EP3352301A1 - Antenna for mobile communication device - Google Patents

Antenna for mobile communication device Download PDF

Info

Publication number
EP3352301A1
EP3352301A1 EP17188862.1A EP17188862A EP3352301A1 EP 3352301 A1 EP3352301 A1 EP 3352301A1 EP 17188862 A EP17188862 A EP 17188862A EP 3352301 A1 EP3352301 A1 EP 3352301A1
Authority
EP
European Patent Office
Prior art keywords
antenna
connection
capacitive element
inductive element
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17188862.1A
Other languages
German (de)
French (fr)
Inventor
Benoît Bonnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Tours SAS
Original Assignee
STMicroelectronics Tours SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1750418A external-priority patent/FR3061995B1/en
Priority claimed from FR1750419A external-priority patent/FR3061996B1/en
Application filed by STMicroelectronics Tours SAS filed Critical STMicroelectronics Tours SAS
Publication of EP3352301A1 publication Critical patent/EP3352301A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present description generally relates to electronic devices and, more particularly, to antennas used by transmission circuits fitted to mobile communication devices.
  • the present disclosure is more particularly directed to a short-circuited quarter-wave antenna (PIFA antenna - Planar Inverted-F Antenna) for mobile telecommunication equipment of the mobile telephony type.
  • PIFA antenna - Planar Inverted-F Antenna short-circuited quarter-wave antenna
  • a mobile phone antenna is generally disposed at the housing or shell of the phone so as not to be shielded by metal elements. The antenna is then connected to the internal electronic transmission circuits on the telephone.
  • the multiplication of the frequency bands that can be used in mobile phones and tablets leads to the provision of broadband and / or frequency-adjustable antennas.
  • the distance between the respective connection points of the first inductive element and the first capacitive element, to the band is less than the distance between the connection point of the first inductive element and the connection to ground.
  • the first inductive element is in parallel with the first capacitive element.
  • the antenna further comprises a second inductive element in series with the first capacitive element.
  • the antenna further comprises a second inductive element connecting the conductive strip to ground.
  • the distance between the respective connection points of the second inductive element and the series connection of the first capacitive element and the first inductive element to the band is less than the distance between the connection point of the second inductive element and the connection to the ground.
  • the second inductive element is in parallel with the series association of the first capacitive element and the first inductive element.
  • the inductance value of the second inductive element is at least five times greater than the inductance value of the connection to ground.
  • the antenna further comprises a second capacitive element of adjustable capacity connecting the conductive strip to ground.
  • the distance between the respective connection points of the second capacitive element and the series connection of the first capacitive element and the second inductive element to the band is less than the distance between the connection point of the capacitive element and the capacitive element. second capacitive element and the connection to the ground.
  • the second capacitive element is in parallel with the series association of the first capacitive element and the second inductive element.
  • the inductance value of the first inductive element is at least five times greater than the inductance value of the ground connection.
  • the antenna constitutes a short-circuited quarter-wave antenna.
  • the antenna is sized for bandwidths in the range between about 700 MHz and 2.7 GHz.
  • the antenna is sized for bandwidths in the range between about 470 MHz and 3 GHz.
  • An embodiment also provides a portable telecommunication device comprising at least one antenna.
  • the figure 1 a block diagram of an example of radio frequency transmission chain 1 of the type to which the embodiments to be described apply.
  • Such a chain is, in the applications targeted by this description, multifrequencies in transmission and reception.
  • One or (most often) several antennas 2 are individually connected to a frequency tuning circuit 12 (TUNE).
  • TUNE frequency tuning circuit 12
  • signals Tx to be transmitted are generated by electronic circuits 14 and are supplied by one or more power amplifiers (PA) to a switch network (SWITCH), whose role is to direct the signals towards a filter a network of filters 16 (FILTERS) as a function of the frequency band considered.
  • the outputs (in transmission) of the filters are connected to another network of antenna switches 17 (SWITCH) responsible for selecting the output of the filter used and connecting it to the circuit 12 for adjusting an antenna 2.
  • the received signals Rx perform a similar but inverse path, from the circuit 12 of the antenna 2 picking up the signals in the appropriate frequency band, through the network of switches 17 to be filtered by one of the network filters 16 and then switched by the switch array 15 to a receive amplifier (generally a low noise amplifier - LNA) of the circuit 14.
  • a receive amplifier generally a low noise amplifier - LNA
  • the Figures 2A and 2B are schematic representations of quarter-wave antennas short-circuited, also called antennas F inverted (Inverted-F Antenna) which are particularly targeted by the described embodiments. Indeed, this type of antennas is the one generally used in mobile phones and tablets. More precisely, the antennas that are preferentially referred to are the PIFA antennas (Planar Inverted-F Antenna) which are formed from a conductive plane, often in the form of a conductive flat strip 22, which is plated on the internal face or which constitutes a portion of a peripheral region of a shell 4 of the phone. In the latter case, the conductive strip 22 is then isolated from the rest of the shell 4 by portions 42 of the latter, electrically insulating.
  • PIFA antennas Planar Inverted-F Antenna
  • FIGS. 2A and 2B illustrate an example of antenna 2 formed on a small side of the periphery of the shell 4 of a telephone.
  • a telephone of rectangular general shape We suppose the case of a telephone of rectangular general shape. However, all that will be described applies more generally to any PIFA antenna whether or not it is worn by the periphery of the phone shell.
  • These figures schematize sectional views of a telephone shell portion 4.
  • the Figure 2A illustrates the case of an antenna 2 whose length requires it to protrude from the short side.
  • the antenna 2 therefore extends partially on the lateral edges of the shell 4.
  • the Figure 2B illustrates the case of an antenna 2 whose length is such that it is entirely contained in the short side of the periphery of the shell 4.
  • the socket 24 and the connection 26 are disposed in the same side of the strip 22, typically in an end quarter of the strip 22.
  • the connection 26 is equivalent to an inductive element 23 (shown in dotted lines) of inductance L1 connecting the band 22 to the ground.
  • this inductance L1 comes from the intrinsic inductance of the connection 26 or is that of a discrete inductive component.
  • the antenna 2 further comprises a capacitive element 28 of adjustable capacitance C connecting the band 22 to ground.
  • the connection of the capacitive element 28 to the strip 22 is located in the other half of the length of the strip 22 relative to that receiving the plug 24 and the connection 26.
  • the socket 24 can be on one side or the other of the connection 26 with respect to the element 28.
  • the capacitive element 28 is controlled by the circuits 14 ( figure 1 ) depending on the desired operating frequency band or bands.
  • the bandwidth is defined as a Standing Wave Ratio (VSWR) of 3, which is equivalent to loss in reflection (Return Loss - RL) of -6dB.
  • VSWR Standing Wave Ratio
  • Return Loss - RL loss in reflection
  • connection 26 and the capacitive element 28 as well as the respective values of the inductance L1 and of the capacitance C condition the resonance frequency of the antenna 2, which is otherwise fixed by the size of the band 22.
  • the sum of the length and the width of a rectangular band 22 corresponds to a quarter ( ⁇ / 4) of the wavelength .
  • the capacitive element 28 makes it possible to reduce the size of the strip 22.
  • the position of the socket 24 with respect to the end of the strip 22 conditions the reflection coefficient of the antenna 2.
  • the designer of the antenna 2 performs many simulations to determine the respective positions and values of the connections 24 and 26 and the element 28.
  • the phones are able to capture or cover several frequency bands simultaneously (carrier aggregation) in order to increase the bandwidth and data communication rates. This is especially true for 4G and 5G standards.
  • the embodiments described below propose new antenna architectures aimed inter alia at improving the bandwidth with a given conductive strip size, imposed by the constraints of the shell 4 of the telephone or, more generally, by the space available for antenna 2.
  • the figure 3 is a schematic sectional view of an embodiment of a PIFA antenna.
  • an antenna 2 made with a strip 22 of the type of that of the Figure 2B .
  • all that is described below also applies to an antenna whose band 22 extends partially around the longitudinal sides of the phone ( Figure 2A ).
  • a inductive element 32 connects, near the capacitive element 28, the strip 22 to ground.
  • proximity it is meant that the distance d32 between the respective connection points of the element 32 and the element 28 to the strip 22 is less than the distance d32 'between the connection point of the element 32 and the connection to the mass 26.
  • the inductive element 32 may be on one side or the other of the capacitive element 28.
  • the elements 28 and 32 share the same point of connection to the band 22, that is to say that the distance d32 is zero and the elements 28 and 32 are in parallel.
  • the inductive element 32 adds an inductor L2 in parallel with the capacitive element 28.
  • This inductance L2 makes it possible to improve the range of variation of the adjustable capacitive element 28, and makes it possible to widen the bandwidth towards the low frequencies, while facilitating the adjustment and choice of low frequencies.
  • the value of the inductance L2 is greater than the value of the inductance L1 provided by the connection to ground.
  • the value of the inductance L2 is at least 5 times higher, preferably of the order of 10 times greater, than the value of the inductance L1.
  • an antenna having a high frequency band (between about 1.7 and 2.7 GHz) and a low frequency band (between about 700 MHz and 1 GHz) is made, which is particularly suitable for mobile telephony. .
  • the value of the inductance L2 is several tens of nanoHenry.
  • the order of magnitude of the value of capacitance C of capacitive element 28 is picoFarad.
  • Such an antenna can lower the low band to about 700 MHz or less.
  • the figure 4 is a schematic sectional view of another embodiment of a PIFA antenna.
  • an antenna 2 made with a strip 22 of the type of that of the Figure 2A .
  • everything described below also applies to an antenna whose band 22 does not extend beyond one side of the phone ( Figure 2B ).
  • the connection 26 to the ground (direct or via an inductive component 23 illustrated in dotted lines) and the capacitive element 28.
  • a inductive element 34 is connected in series with the capacitive element 28.
  • the strip 22 is connected to ground by a series association of an adjustable capacitive element 28 of capacitance C and an inductive element 34 of inductance L3 .
  • the inductive element 34 here again makes it possible to improve the range of variation of the adjustable capacitive element 28, and makes it possible to widen the bandwidth towards the low frequencies.
  • the value of the inductance L3 is greater than the value of the inductance L1.
  • the value of inductance L3 is at least 5 times higher, preferably of the order of 10 times greater than the value of the inductance L1.
  • an antenna 2 having an inductive element 32 can be made in parallel with a series connection of an adjustable capacitive element 28 and an inductive element 34.
  • the distance d32 ( figure 3 ) between the respective connection points of the inductive element 32 and the series connection of the capacitive element 28 and the inductive element 34, to the band 22, is less than the distance d32 'between the connection of the inductive element 32 and the connection to ground 26.
  • an advantage of such a combination is that the operating frequency range of the antenna is further improved.
  • the three bands from approximately 470 MHz to approximately 960 MHz (approximately 490 MHz bandwidth) may be covered, from approximately 1.350 GHz to approximately 1.535 GHz (approximately 175 MHz bandwidth) and approximately 1.7 GHz at about 2.7 GHZ, or even about 3 GHz.
  • the figure 5 represents an alternative embodiment of the embodiment of the figure 4 , according to which a second capacitive element 36, of adjustable capacitance C ', is connected close to the series connection of the capacitive element 28 and of the inductive element 34.
  • a second capacitive element 36 of adjustable capacitance C '
  • proximity means that the distance d36 between the respective connection points of the element 36 and the series connection of the elements 28 and 34 to the strip 22 is less than the distance d36 'between the connection point of the element 36 and the connection 26 to ground.
  • the capacitive element 36 can be on one side or the other of the capacitive element 28.
  • connection point is common, that is to say the distance d34 is zero and the element 36 is in parallel with the series association of the elements 28 and 34.
  • An advantage of the embodiment of the figure 5 is that keeping the other identical elements and, in particular without modifying the band 22, so the architecture of the shell 4 of the phone, we can move the central frequency, which allows to move the bandwidth to improve the frequency coverage.
  • An advantage of the embodiments which have been described is that they make it possible to improve the bandwidth of a PIFA antenna, in applications using the standards and frequency bands of the mobile telephony.

