EP3356503B1 - Flüssiges waschmittel - Google Patents

Flüssiges waschmittel Download PDF

Info

Publication number
EP3356503B1
EP3356503B1 EP16753645.7A EP16753645A EP3356503B1 EP 3356503 B1 EP3356503 B1 EP 3356503B1 EP 16753645 A EP16753645 A EP 16753645A EP 3356503 B1 EP3356503 B1 EP 3356503B1
Authority
EP
European Patent Office
Prior art keywords
laundry detergent
liquid laundry
detergent formulation
isotropic liquid
formulation according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16753645.7A
Other languages
English (en)
French (fr)
Other versions
EP3356503A1 (de
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP3356503A1 publication Critical patent/EP3356503A1/de
Application granted granted Critical
Publication of EP3356503B1 publication Critical patent/EP3356503B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38618Protease or amylase in liquid compositions only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids

Definitions

  • the present invention provides an enzymatic and dispersant formulation for use in domestic laundry.
  • Isotropic laundry liquid detergent formulations containing a high fraction of anionic surfactant relative to non-ionic surfactant are ubiquitous.
  • Protease enzymes are used in Isotropic Laundry detergent formulations to remove protein containing stains from fabrics.
  • WO2013/087286 discloses liquids formulations containing alkyl ether carboxylic acids, betaines, anionic surfactant, non-ionic surfactant for providing softening benefits.
  • DE 3320340 discloses laundry detergent formulations containing and alkyl ether carboxylate with 4.5 ethoxylate units and protease enzyme. In Example A of DE 3320340 it is shown that such formulations do not stabilise the protease enzyme during storage. In Example B, D and E of DE 3320340 formulations containing alkyl ether carboxylate with 3.8 ethoxylate units and protease enzyme are stabilized for some proteases.
  • an aqueous isotropic laundry liquid detergent formulation comprising:
  • Subtilisin protease enzymes are members of the subtilase type serine proteases family.
  • the wt% of anionic surfactants are calculated as the sodium salt.
  • the wt% of the alkyl ether carboxylic acid dispersant is calculated as the COOH form.
  • the wt% of protease enzyme is/are for the pure active protein.
  • the present invention provides a domestic method of treating a textile, the method comprising the step of: treating a textile with an aqueous solution of 0.5 to 20 g/L of the laundry detergent composition as defined herein.
  • the aqueous laundry detergent solution to remains in contact with the textile for 10 minutes to 2 days then rinsing and drying the textile.
  • the laundry detergent formulation is a non-phosphate laundry detergent formulation, i.e., contains less than 1 wt% of phosphate.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • the laundry detergent is an aqueous isotropic liquid laundry detergent, preferably with a pH of from 7 to 9.
  • the detergent formulation may be present in a polvyinylalcohol pouch for ease of dispensing.
  • Subtilisin protease enzymes (EC 3.4.21.62) hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • Subtilisin protease enzymes are members of the subtilase type serine proteases family. The Serine protease families are described in the MEROPS peptidase database ( http://merops.sanger.ac.uk/ ).
  • the term "subtilases” refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523 .
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 sub-divisions, of which the Subtilisin family is one.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
  • proteases are described in: WO92/19729 , WO96/034946 , WO98/201 15 , WO98/201 16 , WO99/01 1768 , WO01/44452 , WO03/006602 , WO04/03186 , WO04/041979 , WO07/006305 , WO1 1/036263 , WO1 1/036264 , especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 118, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering.
  • subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, *36D, V68A, N76D, N87S,R, *97E, A98S, S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Subtilisin are commercially available, for example, from NovozymesTM and GenencorTM
  • alkyl ether carboxylic acid dispersants are not included as anionic surfactants. Weights of alkyl ether carboxylic acid are calculated as the protonated form, R-(OCH 2 CH 2 ) n -OCH 2 COOH. They may be used as salt version for example sodium salt, or amine salt.
  • the alkyl chain is aliphatic and linear and may be selected from: CH 3 (CH 2 ) 7 -; CH 3 (CH 2 ) 8 -; CH 3 (CH 2 ) 9 -; CH 3 (CH 2 ) 10 -; CH 3 (CH 2 ) 11 -; CH 3 (CH 2 ) 12 -; CH 3 (CH 2 ) 13 -; CH 3 (CH 2 ) 14 -; CH 3 (CH 2 ) 15 -; CH 3 (CH 2 ) 16 -; and CH 3 (CH 2 ) 17 -;
  • the alkyl chain is preferably selected from CH 3 (CH 2 ) 11 - and CH 3 (CH 2 ) 17 -
  • the alkyl ether carboxylic acid is most preferably of the structure: CH 3 (CH 2 ) 11 (OCH 2 CH 2 ) 10 OCH 2 COOH.
  • Alkyl ether carboxylic acid are available from Kao (Akypo®), Huntsman (Empicol®) and Clariant (Emulsogen®) Alkyl ether carboxylic acids may be prepared by the modified Williamson synthesis: R-(OCH 2 CH 2 ) n -OCH 2 COOH+NaOH+ClCH 2 COONa ⁇ R-(OCH 2 CH 2 ) n -OCH 2 COONa + NaCl + H 2 O
  • the laundry composition comprises anionic charged surfactant (which includes a mixture of the same) comprising C11 to C15 linear alkyl benzene sulphonates.
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal or amine salts of fatty acids (soaps), organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • the most preferred anionic surfactants are selected from: linear alkyl benzene sulphonates ; alkyl sulphates; soaps; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates (LAS).
  • the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
  • SDS sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate). Soaps are preferably C 12 to C 18 saturated fatty acids, preferably they are present at levels of less than 3wt% of the formulation.
