère 12 à travers les spires lors de l'étape de formation des spires. Dans une variante de réalisation, la spire applique une contrainte sur l'ensemble formé par l'âme 13, la puce microélectronique 10 et le matériau polymère 12. Un recuit peut être appliqué sur l'ensemble de manière à fluidifier le matériau polymère 12 qui va fluer plus facilement à travers les spires. L'augmentation de la température va accentuer le phénomène d'infiltration du matériau polymère 12 de manière analogue à une amélioration de la mouillabilité. Des essais ont été réalisés avec la colle E505 de la société EPOTECHNY. Il a été observé, lors de la montée en température jusqu'à 160°C, que la colle devient plus fluide et qu'elle mouille davantage l'âme 13 et la puce microélectronique 10. La fibre de gainage 14 est à une première température dans la bobine 16 et elle enroulée sur l'âme 13 à une deuxième température qui peut être identique ou différente de la première température. L'étape de recuit se traduit avantageusement par une augmentation de la température d'au moins 5°C, de préférence d'au moins 10°C. In this way, the protective layer around the microelectronic chip 10 and around the core 13 is of better quality because it is more continuous. The probability of having a hole favoring the arrival of moisture or impurities is reduced. This effect is particularly pronounced when the polymer material 12 has a high viscosity, for example in the range indicated above. It also appears that when the polymer material 12 comprises charges, for example the charges indicated above, the latter are mainly concentrated around the microelectronic chip and the core 13 because the spiral-shaped cladding fiber 14 slows down their progression towards the outside of the gimped yarn. In this configuration, the extra thicknesses are reduced or non-existent. In these cases, the polymeric material 12 fixes the microelectronic chip 10 with the core 13 and the turns which allows to increase the service life of the covered yarn. In a particular embodiment, the voltage applied by the cladding fiber 14 during the formation of the turns and the polymer material 12 are configured to flow a portion of the polymer material 12 through the turns during the step of forming the turns. turns. In an alternative embodiment, the turn applies a stress on the assembly formed by the core 13, the microelectronic chip 10 and the polymer material 12. Annealing may be applied to the assembly so as to fluidize the polymer material 12 which will flow more easily through the turns. The increase in temperature will accentuate the phenomenon of infiltration of the polymer material 12 in a manner analogous to an improvement in the wettability. Tests have been carried out with the EPOTECHNY E505 glue. It has been observed, during the rise in temperature up to 160 ° C, that the glue becomes more fluid and that it wets the core 13 and the microelectronic chip 10 more. The sheath fiber 14 is at a first temperature in the coil 16 and wound on the core 13 at a second temperature which may be the same or different from the first temperature. The annealing step advantageously results in an increase of the temperature of at least 5 ° C, preferably at least 10 ° C.
Dans un mode de réalisation avantageux, une étape de recuit est réalisée après la formation du fil guipé. Le recuit est configuré de manière à entraîner la polymérisation du matériau polymère qui va fixer durablement la puce microélectronique 10 avec l'âme 13 et les spires. Le recuit peut également être utilisé pour accélérer la polymérisation. L'étape de recuit se traduit avantageusement par une augmentation de la température d'au moins 5°C, de préférence d'au moins 10°C. Ce mode de réalisation est particulièrement avantageux pour réticuler ou accélérer la réticulation du matériau polymère 12 et éviter sa déformation dans le temps. Le matériau polymère 12 est par exemple un matériau thermodurcissable partiellement réticulé ou une colle. Le matériau polymère peut être par exemple une colle époxy capable d'être mise en forme en deux fois par exemple avec une imprégnation à chaud suivie par une étape de recuit. Ce type de colle époxy est utilisé par exemple pour former des circuits imprimés à haute densité. En variante, il est également possible d'utiliser une colle UV qui polymérise en surface lors d'une insolation puis à cœur lors d'un recuit postérieur. Dans un autre mode de réalisation, il est encore possible de recuire le matériau polymère à une température proche de la température de transition vitreuse afin de diminuer sa viscosité et de le rendre moins collant au toucher. Par température proche de la transition vitreuse, on entend avantageusement une température comprise entre +10°C et -10°C par rapport à la température de transition vitreuse et encore plus avantageusement une température comprise entre +5°C et -5°C par rapport à la température de transition vitreuse. Un second recuit à une température supérieure est réalisé de manière à finaliser la réticulation. In an advantageous embodiment, an annealing step is performed after the formation of the covered yarn. The annealing is configured so as to cause the polymerization of the polymer material which will permanently fix the microelectronic chip 10 with the core 13 and the turns. Annealing may also be used to accelerate the polymerization. The annealing step advantageously results in an increase of the temperature of at least 5 ° C, preferably at least 10 ° C. This embodiment is particularly advantageous for crosslinking or accelerating the crosslinking of the polymer material 12 and preventing its deformation over time. The polymer material 12 is for example a partially cross-linked thermosetting material or an adhesive. The polymer material may for example be an epoxy adhesive capable of being shaped twice, for example with a hot impregnation followed by an annealing step. This type of epoxy glue is used for example to form high density printed circuits. Alternatively, it is also possible to use a UV adhesive which polymerizes on the surface during an exposure and then to the heart during a posterior annealing. In another embodiment, it is still possible to anneal the polymer material at a temperature close to the glass transition temperature to reduce its viscosity and make it less tacky to the touch. The term "temperature close to the glass transition" advantageously means a temperature of between + 10 ° C. and -10 ° C. with respect to the glass transition temperature and even more advantageously a temperature of between + 5 ° C. and -5 ° C. compared to the glass transition temperature. A second anneal at a higher temperature is carried out so as to finalize the crosslinking.