Abstract

L'invention concerne un antenne (2) comportant : une bande conductrice allongée (22) ; une prise d'antenne (24) ; une connexion (26) à la masse ; au moins un premier élément capacitif (28) de capacité réglable ; et au moins un premier élément inductif (32) reliant la bande conductrice à la masse ou au moins un premier élément inductif (34) en série avec le premier élément capacitif.

Figure imgaf001
The invention relates to an antenna (2) comprising: an elongate conductive strip (22); an antenna socket (24); a connection (26) to ground; at least a first capacitive element (28) of adjustable capacity; and at least one first inductive element (32) connecting the conductive strip to the ground or at least one first inductive element (34) in series with the first capacitive element.
Figure imgaf001

Description

DomaineField

La présente description concerne de façon générale les dispositifs électroniques et, plus particulièrement, les antennes utilisées par des circuits de transmission équipant des dispositifs mobiles de communication. La présente description vise plus particulièrement une antenne de type quart d'onde court-circuitée (antenne PIFA - Planar Inverted-F Antenna) pour un équipement portatif de télécommunication de type téléphonie mobile.The present description generally relates to electronic devices and, more particularly, to antennas used by transmission circuits fitted to mobile communication devices. The present disclosure is more particularly directed to a short-circuited quarter-wave antenna (PIFA antenna - Planar Inverted-F Antenna) for mobile telecommunication equipment of the mobile telephony type.

Exposé de l'art antérieurPresentation of the prior art

Une antenne de téléphone mobile est généralement disposée au niveau du boîtier ou coque du téléphone afin de ne pas être écrantée par des éléments métalliques. L'antenne est alors reliée aux circuits électroniques de transmission internes au téléphone.A mobile phone antenna is generally disposed at the housing or shell of the phone so as not to be shielded by metal elements. The antenna is then connected to the internal electronic transmission circuits on the telephone.

La multiplication des bandes de fréquences utilisables dans les téléphones mobiles et tablettes conduit à prévoir des antennes large bande et/ou ajustables en fréquence.The multiplication of the frequency bands that can be used in mobile phones and tablets leads to the provision of broadband and / or frequency-adjustable antennas.

Résumésummary

Il serait souhaitable de disposer d'une architecture d'antenne radiofréquence qui puisse fonctionner efficacement dans différentes bandes de fréquences.It would be desirable to have a radio frequency antenna architecture that can operate efficiently in different frequency bands.

Il serait souhaitable de disposer d'une solution particulièrement adaptée aux bandes de fréquences utilisées dans des dispositifs mobiles de télécommunication.It would be desirable to have a solution particularly suited to the frequency bands used in mobile telecommunication devices.

Il serait souhaitable de disposer d'une solution adaptable aux circuits de transmission existants.It would be desirable to have a solution adaptable to existing transmission circuits.

Ainsi, un mode de réalisation prévoit une antenne comportant :

  • une bande conductrice allongée ;
  • une prise d'antenne ;
  • une connexion à la masse ;
  • au moins un premier élément capacitif de capacité réglable ; et
  • au moins un premier élément inductif reliant la bande conductrice à la masse.
Thus, an embodiment provides an antenna comprising:
  • an elongate conductive strip;
  • an antenna socket;
  • a connection to the ground;
  • at least one first capacitive element of adjustable capacity; and
  • at least one first inductive element connecting the conductive strip to ground.