  • the level of anionic surfactant in the laundry composition is from (i) 10 to 40 wt% of the formulations. It is preferable that LAS is the dominate anionic surfactant present.
  • Isotropic Laundry detergent formulations preferably two or more anionic surfactant are present, preferably linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • Non-ionic surfactant may be present in the surfactant mix.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Preferred nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
  • the non-ionic surfactant is an alkyl ethoxylated non-ionic surfactant and is a C 8 to C 18 primary alcohol, most preferably a C 12 -C 16 primary alcohol, with an average ethoxylation of 7EO to 9EO units.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • Examples of calcium sequestrant builder materials include organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • the Builder is preferably an organic sequestrant containing carboxylic acid groups.
  • the most preferred builder is citric acid.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • the aqueous solution used in the method has a fluorescer present.
  • a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/l to 0.1 g/l, preferably 0.001 to 0.02 g/l.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co .
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • Perfume and top note may be used to cue the cleaning and whiteness benefit of the invention.
  • the detergent formulations of the invention does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • the composition may comprise one or more further polymers.
  • suitable polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • One or more further enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
  • each further enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
  • the further enzyme is preferably selected from: amylases, Mannanases, lipases; and, cellulases, most preferably amylases and lipases.
  • Suitable lipases include those sold under the tradenames lipex®, Lipoclean® and Lipolex® by Novozymes, Bagsvaerd Denmark.
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • Shading dyes are preferably present in the formulation at a level from 0.002 to 0.2 wt%.
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
  • Shading Dyes for use in laundry detergents preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
  • the dyes are blue or violet in colour.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine preferably carry a net anionic or cationic charge.
  • Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric.
  • the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • Shading dyes are discussed in WO2005/003274 , WO2006/032327 (Unilever), WO 2006/032397 (Unilever), WO2006/045275 (Unilever), WO06/027086 (Unilever), WO 2008/017570 (Unilever), WO 2008/141880 (Unilever), WO2009/132870 (Unilever), WO 2009/141173 (Unilever), WO 2010/099997 (Unilever), WO 2010/102861 (Unilever), WO 2010/148624 (Unilever), WO2008/087497 (P&G), WO2011/011799 (P&G), WO2012/054820 (P&G), WO2013/142495 (P&G), and WO2013/151970 (P&G).
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below: and,
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
  • alkoxylated bis-azo dye is:
  • Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5, acid blue 59, and the phenazine dye selected from: wherein:
  • the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
  • the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
  • 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
  • the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
  • Preferred reactive anthraquinone dyes are: Reactive blue 1; Reactive blue 2; Reactive blue 4; Reactive blue 5; Reactive blue 6; Reactive blue 12; Reactive blue 16; reactive blue 19; Reactive blue 24 ; Reactive blue 27; Reactive blue 29; Reactive blue 36; Reactive blue 44; Reactive blue 46 ; Reactive blue 47; reactive blue 49; Reactive blue 50; Reactive blue 53; Reactive blue 55; Reactive blue 61; Reactive blue 66; Reactive blue 68; Reactive blue 69; Reactive blue 74; Reactive blue 86; Reactive blue 93; Reactive blue 94; Reactive blue101; Reactive blue103; Reactive blue114; Reactive blue117; Reactive blue125; Reactive blue141; Reactive blue142; Reactive blue 145; Reactive blue 149; Reactive blue 155; Reactive blue 164; Reactive blue 166; Reactive blue 177; Reactive blue 181; Reactive blue 185; Reactive blue 188; Reactive blue 189; Reactive
  • the dyes are listed according to Colour Index (Society of Dyers and Colourists/American Association of Textile Chemists and Colorists) classification.
  • Isotropic Laundry detergent formulations are present in 0.5 to 5 kg packs.
  • the formulation was used to wash eight 5x5cm EMPA 117 stain monitor (blood/milk/ink stain on polycotton) in a tergotometer set at 200rpm. A 60 minute wash was conducted in 800ml of 26° French Hard water at room temperature (293K), with 2.3g/L of the formulation. To simulate oily soil (7.5 g) of an SBL2004 soil strip (ex Warwick Equest) cut into 4 equal pieces was added to the wash liquor.
  • subtilisin serine protease (EC no. 232-752-2) to the wash liquor (Evity® 16L ex Novozymes).
  • the enzyme was added to give 0.018 wt% pure active protein to the formulation.
  • ⁇ ⁇ L L test formulation ⁇ L control A larger ⁇ L value indicates more stain removal.
  • the formulation was remade with the addition of mix of amylase, mannase and pectinase enzymes (Stainzyme® Novozyme, Mannaway® Novozymes, Pectawash® Novozymes)
  • Wt% pure protein 0.02 0.04 0.03 perfume water and NaOH to pH 8.5 balance NI (9EO) is a C12-C15 alcohol ethoxylate with 9 moles of ethylene oxide.
  • Perfume includes core shell melamine formaldehyde encapsulates of perfume.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (12)

