EP3356678B1 - Multi-stage rotary vane pump - Google Patents

Multi-stage rotary vane pump Download PDF

Info

Publication number
EP3356678B1
EP3356678B1 EP16770911.2A EP16770911A EP3356678B1 EP 3356678 B1 EP3356678 B1 EP 3356678B1 EP 16770911 A EP16770911 A EP 16770911A EP 3356678 B1 EP3356678 B1 EP 3356678B1
Authority
EP
European Patent Office
Prior art keywords
chamber
rotary vane
vane pump
rotor
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16770911.2A
Other languages
German (de)
French (fr)
Other versions
EP3356678A1 (en
Inventor
Jean-Francois Aubert
Christophe DESPESSE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202015006922.3U external-priority patent/DE202015006922U1/en
Priority claimed from DE202016005229.3U external-priority patent/DE202016005229U1/en
Application filed by Leybold GmbH filed Critical Leybold GmbH
Publication of EP3356678A1 publication Critical patent/EP3356678A1/en
Application granted granted Critical
Publication of EP3356678B1 publication Critical patent/EP3356678B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • F04C23/003Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle having complementary function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Definitions

  • the invention relates to a multi-stage rotary vane pump.
  • Rotary vane pumps have a usually cylindrical rotor element which is arranged eccentrically in a pump chamber which is also of cylindrical design.
  • Several, usually three, slides are connected to the rotor element. These are arranged in slots and are essentially radially displaceable. The outer edges of the slides rest on the interior of the pump chamber.
  • a space formed adjacent to the slide has a large volume. Due to the eccentricity, this volume decreases continuously up to the outlet when the rotor element rotates in the pump chamber. This results in a compression of the pumped gas.
  • Multi-stage rotary vane pumps are also known. In these, the inlet of a first stage is connected to a space to be evacuated and the outlet of the first stage is connected to the inlet of the second stage, the outlet of which is then connected, for example, to the atmosphere.
  • Such a two-stage rotary vane pump is for example in EP 0 711 384 described.
  • the two rotors of the two stages are mounted on a common shaft. Between the two rotors a circular partition is placed.
  • the rotor shaft is mounted in a housing via ball bearings or bushings.
  • the assembly of such a multistage rotary vane pump is complex and expensive.
  • U.S. 2,462,732 discloses a multi-stage rotary vane pump with a rotor shaft that carries a plurality of rotor elements. A pump chamber is provided for each rotor element. The rotor elements are formed in one piece with the rotor shaft.
  • CN 103498795 A discloses a two-stage rotary vane compressor with a multi-part housing and a two-part annular partition.
  • the object of the invention is to create a multi-stage rotary vane pump that can be manufactured inexpensively.
  • the multistage rotary vane pump according to the invention has at least two rotor elements, each of which has slides arranged to be displaceable in slots.
  • the rotor elements are carried by a common rotor shaft.
  • a pump chamber is provided for each rotor element.
  • the rotor shaft which in particular has cylindrical rotor elements, is arranged eccentrically to the suction chambers.
  • a pump stage is thus formed by a suction chamber in which a rotor with vanes is arranged on a shaft.
  • the rotor elements are formed in one piece together with the rotor shaft.
  • it is therefore no longer necessary to mount the individual rotor elements on the rotor shaft. This considerably reduces the assembly effort. Furthermore, the manufacturing and assembly costs are also reduced. Furthermore, required tolerances between the individual for assembly the rotor shaft to be mounted rotor elements and the associated inaccuracies are avoided.
  • an intermediate wall for separating adjacent pump stages is arranged between two pump stages.
  • the partition wall is constructed in several parts, in particular in two parts.
  • the partition wall thus has several, in particular two partition wall elements.
  • the intermediate wall elements In the assembled state, the intermediate wall elements have an in particular round, preferably eccentrically arranged opening through which the rotor shaft leads.
  • the individual intermediate wall elements are designed in the shape of a ring segment.
  • the outer circumference of the intermediate wall is also circular.
  • two intermediate wall elements in which two intermediate wall elements are provided, it is particularly preferred that these are essentially identical and each have a semicircular shape.
  • the manufacturing costs are further reduced. This also simplifies assembly, since it is not possible to mix up the components.
  • centering elements such as centering pegs or centering pins are provided on the contact surface of the intermediate wall elements.
  • the halves can also consist of fractured parts and only be held together by two screws.
  • the pumping chambers are formed by a common, one-piece housing element.
  • the at least two pumping chambers can have the same or different diameters.
  • the at least one partition wall, which forms a circular ring in the assembled state, can also have the corresponding diameter. In particular, it is a cylindrical one
  • the one-piece rotor that is to say the rotor shaft with the rotor elements and also the mounted slide, is preassembled together with the at least one partition.
  • This preassembled component can then be pushed in the axial direction into the housing element forming the suction chambers.
  • further housing elements which preferably have the electric motor, the control, the cooling, the oil supply or the like, can be connected.
  • the multistage rotary vane pump has a first rotor element arranged in a first pump chamber and a last rotor element in the direction of flow, arranged in a last pump chamber.
  • the first pump chamber is connected to the pump inlet and the last pump chamber to the pump outlet.
  • the pump outlet is connected to an oil reservoir, whereby the medium enriched with oil due to the oil lubrication of the rotary valve is expelled through the pump outlet.
  • the outlet of the pump is connected to the oil reservoir.
  • a valve such as a flap valve, is usually arranged between the outlet and the oil reservoir and is preferably arranged at least partially below the oil level so that the oil seals the valve.
  • the oil is separated from the conveyed gaseous medium directly in the oil reservoir.
  • the oil reservoir has two interconnected chambers.
  • one of the chambers is preferably designed as an oil chamber and the other chamber as a filter chamber.
  • the two chambers are arranged one behind the other in the direction of flow and are flowed through one after the other.
  • the mixture of oil and the compressed gas first enters the oil chamber. In this, a large part of the oil is separated from the gas due to gravity.
  • the gas-oil mixture then flows into the filter chamber, the filter chamber in particular having a filter device connected to the inlet of the filter chamber. This filter is used for further oil separation.
  • the oil returns to the pump's oil circuit via a return channel. In particular, the backflow channel is connected to the chamber.
  • the invention is explained in more detail below using a preferred embodiment which is a two-stage rotary vane pump.
  • a rotary vane pump has two in Fig. 1 pumping chambers 12 arranged one behind the other and arranged coaxially to one another.
  • a rotor element 14 is arranged eccentrically to the cylindrically designed suction chamber 12.
  • Each rotor element 14 carries a slide 18 in essentially radially extending slots 16. The slide 18 rest on an inner wall 20 of the suction chamber 12 and are pressed in the direction of the inner wall 20 in particular by centrifugal forces.
  • Chambers 22 are formed between two adjacent slides, the size of which increases from one inlet 24 to one Outlet 26 is reduced when the rotor element 14 rotates in the pump chamber 12.
  • a valve for example in the form of a reed valve 28, is arranged at the outlet 26 in order to prevent the conveyed medium from flowing back into the pump chamber 12.
  • the reed valve can be arranged in an oil chamber 30, an oil level of the oil 32 partially covering the reed valve 28 for sealing.
  • the conveyed medium is ejected from the oil chamber 30 via an outlet filter element and an outlet 34, since the in Fig. 1
  • the stage of a rotary vane pump shown is the second or last stage.
  • the provision of an outlet filter element allows an oil-free outlet gas. In a first stage, the channel provided at the outlet 26 is connected to the inlet 24 of the next or second stage.
  • a rotor shaft 36 ( Fig. 2 ) formed in one piece with the two rotor elements 14, 38.
  • the rotor element 14 is the one in the second pumping stage ( Fig. 1 ) arranged rotor element.
  • the rotor element 38 which is arranged on the first pumping stage, is of cylindrical design, corresponding to the rotor element 14. Due to the larger width and / or the larger diameter of the rotor element 38, the chambers of the first pumping stage are larger than the chambers 22 ( Fig. 1 ) of the second pumping stage. Otherwise the elements are technically identical.
  • the slide is also similar to the design of the slide 18 with the exception of a greater width and height.
  • the rotor shaft 36 can be stepped several times and can be used, for example, to accommodate bearing rings of the ball bearings or bushings. Corresponding bearing seats are formed in particular by the areas 40 of the rotor shaft 36.
  • the electric motor can be arranged in a region 42 of the rotor shaft 36.
  • a fan wheel for example, can be arranged in an area 44.
  • the intermediate wall 46 has two intermediate wall elements 48.
  • the two intermediate wall elements are each designed as semicircular elements.
  • Centering elements in the form of centering pins 52 are provided in openings on the two contact surfaces 50 of the two intermediate wall elements 48, which abut against one another in the assembled state.
  • the halves can also be made by fracturing.
  • Two fastening elements in the form of screws 54 are also provided for further assembly. These are accessible via openings 56 provided in the upper partition element 48 in the exemplary embodiment shown.
  • the housing element 10 is as in FIG Fig. 4 shown schematically in one piece. To this extent, the housing 10 has a cylindrical recess 58. This is closed by a housing cover 60. Ball bearings or bushings 62 for supporting the rotor shaft 36 are arranged in the housing cover 60 and in the opposite wall of the housing element 10. Furthermore, the two outlets are visible in the illustrated section of the housing element 10. This is, on the one hand, the outlet 26 of the second pumping stage and an outlet 64 of the first pumping stage. The outlet 64 conveys medium as shown by the arrow 66 and is connected to the in Fig. 4 invisible inlet connected to the second stage. For the sake of clarity, the position of the partition 46 in the assembled state is shown in dashed lines. The two pumping chambers 12 and 68 of the two pump stages are separated from one another by the partition 46.
  • the individual slides are inserted into the slots in the two rotor elements 14, 38 ( Fig. 2 ) used.
  • the partition 46 is mounted between the two rotor elements 14, 38.
  • This assembly is then in Fig. 4 inserted from the left into the cylindrical opening 58 formed by the housing element 10.
  • the second stage slides are then installed.
  • the housing cover 60 is then mounted. This is followed by the assembly of the remaining components of the vacuum pump, so that a very simple and inexpensive assembly is realized.
  • a preferred embodiment of a rotary vane pump according to the invention has the above in particular on the basis of Figures 1 and 2 described rotor shaft 36 with two rotor elements 14, 38, wherein the rotor shaft 36 and the rotor elements 14, 38 are integrally formed. Between the two rotor elements 14, 38 is the in Figure 3 illustrated two-part intermediate wall 46 is arranged.
  • the rotor shaft 36 also carries on the in Figure 5
  • a first fan wheel 70 is located on the left-hand side.
  • an inner housing cover 72 is arranged on the left-hand side, which axially closes the suction chamber 74 in which the larger rotor element 38 is arranged.
  • a shaft seal not shown in detail, is arranged between the inner housing cover 72 and the shaft 36.
  • the fan 70 is surrounded by a fan housing 76. This is on the in Figure 5 left side open or has slot-shaped openings. Furthermore, the fan housing 76 is connected to a housing 78 of the pump.
  • a pump inlet 80 which is connected to the larger pump chamber 74, is provided on the upper side of the housing.
  • the housing 78 has an inwardly projecting wall 84, which in turn is sealed with respect to the shaft 36.
  • the smaller, last suction chamber 82 in the flow direction is connected to an oil reservoir via an outlet line, as in FIG Figure 1 illustrated explained above.
  • the oil reservoir is laterally next to the pump, ie in Figure 5 arranged behind the pump as an oil reservoir 86.
  • the medium to be used is thus ejected into the oil reservoir 86 and then reaches an outlet 88.
  • an electric motor 90 is connected to the rotor shaft 36.
  • the rotor shaft 36 is mounted in an internal bearing cover 72 and 94, respectively, via bearing elements 92.
  • a further fan 96 is connected to the rotor shaft 36 on the right-hand side. This is in turn surrounded by a fan housing 98.
  • a control device 100 for controlling the electric motor and the other components of the vacuum pump is provided on an upper side of the pump housing 78. The controller can also be connected to sensors, etc.
  • the gas-oil mixture flows through the outlet 26 of the last pump chamber 82 into the oil reservoir 86 ( Fig. 6 ).
  • the gas-oil mixture first flows into an oil chamber 102 of the oil reservoir 86.
  • Oil 104 collects in the oil chamber 102 due to the force of gravity.
  • the remaining mixture of oil and gas flows out of the oil chamber 102 into the filter chamber 106.
  • the gas-oil mixture occurs here through an inlet 108 directly into a filter device 110 which is arranged in the filter chamber 106.
  • the filter device 110 filters out oil which is fed back into the oil circuit via a return duct 112.
  • the remaining gas, which has been cleaned of oil flows out, as shown by arrow 114, through outlet 88 of the vacuum pump.