Selon un mode de réalisation, la distance entre les points de raccordement respectifs du premier élément inductif et du premier élément capacitif, à la bande, est inférieure à la distance entre le point de raccordement du premier élément inductif et la connexion à la masse.According to one embodiment, the distance between the respective connection points of the first inductive element and the first capacitive element, to the band, is less than the distance between the connection point of the first inductive element and the connection to ground.

Selon un mode de réalisation, le premier élément inductif est en parallèle avec le premier élément capacitif.According to one embodiment, the first inductive element is in parallel with the first capacitive element.

Selon un mode de réalisation, l'antenne comporte en outre un deuxième élément inductif en série avec le premier élément capacitif.According to one embodiment, the antenna further comprises a second inductive element in series with the first capacitive element.

Un mode de réalisation prévoit également une antenne comportant :

  • une bande conductrice allongée ;
  • une prise d'antenne ;
  • une connexion à la masse ;
  • au moins un premier élément capacitif de capacité réglable ; et
  • au moins un premier élément inductif en série avec le premier élément capacitif.
An embodiment also provides an antenna comprising:
  • an elongate conductive strip;
  • an antenna socket;
  • a connection to the ground;
  • at least one first capacitive element of adjustable capacity; and
  • at least one first inductive element in series with the first capacitive element.

Selon un mode de réalisation, l'antenne comporte en outre un deuxième élément inductif reliant la bande conductrice à la masse.According to one embodiment, the antenna further comprises a second inductive element connecting the conductive strip to ground.

Selon un mode de réalisation, la distance entre les points de raccordement respectifs du deuxième élément inductif et de l'association en série du premier élément capacitif et du premier élément inductif, à la bande, est inférieure à la distance entre le point de raccordement du deuxième élément inductif et la connexion à la masse.According to one embodiment, the distance between the respective connection points of the second inductive element and the series connection of the first capacitive element and the first inductive element to the band is less than the distance between the connection point of the second inductive element and the connection to the ground.

Selon un mode de réalisation, le deuxième élément inductif est en parallèle avec l'association en série du premier élément capacitif et du premier élément inductif.According to one embodiment, the second inductive element is in parallel with the series association of the first capacitive element and the first inductive element.

Selon un mode de réalisation, la valeur d'inductance du deuxième élément inductif est au moins cinq fois supérieure à la valeur d'inductance de la connexion à la masse.According to one embodiment, the inductance value of the second inductive element is at least five times greater than the inductance value of the connection to ground.

Selon un mode de réalisation, l'antenne comporte en outre un deuxième élément capacitif de capacité réglable reliant la bande conductrice à la masse.According to one embodiment, the antenna further comprises a second capacitive element of adjustable capacity connecting the conductive strip to ground.

Selon un mode de réalisation, la distance entre les points de raccordement respectifs du deuxième élément capacitif et de l'association en série du premier élément capacitif et du deuxième élément inductif, à la bande, est inférieure à la distance entre le point de raccordement du deuxième élément capacitif et la connexion à la masse.According to one embodiment, the distance between the respective connection points of the second capacitive element and the series connection of the first capacitive element and the second inductive element to the band is less than the distance between the connection point of the capacitive element and the capacitive element. second capacitive element and the connection to the ground.

Selon un mode de réalisation, le deuxième élément capacitif est en parallèle avec l'association en série du premier élément capacitif et du deuxième élément inductif.According to one embodiment, the second capacitive element is in parallel with the series association of the first capacitive element and the second inductive element.

Selon un mode de réalisation, la valeur d'inductance du premier élément inductif est au moins cinq fois supérieure à la valeur d'inductance de la connexion à la masse.According to one embodiment, the inductance value of the first inductive element is at least five times greater than the inductance value of the ground connection.

Selon un mode de réalisation, l'antenne constitue une antenne quart d'onde court-circuitée.According to one embodiment, the antenna constitutes a short-circuited quarter-wave antenna.

Selon un mode de réalisation, l'antenne est dimensionnée pour des bandes passantes dans la plage comprise entre environ 700 MHz et 2,7 GHz.According to one embodiment, the antenna is sized for bandwidths in the range between about 700 MHz and 2.7 GHz.

Selon un mode de réalisation, l'antenne est dimensionnée pour des bandes passantes dans la plage comprise entre environ 470 MHz et 3 GHz.According to one embodiment, the antenna is sized for bandwidths in the range between about 470 MHz and 3 GHz.

Un mode de réalisation prévoit également un dispositif portable de télécommunication comportant au moins une antenne.An embodiment also provides a portable telecommunication device comprising at least one antenna.

Brève description des dessinsBrief description of the drawings

Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :

  • la figure 1 un schéma-bloc d'un exemple de chaine 1 de transmission radiofréquence du type auquel s'appliquent les modes de réalisation qui vont être décrits ;
  • les figures 2A et 2B sont des représentations schématiques d'antennes quart d'onde court-circuitées ;
  • la figure 3 est une vue en coupe schématique d'un mode de réalisation d'une antenne PIFA ;
  • la figure 4 est une vue en coupe schématique d'un autre mode de réalisation d'une antenne PIFA ; et
  • La figure 5 représente une variante du mode de réalisation de la figure 4.
These and other features and advantages will be set forth in detail in the following description of particular embodiments in a non-limiting manner with reference to the accompanying drawings in which:
  • the figure 1 a block diagram of an exemplary radio frequency transmission chain 1 of the type to which the embodiments to be described apply;
  • the Figures 2A and 2B are schematic representations of quarter-wave antennas short-circuited;
  • the figure 3 is a schematic sectional view of an embodiment of a PIFA antenna;
  • the figure 4 is a schematic sectional view of another embodiment of a PIFA antenna; and
  • The figure 5 represents a variant of the embodiment of the figure 4 .

Description détailléedetailed description

De mêmes éléments ont été désignés par de mêmes références aux différentes figures.The same elements have been designated with the same references in the various figures.

Par souci de clarté, seuls les éléments utiles à la compréhension des modes de réalisation qui vont être décrits ont été représentés et seront détaillés. En particulier, le fonctionnement et la structure de l'ensemble d'une chaîne de transmission radiofréquences n'ont pas été détaillés, les modes de réalisation décrits étant compatibles avec les chaines de transmission usuelles. Dans la description qui suit, lorsqu'on fait référence aux termes "approximativement", "environ" et, "de l'ordre de", cela signifie à 10 % près, de préférence à 5 % près.For the sake of clarity, only the elements useful for understanding the embodiments that will be described have been shown and will be detailed. In particular, the operation and the structure of the whole of a radio frequency transmission chain have not been detailed, the described embodiments being compatible with the usual transmission chains. In the following description, when referring to the terms "approximately", "about" and "in the order of", this means to within 10%, preferably to within 5%.

La figure 1 un schéma-bloc d'un exemple de chaine 1 de transmission radiofréquence du type auquel s'appliquent les modes de réalisation qui vont être décrits.The figure 1 a block diagram of an example of radio frequency transmission chain 1 of the type to which the embodiments to be described apply.

Une telle chaîne est, dans les applications visées par la présente description, multifréquences en émission et en réception. Une ou (le plus souvent) plusieurs antennes 2 sont connectées individuellement à un circuit 12 de réglage en fréquence (TUNE).Such a chain is, in the applications targeted by this description, multifrequencies in transmission and reception. One or (most often) several antennas 2 are individually connected to a frequency tuning circuit 12 (TUNE).