  1. Wässrige isotrope flüssige Waschmittelformulierung, umfassend:
    (i) von 10 bis 40 Gew.-% eines Tensids, ausgewählt aus: anionischen und nicht-ionischen Tensiden, wobei die Gewichtsfraktion von nicht-ionischem Tensid/anionischem Tensid von 0 bis 0,3 beträgt, wobei das anionische Tensid lineare C11- bis C15-Alkylbenzolsulfonate umfasst;
    (ii) von 2 bis 10 Gew.-% eines Alkylethercarbonsäure-Dispergiermittels der folgenden Struktur:

            R-(OCH2CH2)n-OCH2-COOH,

    wobei:
    R aus gesättigten linearen C8- bis C18-Alkylketten ausgewählt ist und worin n aus 7 bis 20 ausgewählt ist; und
    (iii) von 0,002 bis 0,2 Gew.-% einer Serinprotease vom Subtilisin-Typ, wobei die Waschmittelformulierung weniger als 1 Gew.-% Phosphat enthält.
  2. Wässrige isotrope flüssige Waschmittelformulierung nach Anspruch 1, wobei das nicht-ionische Tensid aus Alkylethern mit 7 bis 9 Ethoxy-Gruppen und linearen C12- bis C16-Alkylketten ausgewählt ist.
  3. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei zwei oder mehr anionische Tenside vorliegen, das lineare Alkylbenzolsulfonat zusammen mit einem Alkylethersulfat.
  4. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei R aus CH3(CH2)11- und CH3(CH2)17- ausgewählt ist.
  5. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei die Zusammensetzung 0,002 bis 0,2 Gew.-% eines Nuancierfarbstoffs umfasst.
  6. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei n aus 8 bis 12 ausgewählt ist.
  7. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei das Alkylethercarbonsäure-Dispergiermittel aus