La polymérisation de la colle est avantageusement réalisée entre 130°C et 220°C. La colle peut être une colle époxy, par exemple une colle époxy TC420 commercialisée par la société POLYTECH PT ou une colle époxy E514 commercialisée par la société EPOTECNY. The polymerization of the adhesive is advantageously carried out between 130 ° C. and 220 ° C. The adhesive may be an epoxy adhesive, for example a TC420 epoxy adhesive marketed by Polytech PT or an epoxy adhesive E514 sold by EPOTECNY.
Par ailleurs, après la formation du fil guipé, il est particulièrement avantageux d'enrouler le fil guipé pour former une bobine. Dans cette configuration, il est particulièrement avantageux de réaliser un premier recuit après la formation du fil guipé et avant la mise en bobine. Ce premier recuit a pour objectif de réaliser une polymérisation partielle du matériau polymère par exemple de la colle. Ce premier recuit est avantageusement réalisé dans une gamme de température comprise entre 130°C et 200°C. Après ce premier recuit, le fil guipé peut être mis en bobine et un deuxième recuit est réalisé de préférence sur la bobine de fil. Ce deuxième recuit est configuré pour compléter la polymérisation de la colle et de préférence obtenir une polymérisation totale de la colle. Le deuxième recuit est avantageusement réalisé dans une gamme de température comprise entre 150°C et 220°C. La température du deuxième recuit est supérieure à la température du premier recuit. Il est particulièrement avantageux de réaliser le premier recuit lors de la phase d'enroulement ce qui permet une meilleure gestion de la viscosité. Ce mode de réalisation est particulièrement avantageux pour les colles époxy dont la viscosité diminue lors d'une montée en température, par exemple depuis 40°C jusqu'à 80°C, pendant quelques secondes avant d'augmenter de nouveau sous l'effet de la réticulation. Il y a alors imprégnation accrue de la colle dans la partie interne du fil guipé puis un blocage de la diffusion en direction de l'extérieur car le matériau polymère à réagi. Moreover, after the formation of the covered yarn, it is particularly advantageous to wind the wrapped yarn to form a coil. In this configuration, it is particularly advantageous to perform a first annealing after the formation of the covered yarn and before reeling. This first annealing is intended to achieve a partial polymerization of the polymer material for example glue. This first annealing is advantageously carried out in a temperature range of between 130 ° C. and 200 ° C. After this first annealing, the covered yarn may be reeled and a second annealing is preferably performed on the spool of yarn. This second annealing is configured to complete the polymerization of the adhesive and preferably to obtain a total polymerization of the adhesive. The second annealing is advantageously carried out in a temperature range of between 150 ° C. and 220 ° C. The temperature of the second annealing is greater than the temperature of the first annealing. It is particularly advantageous to carry out the first annealing during the winding phase, which allows a better management of the viscosity. This embodiment is particularly advantageous for epoxy glues whose viscosity decreases during a rise in temperature, for example from 40 ° C. to 80 ° C., for a few seconds before increasing again under the effect of crosslinking. There is then increased impregnation of the glue in the inner part of the yarn then a blocking of diffusion towards the outside because the polymer material reacted.
Dans une variante de réalisation, le matériau polymère 12 est un matériau thermoplastique. Il est particulièrement avantageux de chauffer le matériau thermoplastique avant de placer la puce microélectronique sur l'âme au moyen d'un premier recuit. Chauffer le matériau thermoplastique permet de le ramollir et d'augmenter son pouvoir collant. Ainsi, la puce microélectronique 10 est collée à l'âme 13 au moyen du matériau polymère 12 pendant l'étape de guipage ce qui est particulièrement avantageux pour assurer un bon placement de la puce microélectronique 10 sur l'âme 13. Le premier recuit est avantageusement réalisé dans une gamme de température comprise entre 150°C et 200°C. Le recuit peut être réalisé en chauffant la bobine 16 ou avantageusement en chauffant le matériau polymère 12 entre la sortie de la bobine et la solidarisation avec l'âme. Un deuxième recuit est alors réalisé, après l'étape de guipage, de manière à faire fluer le matériau polymère autour de la puce microélectronique 10 et autour de l'âme 13 jusqu'à atteindre la fibre de gainage 14. Le deuxième recuit est avantageusement réalisé dans une gamme de température comprise entre 160°C et 240°C. La température du deuxième recuit peut être supérieure ou inférieure à la température du premier recuit car l'objectif est de mettre le matériau polymère à l'état pâteux. La différence de température entre les deux recuits est avantageusement d'au moins 5°C, de préférence au moins 10°C. In an alternative embodiment, the polymer material 12 is a thermoplastic material. It is particularly advantageous to heat the thermoplastic material before placing the microelectronic chip on the core by means of of a first annealing. Heating the thermoplastic material makes it softer and increase its tackiness. Thus, the microelectronic chip 10 is bonded to the core 13 by means of the polymer material 12 during the covering step, which is particularly advantageous for ensuring proper placement of the microelectronic chip 10 on the core 13. The first annealing is advantageously carried out in a temperature range of between 150 ° C. and 200 ° C. The annealing can be carried out by heating the coil 16 or advantageously by heating the polymer material 12 between the exit of the coil and the securing with the core. A second annealing is then performed after the covering step, so as to flow the polymer material around the microelectronic chip 10 and around the core 13 to reach the cladding fiber 14. The second annealing is advantageously achieved in a temperature range between 160 ° C and 240 ° C. The temperature of the second annealing may be higher or lower than the temperature of the first annealing because the objective is to put the polymer material in the pasty state. The temperature difference between the two anneals is advantageously at least 5 ° C, preferably at least 10 ° C.