En émission, des signaux Tx à émettre sont générés par des circuits électroniques 14 et sont fournis par un ou plusieurs amplificateurs de puissance (PA) à un réseau de commutateurs 15 (SWITCH), dont le rôle est d'aiguiller les signaux vers un filtre d'un réseau de filtres 16 (FILTERS) en fonction de la bande de fréquences considérée. Les sorties (en émission) des filtres sont reliées à un autre réseau de commutateurs d'antenne 17 (SWITCH) chargé de sélectionner la sortie du filtre utilisé et la relier au circuit 12 de réglage d'une antenne 2.In transmission, signals Tx to be transmitted are generated by electronic circuits 14 and are supplied by one or more power amplifiers (PA) to a switch network (SWITCH), whose role is to direct the signals towards a filter a network of filters 16 (FILTERS) as a function of the frequency band considered. The outputs (in transmission) of the filters are connected to another network of antenna switches 17 (SWITCH) responsible for selecting the output of the filter used and connecting it to the circuit 12 for adjusting an antenna 2.

En réception, les signaux reçus Rx effectuent un trajet similaire mais inverse, depuis le circuit 12 de l'antenne 2 captant les signaux dans la bande de fréquences appropriée, à travers le réseau de commutateurs 17 pour être filtrés par un des filtres du réseau 16, puis aiguillés par le réseau de commutateurs 15 vers un amplificateur de réception (généralement un amplificateur à faible bruit - LNA) du circuit 14.In reception, the received signals Rx perform a similar but inverse path, from the circuit 12 of the antenna 2 picking up the signals in the appropriate frequency band, through the network of switches 17 to be filtered by one of the network filters 16 and then switched by the switch array 15 to a receive amplifier (generally a low noise amplifier - LNA) of the circuit 14.

Les figures 2A et 2B sont des représentations schématiques d'antennes quart d'onde court-circuitées, également appelées antennes en F inversé (Inverted-F Antenna) qui sont plus particulièrement visées par les modes de réalisation décrits. En effet, ce type d'antennes est celui généralement utilisé dans les téléphones mobiles et tablettes. Plus précisément, les antennes préférentiellement visées sont les antennes PIFA (Planar Inverted-F Antenna) qui sont formées à partir d'un plan conducteur, souvent sous la forme d'une bande plane conductrice 22, plaquée en face interne ou constituant une portion d'une région périphérique d'une coque 4 du téléphone. Dans le dernier cas, la bande conductrice 22 est alors isolée du reste de la coque 4 par des portions 42 de cette dernière, électriquement isolantes.The Figures 2A and 2B are schematic representations of quarter-wave antennas short-circuited, also called antennas F inverted (Inverted-F Antenna) which are particularly targeted by the described embodiments. Indeed, this type of antennas is the one generally used in mobile phones and tablets. More precisely, the antennas that are preferentially referred to are the PIFA antennas (Planar Inverted-F Antenna) which are formed from a conductive plane, often in the form of a conductive flat strip 22, which is plated on the internal face or which constitutes a portion of a peripheral region of a shell 4 of the phone. In the latter case, the conductive strip 22 is then isolated from the rest of the shell 4 by portions 42 of the latter, electrically insulating.

Les figures 2A et 2B illustrent un exemple d'antenne 2 formée sur un petit côté de la périphérie de la coque 4 d'un téléphone. On suppose le cas d'un téléphone de forme générale rectangulaire. Toutefois, tout ce qui va être décrit s'applique plus généralement à toute antenne PIFA qu'elle soit ou non portée par la périphérie de la coque du téléphone. Ces figures schématisent des vues en coupe d'une partie de coque 4 de téléphone.The Figures 2A and 2B illustrate an example of antenna 2 formed on a small side of the periphery of the shell 4 of a telephone. We suppose the case of a telephone of rectangular general shape. However, all that will be described applies more generally to any PIFA antenna whether or not it is worn by the periphery of the phone shell. These figures schematize sectional views of a telephone shell portion 4.

La figure 2A illustre le cas d'une antenne 2 dont la longueur nécessite qu'elle dépasse du petit côté. L'antenne 2 s'étend donc partiellement sur les bords latéraux de la coque 4.The Figure 2A illustrates the case of an antenna 2 whose length requires it to protrude from the short side. The antenna 2 therefore extends partially on the lateral edges of the shell 4.

La figure 2B illustre le cas d'une antenne 2 dont la longueur est telle qu'elle est intégralement contenue dans le petit côté de la périphérie de la coque 4.The Figure 2B illustrates the case of an antenna 2 whose length is such that it is entirely contained in the short side of the periphery of the shell 4.

Une antenne PIFA comporte au moins :

  • une bande conductrice allongée 22 ;
  • une prise d'antenne 24 (FEED) destinée à être connectée aux circuits du téléphone (en réception ou en émission), par exemple à un circuit 12 ou directement au réseau 17 de la figure 1 ; et
  • une connexion 26 à la masse.
A PIFA antenna comprises at least:
  • an elongate conductive strip 22;
  • an antenna socket 24 (FEED) intended to be connected to the telephone circuits (in reception or transmission), for example to a circuit 12 or directly to the network 17 of the figure 1 ; and
  • a connection 26 to the ground.

La prise 24 et la connexion 26 sont disposées dans un même côté de la bande 22, typiquement dans un quart d'extrémité de la bande 22. La connexion 26 est équivalente à un élément inductif 23 (représenté en pointillés) d'inductance L1 reliant la bande 22 à la masse. Selon les réalisations, cette inductance L1 provient de l'inductance intrinsèque de la connexion 26 ou est celle d'un composant inductif discret.The socket 24 and the connection 26 are disposed in the same side of the strip 22, typically in an end quarter of the strip 22. The connection 26 is equivalent to an inductive element 23 (shown in dotted lines) of inductance L1 connecting the band 22 to the ground. According to the embodiments, this inductance L1 comes from the intrinsic inductance of the connection 26 or is that of a discrete inductive component.

Dans les antennes PIFA visées par la présente description, qui sont des antennes multibandes, l'antenne 2 comporte en outre un élément capacitif 28 de capacité C réglable reliant la bande 22 à la masse. La connexion de l'élément capacitif 28 à la bande 22 est située dans l'autre moitié de la longueur de la bande 22 par rapport à celle recevant la prise 24 et la connexion 26. La prise 24 peut être d'un côté ou de l'autre de la connexion 26 par rapport à l'élément 28. L'élément capacitif 28 est commandé par les circuits 14 (figure 1) en fonction de la bande ou des bandes de fréquences de fonctionnement souhaitées.In the antennas PIFA covered by this description, which are multiband antennas, the antenna 2 further comprises a capacitive element 28 of adjustable capacitance C connecting the band 22 to ground. The connection of the capacitive element 28 to the strip 22 is located in the other half of the length of the strip 22 relative to that receiving the plug 24 and the connection 26. The socket 24 can be on one side or the other of the connection 26 with respect to the element 28. The capacitive element 28 is controlled by the circuits 14 ( figure 1 ) depending on the desired operating frequency band or bands.

Pour une antenne, la bande passante se définit pour un taux d'ondes stationnaires (Voltage Standing Wave Ratio - VSWR) de 3, ce qui équivaut à des pertes en réflexion (Return Loss - RL) de -6dB. En d'autres termes, cela correspond à la bande de fréquences dans laquelle au moins 75 % de la puissance est transmise à l'antenne.For an antenna, the bandwidth is defined as a Standing Wave Ratio (VSWR) of 3, which is equivalent to loss in reflection (Return Loss - RL) of -6dB. In other words, this corresponds to the frequency band in which at least 75% of the power is transmitted to the antenna.