Description

Die Erfindung betrifft eine mehrstufige Drehschieberpumpe.The invention relates to a multi-stage rotary vane pump.

Drehschieberpumpen weisen ein üblicherweise zylindrisches Rotorelement auf, das exzentrisch in einem ebenfalls zylindrisch ausgebildeten Schöpfraum angeordnet ist. Mit dem Rotorelement sind mehrere, üblicherweise drei Schieber verbunden. Diese sind in Schlitzen angeordnet und im Wesentlichen radial verschiebbar. Außenkanten der Schieber liegen am Innenraum des Schöpfraums an. An einem Einlass des Schöpfraums weist ein benachbart zum Schieber ausgebildeter Raum ein großes Volumen auf. Aufgrund der Exzentrizität verringert sich dieses Volumen kontinuierlich bis zum Auslass beim Drehen des Rotorelements in dem Schöpfraum. Hierdurch erfolgt ein Komprimieren des geförderten Gases. Ferner sind mehrstufige Drehschieberpumpen bekannt. Bei diesen ist der Einlass einer ersten Stufe mit einem zu evakuierenden Raum verbunden und der Auslass der ersten Stufe ist mit dem Einlass der zweiten Stufe verbunden, deren Auslass sodann zum Beispiel mit der Atmosphäre verbunden ist.Rotary vane pumps have a usually cylindrical rotor element which is arranged eccentrically in a pump chamber which is also of cylindrical design. Several, usually three, slides are connected to the rotor element. These are arranged in slots and are essentially radially displaceable. The outer edges of the slides rest on the interior of the pump chamber. At an inlet of the suction chamber, a space formed adjacent to the slide has a large volume. Due to the eccentricity, this volume decreases continuously up to the outlet when the rotor element rotates in the pump chamber. This results in a compression of the pumped gas. Multi-stage rotary vane pumps are also known. In these, the inlet of a first stage is connected to a space to be evacuated and the outlet of the first stage is connected to the inlet of the second stage, the outlet of which is then connected, for example, to the atmosphere.