Le matériau polymère 12 peut être choisi parmi les polyuréthanes ou les silicones. Dans un mode de réalisation encore plus particulier, l'âme 13 et le matériau polymère 12 sont réalisés en matériaux thermoplastiques ou comportent un matériau thermoplastique. Selon les modes de réalisation, le même matériau thermoplastique ou deux matériaux thermoplastiques différents peuvent être utilisés pour former l'âme 13 et le matériau polymère 12. Si l'âme 13 est un multi-filament, il est avantageux de prévoir au moins un filament en matériau thermoplastique et avantageusement dans le même matériau thermoplastique que celui utilisé pour le matériau polymère 12. Il est également avantageux d'utiliser des matériaux différents, par exemple des matériaux thermoplastiques différents qui flueront différemment ce qui permet de préserver les propriétés mécaniques de l'âme 13 ou du polymère au cours de la réalisation. The polymer material 12 may be chosen from polyurethanes or silicones. In an even more specific embodiment, the core 13 and the polymer material 12 are made of thermoplastic materials or comprise a thermoplastic material. According to the embodiments, the same thermoplastic material or two different thermoplastic materials can be used to form the core 13 and the polymer material 12. If the core 13 is a multi-filament, it is advantageous to provide at least one filament in thermoplastic material and advantageously in the same thermoplastic material as that used for the polymer material 12. It is also advantageous to use different materials, for example different thermoplastic materials that will flow differently, which preserves the mechanical properties of the soul 13 or polymer during the realization.
Il est encore possible de prévoir une âme en un premier matériau recouvert par un matériau thermoplastique différent du matériau de l'âme. En variante, l'âme 13 peut être formée complètement par un matériau thermoplastique. Dans ce cas de figure, il est avantageux de réaliser l'âme 13 dans un matériau thermoplastique ayant une température de transition vitreuse supérieure à celle du matériau thermoplastique formant le matériau polymère afin de conserver l'intégrité mécanique de l'ensemble lors des recuits. Par exemple, une différence de température de 10°C est avantageusement choisie. It is still possible to provide a core of a first material covered by a thermoplastic material different from the material of the core. In a variant, the soul 13 can be formed completely by a thermoplastic material. In this case, it is advantageous to make the core 13 in a thermoplastic material having a glass transition temperature greater than that of the thermoplastic material forming the polymeric material in order to maintain the mechanical integrity of the assembly during annealing. For example, a temperature difference of 10 ° C is advantageously chosen.
Le deuxième recuit peut être configuré de manière à faire fluer le matériau polymère 12 et une partie de l'âme 13 autour de la puce microélectronique 10 jusqu'à atteindre la fibre de gainage 14. Dans encore une autre variante de réalisation, l'âme 13 est formée par des filaments en matériau thermodurcissable et le matériau polymère 12 est formé dans l'âme 13 par des filaments en matériau thermoplastique. Le matériau thermoplastique est présent dans l'âme 13 et aussi à sa périphérie. Lors des deux recuits précédents, le matériau thermoplastique réagit pour coller la puce microélectronique puis pour l'encapsuler. The second annealing may be configured to flow the polymer material 12 and a portion of the core 13 around the microelectronic chip 10 until it reaches the cladding fiber 14. In yet another embodiment, the core 13 is formed by thermosetting material filaments and the polymeric material 12 is formed in the core 13 by thermoplastic filaments. The thermoplastic material is present in the core 13 and also at its periphery. During the two previous anneals, the thermoplastic material reacts to stick the microelectronic chip and then to encapsulate it.
L'âme 13 est par exemple en multi-filaments Co-Polyester (Co PES) ou Co- Polyamide (Co PA), un tel fil est par exemple commercialisé par la société DISTRICO sous la dénomination fil GRILON® thermocollant. Il est possible d'utiliser des fils formés par une âme en polyamide/polyester associée à une gaine en Co-Polyester (Co PES) ou Co-Polyamide. Ces fils sont vendus sous la dénomination Fils GRILON® bi composant. Il est encore possible d'utiliser une âme 13 par exemple en multi-filaments Co-Polyester (Co PES) ou Co- Polyamide (Co PA) associée avec un fil d'âme non fusible et commercialisé sous la dénomination fil GRILON® combi thermocollant. Placer le matériau polymère au contact direct de la puce microélectronique 10 avant la formation des spires permet de réduire la quantité de matériau polymère 12 utilisé tout en assurant une protection optimale de la puce 10. Cela permet de réduire voire d'éviter les amas de matière autour du fil guipé. Réduire la quantité de matériau polymère permet également de réduire les différences de comportement mécanique entre les zones avec puce et matériau polymère et les zones sans puce et sans matériau polymère. The core 13 is for example made of multi-filaments Co-Polyester (Co PES) or Co-Polyamide (Co PA), such a yarn is for example sold by the company DISTRICO under the name GRILON® thermocollant thread. It is possible to use yarns formed by a polyamide / polyester core associated with a Co-Polyester (Co PES) or Co-Polyamide sheath. These yarns are sold under the name GRILON® two-component yarns. It is still possible to use a core 13 for example made of multi-filaments Co-Polyester (Co PES) or Co-Polyamide (Co PA) associated with a non-fusible core wire and sold under the name GRILON® combi wire fusible . Placing the polymer material in direct contact with the microelectronic chip 10 before the formation of the turns reduces the amount of polymer material 12 used while ensuring optimal protection of the chip 10. This makes it possible to reduce or even avoid clusters of material around the guiped thread. Reducing the amount of polymer material also makes it possible to reduce the differences in mechanical behavior between the zones with chip and polymer material and the zones without chip and without polymer material.