Les positions respectives de la connexion 26 et de l'élément capacitif 28 ainsi que les valeurs respectives de l'inductance L1 et de la capacité C conditionnent la fréquence de résonance de l'antenne 2, autrement fixée par la taille de la bande 22. De façon simplifiée, sans élément capacitif et avec la connexion 26 à l'extrémité de la bande 22, la somme de la longueur et de la largeur d'une bande 22 rectangulaire correspond au quart (λ/4) de la longueur d'onde. L'élément capacitif 28 permet de réduire la taille de la bande 22. Toujours de façon simplifiée, la position de la prise 24 par rapport à l'extrémité de la bande 22 conditionne le coefficient de réflexion de l'antenne 2. En pratique, le concepteur de l'antenne 2 effectue de nombreuses simulations pour déterminer les positions et valeurs respectives des connexions 24 et 26 et de l'élément 28.The respective positions of the connection 26 and the capacitive element 28 as well as the respective values of the inductance L1 and of the capacitance C condition the resonance frequency of the antenna 2, which is otherwise fixed by the size of the band 22. In a simplified way, without capacitive element and with the connection 26 at the end of the band 22, the sum of the length and the width of a rectangular band 22 corresponds to a quarter (λ / 4) of the wavelength . The capacitive element 28 makes it possible to reduce the size of the strip 22. Still in a simplified manner, the position of the socket 24 with respect to the end of the strip 22 conditions the reflection coefficient of the antenna 2. In practice, the designer of the antenna 2 performs many simulations to determine the respective positions and values of the connections 24 and 26 and the element 28.

Avec les bandes de fréquences utilisées dans la téléphonie mobile, les antennes actuelles ne permettent pas d'obtenir une largeur de bande passante suffisante pour couvrir à la fois les basses fréquences et les hautes fréquences des normes de télécommunication mobile.With the frequency bands used in mobile telephony, current antennas do not provide sufficient bandwidth to cover both the low and high frequencies of mobile telecommunication standards.

Typiquement, pour couvrir les bandes de fréquences des normes 4G, voire 5G, on est conduit à élargir la bande de fréquences de fonctionnement de l'antenne vers les hautes fréquences (de 2,17 GHz pour la 3G à 2,7 GHz pour la 4G, puis à 3 GHz ou plus pour la 5G). Cela engendre que les architectures actuelles d'antennes PIFA ne sont plus adaptées à descendre suffisamment bas en fréquence (pour la 4G, on souhaite disposer d'une bande passante descendant jusqu'à environ 700 MHz et pour la 5G, à moins de 500 MHz).Typically, in order to cover the frequency bands of the 4G or even 5G standards, it is necessary to extend the operating frequency band of the antenna towards the high frequencies (from 2.17 GHz for 3G to 2.7 GHz for the 4G, then at 3 GHz or higher for 5G). This means that the current architectures of PIFA antennas are no longer suitable for going down sufficiently in frequency (for 4G, it is desired to have a bandwidth down to about 700 MHz and for 5G, to less than 500 MHz ).

Par ailleurs, on souhaite désormais que les téléphones soient capables de capter ou couvrir plusieurs bandes de fréquences simultanément (carrier aggregation) afin de pouvoir augmenter la bande passante et les débits de communication de données. Cela est en particulier vrai pour les normes 4G et 5G.In addition, it is now desired that the phones are able to capture or cover several frequency bands simultaneously (carrier aggregation) in order to increase the bandwidth and data communication rates. This is especially true for 4G and 5G standards.

Les modes de réalisation décrits ci-dessous proposent de nouvelles architectures d'antennes visant, entre autres, à améliorer la bande passante à taille de bande conductrice 22 donnée, imposée par les contraintes de la coque 4 du téléphone ou, plus généralement, par l'espace disponible pour l'antenne 2.The embodiments described below propose new antenna architectures aimed inter alia at improving the bandwidth with a given conductive strip size, imposed by the constraints of the shell 4 of the telephone or, more generally, by the space available for antenna 2.

La figure 3 est une vue en coupe schématique d'un mode de réalisation d'une antenne PIFA.The figure 3 is a schematic sectional view of an embodiment of a PIFA antenna.

En figure 3, on prend pour exemple une antenne 2 réalisée avec une bande 22 du type de celle de la figure 2B. Toutefois, tout ce qui est décrit ci-dessous s'applique également à une antenne dont la bande 22 s'étend partiellement en périphérie des côtés longitudinaux du téléphone (figure 2A).In figure 3 , for example, an antenna 2 made with a strip 22 of the type of that of the Figure 2B . However, all that is described below also applies to an antenna whose band 22 extends partially around the longitudinal sides of the phone ( Figure 2A ).

On retrouve, outre la bande conductrice 22, la prise 24, la connexion 26 à la masse (directe ou par l'intermédiaire d'un composant inductif 23 illustré en pointillés) et l'élément capacitif 28. Selon ce mode de réalisation, un élément inductif 32 relie, à proximité de l'élément capacitif 28, la bande 22 à la masse. Par proximité, on entend que la distance d32 entre les points de raccordement respectifs de l'élément 32 et de l'élément 28 à la bande 22 est inférieure à la distance d32' entre le point de raccordement de l'élément 32 et la connexion à la masse 26.In addition to the conductive strip 22, there is the socket 24, the connection 26 to the ground (direct or via an inductive component 23 illustrated in dotted lines) and the capacitive element 28. According to this embodiment, a inductive element 32 connects, near the capacitive element 28, the strip 22 to ground. By proximity, it is meant that the distance d32 between the respective connection points of the element 32 and the element 28 to the strip 22 is less than the distance d32 'between the connection point of the element 32 and the connection to the mass 26.

L'élément inductif 32 peut être d'un côté ou de l'autre de l'élément capacitif 28.The inductive element 32 may be on one side or the other of the capacitive element 28.

De préférence, les éléments 28 et 32 partagent un même point de raccordement à la bande 22, c'est-à-dire que la distance d32 est nulle et les éléments 28 et 32 sont en parallèle.Preferably, the elements 28 and 32 share the same point of connection to the band 22, that is to say that the distance d32 is zero and the elements 28 and 32 are in parallel.

L'élément inductif 32 ajoute une inductance L2 en parallèle avec l'élément capacitif 28. Cette inductance L2 permet d'améliorer la plage de variation de l'élément capacitif réglable 28, et permet d'élargir la bande passante vers les basses fréquences, tout en facilitant l'ajustement et le choix des basses fréquences. Pour une limite de fréquence basse donnée, plus la distance d32 est faible, plus la longueur de ligne apportée par la portion de bande 22 entre les points de raccordement des éléments 28 et 32 est faible, et plus la valeur de l'inductance L2 peut être élevée et meilleur est le rendement.The inductive element 32 adds an inductor L2 in parallel with the capacitive element 28. This inductance L2 makes it possible to improve the range of variation of the adjustable capacitive element 28, and makes it possible to widen the bandwidth towards the low frequencies, while facilitating the adjustment and choice of low frequencies. For a given low frequency limit, the smaller the distance d32, the lower the line length supplied by the band portion 22 between the connection points of the elements 28 and 32, and the lower the value of the inductance L2. to be high and better is the yield.

La valeur de l'inductance L2 est supérieure à la valeur de l'inductance L1 apportée par la connexion à la masse. De préférence, la valeur de l'inductance L2 est au moins 5 fois supérieure, de préférence de l'ordre de 10 fois supérieure, à la valeur de l'inductance L1.The value of the inductance L2 is greater than the value of the inductance L1 provided by the connection to ground. Preferably, the value of the inductance L2 is at least 5 times higher, preferably of the order of 10 times greater, than the value of the inductance L1.

Par exemple, on réalise une antenne ayant une bande de fréquences hautes (entre environ 1,7 et 2,7 GHz) et une bande de fréquences basses (entre environ 700 MHz et 1 GHz), ce qui est particulièrement adapté à la téléphonie mobile.For example, an antenna having a high frequency band (between about 1.7 and 2.7 GHz) and a low frequency band (between about 700 MHz and 1 GHz) is made, which is particularly suitable for mobile telephony. .