Eine derartige zweistufige Drehschieberpumpe ist beispielsweise in EP 0 711 384 beschrieben. Bei dieser werden die beiden Rotoren der beiden Stufen auf einer gemeinsamen Welle montiert. Zwischen den beiden Rotoren wird eine kreisringförmige Zwischenwand angeordnet. Die Rotorwelle ist über Kugellager oder Laufbuchsen in einem Gehäuse gelagert. Insbesondere aufgrund der großen Anzahl an Bauteilen ist die Montage einer derartigen mehrstufigen Drehschieberpumpe aufwendig und teuer.Such a two-stage rotary vane pump is for example in EP 0 711 384 described. In this case, the two rotors of the two stages are mounted on a common shaft. Between the two rotors a circular partition is placed. The rotor shaft is mounted in a housing via ball bearings or bushings. In particular because of the large number of components, the assembly of such a multistage rotary vane pump is complex and expensive.

US 2,462,732 offenbart eine mehrstufige Drehschieberpumpe mit einer Rotorwelle, die mehrere Rotorelemente trägt. Je Rotorelement ist ein Schöpfraum vorgesehen. Die Rotorelemente sind mit der Rotorwelle einstückig ausgebildet. CN 103498795 A offenbart einen zweistufigen Drehschieberverdichter mit einem mehrteiligen Gehäuse und einer zweiteiligen ringförmigen Zwischenwand. U.S. 2,462,732 discloses a multi-stage rotary vane pump with a rotor shaft that carries a plurality of rotor elements. A pump chamber is provided for each rotor element. The rotor elements are formed in one piece with the rotor shaft. CN 103498795 A discloses a two-stage rotary vane compressor with a multi-part housing and a two-part annular partition.

Aufgabe der Erfindung ist es, eine mehrstufige Drehschieberpumpe zu schaffen, die kostengünstig herstellbar ist.The object of the invention is to create a multi-stage rotary vane pump that can be manufactured inexpensively.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of claim 1.

Die erfindungsgemäße mehrstufige Drehschieberpumpe weist mindestens zwei Rotorelemente auf, die jeweils in Schlitzen verschiebbar angeordnete Schieber aufweisen. Die Rotorelemente sind von einer gemeinsamen Rotorwelle getragen. Ferner ist je Rotorelement ein Schöpfraum vorgesehen. Die Rotorwelle, die insbesondere zylindrisch ausgebildete Rotorelemente aufweist ist exzentrisch zu den Schöpfräumen angeordnet. Eine Pumpstufe ist somit durch einen Schöpfraum ausgebildet, in dem ein auf einer Welle angeordneter Rotor mit Schiebern angeordnet ist.The multistage rotary vane pump according to the invention has at least two rotor elements, each of which has slides arranged to be displaceable in slots. The rotor elements are carried by a common rotor shaft. Furthermore, a pump chamber is provided for each rotor element. The rotor shaft, which in particular has cylindrical rotor elements, is arranged eccentrically to the suction chambers. A pump stage is thus formed by a suction chamber in which a rotor with vanes is arranged on a shaft.

Erfindungsgemäß sind die Rotorelemente zusammen mit der Rotorwelle einstückig ausgebildet. Es ist somit bei der erfindungsgemäßen mehrstufigen Drehschieberpumpe nicht mehr erforderlich die einzelnen Rotorelemente auf der Rotorwelle zu montieren. Dies reduziert den Montageaufwand erheblich. Ferner sind auch die Herstellungs- und Montagekosten reduziert. Des Weiteren können für die Montage erforderliche Toleranzen zwischen den einzelnen auf die Rotorwelle zu montierenden Rotorelementen und die damit verbundenen Ungenauigkeiten vermieden werden.According to the invention, the rotor elements are formed in one piece together with the rotor shaft. In the case of the multistage rotary vane pump according to the invention, it is therefore no longer necessary to mount the individual rotor elements on the rotor shaft. This considerably reduces the assembly effort. Furthermore, the manufacturing and assembly costs are also reduced. Furthermore, required tolerances between the individual for assembly the rotor shaft to be mounted rotor elements and the associated inaccuracies are avoided.

Zwischen zwei Pumpstufen ist eine Zwischenwand zur Trennung benachbarter Pumpstufen angeordnet. Zur einfachen Montage ist die Zwischenwand mehrteilig, insbesondere zweiteilig ausgebildet. Die Zwischenwand weist somit mehrere, insbesondere zwei Zwischenwandelemente auf. In montiertem Zustand weisen die Zwischenwandelemente eine insbesondere runde, vorzugsweise exzentrisch angeordnete Öffnung auf, durch die die Rotorwelle führt. Erfindungsgemäß sind die einzelnen Zwischenwandelemente ringsegmentförmig ausgebildet. Insbesondere ist in bevorzugter Ausführungsform auch der Außenumfang der Zwischenwand kreisförmig. Bei der bevorzugten Ausführungsform, bei der zwei Zwischenwandelemente vorgesehen sind, ist es besonders bevorzugt, dass diese im Wesentlichen identisch und jeweils halbringförmig ausgebildet sind. Insbesondere bei einer ähnlichen Ausbildung der beiden Zwischenwandelemente sind die Herstellungskosten weiter reduziert. Auch die Montage ist hierdurch vereinfacht, da ein Verwechseln der Bauteile nicht möglich ist.An intermediate wall for separating adjacent pump stages is arranged between two pump stages. For simple assembly, the partition wall is constructed in several parts, in particular in two parts. The partition wall thus has several, in particular two partition wall elements. In the assembled state, the intermediate wall elements have an in particular round, preferably eccentrically arranged opening through which the rotor shaft leads. According to the invention, the individual intermediate wall elements are designed in the shape of a ring segment. In particular, in a preferred embodiment, the outer circumference of the intermediate wall is also circular. In the preferred embodiment, in which two intermediate wall elements are provided, it is particularly preferred that these are essentially identical and each have a semicircular shape. In particular, if the two intermediate wall elements are designed in a similar manner, the manufacturing costs are further reduced. This also simplifies assembly, since it is not possible to mix up the components.

Des Weiteren ist es bevorzugt, dass an der Anlagefläche der Zwischenwandelemente Zentrierelemente wie Zentrierzapfen oder Zentrierpins vorgesehen sind. Die Hälften können auch aus frakturierten Teilen bestehen, und nur durch zwei Schrauben zusammengehalten werden.Furthermore, it is preferred that centering elements such as centering pegs or centering pins are provided on the contact surface of the intermediate wall elements. The halves can also consist of fractured parts and only be held together by two screws.