            CH3(CH2)11(OCH2CH2)10OCH2COOH

    ausgewählt ist.
  8. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei die anionischen und nicht-ionischen Tenside in dem Bereich von 12 bis 25 Gew.-% vorliegen und der Anteil der Serinprotease vom Subtilisin-Typ von 0,005 bis 0,05 Gew.-% beträgt.
  9. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei die Gewichtsfraktion von nicht-ionischem Tensid/anionischem Tensid von 0 bis 0,12 beträgt.
  10. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei das Alkylethercarbonsäure-Dispergiermittel in dem Bereich von 3 bis 8 Gew.-% vorliegt.
  11. Wässrige isotrope flüssige Waschmittelformulierung nach irgendeinem vorhergehenden Anspruch, wobei das lineare Alkylbenzolsulfonat als dominierendes anionisches Tensid vorliegt.
  12. Häusliches Verfahren zur Behandlung eines Textils, wobei das Verfahren den Schritt umfasst: Behandlung eines Textils mit einer wässrigen Lösung von 0,5 bis 20 g/l der Waschmittelzusammensetzung, wie in irgendeinem der vorhergehenden Ansprüche definiert.
EP16753645.7A 2015-10-01 2016-08-16 Flüssiges waschmittel Active EP3356503B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15187973 2015-10-01
PCT/EP2016/069391 WO2017054983A1 (en) 2015-10-01 2016-08-16 Liquid laundry detergent composition

Publications (2)

Publication Number Publication Date
EP3356503A1 EP3356503A1 (de) 2018-08-08
EP3356503B1 true EP3356503B1 (de) 2019-04-10

Family

ID=54252144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16753645.7A Active EP3356503B1 (de) 2015-10-01 2016-08-16 Flüssiges waschmittel

Country Status (6)

Country Link
EP (1) EP3356503B1 (de)
CN (1) CN108138084B (de)
AR (1) AR106190A1 (de)
BR (1) BR112018006161B1 (de)
TR (1) TR201906427T4 (de)
WO (1) WO2017054983A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018206202A1 (en) 2017-05-10 2018-11-15 Unilever Plc Laundry detergent composition
EP3622045B1 (de) * 2017-05-10 2021-03-10 Unilever PLC, a company registered in England and Wales under company no. 41424 of Waschmittelzusammensetzung
WO2024050343A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Subtilisin variants and methods related thereto
WO2024050346A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Detergent compositions and methods related thereto
WO2024050339A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Mannanase variants and methods of use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8202294A (nl) * 1982-06-07 1984-01-02 Chem Y Vloeibaar fosfaatvrij wasmiddel.
US5269960A (en) * 1988-09-25 1993-12-14 The Clorox Company Stable liquid aqueous enzyme detergent
EP2245060B1 (de) * 2008-02-01 2017-11-01 Novozymes A/S Flüssige enzymzusammensetzung
ES2622374T3 (es) * 2011-12-12 2017-07-06 Unilever N.V. Composiciones para el lavado de ropa
IN2014MN02034A (de) * 2012-04-23 2015-10-09 Unilever Plc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AR106190A1 (es) 2017-12-20
CN108138084A (zh) 2018-06-08
BR112018006161A2 (pt) 2018-10-09
WO2017054983A1 (en) 2017-04-06
CN108138084B (zh) 2021-04-27
EP3356503A1 (de) 2018-08-08
BR112018006161B1 (pt) 2022-05-31
TR201906427T4 (tr) 2019-05-21

Similar Documents

Publication Publication Date Title
EP3356505B1 (de) Waschmittel
EP3294852B1 (de) Waschmittel
EP3356503B1 (de) Flüssiges waschmittel
CN109072131A (zh) 洗衣洗涤剂组合物
EP3519542B1 (de) Waschverfahren für den haushalt
EP3303535B1 (de) Waschmittelzusammensetzung
EP3417040B1 (de) Bleichungszusammensetzung
EP3303536B1 (de) Waschmittelzusammensetzung
EP3303537B1 (de) Waschmittelzusammensetzung
CN110023469A (zh) 洗衣洗涤剂组合物

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20190102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER PLC

Owner name: UNILEVER NV

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118636

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016012364

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190410

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1118636

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190910

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016012364

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160816

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016012364

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER NV, ROTTERDAM, NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230815

Year of fee payment: 8

Ref country code: GB

Payment date: 20230822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230828

Year of fee payment: 8

Ref country code: DE

Payment date: 20230821

Year of fee payment: 8