A titre d'exemple particulier de réalisation, dans les applications à la téléphonie mobile, avec une bande conductrice 22 d'une longueur de l'ordre de 5 à 10 centimètres, la valeur de l'inductance L2 est de plusieurs dizaines de nanoHenry. L'ordre de grandeur de la valeur de la capacité C de l'élément capacitif 28 est le picoFarad. Une telle antenne permet de descendre la bande basse à environ 700 MHz, voire moins.As a particular embodiment, in mobile phone applications, with a conductive strip 22 having a length of the order of 5 to 10 centimeters, the value of the inductance L2 is several tens of nanoHenry. The order of magnitude of the value of capacitance C of capacitive element 28 is picoFarad. Such an antenna can lower the low band to about 700 MHz or less.

La figure 4 est une vue en coupe schématique d'un autre mode de réalisation d'une antenne PIFA.The figure 4 is a schematic sectional view of another embodiment of a PIFA antenna.

En figure 4, on prend pour exemple une antenne 2 réalisée avec une bande 22 du type de celle de la figure 2A. Toutefois, tout ce qui est décrit ci-dessous s'applique également à une antenne dont la bande 22 ne s'étend pas au-delà d'un côté du téléphone (figure 2B).In figure 4 , for example, an antenna 2 made with a strip 22 of the type of that of the Figure 2A . However, everything described below also applies to an antenna whose band 22 does not extend beyond one side of the phone ( Figure 2B ).

On retrouve, outre la bande conductrice 22, la prise 24, la connexion 26 à la masse (directe ou par l'intermédiaire d'un composant inductif 23 illustré en pointillés) et l'élément capacitif 28. Selon ce mode de réalisation, un élément inductif 34 est connecté en série avec l'élément capacitif 28. Ainsi, la bande 22 est reliée à la masse par une association en série d'un élément capacitif réglable 28 de capacité C et d'un élément inductif 34 d'inductance L3.In addition to the conductive strip 22, there is the socket 24, the connection 26 to the ground (direct or via an inductive component 23 illustrated in dotted lines) and the capacitive element 28. According to this embodiment, a inductive element 34 is connected in series with the capacitive element 28. Thus, the strip 22 is connected to ground by a series association of an adjustable capacitive element 28 of capacitance C and an inductive element 34 of inductance L3 .

L'élément inductif 34 permet ici aussi d'améliorer la plage de variation de l'élément capacitif réglable 28, et permet d'élargir la bande passante vers les basses fréquences.The inductive element 34 here again makes it possible to improve the range of variation of the adjustable capacitive element 28, and makes it possible to widen the bandwidth towards the low frequencies.

La valeur de l'inductance L3 est supérieure à la valeur de l'inductance L1. De préférence, la valeur de l'inductance L3 est au moins 5 fois supérieure, de préférence de l'ordre de 10 fois supérieure, à la valeur de l'inductance L1.The value of the inductance L3 is greater than the value of the inductance L1. Preferably, the value of inductance L3 is at least 5 times higher, preferably of the order of 10 times greater than the value of the inductance L1.

Les modes de réalisation des figures 3 et 4 sont combinables, c'est-à-dire qu'on peut réaliser une antenne 2 ayant un élément inductif 32 en parallèle avec une association en série d'un élément capacitif réglable 28 et d'un élément inductif 34. Dans ce cas, la distance d32 (figure 3) entre les points de raccordement respectifs de l'élément inductif 32 et de l'association en série de l'élément capacitif 28 et de l'élément inductif 34, à la bande 22, est inférieure à la distance d32' entre le point de raccordement de l'élément inductif 32 et la connexion à la masse 26.The embodiments of the Figures 3 and 4 are combinable, that is to say that an antenna 2 having an inductive element 32 can be made in parallel with a series connection of an adjustable capacitive element 28 and an inductive element 34. In this case, the distance d32 ( figure 3 ) between the respective connection points of the inductive element 32 and the series connection of the capacitive element 28 and the inductive element 34, to the band 22, is less than the distance d32 'between the connection of the inductive element 32 and the connection to ground 26.

Un avantage d'une telle combinaison est que l'on améliore encore la plage de fréquences de fonctionnement de l'antenne. Typiquement, on peut alors couvrir toutes les bandes de fréquences et notamment également les fréquences de la norme 5G, c'est-à-dire dans la plage de 470 MHz à GHz. On peut notamment couvrir les trois bandes d'environ 470 MHz à environ 960 MHz (environ 490 MHz de bande passante), d'environ 1,350 GHz à environ 1,535 GHz (environ 175 MHz de bande passante) et d'environ 1,7 GHz à environ 2,7 GHZ, voire environ 3 GHz.An advantage of such a combination is that the operating frequency range of the antenna is further improved. Typically, it is then possible to cover all the frequency bands and in particular also the frequencies of the 5G standard, that is to say in the range of 470 MHz to GHz. In particular, the three bands from approximately 470 MHz to approximately 960 MHz (approximately 490 MHz bandwidth) may be covered, from approximately 1.350 GHz to approximately 1.535 GHz (approximately 175 MHz bandwidth) and approximately 1.7 GHz at about 2.7 GHZ, or even about 3 GHz.

La figure 5 représente une variante de réalisation du mode de réalisation de la figure 4, selon laquelle un deuxième élément capacitif 36, de capacité C' réglable, est connecté à proximité de l'association en série de l'élément capacitif 28 et de l'élément inductif 34. Comme pour le mode de réalisation de la figure 3, par proximité, on entend que la distance d36 entre les points de raccordement respectifs de l'élément 36 et de l'association en série des éléments 28 et 34 à la bande 22 est inférieure à la distance d36' entre le point de raccordement de l'élément 36 et la connexion 26 à la masse.The figure 5 represents an alternative embodiment of the embodiment of the figure 4 , according to which a second capacitive element 36, of adjustable capacitance C ', is connected close to the series connection of the capacitive element 28 and of the inductive element 34. As for the embodiment of FIG. figure 3 , by proximity means that the distance d36 between the respective connection points of the element 36 and the series connection of the elements 28 and 34 to the strip 22 is less than the distance d36 'between the connection point of the element 36 and the connection 26 to ground.

Comme pour l'élément inductif 32 (figure 3), l'élément capacitif 36 peut être d'un côté ou de l'autre de l'élément capacitif 28.As for the inductive element 32 ( figure 3 ), the capacitive element 36 can be on one side or the other of the capacitive element 28.

De préférence, le point de raccordement est commun, c'est-à-dire que la distance d34 est nulle et l'élément 36 est en parallèle avec l'association en série des éléments 28 et 34.Preferably, the connection point is common, that is to say the distance d34 is zero and the element 36 is in parallel with the series association of the elements 28 and 34.

Un avantage du mode de réalisation de la figure 5 est qu'en conservant les autres éléments identiques et, en particulier sans modifier la bande 22, donc l'architecture de la coque 4 du téléphone, on peut déplacer la fréquence centrale, ce qui permet de déplacer la bande passante afin d'améliorer la couverture en fréquences.An advantage of the embodiment of the figure 5 is that keeping the other identical elements and, in particular without modifying the band 22, so the architecture of the shell 4 of the phone, we can move the central frequency, which allows to move the bandwidth to improve the frequency coverage.

Un avantage des modes de réalisation qui ont été décrits est qu'ils permettent d'améliorer la bande passante d'une antenne PIFA, dans des applications utilisant les normes et bandes de fréquences de la téléphonie mobile.An advantage of the embodiments which have been described is that they make it possible to improve the bandwidth of a PIFA antenna, in applications using the standards and frequency bands of the mobile telephony.

Un autre avantage est que les solutions décrites permettent de réaliser des antennes compatibles avec un fonctionnement où toutes les bandes de fréquences sont couvertes simultanément (carrier aggregation) avec deux antennes. Les téléphones mobiles ont en effet généralement deux antennes.Another advantage is that the solutions described make it possible to produce antennas compatible with an operation in which all the frequency bands are simultaneously covered (carrier aggregation) with two antennas. Mobile phones usually have two antennas.