Gemäß der Erfindung sind die Schöpfräume durch ein gemeinsames einstückiges Gehäuseelement ausgebildet. Die mindestens zwei Schöpfräume können den gleichen oder unterschiedliche Durchmesser aufweisen. Den entsprechenden Durchmesser kann auch die in montiertem Zustand einen Kreisring ausbildende mindestens eine Zwischenwand aufweisen. Insbesondere handelt es um eine zylindrischeAccording to the invention, the pumping chambers are formed by a common, one-piece housing element. The at least two pumping chambers can have the same or different diameters. The at least one partition wall, which forms a circular ring in the assembled state, can also have the corresponding diameter. In particular, it is a cylindrical one

Öffnung in dem Gehäuseelement, in der mindestens eine Zwischenwand angeordnet und somit die beiden Schöpfräume ausgebildet werden.Opening in the housing element, in which at least one partition is arranged and the two pumping chambers are thus formed.

Erfindungsgemäß wird der einstückige Rotor, das heißt die Rotorwelle mit den Rotorelementen sowie auch die montierten Schieber, zusammen mit der mindestens einen Zwischenwand vormontiert. Dieses vormontierte Bauteil kann sodann in axialer Richtung in das die Schöpfräume ausbildende Gehäuseelement eingeschoben werden. Mit dem einstückigen Gehäuseelement können weitere Gehäuseelemente, die bevorzugterweise den Elektromotor, die Steuerung, die Kühlung, die Ölförderung oder dergleichen aufweisen verbunden sein.According to the invention, the one-piece rotor, that is to say the rotor shaft with the rotor elements and also the mounted slide, is preassembled together with the at least one partition. This preassembled component can then be pushed in the axial direction into the housing element forming the suction chambers. With the One-piece housing element, further housing elements, which preferably have the electric motor, the control, the cooling, the oil supply or the like, can be connected.

Die mehrstufige Drehschieberpumpe weist ein erstes, in einem ersten Schöpfraum angeordnetes Rotorelement sowie ein in Strömungsrichtung letztes, in einem letzten Schöpfraum angeordnetes Rotorelement auf. Der erste Schöpfraum ist mit dem Pumpeneinlass und der letzte Schöpfraum mit dem Pumpenauslass verbunden. Der Pumpenauslass ist mit einem Ölreservoir verbunden, wobei durch den Pumpenauslass das aufgrund der Ölschmierung der Drehschieber mit Öl angereicherte Medium ausgestoßen wird. Mit dem Ölreservoir ist der Auslass der Pumpe verbunden. Zwischen Auslass und Ölreservoir ist üblicherweise ein Ventil wie ein Klappenventil angeordnet, das vorzugsweise zumindest teilweise unterhalb des Ölniveaus angeordnet ist, so dass das Öl das Ventil abdichtet.The multistage rotary vane pump has a first rotor element arranged in a first pump chamber and a last rotor element in the direction of flow, arranged in a last pump chamber. The first pump chamber is connected to the pump inlet and the last pump chamber to the pump outlet. The pump outlet is connected to an oil reservoir, whereby the medium enriched with oil due to the oil lubrication of the rotary valve is expelled through the pump outlet. The outlet of the pump is connected to the oil reservoir. A valve, such as a flap valve, is usually arranged between the outlet and the oil reservoir and is preferably arranged at least partially below the oil level so that the oil seals the valve.

In einer besonders bevorzugten Ausführungsform erfolgt unmittelbar im Ölreservoir ein Abscheiden des Öls aus dem geförderten gasförmigen Medium. Hierzu ist es besonders bevorzugt, dass das Ölreservoir zwei miteinander verbundene Kammern aufweist. Hierbei ist vorzugsweise eine der Kammern als Ölkammer und die andere Kammer als Filterkammer ausgebildet. Die beiden Kammern sind in Strömungsrichtung hintereinander angeordnet und werden nacheinander durchströmt. Hierbei gelangt das Gemisch aus Öl und dem komprimierten Gas zunächst in die Ölkammer. In dieser wird bereits aufgrund der Schwerkraft ein Großteil des Öls vom Gas getrennt. Anschließend strömt das Gas-Ölgemisch in die Filterkammer, wobei die Filterkammer insbesondere eine mit dem Einlass der Filterkammer verbundene Filtereinrichtung aufweist. Dieser Filter dient zur weiteren Ölabscheidung. Das Öl gelangt über einen Rückflusskanal wieder in den Ölkreislauf der Pumpe zurück. Insbesondere ist der Rückflusskanal mit der Kammer verbunden. Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform, bei der es sich um eine zweistufige Drehschieberpumpe handelt, näher erläutert.In a particularly preferred embodiment, the oil is separated from the conveyed gaseous medium directly in the oil reservoir. For this purpose, it is particularly preferred that the oil reservoir has two interconnected chambers. In this case, one of the chambers is preferably designed as an oil chamber and the other chamber as a filter chamber. The two chambers are arranged one behind the other in the direction of flow and are flowed through one after the other. The mixture of oil and the compressed gas first enters the oil chamber. In this, a large part of the oil is separated from the gas due to gravity. The gas-oil mixture then flows into the filter chamber, the filter chamber in particular having a filter device connected to the inlet of the filter chamber. This filter is used for further oil separation. The oil returns to the pump's oil circuit via a return channel. In particular, the backflow channel is connected to the chamber. The invention is explained in more detail below using a preferred embodiment which is a two-stage rotary vane pump.

Es zeigen:

Fig. 1
eine schematische Schnittansicht einer zweistufigen Drehschieberpumpe,
Fig. 2
eine schematisch, perspektivische Ansicht einer einstückig ausgebildeten Rotorwelle mit zwei Rotorelementen,
Fig. 3
eine schematische, perspektivische Ansicht einer zweiteiligen Zwischenwand,
Fig. 4
eine schematische Schnittansicht in Längsrichtung durch ein die Schöpfräume ausbildendes Gehäuseelement,
Fig. 5
eine schematische Schnittansicht in Längsrichtung durch eine weitere bevorzugte Ausführungsform einer Drehschieberpumpe und
Fig. 6
eine schematische Schnittansicht eines Ölreservoirs.
Show it:
Fig. 1
a schematic sectional view of a two-stage rotary vane pump,
Fig. 2
a schematic, perspective view of a one-piece rotor shaft with two rotor elements,
Fig. 3
a schematic, perspective view of a two-part partition wall,
Fig. 4
a schematic sectional view in the longitudinal direction through a housing element forming the suction chambers,
Fig. 5
a schematic sectional view in the longitudinal direction through a further preferred embodiment of a rotary vane pump and
Fig. 6
a schematic sectional view of an oil reservoir.

Eine Drehschieberpumpe weist in einem Gehäuseelement 10 zwei in Fig. 1 hintereinander liegende koaxial zueinander angeordnete Schöpfräume 12 auf. In jedem Schöpfraum 12 ist exzentrisch zu dem zylindrisch ausgebildeten Schöpfraum 12 ein Rotorelement 14 angeordnet. Jedes Rotorelement 14 trägt in im Wesentlichen radial verlaufenden Schlitzen 16 jeweils einen Schieber 18. Die Schieber 18 liegen an einer Innenwand 20 des Schöpfraums 12 an und werden insbesondere durch Fliehkräfte in Richtung der Innenwand 20 gedrückt. Zwischen zwei benachbarten Schiebern sind jeweils Kammern 22 ausgebildet, deren Größe sich ausgehend von einem Einlass 24 zu einem Auslass 26 bei Rotationen des Rotorelements 14 in dem Schöpfraum 12 reduziert. Am Auslass 26 ist ein Ventil, beispielsweise in Form eines Blattventils 28 angeordnet um ein Zurückströmen des geförderten Mediums in den Schöpfraum 12 zu vermeiden. Das Blattventil kann in einer Ölkammer 30 angeordnet sein, wobei ein Ölspiegel des Öls 32 zur Abdichtung das Blattventil 28 teilweise überdeckt. Das geförderte Medium wird aus der Ölkammer 30 über ein Auslassfilter-Element und einen Auslass 34 ausgestoßen, da es sich bei der in Fig. 1 dargestellten Stufe einer Drehschieberpumpe um die zweite bzw. letzte Stufe handelt. Das Vorsehen eines Auslassfilter-Elements erlaubt ein ölfreies Auslassgas. Bei einer ersten Stufe ist der am Auslass 26 vorgesehene Kanal mit dem Einlass 24 der nächsten bzw. zweiten Stufe verbunden.A rotary vane pump has two in Fig. 1 pumping chambers 12 arranged one behind the other and arranged coaxially to one another. In each suction chamber 12, a rotor element 14 is arranged eccentrically to the cylindrically designed suction chamber 12. Each rotor element 14 carries a slide 18 in essentially radially extending slots 16. The slide 18 rest on an inner wall 20 of the suction chamber 12 and are pressed in the direction of the inner wall 20 in particular by centrifugal forces. Chambers 22 are formed between two adjacent slides, the size of which increases from one inlet 24 to one Outlet 26 is reduced when the rotor element 14 rotates in the pump chamber 12. A valve, for example in the form of a reed valve 28, is arranged at the outlet 26 in order to prevent the conveyed medium from flowing back into the pump chamber 12. The reed valve can be arranged in an oil chamber 30, an oil level of the oil 32 partially covering the reed valve 28 for sealing. The conveyed medium is ejected from the oil chamber 30 via an outlet filter element and an outlet 34, since the in Fig. 1 The stage of a rotary vane pump shown is the second or last stage. The provision of an outlet filter element allows an oil-free outlet gas. In a first stage, the channel provided at the outlet 26 is connected to the inlet 24 of the next or second stage.

Erfindungsgemäß ist eine Rotorwelle 36 (Fig. 2) einstückig mit den beiden Rotorelementen 14, 38 ausgebildet. Das Rotorelement 14 ist das in der zweiten Pumpstufe (Fig. 1) angeordnete Rotorelement. Das an der ersten Pumpstufe angeordnete Rotorelement 38 ist entsprechend dem Rotorelement 14 zylindrisch ausgebildet. Aufgrund der größeren Breite und/oder des größeren Durchmesser des Rotorelements 38 sind die Kammern der ersten Pumpstufe größer als die Kammern 22 (Fig. 1) der zweiten Pumpstufe. Ansonsten sind die Elemente technisch identisch ausgebildet. Insbesondere ist auch der Schieber mit Ausnahme einer größeren Breite und Höhe ähnlich zu der Ausgestaltung der Schieber 18.According to the invention, a rotor shaft 36 ( Fig. 2 ) formed in one piece with the two rotor elements 14, 38. The rotor element 14 is the one in the second pumping stage ( Fig. 1 ) arranged rotor element. The rotor element 38, which is arranged on the first pumping stage, is of cylindrical design, corresponding to the rotor element 14. Due to the larger width and / or the larger diameter of the rotor element 38, the chambers of the first pumping stage are larger than the chambers 22 ( Fig. 1 ) of the second pumping stage. Otherwise the elements are technically identical. In particular, the slide is also similar to the design of the slide 18 with the exception of a greater width and height.

Die Rotorwelle 36 kann mehrfach abgestuft sein und beispielsweise zur Aufnahme von Lagerringen der Kugellager oder Laufbuchsen dienen. Entsprechende Lagersitze sind hierbei insbesondere durch die Bereiche 40 der Rotorwelle 36 ausgebildet. In einem Bereich 42 der Rotorwelle 36 kann beispielsweise der Elektromotor angeordnet werden. Des Weiteren kann in einem Bereich 44 beispielsweise ein Lüfterrad angeordnet sein.The rotor shaft 36 can be stepped several times and can be used, for example, to accommodate bearing rings of the ball bearings or bushings. Corresponding bearing seats are formed in particular by the areas 40 of the rotor shaft 36. For example, the electric motor can be arranged in a region 42 of the rotor shaft 36. Furthermore, a fan wheel, for example, can be arranged in an area 44.

Zwischen den beiden Rotorelementen 14, 38 ist eine Zwischenwand 46 (Fig. 3) angeordnet. In dem dargestellten besonders bevorzugten Ausführungsbeispiel weist die Zwischenwand 46 zwei Zwischenwandelemente 48 auf. Die beiden Zwischenwandelemente sind jeweils als halbringförmige Elemente ausgebildet. An den beiden in montiertem Zustand aneinander anliegenden Anlageflächen 50 der beiden Zwischenwandelemente 48 sind in Öffnungen Zentrierelemente in Form von Zentrierzapfen 52 vorgesehen. Die Hälften können auch durch Frakturation hergestellt werden. Zur weiteren Montage sind ferner zwei Befestigungselemente in Form von Schrauben 54 vorgesehen. Diese sind über im dargestellten Ausführungsbeispiel in dem oberen Zwischenwandelement 48 vorgesehene Öffnungen 56 zugänglich.Between the two rotor elements 14, 38 is an intermediate wall 46 ( Fig. 3 ) arranged. In the particularly preferred exemplary embodiment shown the intermediate wall 46 has two intermediate wall elements 48. The two intermediate wall elements are each designed as semicircular elements. Centering elements in the form of centering pins 52 are provided in openings on the two contact surfaces 50 of the two intermediate wall elements 48, which abut against one another in the assembled state. The halves can also be made by fracturing. Two fastening elements in the form of screws 54 are also provided for further assembly. These are accessible via openings 56 provided in the upper partition element 48 in the exemplary embodiment shown.

Das Gehäuseelement 10 ist wie in Fig. 4 schematisch dargestellt einstückig ausgebildet. Das Gehäuse 10 weist insofern eine zylindrische Ausnehmung 58 auf. Diese wird durch einen Gehäusedeckel 60 verschlossen. In dem Gehäusedeckel 60 sowie in der gegenüberliegenden Wand des Gehäuseelements 10 sind Kugellager oder Laufbuchsen 62 zur Lagerung der Rotorwelle 36 angeordnet. Ferner sind in dem dargestellten Schnitt des Gehäuselements 10 die beiden Auslässe sichtbar. Hierbei handelt es sich einerseits um den Auslass 26 der zweiten Pumpstufe sowie um einen Auslass 64 der ersten Pumpstufe. Der Auslass 64 fördert Medium wie mit dem Pfeil 66 dargestellt und ist mit dem in Fig. 4 nicht sichtbaren Einlass der zweiten Stufe verbunden. Zur Verdeutlichung ist die Lage der Trennwand 46 in montiertem Zustand gestrichelt dargestellt. Durch die Trennwand 46 werden die beiden Schöpfräume 12 und 68 der beiden Pumpstufen voneinander getrennt.The housing element 10 is as in FIG Fig. 4 shown schematically in one piece. To this extent, the housing 10 has a cylindrical recess 58. This is closed by a housing cover 60. Ball bearings or bushings 62 for supporting the rotor shaft 36 are arranged in the housing cover 60 and in the opposite wall of the housing element 10. Furthermore, the two outlets are visible in the illustrated section of the housing element 10. This is, on the one hand, the outlet 26 of the second pumping stage and an outlet 64 of the first pumping stage. The outlet 64 conveys medium as shown by the arrow 66 and is connected to the in Fig. 4 invisible inlet connected to the second stage. For the sake of clarity, the position of the partition 46 in the assembled state is shown in dashed lines. The two pumping chambers 12 and 68 of the two pump stages are separated from one another by the partition 46.

Zur Montage werden die einzelnen Schieber in die Schlitze der beiden Rotorelemente 14, 38 (Fig. 2) eingesetzt. Anschließend wird zwischen die beiden Rotorelemente 14, 38 die Zwischenwand 46 montiert. Diese Baugruppe wird sodann in Fig. 4 von links in die durch das Gehäuseelement 10 gebildete zylindrische Öffnung 58 eingesetzt. Anschließend werden die Schieber der zweiten Stufe montiert. Im nächsten Schritt wird sodann der Gehäusedeckel 60 montiert. Anschließend folgt die Montage der übrigen Bauteile der Vakuumpumpe, so dass eine sehr einfache und kostengünstige Montage realisiert ist.For assembly, the individual slides are inserted into the slots in the two rotor elements 14, 38 ( Fig. 2 ) used. Subsequently, the partition 46 is mounted between the two rotor elements 14, 38. This assembly is then in Fig. 4 inserted from the left into the cylindrical opening 58 formed by the housing element 10. The second stage slides are then installed. In the next step, the housing cover 60 is then mounted. This is followed by the assembly of the remaining components of the vacuum pump, so that a very simple and inexpensive assembly is realized.

Eine bevorzugte Ausführungsform einer erfindungsgemäßen Drehschieberpumpe (Figuren 5 und 6) weist die vorstehend insbesondere anhand der Figuren 1 und 2 beschriebene Rotorwelle 36 mit zwei Rotorelementen 14, 38 auf, wobei die Rotorwelle 36 und die Rotorelemente 14, 38 einstückig ausgebildet sind. Zwischen den beiden Rotorelementen 14, 38 ist die in Figur 3 dargestellte zweiteilige Zwischenwand 46 angeordnet. Die Rotorwelle 36 trägt ferner auf der in Figur 5 linken Seite ein erstes Lüfterrad 70. Ferner ist auf der linken Seite ein innenliegender Gehäusedeckel 72 angeordnet, der den Schöpfraum 74, in dem das größere Rotorelement 38 angeordnet ist, axial verschließt. Zwischen dem innenliegenden Gehäusedeckel 72 und der Welle 36 ist eine nicht näher dargestellte Wellendichtung angeordnet. Der Lüfter 70 ist von einem Lüftergehäuse 76 umgeben. Dies ist auf der in Figur 5 linken Seite offen bzw. weist schlitzförmige Öffnungen auf. Ferner ist das Lüftergehäuse 76 mit einem Gehäuse 78 der Pumpe verbunden.A preferred embodiment of a rotary vane pump according to the invention ( Figures 5 and 6th ) has the above in particular on the basis of Figures 1 and 2 described rotor shaft 36 with two rotor elements 14, 38, wherein the rotor shaft 36 and the rotor elements 14, 38 are integrally formed. Between the two rotor elements 14, 38 is the in Figure 3 illustrated two-part intermediate wall 46 is arranged. The rotor shaft 36 also carries on the in Figure 5 A first fan wheel 70 is located on the left-hand side. Furthermore, an inner housing cover 72 is arranged on the left-hand side, which axially closes the suction chamber 74 in which the larger rotor element 38 is arranged. A shaft seal, not shown in detail, is arranged between the inner housing cover 72 and the shaft 36. The fan 70 is surrounded by a fan housing 76. This is on the in Figure 5 left side open or has slot-shaped openings. Furthermore, the fan housing 76 is connected to a housing 78 of the pump.

An einer Gehäuseoberseite ist ein Pumpeneinlass 80 vorgesehen, der mit dem größeren Schöpfraum 74 verbunden ist.A pump inlet 80, which is connected to the larger pump chamber 74, is provided on the upper side of the housing.

Zum axialen Abschluss des kleineren Schöpfraums 82 weist das Gehäuse 78 eine nach innen ragende Wand 84 auf, die wiederum gegenüber der Welle 36 abgedichtet ist.To axially close off the smaller pumping chamber 82, the housing 78 has an inwardly projecting wall 84, which in turn is sealed with respect to the shaft 36.

Der kleinere, in Strömungsrichtung letzte Schöpfraum 82 ist über eine Auslassleitung mit einem Ölreservoir verbunden, wie in Figur 1 dargestellt vorstehend erläutert. Im dargestellten Ausführungsbeispiel ist das Ölreservoir seitlich neben der Pumpe, d.h. in Figur 5 hinter der Pumpe als Ölreservoir 86 angeordnet. Das zu verwendende Medium wird somit in das Ölreservoir 86 ausgestoßen und gelangt sodann zu einem Auslass 88.The smaller, last suction chamber 82 in the flow direction is connected to an oil reservoir via an outlet line, as in FIG Figure 1 illustrated explained above. In the illustrated embodiment, the oil reservoir is laterally next to the pump, ie in Figure 5 arranged behind the pump as an oil reservoir 86. The medium to be used is thus ejected into the oil reservoir 86 and then reaches an outlet 88.

Ferner ist mit der Rotorwelle 36 ein Elektromotor 90 verbunden.Furthermore, an electric motor 90 is connected to the rotor shaft 36.

Die Rotorwelle 36 ist über Lagerelemente 92 jeweils in einem internen Lagerdeckel 72 bzw. 94 gelagert.The rotor shaft 36 is mounted in an internal bearing cover 72 and 94, respectively, via bearing elements 92.

Im dargestellten Ausführungsbeispiel ist auf der in Figur 5 rechten Seite mit der Rotorwelle 36 ein weiterer Lüfter 96 verbunden. Dieser ist wiederum von einem Lüftergehäuse 98 umgeben. Bei einer Oberseite des Pumpengehäuses 78 ist eine Steuereinrichtung 100 zur Steuerung des Elektromotors und der übrigen Bauteile der Vakuumpumpe vorgesehen. Die Steuerung kann ferner mit Sensoren etc. verbunden sein.In the illustrated embodiment, the in Figure 5 A further fan 96 is connected to the rotor shaft 36 on the right-hand side. This is in turn surrounded by a fan housing 98. A control device 100 for controlling the electric motor and the other components of the vacuum pump is provided on an upper side of the pump housing 78. The controller can also be connected to sensors, etc.

Durch den Auslass 26 des letzten Schöpfraums 82 strömt das Gas-Ölgemisch in das Ölreservoir 86 (Fig. 6). Hierbei strömt das Gas-Ölgemisch zunächst in eine Ölkammer 102 des Ölreservoirs 86. In der Ölkammer 102 sammelt sich aufgrund der Schwerkraft Öl 104. Das verbleibende Gemisch aus Öl und Gas strömt aus der Ölkammer 102 in die Filterkammer 106. Hierbei tritt das Gas-Ölgemisch durch einen Einlass 108 unmittelbar in eine Filtereinrichtung 110 ein, die in der Filterkammer 106 angeordnet ist. Durch die Filtereinrichtung 110 wird Öl ausgefiltert, das über einen Rückführkanal 112 dem Ölkreislauf wieder zugeführt wird. Das verbleibende, von Öl gereinigte Gas strömt, wie durch den Pfeil 114 dargestellt, durch den Auslass 88 der Vakuumpumpe aus.The gas-oil mixture flows through the outlet 26 of the last pump chamber 82 into the oil reservoir 86 ( Fig. 6 ). The gas-oil mixture first flows into an oil chamber 102 of the oil reservoir 86. Oil 104 collects in the oil chamber 102 due to the force of gravity. The remaining mixture of oil and gas flows out of the oil chamber 102 into the filter chamber 106. The gas-oil mixture occurs here through an inlet 108 directly into a filter device 110 which is arranged in the filter chamber 106. The filter device 110 filters out oil which is fed back into the oil circuit via a return duct 112. The remaining gas, which has been cleaned of oil, flows out, as shown by arrow 114, through outlet 88 of the vacuum pump.

Claims (10)

  1. A multi-stage rotary vane pump, comprising
    at least two rotor elements (14, 38), each comprising sliding vanes (18) displaceably arranged in slots (16),
    a rotor shaft (36) carrying the rotor elements (14, 38), wherein the rotor elements (14, 38) and the rotor shaft (36) are formed in one piece,
    a suction chamber (12, 68) for each rotor element (14, 38), wherein the rotor shaft (36) is arranged eccentrically in the suction chambers (12, 68), and wherein respectively one suction chamber (12, 68) forms a pump stage, and a partition wall (46) arranged between two pump stages for separating adjacent pump stages (12, 68),
    characterized in that
    the partition wall (46) is of a multi-part design, particularly a two-part design, and comprises partition wall elements (48) which are formed as ring segments,
    the suction chambers (12, 68) are formed by a common one-pieced housing element (10), and
    the one-pieced rotor with the at least one pre-installed partition wall (46) is adapted to be inserted in axial direction into the housing element (10) forming the suction chambers (12, 68).
  2. The multi-stage rotary vane pump according to claim 1, characterized in that two half ring-segment-shaped and particularly non-concentric partition wall elements (48) are provided.
  3. The multi-stage rotary vane pump according to claim 2, characterized in that centering elements (52), particularly centering pins, are provided on abutment faces (50) of the partition wall elements (48).
  4. The multi-stage rotary vane pump according to one of claims 1 to 3, characterized in that a housing surrounding the suction chambers (74, 82) comprises an inlet (80) connected to a first suction chamber (74) and an outlet (88) connected to a last suction chamber (82).
  5. The multi-stage rotary vane pump according to claim 4, characterized in that an oil reservoir (86) is arranged between the last suction chamber (82) and the outlet (88) so that a gas/oil mixture flows from the suction chamber (82) into the oil reservoir (86).
  6. The multi-stage rotary vane pump according to claim 5, characterized in that the oil reservoir (86) is arranged laterally beside to the vacuum pump.
  7. The multi-stage rotary vane pump according to claim 4 or 5, characterized in that the oil reservoir (86) comprises two mutually connected chambers (102, 106), wherein one chamber is preferably formed as an oil chamber (102) in which the oil exiting from the last suction chamber (82) is captured.
  8. The multi-stage rotary vane pump according to claim 7, characterized in that one chamber is formed as a filtering chamber (106) for separating oil and gas, wherein said filtering chamber (106) is preferably arranged behind the oil chamber (102) as viewed in flow direction.
  9. The multi-stage rotary vane pump according to claim 8, characterized in that the filtering chamber (106) comprises a filtering device (110) connected to an inlet (108) of the filtering chamber (106).
  10. The multi-stage rotary vane pump according to claim 8 or 9, characterized in that the filtering chamber (106) is connected to the outlet (88) of the rotary vane pump.
EP16770911.2A 2015-10-02 2016-09-20 Multi-stage rotary vane pump Active EP3356678B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202015006922.3U DE202015006922U1 (en) 2015-10-02 2015-10-02 Multi-stage rotary vane pump
DE202016005229.3U DE202016005229U1 (en) 2016-08-26 2016-08-26 Multi-stage rotary vane pump
PCT/EP2016/072227 WO2017055129A1 (en) 2015-10-02 2016-09-20 Multi-stage rotary vane pump

Publications (2)

Publication Number Publication Date
EP3356678A1 EP3356678A1 (en) 2018-08-08
EP3356678B1 true EP3356678B1 (en) 2021-10-27

Family

ID=57003489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16770911.2A Active EP3356678B1 (en) 2015-10-02 2016-09-20 Multi-stage rotary vane pump

Country Status (9)

Country Link
US (1) US11592024B2 (en)
EP (1) EP3356678B1 (en)
JP (1) JP7313823B2 (en)
KR (1) KR102572044B1 (en)
CN (2) CN114412786A (en)
CA (1) CA2998448C (en)
ES (1) ES2899908T3 (en)
SG (2) SG11201801043WA (en)
WO (1) WO2017055129A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916042A (en) * 2018-08-28 2018-11-30 王洪继 A kind of motor Contiuum type vane pump
KR102198568B1 (en) 2019-03-12 2021-01-06 조종두 Fluid compressor
KR102434918B1 (en) 2020-03-13 2022-08-23 코우테크 주식회사 Fluid compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498795A (en) * 2013-10-08 2014-01-08 天津商业大学 Single-machine and double-grade slide sheet type refrigeration compressor

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462732A (en) 1945-10-12 1949-02-22 Cons Vultee Aircraft Corp Slidable vane pump
US3178102A (en) 1963-12-05 1965-04-13 Robert B Grisbrook Motor-compressor unit
DE1628313A1 (en) * 1966-08-20 1971-01-28 Leybold Heraeus Gmbh & Co Kg Vacuum pump
US3744942A (en) 1971-07-16 1973-07-10 Borg Warner Rotary sliding vane compressor with hydrostatic bearings
US3956904A (en) * 1975-02-03 1976-05-18 The Rovac Corporation Compressor-expander for refrigeration having dual rotor assembly
FR2353729A1 (en) * 1975-11-28 1977-12-30 Bepex Corp Sliding vane food paste pump - has two chambers separated by removable plate and vanes in chambers at right angles
JPH0240875B2 (en) * 1985-10-30 1990-09-13 Daia Shinku Giken Kk FUKUGOGATADORAISHINKUHONPU
JPH01211684A (en) * 1988-02-18 1989-08-24 Anlet Co Ltd Dry type multistage rotary vane pump
DE3909831A1 (en) * 1989-03-25 1990-09-27 Becker Kg Gebr Sliding-vane rotary pump designed for dry running, and method for manufacturing it
JP2768004B2 (en) * 1990-11-21 1998-06-25 松下電器産業株式会社 Rotary multi-stage gas compressor
JP2699724B2 (en) * 1991-11-12 1998-01-19 松下電器産業株式会社 Two-stage gas compressor
JP2581023Y2 (en) * 1992-08-18 1998-09-17 カルソニック株式会社 Hermetic compressor
DE4325286A1 (en) * 1993-07-28 1995-02-02 Leybold Ag Two-stage rotary vane vacuum pump
DE9311986U1 (en) * 1993-08-11 1993-10-14 Leybold Ag Two-stage rotary vane vacuum pump
US6217564B1 (en) * 1994-02-17 2001-04-17 Clinical Product Development Limited Couplings for medical cannulae
US5769617A (en) 1996-10-30 1998-06-23 Refrigeration Development Company Vane-type compressor exhibiting efficiency improvements and low fabrication cost
JPH11230060A (en) * 1998-02-18 1999-08-24 Ebara Corp Rotor for rotary gas machine and its manufacture
US6086347A (en) * 1998-08-25 2000-07-11 Thermo King Corporation Two-stage rotary vane motor
US6123526A (en) * 1998-09-18 2000-09-26 Industrial Technology Research Institute Multistage pump and method for assembling the pump
JP4692861B2 (en) * 1999-06-14 2011-06-01 聖 丘野 Swing seal type rotary compressor
US6361293B1 (en) * 2000-03-17 2002-03-26 Tecumseh Products Company Horizontal rotary and method of assembling same
CN2561965Y (en) * 2002-04-29 2003-07-23 大丰机器股份有限公司 Casing and basement structure of multi-stage compressor or vacuum pump
CN1260476C (en) * 2002-10-11 2006-06-21 株式会社丰田自动织机 Oil-leakage preventing struture for vacuum pump
JP2004300970A (en) 2003-03-31 2004-10-28 Denso Corp Vacuum pump
US6799956B1 (en) * 2003-04-15 2004-10-05 Tecumseh Products Company Rotary compressor having two-piece separator plate
JP3991918B2 (en) 2003-05-19 2007-10-17 株式会社豊田自動織機 Roots pump
TWI237093B (en) * 2003-10-23 2005-08-01 Ind Tech Res Inst Multi-staged vacuum pump
CN2667203Y (en) * 2003-11-06 2004-12-29 巴德纯 Multi-stage Roots oil-free vacuum pump
JP3841807B2 (en) * 2004-10-13 2006-11-08 株式会社タクマ Nozzle and filtration type dust collector
JP4074886B2 (en) * 2006-05-17 2008-04-16 松下電器産業株式会社 Expander integrated compressor
KR100816656B1 (en) 2006-12-27 2008-03-26 엘지전자 주식회사 Modulation type rotary compressor
GB0719394D0 (en) 2007-10-04 2007-11-14 Edwards Ltd A multi stage clam shell vacuum pump
EP2060790A1 (en) * 2007-11-13 2009-05-20 CISA S.p.A. High vacuum pump for pumping high temperature saturated steam
JP5227056B2 (en) * 2008-03-24 2013-07-03 アネスト岩田株式会社 Multistage pump
US9080569B2 (en) 2009-01-22 2015-07-14 Gregory S. Sundheim Portable, rotary vane vacuum pump with automatic vacuum breaking arrangement
WO2011087457A1 (en) * 2010-01-14 2011-07-21 Nanyang Technological University Fixed vane assembly
WO2011096593A1 (en) 2010-02-05 2011-08-11 財団法人先端医療振興財団 Method for culture of corneal endothelial cells, process for production of corneal endothelial cell sheet for transplantation purposes, and culture kit for corneal endothelial cells
KR101173168B1 (en) * 2010-11-17 2012-08-16 데이비드 김 multistage dry vacuum pump
US8985956B2 (en) * 2011-09-19 2015-03-24 General Electric Company Compressive stress system for a gas turbine engine
JP5778793B2 (en) 2012-09-25 2015-09-16 スガツネ工業株式会社 Door opening and closing device
JP6099550B2 (en) 2013-12-09 2017-03-22 三菱電機株式会社 Vane type two-stage compressor
JP5991310B2 (en) * 2013-12-18 2016-09-14 株式会社デンソー Rotary pump and fuel vapor leak detection device using the same
CN204099206U (en) * 2014-09-24 2015-01-14 孙成忠 Discharging directly into atmosphere multi-stage roots vacuum pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498795A (en) * 2013-10-08 2014-01-08 天津商业大学 Single-machine and double-grade slide sheet type refrigeration compressor

Also Published As

Publication number Publication date
JP2018529879A (en) 2018-10-11
EP3356678A1 (en) 2018-08-08
WO2017055129A1 (en) 2017-04-06
CA2998448A1 (en) 2017-04-06
SG10202110897RA (en) 2021-11-29
JP7313823B2 (en) 2023-07-25
US11592024B2 (en) 2023-02-28
ES2899908T3 (en) 2022-03-15
US20180298902A1 (en) 2018-10-18
SG11201801043WA (en) 2018-03-28
KR20180064392A (en) 2018-06-14
CN114412786A (en) 2022-04-29
CA2998448C (en) 2023-09-26
KR102572044B1 (en) 2023-08-28
CN108291543A (en) 2018-07-17

Similar Documents

Publication Publication Date Title
EP3356678B1 (en) Multi-stage rotary vane pump
DE102012104045A1 (en) Refrigerant Scroll Compressor for Automotive Air Conditioning Systems
DE3800324A1 (en) WING CELL COMPRESSORS
DE102016121241B4 (en) Hydraulic drive, hydraulic motor and integrated pump with hydraulic drive
DE3722164A1 (en) TURBOMOLECULAR PUMP
WO2016034485A2 (en) Claw pump
DE102014222322B3 (en) Vane pump with improved starting behavior
DE102014208775A1 (en) Gas vane pump and method of operation of the gas vane pump
DE102019208680A1 (en) Displacement machine based on the spiral principle, especially scroll compressors for a vehicle air conditioning system
EP3032105B1 (en) Mechanical motor vehicle vacuum pump
DE202016005229U1 (en) Multi-stage rotary vane pump
EP3045728B1 (en) Spiral vacuum pump
WO2017021117A1 (en) Positive displacement pump for conveying a fluid for a consumer in a motor vehicle
DE202015006922U1 (en) Multi-stage rotary vane pump
EP3267040B1 (en) Turbomolecular pump
DE4033420C2 (en) Pressure valve
EP2993306B1 (en) Aircraft engine having air directing device
EP3227560B1 (en) Compressor having a sealing channel
EP4088030B1 (en) Scroll compressor
EP2674571B1 (en) Pump power unit with liquid-ring pump
EP3728860B1 (en) Side channel blower, in particular secondary air blower for an internal combustion engine
EP1541871B1 (en) Side channel pumping stage
DE102023112736A1 (en) Devices for compressing a gaseous fluid and method for operating a device for compressing a gaseous fluid
DE102012025755B3 (en) Refrigerant scroll compressor for motor vehicle air conditioning systems
EP3353423B1 (en) Motor vehicle vacuum pump

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014062

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1442035

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2899908

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014062

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1442035

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231019

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 8

Ref country code: DE

Payment date: 20230928

Year of fee payment: 8

Ref country code: CH

Payment date: 20231001

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160920