Il est alors possible de choisir la quantité de matériau polymère 12 de manière à ce que le matériau polymère 12 ne déborde pas au delà de la dernière couche de spires de fibre de gainage 14 lors du fluage. Il est encore plus avantageux de choisir la quantité de matériau polymère 12 de manière à ce que le matériau polymère 12 laisse, sur les différentes spires entourant la puce microélectronique 10, une zone externe dépourvue de matériau polymère 12. Par exemple, pour une unité de longueur donnée, le volume de matériau polymère 12 est inférieur au volume de fibre de gainage 14 enroulé. Cette zone externe peut avoir la forme d'un anneau continu atour de la puce 10. It is then possible to choose the amount of polymer material 12 so that the polymer material 12 does not overflow beyond the last layer of cladding fiber turns 14 during creep. It is even more advantageous to choose the amount of polymer material 12 so that the polymer material 12 leaves, on the different turns surrounding the microelectronic chip 10, an outer zone devoid of polymeric material 12. For example, for a unit of given length, the volume of polymer material 12 is less than the volume of wrapping fiber 14 wound. This outer zone may have the shape of a continuous ring around the chip 10.
Pour fixer la puce microélectronique 10 à l'âme 13, il apparaît judicieux d'utiliser plusieurs zones de collage dissociées. C'est-à-dire au moins deux zones munies de matériau polymère 12 séparées par une zone dépourvue de matériau polymère 12. To attach the microelectronic chip 10 to the core 13, it seems advisable to use several bonded bonding areas. That is to say at least two zones provided with polymer material 12 separated by a zone devoid of polymer material 12.
Ce mode de réalisation est particulièrement avantageux lorsque la puce microélectronique 10 comporte un dispositif RFID muni d'une antenne. L'antenne est fixée à l'âme au moyen d'une zone spécifique en matériau polymère 12. This embodiment is particularly advantageous when the microelectronic chip 10 comprises an RFID device provided with an antenna. The antenna is fixed to the core by means of a specific zone of polymer material 12.
La figure 4 représente schématiquement une installation de guipage classique pouvant servir à incorporer des éléments à puce 10 dans un fil guipé moyennant de simples modifications. Figure 4 schematically shows a conventional covering installation that can be used to incorporate chip elements 10 in a wire covered with simple modifications.
Une âme 13 se déroule d'une bobine d'alimentation 15, traverse axialement deux rouleaux successifs, 16 et 17, et finit enroulée sur une bobine réceptrice 18. Chacun des rouleaux 16 et 17 emmagasine une fibre de gainage et est associé à un mécanisme tournant autour de l'âme en cours de défilement, et enroulant autour de celle-ci la fibre de gainage. Les deux mécanismes d'enroulement tournent en sens inverse, d'où il résulte que le fil guipé sortant comporte deux couches de fibre de gainage, formées d'hélices de sens opposés. Le rapport des vitesses de défilement de l'âme et de rotation des mécanismes d'enroulement définit le pas des hélices. A core 13 unwinds from a supply spool 15, axially passes through two successive rollers, 16 and 17, and ends wound on a take-up spool 18. Each of the rollers 16 and 17 stores a cladding fiber and is associated with a mechanism turning around the soul being scrolled, and wrapping around it the sheathing fiber. The two winding mechanisms rotate in opposite directions, from which it follows that the outgoing guiped yarn comprises two layers of cladding fiber, formed of helices of opposite directions. The ratio of the running speeds of the core and the rotation of the winding mechanisms defines the pitch of the propellers.
Comme cela est représenté, il est classique de travailler à la verticale de bas en haut, c'est-à-dire que la bobine d'alimentation 15 se trouve en bas, et la bobine de réception 18 en haut. Les mécanismes d'enroulement sont, dans la figure 4, prévus pour enrouler la fibre de gainage autour de l'âme 13 à la sortie des rouleaux (dans le sens de défilement de l'âme). Cependant, une configuration horizontale n'est pas interdite. Afin d'incorporer des éléments à puce dans le fil en cours de formation, on prévoit un dispositif d'insertion 19, de préférence au niveau du premier rouleau 16. Ce dispositif d'insertion 19, par exemple sous la forme d'un tube de diamètre adapté aux éléments à puce 10, guide ceux-ci jusqu'à une zone de fixation 20 où la puce vient se fixer sur l'âme 13. As shown, it is conventional to work vertically from bottom to top, i.e., the feed reel 15 is at the bottom, and the reel 18 at the top. The winding mechanisms are, in Figure 4, provided for winding the cladding fiber around the core 13 at the exit of the rollers (in the running direction of the core). However, a horizontal configuration is not prohibited. In order to incorporate chip elements in the wire being formed, an insertion device 19 is provided, preferably at the level of the first roller 16. This insertion device 19, for example in the form of a tube of diameter adapted to the chip elements 10, guides them to an attachment zone 20 where the chip is fixed on the core 13.
La puce fixée sur l'âme 13 arrive ensuite à une zone de guipage 21 où la fibre de gainage du rouleau 16 est enroulée autour de l'âme 13. Ce tube traverse le rouleau 16 de bas en haut et débouche à proximité de la zone 21 . En variante, le tube de guidage peut être remplacé par une goulotte, c'est-à-dire un demi- tube selon la direction longitudinale, ou par un système de guidage à galet. The chip fixed on the core 13 then arrives at a wrapping area 21 where the cladding fiber of the roll 16 is wrapped around the core 13. This tube passes through the roll 16 from bottom to top and opens near the area 21. Alternatively, the guide tube may be replaced by a chute, that is to say a half-tube in the longitudinal direction, or by a roller guide system.
Les éléments 10 individuels sont, par exemple, projetés à l'aide d'air comprimé à travers le tube 19 pour se coller à l'âme au moyen du matériau polymère. L'âme se déplace ensuite jusqu'à la zone 21 où les puces 10 et l'âme 13 sont comprimés par la fibre de gainage en cours d'enroulement. De manière avantageuse, la puce microélectronique 10 est amenée parallèlement à l'âme 13. The individual elements are, for example, projected with compressed air through the tube 19 to bond to the core by means of the polymeric material. The core then moves to the area 21 where the chips 10 and the core 13 are compressed by the cladding fiber during winding. Advantageously, the microelectronic chip 10 is brought parallel to the core 13.
La figure 5 représente une autre configuration possible du rouleau 16 avec son mécanisme d'enroulement. L'enroulement de la fibre de gainage autour de l'âme 13 a lieu à l'entrée du rouleau (dans le sens de défilement de l'âme 13). La zone de guipage 21 est donc située à l'entrée du rouleau 16. Cette configuration permet d'utiliser un dispositif d'insertion 19 plus court, puisqu'il ne doit plus traverser le rouleau 16. Cela facilite l'alimentation du dispositif d'insertion en éléments à puce 10. Figure 5 shows another possible configuration of the roller 16 with its winding mechanism. The winding of the cladding fiber around the core 13 takes place at the entrance of the roll (in the running direction of the core 13). The wrapping area 21 is therefore located at the entrance of the roll 16. This configuration makes it possible to use a shorter insertion device 19 since it no longer has to traverse the roll 16. This facilitates the feeding of the device. insertion into chip elements 10.
Afin de permettre d'alimenter le dispositif d'insertion 19 par gravité, ce qui simplifierait davantage le procédé, on peut envisager d'inverser l'installation, c'est-à-dire faire défiler l'âme 13 du haut vers le bas. In order to make it possible to feed the insertion device 19 by gravity, which would further simplify the process, it is possible to envisage reversing the installation, that is to say scrolling the core 13 from the top to the bottom. .
La figure 6 représente encore une autre configuration possible où une bobine de fibre de gainage se déplace autour du fil d'âme 13 en se dévidant pour que la fibre de gainage s'enroule autour de l'âme 13. Le mouvement de la bobine 16 autour de l'âme 13 est représenté par la flèche. FIG. 6 shows yet another possible configuration where a coil of cladding fiber moves around the core wire 13 by unwinding itself so that the cladding fiber wraps around the core 13. The movement of the coil 16 around the soul 13 is represented by the arrow.
Dans un premier mode de réalisation illustré à la figure 4, l'âme 13 quitte la bobine 15 dépourvue de matériau polymère 12. Une zone de dépôt du matériau polymère est présente entre la bobine 15 et la zone 20 où la puce 10 est fixée à l'âme 13. La machine de dépôt 22 vient déposer du matériau polymère sur l'âme 13. In a first embodiment illustrated in FIG. 4, the core 13 leaves the coil 15 devoid of polymeric material 12. A zone for depositing the material polymer is present between the coil 15 and the zone 20 where the chip 10 is fixed to the core 13. The deposition machine 22 comes to deposit polymer material on the core 13.
Le dépôt du matériau polymère 12 peut être réalisé selon toute technique connue. Le matériau polymère 12 peut être déposé de manière continue pour recouvrir toute la longueur de l'âme 13 ou de manière discontinue pour former des zones en matériau polymère 12 séparées par des zones dépourvues de matériau polymère 12. The deposition of the polymer material 12 can be carried out according to any known technique. The polymeric material 12 may be continuously deposited to cover the entire length of the core 13 or discontinuously to form zones of polymer material 12 separated by zones devoid of polymeric material 12.
Le dépôt discontinu peut être réalisé par dépôt d'une ou plusieurs gouttes de matériau polymère 12 sur l'âme 13. Il est encore possible de déposer le matériau polymère 12 sur l'âme 13 par projection, par exemple au moyen d'un jet de matériau polymère 12. Un dépôt discontinu de matériau polymère 12 peut encore être réalisé par enduction. The discontinuous deposit can be made by depositing one or more drops of polymer material 12 on the core 13. It is also possible to deposit the polymer material 12 on the core 13 by projection, for example by means of a jet of polymeric material 12. A discontinuous deposition of polymeric material 12 can be further achieved by coating.
Le dépôt par jet de matériau 12 ou la formation de gouttes peut être obtenu au moyen d'équipements commercialisés par la société Nordson Asymtek. La formation de gouttes peut également être obtenue par trempage d'une pointe dans le matériau polymère 12 à l'état liquide puis transfert sur l'âme 13 par contact entre l'âme 13 et la pointe ou éventuellement le matériau polymère 12 liquide. Le matériau polymère 12 peut être déposé sur l'âme 13 en mouvement ou l'âme 13 est arrêtée afin de placer le matériau polymère 12. The deposition of material 12 or the formation of drops can be obtained by means of equipment marketed by the company Nordson Asymtek. The formation of drops can also be obtained by dipping a tip in the polymer material 12 in the liquid state and then transfer on the core 13 by contact between the core 13 and the tip or possibly the liquid polymer material 12. The polymer material 12 may be deposited on the moving core 13 or the core 13 is stopped in order to place the polymer material 12.
Ce qui a été présenté pour le dépôt du matériau polymère 12 sur l'âme 13 peut également être réalisé pour le dépôt du matériau polymère 12 sur la puce 10. What has been presented for the deposition of the polymer material 12 on the core 13 can also be realized for the deposition of the polymer material 12 on the chip 10.
Comme indiqué plus haut, si des recuits sont utilisés pour favoriser la polymérisation du matériau polymère 12, il est avantageux de placer un four 23, 24 après le rouleau 16, par exemple entre le rouleau 16 et le rouleau 17 ou après le rouleau 17. Dans l'exemple illustré à la figure 4, un premier four 23 est disposé entre les rouleaux 16 et 17 et un deuxième four 24 est disposé de manière à recuire la bobine 18. La figure 7 représente un tronçon de fil guipé obtenu à la sortie du premier rouleau 16, illustrant un élément à puce 10, avec ses tronçons de fil 1 1 a et 1 1 b, pris entre l'âme 13 et la fibre de gainage, enroulée en hélice, provenant du rouleau 16. On cherche à avoir les tronçons de fil 1 1 a et 1 1 b sensiblement parallèles à l'âme 13, comme cela est représenté. As indicated above, if anneals are used to promote the polymerization of the polymer material 12, it is advantageous to place an oven 23, 24 after the roll 16, for example between the roll 16 and the roll 17 or after the roll 17. In the example illustrated in Figure 4, a first oven 23 is disposed between the rollers 16 and 17 and a second oven 24 is arranged to anneal the coil 18. Figure 7 shows a section of guiped wire obtained at the output of the first roller 16, illustrating a chip element 10, with its wire sections 11a and 11b, taken between the core 13 and the spirally wound cladding fiber, coming from the roller 16. It is sought to have the wire sections 1 1a and 1 1b substantially parallel to the core 13, as shown.
Pour ce type de puce microélectronique 10, il est avantageux d'utiliser plusieurs zones de matériau polymère distinctes afin de fixer la puce à l'âme dans la configuration recherchée. Par exemple, trois zones de matériau polymère distinctes sont utilisées. Une première zone de matériau polymère est utilisée pour fixer et encapsuler la puce 10. Deux zones additionnelles de matériau polymère sont utilisées de préférence aux extrémités des tronçons de fils 1 1 a et 1 1 b afin de fixer l'orientation des antennes de la puce 10. La quantité de matériau polymère peut être réduite ce qui permet de limiter le volume final occupé par le matériau polymère. For this type of microelectronic chip 10, it is advantageous to use several different zones of polymeric material in order to fix the chip to the core in the desired configuration. For example, three separate areas of polymeric material are used. A first zone of polymeric material is used to fix and encapsulate the chip 10. Two additional zones of polymeric material are preferably used at the ends of the wire sections 11a and 11b in order to fix the orientation of the chip antennas. 10. The amount of polymer material can be reduced which limits the final volume occupied by the polymeric material.

Claims

Revendications claims
1. Procédé de réalisation d'un fil guipé, comprenant les étapes suivantes : 1. A method of producing a covered yarn, comprising the following steps:
• Fournir une âme (13) et au moins une puce microélectronique (10) associée à des tronçons de fils (1 1 a, 1 1 b), · Mettre en contact la puce microélectronique (10) et les tronçons de fils (1 1 a, 1 1 b) avec l'âme (13) ; • Provide a core (13) and at least one microelectronic chip (10) associated with wire sections (1 1 a, 1 1 b), · Connect the microelectronic chip (10) and the wire sections (1 1 a, 1 1 b) with the soul (13);
• Enrouler au moins une fibre de gainage (14) autour de la puce microélectronique (10), des tronçons de fils (1 1 a, 1 1 b) et de l'âme au niveau d'au moins une zone de guipage pour former le fil guipé ; caractérisé en ce qu'un matériau polymère (12) est présent entre l'âme (13) et la puce microélectronique (10) avant d'enrouler la fibre de gainage (14) autour de la puce microélectronique (10) et de l'âme et en ce que la fibre de gainage (14) est enroulée autour de la puce microélectronique (10) et de l'âme de manière à forcer le fluage du matériau polymère (12) à travers les spires de la fibre de gainage (14) pour former un enrobage de protection autour de la puce microélectronique (10). • Wrap at least one cladding fiber (14) around the microelectronic chip (10), wire strands (11a, 11b) and the core at at least one wrapping zone to form the guiped thread; characterized in that a polymeric material (12) is present between the core (13) and the microelectronic chip (10) before winding the cladding fiber (14) around the microelectronic chip (10) and the and that the cladding fiber (14) is wrapped around the microelectronic chip (10) and the core so as to force the flow of the polymeric material (12) through the turns of the cladding fiber (14). ) to form a protective coating around the microelectronic chip (10).
2. Procédé selon la revendication 1 , dans lequel l'âme (13) est fournie recouverte par le matériau polymère (12). 2. Method according to claim 1, wherein the core (13) is provided covered by the polymeric material (12).
3. Procédé selon la revendication 2, dans lequel l'âme (13) est partiellement recouverte par le matériau polymère (12), les zones recouvertes définissants des zones d'accueil pour la puce microélectronique (10). 3. The method of claim 2, wherein the core (13) is partially covered by the polymeric material (12), the covered areas defining the receiving areas for the microelectronic chip (10).
4. Procédé selon l'une des revendications précédentes, dans lequel la puce microélectronique (10) est fournie recouverte par le matériau polymère (12). 4. Method according to one of the preceding claims, wherein the microelectronic chip (10) is provided covered by the polymeric material (12).
5. Procédé selon l'une des revendications précédentes, dans lequel le matériau polymère (12) comporte des charges préférentiellement en matériau métallique ou en alumine. 5. Method according to one of the preceding claims, wherein the polymeric material (12) comprises charges preferably metal material or alumina.
6. Procédé selon l'une des revendications précédentes, dans lequel le matériau polymère (12) est un matériau thermoplastique (12). 6. Method according to one of the preceding claims, wherein the polymeric material (12) is a thermoplastic material (12).
7. Procédé selon l'une des revendications précédentes, dans lequel une étape de recuit est réalisée sur le fil guipé pour polymériser le matériau polymère (12) et fixer ensemble l'âme (13), la puce microélectronique (10) et la fibre de gainage (14). 7. Method according to one of the preceding claims, wherein an annealing step is performed on the guiped wire to polymerize the polymer material (12) and fasten together the core (13), the microelectronic chip (10) and the cladding fiber (14).
8. Procédé selon la revendication 7, dans lequel une étape de recuit additionnelle est réalisée avant de mettre en contact la puce microélectronique (10) avec l'âme (13) de manière à ramollir le matériau polymère (12) et coller la puce microélectronique (10). 8. The method of claim 7, wherein an additional annealing step is performed before contacting the microelectronic chip (10) with the core (13) so as to soften the polymer material (12) and stick microelectronic chip (10).
9. Procédé selon la revendication 8, dans lequel l'âme (13) et le matériau polymère (12) comportent respectivement un premier et un deuxième matériaux thermoplastiques, le premier matériau thermoplastique de l'âme (13) fluant partiellement à travers les spires de la fibre de gainage (14). 9. The method of claim 8, wherein the core (13) and the polymeric material (12) respectively comprise a first and a second thermoplastic materials, the first thermoplastic material of the core (13) partially flowing through the turns the cladding fiber (14).
10. Procédé selon la revendication 8, dans lequel le matériau polymère (12) est formé par une pluralité de filaments tressés avec l'âme (13). The method of claim 8, wherein the polymeric material (12) is formed by a plurality of braided filaments with the core (13).
11. Procédé selon l'une des revendications précédentes, dans lequel une pluralité de fibres de gainage (14) sont enroulées de manière superposée autour de la puce microélectronique (10) et dans lequel la quantité de matériau polymère (12) et la quantité de fibres de gainage (14) sont choisies de sorte qu'une partie extérieure des fibres de gainage (14) soit dépourvue de matériau polymère (12) après fluage. The method according to one of the preceding claims, wherein a plurality of cladding fibers (14) are wound superimposed around the microelectronic chip (10) and wherein the amount of polymer material (12) and the amount of cladding fibers (14) are chosen so that an outer portion of the cladding fibers (14) is free of polymeric material (12) after creep.
12. Procédé selon l'une des revendications précédentes, dans lequel la puce microélectronique (10) comporte au moins deux zones en contact avec le matériau polymère (12) séparées par une zone dépourvue de contact avec le matériau polymère (12). 12. Method according to one of the preceding claims, wherein the microelectronic chip (10) comprises at least two areas in contact with the polymeric material (12) separated by a zone free of contact with the polymeric material (12).
13. Fil guipé comprenant une âme (13) autour de laquelle est enroulée au moins une fibre de gainage, au moins une puce microélectronique (10) prise entre l'âme (13) et la fibre de gainage (14), caractérisé en ce qu'il comporte un matériau polymère (12) enrobant la puce microélectronique (10), la fibre de gainage (14) comportant une zone périphérique dépourvue de matériau polymère (12). 13. Gimped yarn comprising a core (13) around which is wrapped at least one cladding fiber, at least one microelectronic chip (10) taken between the core (13) and the cladding fiber (14), characterized in that it comprises a polymeric material (12) encapsulating the microelectronic chip (10), the cladding fiber (14) having a peripheral zone devoid of polymeric material (12).
EP16794691.2A 2015-10-12 2016-10-10 Inclusion of chip elements in a core yarn Withdrawn EP3362592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559671A FR3042203B1 (en) 2015-10-12 2015-10-12 INCORPORATION OF ELEMENTS TO CHIP IN A WIRE GUIPE.
PCT/FR2016/052610 WO2017064402A1 (en) 2015-10-12 2016-10-10 Inclusion of chip elements in a core yarn

Publications (1)

Publication Number Publication Date
EP3362592A1 true EP3362592A1 (en) 2018-08-22

Family

ID=54708011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16794691.2A Withdrawn EP3362592A1 (en) 2015-10-12 2016-10-10 Inclusion of chip elements in a core yarn

Country Status (4)

Country Link
US (1) US10640892B2 (en)
EP (1) EP3362592A1 (en)
FR (1) FR3042203B1 (en)
WO (1) WO2017064402A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017245894B2 (en) * 2016-04-07 2022-12-01 Adetexs Ltd Improvements relating to textiles incorporating electronic devices
US11776714B2 (en) * 2020-11-13 2023-10-03 E-Wireligner Co., Ltd. Device for coating a wire with polymer fibers and method thereof
CN113737339A (en) * 2021-10-25 2021-12-03 山东津丝新材料科技有限公司 Alloy filament and common yarn blending equipment and process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382655A (en) * 1967-08-01 1968-05-14 Wasserman Allan Apparatus and method for making metallic frieze yarns
US3599679A (en) * 1968-10-22 1971-08-17 Monsanto Co Inextensible filamentary structure and fabrics woven therefrom
US4232507A (en) * 1973-02-22 1980-11-11 Carlo Menegatto Apparatus and method for wrapping core yarns
EP1541911B1 (en) * 2002-09-11 2007-08-01 Nippon Pillar Packing Co., Ltd. Material for gland packing and the gland packing
GB2426255B (en) * 2005-05-16 2009-09-23 Univ Manchester Operative devices
FR2917895B1 (en) 2007-06-21 2010-04-09 Commissariat Energie Atomique METHOD FOR MANUFACTURING AN ASSEMBLY OF MECHANICALLY CONNECTED CHIPS USING A FLEXIBLE CONNECTION
GB2472025A (en) * 2009-07-21 2011-01-26 Univ Manchester Identification device
GB2472026A (en) * 2009-07-21 2011-01-26 Univ Manchester Signalling device
FR2961947B1 (en) * 2010-06-24 2013-03-15 Commissariat Energie Atomique INCORPORATION OF CHIP ELEMENTS IN A GUIPE WIRE
JP5994077B2 (en) * 2012-03-13 2016-09-21 福井県 Composite yarn, fabric using the same, and method for producing composite yarn
GB2529900B (en) * 2014-09-08 2017-05-03 Univ Nottingham Trent Electronically functional yarns

Also Published As

Publication number Publication date
FR3042203B1 (en) 2018-06-22
FR3042203A1 (en) 2017-04-14
US20180355524A1 (en) 2018-12-13
US10640892B2 (en) 2020-05-05
WO2017064402A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2019175509A1 (en) Covered wire comprising a main core and at least one covering wire and comprising at least one conductive wire element electrically connected to at least one electronic chip
WO2017064402A1 (en) Inclusion of chip elements in a core yarn
EP2585628B1 (en) Inclusion of chip elements in a sheathed wire
CA1278162C (en) Reinforcing assemblies including core yarns and a matrix, process for making said assemblies, and articles reinforced with such assemblies
EP3574521B1 (en) Method for inserting a wire into a groove of a semiconductor chip, and piece of equipment for implementing such a method
KR101934130B1 (en) Method for producing a strand or cable with a thermoplastic coating, strand or cable produced by this method, and twisting device with means for coating with thermoplastics
EP0703480A1 (en) Fibre optical cable and device for its fabrication
FR2503385A1 (en) METHOD FOR MANUFACTURING OPTICAL FIBER CABLE AND CABLE THUS OBTAINED
EP0696750B1 (en) Manufacturing method of a reinforced fiberoptical cable, apparatus and cable obtained by this method
EP0125953B1 (en) Method of making a cord of several components
CA1189584A (en) Remote control cable with positioned textile core element
FR2854814A1 (en) Synthetic string for tennis racket has core and outer layer of twisted small-diameter monofilaments held together by elastomer
EP0872749B1 (en) Method of fabrication of a fibre optic cable
EP2988911B1 (en) Method of producing a composite material made using plant fibre yarn and composite material made according to this method
EP0049196B1 (en) Strings of synthetic materials for tennis rackets
EP0478477A1 (en) Procedure and device for producing a string for the stringing of tennis or like rackets and resulting string
FR2505057A1 (en) Non-metallic fibre=optic cable - has fibre cable forming core helically surrounded by optical fibres inside outer sheath
EP3448665A1 (en) Device for producing a part from composite material incorporating at least one optical fibre
FR2584057A1 (en) METHOD FOR MANUFACTURING AN OBJECT WITH A COMPOSITE MATERIAL.
EP4044364B1 (en) Radiofrequency transceiver device using an antenna made up of a textile wire and a conductive ribbon and associated electronic tag
EP4201712B1 (en) Tyre equipped with a radiofrequency transmission-reception device
FR2503203A1 (en) Sheath-core cable - of high modulus aromatic polyamide, wrapped and sheathed for abrasion resistance
CA1215807A (en) Method and device for the manufacture of a remote control cable
FR2491099A1 (en) Circular loom esp. for tubular sack fabric
CA1105245A (en) Device for the fabrication of a remote control cable consisting of two conductors separated by a central element

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200921

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210202