Un autre avantage des modes de réalisation qui ont été décrits est qu'ils sont compatibles avec les modèles de téléphones actuels. En particulier, ils ne demandent pas de modification des circuits électroniques, ni de la bande conductrice 22 (donc de la coque 4) mais uniquement d'ajouter des composants passifs (inductance(s) L2 et/ou L3 et/ou capacité C').Another advantage of the embodiments that have been described is that they are compatible with current phone models. In particular, they do not require modification of the electronic circuits, or of the conductive strip 22 (hence of the shell 4) but only to add passive components (inductance (s) L2 and / or L3 and / or capacitance C ' ).

Divers modes de réalisation et variantes ont été décrits. Certains modes de réalisation et variantes pourront être combinés et d'autres variantes et modifications apparaîtront à l'homme de l'art. Par ailleurs, la commande des éléments capacitifs réglables n'a pas été détaillée. Cette commande provient des circuits électroniques du dispositif utilisant l'antenne multibandes ajustable en fréquences décrite, et se génère et se détermine de la même façon que pour les antennes usuelles. Enfin, la mise en oeuvre pratique des modes de réalisation qui ont été décrits est à la portée de l'homme du métier à partir des indications fonctionnelles données ci-dessus. En particulier, le dimensionnement des composants inductifs et capacitifs dépend du dispositif électronique intégrant l'antenne PIFA et est à la portée de l'homme du métier.Various embodiments and variants have been described. Certain embodiments and variations may be combined and other variations and modifications will be apparent to those skilled in the art. Moreover, the control of the adjustable capacitive elements has not been detailed. This command comes from the electronic circuits of the device using the frequency-adjustable multiband antenna described, and is generated and determined in the same way as for conventional antennas. Finally, the practical implementation of the embodiments that have been described is within the abilities of those skilled in the art from the functional indications given above. In particular, the dimensioning of the inductive and capacitive depends on the electronic device incorporating the antenna PIFA and is within the reach of the skilled person.

Claims (17)

Antenne (2) comportant : une bande conductrice allongée (22) ; une prise d'antenne (24) ; une connexion (26) à la masse ; au moins un premier élément capacitif (28) de capacité réglable ; et au moins un premier élément inductif (32) reliant la bande conductrice à la masse. Antenna (2) comprising: an elongate conductive strip (22); an antenna socket (24); a connection (26) to ground; at least a first capacitive element (28) of adjustable capacity; and at least one first inductive element (32) connecting the conductive strip to ground. Antenne selon la revendication 1, dans laquelle la distance (d32) entre les points de raccordement respectifs du premier élément inductif (32) et du premier élément capacitif (28), à la bande (22), est inférieure à la distance (d32') entre le point de raccordement du premier élément inductif (32) et la connexion à la masse (26).Antenna according to claim 1, wherein the distance (d32) between the respective connection points of the first inductive element (32) and the first capacitive element (28) to the band (22) is less than the distance (d32 ' ) between the connection point of the first inductive element (32) and the ground connection (26). Antenne selon la revendication 2, dans laquelle le premier élément inductif (32) est en parallèle avec le premier élément capacitif (28).Antenna according to claim 2, wherein the first inductive element (32) is in parallel with the first capacitive element (28). Antenne selon l'une quelconque des revendications 1 à 3, comportant en outre un deuxième élément inductif (34) en série avec le premier élément capacitif (28).An antenna according to any one of claims 1 to 3, further comprising a second inductive element (34) in series with the first capacitive element (28). Antenne comportant : une bande conductrice allongée (22) ; une prise d'antenne (24) ; une connexion (26) à la masse ; au moins un premier élément capacitif (28) de capacité réglable ; et au moins un premier élément inductif (34) en série avec le premier élément capacitif. Antenna comprising: an elongate conductive strip (22); an antenna socket (24); a connection (26) to ground; at least a first capacitive element (28) of adjustable capacity; and at least one first inductive element (34) in series with the first capacitive element. Antenne selon la revendication 5, comportant en outre un deuxième élément inductif (32) reliant la bande conductrice (22) à la masse.An antenna according to claim 5, further comprising a second inductive element (32) connecting the conductive strip (22) to ground. Antenne selon la revendication 6, dans laquelle la distance (d32) entre les points de raccordement respectifs du deuxième élément inductif (32) et de l'association en série du premier élément capacitif (28) et du premier élément inductif (34), à la bande (22), est inférieure à la distance (d32') entre le point de raccordement du deuxième élément inductif (32) et la connexion à la masse (26).Antenna according to claim 6, wherein the distance (d32) between the respective connection points of the second inductive element (32) and the series connection of the first capacitive element (28) and the first inductive element (34) to the band (22) is smaller than the distance (d32 ') between the connection point of the second inductive element (32) and the ground connection ( 26). Antenne selon la revendication 7, dans laquelle le deuxième élément inductif (32) est en parallèle avec l'association en série du premier élément capacitif (28) et du premier élément inductif (34).Antenna according to claim 7, wherein the second inductive element (32) is in parallel with the series association of the first capacitive element (28) and the first inductive element (34). Antenne selon l'une quelconque des revendications 4, 6 à 8, dans laquelle la valeur d'inductance (L3 ; L2) du deuxième élément inductif (34 ; 32) est au moins cinq fois supérieure à la valeur d'inductance (L1) de la connexion à la masse (26).Antenna according to any one of claims 4, 6 to 8, wherein the inductance value (L3; L2) of the second inductive element (34; 32) is at least five times greater than the inductance value (L1) from the ground connection (26). Antenne selon l'une quelconque des revendications 1 à 9, comportant en outre un deuxième élément capacitif (36) de capacité réglable reliant la bande conductrice (22) à la masse.Antenna according to any one of claims 1 to 9, further comprising a second capacitive element (36) of adjustable capacity connecting the conductive strip (22) to ground. Antenne selon la revendication 10, dans laquelle la distance (d36) entre les points de raccordement respectifs du deuxième élément capacitif (36) et de l'association en série du premier élément capacitif (28) et du deuxième élément inductif (34), à la bande (22), est inférieure à la distance (d36') entre le point de raccordement du deuxième élément capacitif (36) et la connexion à la masse (26).Antenna according to claim 10, wherein the distance (d36) between the respective connection points of the second capacitive element (36) and the series connection of the first capacitive element (28) and the second inductive element (34) to the band (22) is smaller than the distance (d36 ') between the point of connection of the second capacitive element (36) and the ground connection (26). Antenne selon la revendication 11, dans laquelle le deuxième élément capacitif (36) est en parallèle avec l'association en série du premier élément capacitif (28) et du deuxième élément inductif (34 ; 32).Antenna according to claim 11, wherein the second capacitive element (36) is in parallel with the series connection of the first capacitive element (28) and the second inductive element (34; 32). Antenne selon l'une quelconque des revendications 1 à 12, dans laquelle la valeur d'inductance (L2 ; L3) du premier élément inductif (32 ; 34) est au moins cinq fois supérieure à la valeur d'inductance (L1) de la connexion à la masse (26).Antenna according to any one of claims 1 to 12, wherein the inductance value (L2; L3) of the first inductive element (32; 34) is at least five times greater than the inductance value (L1) of the ground connection (26). Antenne (2) selon l'une quelconque des revendications 1 à 13, constituant une antenne quart d'onde court-circuitée.Antenna (2) according to any one of claims 1 to 13, constituting a short-circuited quarter-wave antenna. Antenne (2) selon l'une quelconque des revendications 1 à 14, dimensionnée pour des bandes passantes dans la plage comprise entre environ 700 MHz et 2,7 GHz.Antenna (2) according to any one of claims 1 to 14, sized for bandwidths in the range of about 700 MHz to 2.7 GHz. Antenne (2) selon l'une quelconque des revendications 1 à 15, dimensionnée pour couvrir des bandes passantes dans la plage comprise entre environ 470 MHz et 3 GHz.Antenna (2) according to any one of claims 1 to 15, sized to cover bandwidths in the range of about 470 MHz to 3 GHz. Dispositif portable de télécommunication comportant au moins une antenne (2) selon l'une quelconque des revendications 1 à 16.Portable telecommunication device comprising at least one antenna (2) according to any one of Claims 1 to 16.
EP17188862.1A 2017-01-19 2017-08-31 Antenna for mobile communication device Pending EP3352301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750418A FR3061995B1 (en) 2017-01-19 2017-01-19 ANTENNA FOR MOBILE COMMUNICATION DEVICES
FR1750419A FR3061996B1 (en) 2017-01-19 2017-01-19 WIDE BAND ANTENNA FOR MOBILE COMMUNICATION DEVICES

Publications (1)

Publication Number Publication Date
EP3352301A1 true EP3352301A1 (en) 2018-07-25

Family

ID=59699633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17188862.1A Pending EP3352301A1 (en) 2017-01-19 2017-08-31 Antenna for mobile communication device

Country Status (3)

Country Link
US (2) US10403963B2 (en)
EP (1) EP3352301A1 (en)
CN (3) CN112599966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087583A1 (en) 2018-10-22 2020-04-24 Stmicroelectronics (Tours) Sas ANTENNA FOR MOBILE COMMUNICATION DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687151B (en) * 2018-12-26 2021-12-14 维沃移动通信有限公司 Antenna structure and mobile terminal
CN113991287B (en) * 2019-04-30 2022-12-30 荣耀终端有限公司 Antenna assembly and mobile terminal
CN116247415A (en) * 2021-12-08 2023-06-09 Oppo广东移动通信有限公司 Electronic device and antenna device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041734A1 (en) * 2002-08-30 2004-03-04 Fujitsu Limited Antenna apparatus including inverted-F antenna having variable resonance frequency
US20090128428A1 (en) * 2006-07-28 2009-05-21 Murata Manufacturing Co., Ltd. Antenna device and wireless communication apparatus
GB2463536A (en) * 2008-09-22 2010-03-24 Antenova Ltd Tuneable antennas suitable for portable digital television receivers
US20130154897A1 (en) * 2011-12-20 2013-06-20 Robert S. Sorensen Methods and Apparatus for Controlling Tunable Antenna Systems
US20140266922A1 (en) * 2013-03-18 2014-09-18 Apple Inc. Tunable Antenna With Slot-Based Parasitic Element
US20160365623A1 (en) * 2015-06-11 2016-12-15 Samsung Electronics Co., Ltd. Antenna and electronic device including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155599B2 (en) * 2006-09-11 2012-04-10 Panasonic Corporation Wireless communication apparatus for simultaneously performing multiple wireless communications
US8781420B2 (en) * 2010-04-13 2014-07-15 Apple Inc. Adjustable wireless circuitry with antenna-based proximity detector
US9024823B2 (en) * 2011-05-27 2015-05-05 Apple Inc. Dynamically adjustable antenna supporting multiple antenna modes
JP5928433B2 (en) * 2013-10-25 2016-06-01 株式会社村田製作所 High frequency circuit module
CN105449364B (en) * 2014-09-26 2019-01-15 联想(北京)有限公司 antenna and mobile terminal
US20190131716A1 (en) * 2016-04-05 2019-05-02 Huawei Technologies Co., Ltd. Terminal antenna and terminal
US20170310012A1 (en) * 2016-04-22 2017-10-26 Blackberry Limited Antenna aperture tuning and related methods
US10205224B2 (en) * 2016-09-23 2019-02-12 Apple Inc. Electronic device with millimeter wave antenna arrays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041734A1 (en) * 2002-08-30 2004-03-04 Fujitsu Limited Antenna apparatus including inverted-F antenna having variable resonance frequency
US20090128428A1 (en) * 2006-07-28 2009-05-21 Murata Manufacturing Co., Ltd. Antenna device and wireless communication apparatus
GB2463536A (en) * 2008-09-22 2010-03-24 Antenova Ltd Tuneable antennas suitable for portable digital television receivers
US20130154897A1 (en) * 2011-12-20 2013-06-20 Robert S. Sorensen Methods and Apparatus for Controlling Tunable Antenna Systems
US20140266922A1 (en) * 2013-03-18 2014-09-18 Apple Inc. Tunable Antenna With Slot-Based Parasitic Element
US20160365623A1 (en) * 2015-06-11 2016-12-15 Samsung Electronics Co., Ltd. Antenna and electronic device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087583A1 (en) 2018-10-22 2020-04-24 Stmicroelectronics (Tours) Sas ANTENNA FOR MOBILE COMMUNICATION DEVICE
EP3644437A1 (en) 2018-10-22 2020-04-29 STMicroelectronics (Tours) SAS Antenna for mobile communication device

Also Published As

Publication number Publication date
US20180205137A1 (en) 2018-07-19
US10403963B2 (en) 2019-09-03
CN108336479B (en) 2020-12-18
CN207925662U (en) 2018-09-28
CN112599966A (en) 2021-04-02
CN108336479A (en) 2018-07-27
US11283153B2 (en) 2022-03-22
US20190356039A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
EP3352301A1 (en) Antenna for mobile communication device
EP0604338B1 (en) Space-saving broadband antenna with corresponding transceiver
EP1305845B9 (en) Planar radiating surface antenna and portable telephone comprising same
FR2822301A1 (en) BROADBAND ANTENNA FOR MOBILE DEVICES
FR2771232A1 (en) HIGH FREQUENCY CIRCUIT DEVICE, IN PARTICULAR A SURFACE ACOUSTIC WAVE FILTER DUPLEXER AND HIGH FREQUENCY SWITCH
WO2004059788A1 (en) Small-volume antenna, in particular for portable telephones
FR2998721A1 (en) ANTENNA CIRCUIT OPERATING SIMULTANEOUSLY MULTIPLE INDEPENDENT ANTENNAS BY A SINGLE ACCESS TERMINAL
EP1699108B1 (en) Antenna with switchable radiating planes and terminal comprising the same
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
FR2968845A1 (en) DIVERSE ANTENNA SYSTEM
FR3061996A1 (en) BROADBAND ANTENNA FOR MOBILE COMMUNICATION DEVICE
FR3061995A1 (en) ANTENNA FOR MOBILE COMMUNICATION DEVICE
EP3644437A1 (en) Antenna for mobile communication device
FR2967536A1 (en) COMPACT ANTENNA ADAPTABLE TO IMPEDANCE
EP2659544A1 (en) Filter that is variable by means of a capacitor that is switched using mems components
FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
EP1538696A1 (en) Dualband cell phone with omnidirectional radiation pattern
EP1548877B1 (en) Multi-band antenna with planar radiating surfaces and portable phone comprising such an antenna
FR2911998A1 (en) Omnidirectional broadband aerial for use in e.g. portable computer, has primary sections connected to extremities of preceding and following sections through secondary sections and by extremities without connecting to two sections
EP1249889B1 (en) Microwave filter with a dielectric resonator
FR2816114A1 (en) MULTIBAND ANTENNA
EP2462701B1 (en) Switching circuit for broadband signals
EP1715597B1 (en) Antenna composed of planar surfaces connected by switching circuits
FR2867904A1 (en) ELECTROMAGNETIC WAVE RECEIVING AND DECODING SYSTEM WITH COMPACT ANTENNA
FR2825518A1 (en) PLATE ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200423

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS