EP3351951B1 - Method and devices for detecting an interruption of a protective earth connection by means of a leakage current spectrum - Google Patents

Method and devices for detecting an interruption of a protective earth connection by means of a leakage current spectrum Download PDF

Info

Publication number
EP3351951B1
EP3351951B1 EP18158533.2A EP18158533A EP3351951B1 EP 3351951 B1 EP3351951 B1 EP 3351951B1 EP 18158533 A EP18158533 A EP 18158533A EP 3351951 B1 EP3351951 B1 EP 3351951B1
Authority
EP
European Patent Office
Prior art keywords
leakage current
power supply
leakage
converter system
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18158533.2A
Other languages
German (de)
French (fr)
Other versions
EP3351951A1 (en
Inventor
Dieter Hackl
Harald Sellner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bender GmbH and Co KG
Original Assignee
Bender GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bender GmbH and Co KG filed Critical Bender GmbH and Co KG
Publication of EP3351951A1 publication Critical patent/EP3351951A1/en
Application granted granted Critical
Publication of EP3351951B1 publication Critical patent/EP3351951B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/67Testing the correctness of wire connections in electric apparatus or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection
    • H02H5/105Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection responsive to deterioration or interruption of earth connection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers

Definitions

  • the invention relates to a method and an electrical protection device for detecting an interruption of a protective conductor connection to a subsystem of a grounded power supply system, wherein an inverter system is connected to the subsystem.
  • protective earthing of conductive tangible parts of an electrical equipment as a protective measure is an important part of the normatively required protective measure "protection by automatic disconnection of the power supply”. This applies regardless of whether it is the network form of an ungrounded power supply system (French Isodia Terre - IT network) or a grounded power supply system (French Terre Neutre - TN network or French Terre Terre - TT network).
  • This subsystem typically includes one or more electrical resources.
  • first fault If another (second) fault is added to the interruption of one protective conductor connection (first fault), such as the failure of the basic insulation by bridging clearances and creepage distances or due to faulty insulation, there is an increased risk of electric shock.
  • the RCD can not be used in a grounded power supply system due to excessively high leakage currents or if the RCD used is not suitable for protection against electric shock (designed only for fire and system protection), there is a danger of an interrupted protective conductor connection and a second fault in that a person, when the equipment is used as intended, suffers a dangerous electrical accident, as the fault circuit closes over the person's body.
  • the protective conductor connection to a converter system is particularly critical, since insulation faults at the output of the converter system against touchable and conductive parts of a converter-controlled drive can lead to fault currents, in addition to mains frequency shares also a fairly broad spectrum of converter-specific spectral components of DC components up to shares in MHz Range.
  • the leakage currents in the switching frequency range of the inverter are usually well above 30 mA; in high-performance converter drives, the leakage current limit of 300 mA is often exceeded during operation.
  • the use of an RCD is not possible in such systems, even for reasons of fire safety.
  • the publication EP 2568557 A1 shows a method for detecting fault currents for a residual-current circuit breaker in inverter operation. In this case, for more reliable evaluation of the frequency spectrum of the leakage current switching information about switching operations of the frequency converter to the residual current circuit breaker required.
  • the publication EP 2568560 A1 describes a method for detecting and optionally blocking a fault current in a frequency converter, wherein the time course or a spectral band of a current flowing through the frequency converter current is evaluated.
  • loop monitoring devices on the market, which make a protective conductor connection monitoring directly to the resources. With a variety of resources at different network branches a corresponding number of loop monitoring devices are required.
  • the present invention is therefore based on the object to provide a method and an electrical protective device, in grounded branched, ie provided with turn-off units (subsystems), power supply systems interruption of a Detecting the protective earth connection to a subsystem beforehand without interrupting the operation.
  • a grounded power supply system is the special case of an inverter system connected to the subsystem.
  • the starting point in this constellation is a measurement of a leakage current specific for the converter system in a fault-free state of the grounded power supply system. This measurement is made for all relevant, operationally expected power operating points of the converter system.
  • a transformation of the time profile of the respective leakage current in the spectral range serves as reference for this inverter system reference leakage current spectrum and shows a characteristic of a particular power operating point of the inverter expression with intact protective conductor connection.
  • An interruption of the protective conductor connection to the converter system connected to the subsystem causes a omission of the subsystem discharge capacity of the subsystem and, as a result, a detectable change in the leakage current spectra.
  • the current leakage current is continuously measured and from this a current leakage current spectrum corresponding to the instantaneous power working point of the converter is calculated.
  • This leakage current spectrum is compared with the corresponding reference leakage current spectrum, wherein a deviation between the currently calculated leakage current spectrum and the corresponding reference leakage current spectrum indicates an interruption of the protective conductor connection.
  • the calculation of the converter system-specific reference leakage current spectrum and the calculation of the current leakage current spectrum during operation of the converter system a calculation of significant leakage spectral components, wherein the significant leakage spectral components are assigned to the power work points during commissioning of the power conversion system in a learning phase.
  • the calculation of certain significant spectral components within the entire leakage current spectrum is sufficient.
  • the significance of the selected leakage current spectral components results from the fact that a clear (amplitude) change is recognizable at these frequency locations as a result of the omission of the subsystem discharge capacity of the subsystem.
  • the testing of the currently calculated leakage current spectra is carried out in each case by a comparison at locations of the significant leakage current spectral components.
  • the reference values Referenz-Getician, Referenz-Geticiandifferenzstrom, Reference-Ableitstromspektrum at a first commissioning and immediately after a retest of the power system takes place.
  • the determination of the reference values reference total system leakage capacitance, reference total differential current, reference leakage current spectrum is performed by filtering the measured values.
  • the object for a grounded power supply system with an inverter system connected to a subsystem is achieved by an inventive electrical protection device according to claim 6.
  • the electrical protection device has a device for measuring a leakage current, a computing unit for calculating a leakage current spectrum and an evaluation process unit for testing the calculated leakage current spectra and for signaling the interruption of the protective conductor connection.
  • the device for measuring a leakage current detects a leakage current specific for the converter system for different power operating points of the converter system. The detection takes place as a reference leakage current in a fault-free state of the grounded power supply system and as a current leakage current during operation of the converter system.
  • the evaluation process unit checks whether there is a deviation of the currently calculated leakage current spectrum from the corresponding reference leakage current spectrum.
  • the device for measuring the leakage current the arithmetic unit for calculating the leakage current spectrum and the evaluation process unit form an integrated combined device based on a device for determining the network quality as a structural unit.
  • An integrated combination device offers the advantages already mentioned above of a simplified startup and increased reliability of the electrical protection device and reduces the circuitry complexity.
  • an existing device for determining the power quality (PQ device) provides the basis for the integrated combination device.
  • an effective monitoring of the protective conductor connection becomes possible.
  • an interruption of a protective conductor connection to a subsystem can be detected in advance, so that there is no time-consuming and cost-causing interruption of operation.
  • Fig. 1 shows a protective ground in an unearthed (IT) three-phase (AC) power supply system 2 with the active conductors L1, L2, L3.
  • the power supply system 2 comprises a disconnectable subsystem 4 with a resource 6, which is connected via a leading to the subsystem 4 protective conductor connection 8 with a grounding system. All active parts of the ungrounded power supply system 2 are by definition separated from earth 10.
  • the power supply system 2 is further characterized by the system leakage capacitances Cnl of a main system and the system leakage capacitances Cn2 of the subsystem 4, wherein the sum of the system leakage capacitances Cnl and Cn2 due to their parallel connection results in a total network leakage capacitance of the ungrounded power supply system 2.
  • the leakage currents Ia1 and Ia2 which in the present case of the AC system are proportional to the respective system leakage capacitances Cn1 and Cn2, flow via the system leakage capacitances Cn1 and Cn2 (in the faultless state and when the subsystem 4 is switched on).
  • An insulation monitoring device 12 connected between the active conductors L1, L2, L3 and earth 10 monitors an insulation resistance Riso of the power supply system 2 (in a simplified representation, only the insulation resistance Riso of the main system is shown here, but also parallel connected, not shown, insulation resistances of existing subsystems) ,
  • an interruption 20 (first fault) of the protective conductor connection 8 to the subsystem 4 has occurred. If a second fault Rf now occurs in the operating means 6 connected to the subsystem 4 (two-fault situation), for example because of faulty insulation, then a fault current If flows via the touching person and the system leakage capacitance Cn1. Particularly in large-scale power supply systems 2 with large system leakage capacitances Cnl, the fault current If can assume dangerously high values.
  • An electrical protection device 30 for detecting the interruption 20 of the protective conductor connection 8 has measuring devices 32, 34 and an evaluation process unit 36.
  • these are a device 32 for measuring the total system discharge capacity of the ungrounded power supply system 2, a device 34 for measuring the total power received via the ungrounded power supply system 2, and an evaluation process unit 36 for testing the measured total system discharge capacity and the measured total power consumed and for signaling the interruption 20 of the protective conductor connection 8.
  • the apparatus 32 forms, for the measurement of the total system leakage capacitance together with the insulation monitoring device 12, an expanded insulation monitoring device 38, which in turn together with the device 34 for measuring the total power and the evaluation process unit 36 forms an integrated combination device 31 as a structural unit.
  • Fig. 2 is the same operation case (two-fault situation) as for the ungrounded power supply system 2 off Fig. 1 for a grounded (TN) three-phase (AC) power supply system 3 with the active conductors L1, L2, L3.
  • the grounded power supply system 3 at its feed point to a direct ground connection 9. Due to the interruption 20 of the protective conductor connection 8, the fault current If flows completely across the person touching.
  • the electrical protection device 40 has a device 42 for measuring a total differential current of the grounded power supply system 3, a device 44 for measuring a grounded via the Power system recorded total power and an evaluation process unit 46 for testing the measured total differential current and the measured total recorded power and for signaling the interruption 20 of the protective conductor connection 8 on.
  • the total differential current measuring apparatus 42, the total power consumption measuring apparatus 44, and the evaluation processing unit 46 constitute an integrated combination apparatus 41 based on a network quality determination apparatus as a structural unit.
  • an electrical protective device 50 for detecting an interruption of a protective conductor connection during converter operation is arranged in the supply line of the subsystem 4.
  • the electrical protection device 40 not provided for converter operation can be dispensed with.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine elektrische Schutzvorrichtung zur Erkennung einer Unterbrechung einer Schutzleiterverbindung zu einem Subsystem eines geerdeten Stromversorgungssystems, wobei an das Subsystem ein Umrichtersystem angeschlossen ist.The invention relates to a method and an electrical protection device for detecting an interruption of a protective conductor connection to a subsystem of a grounded power supply system, wherein an inverter system is connected to the subsystem.

In einem Stromversorgungssystem ist eine Schutzerdung von leitfähigen berührbaren Teilen eines elektrischen Betriebsmittels als Schutzvorkehrung ein wichtiger Bestandteil der normativ geforderten Schutzmaßnahme "Schutz durch automatische Abschaltung der Stromversorgung". Dies gilt unabhängig davon, ob es sich um die Netzform eines ungeerdeten Stromversorgungsystems (frz. Isolé Terre - IT-Netz) oder eines geerdeten Stromversorgungssystems (frz. Terre Neutre - TN-Netz oder frz. Terre Terre - TT-Netz) handelt.In a power supply system, protective earthing of conductive tangible parts of an electrical equipment as a protective measure is an important part of the normatively required protective measure "protection by automatic disconnection of the power supply". This applies regardless of whether it is the network form of an ungrounded power supply system (French Isolé Terre - IT network) or a grounded power supply system (French Terre Neutre - TN network or French Terre Terre - TT network).

Die Schutzerdung eines Subsystems eines verzweigten Stromversorgungssystems durch eine Schutzleiterverbindung zu dem Subsystem verdient daher besondere Beachtung, da dieser Schutz in den meisten Fällen durch eine Unterbrechung des Schutzleiters unwirksam wird.Protective grounding of a subsystem of a branched power system through a protective conductor connection to the subsystem therefore deserves special attention, since in most cases this protection is rendered ineffective by interruption of the protective conductor.

Unter Subsystem sei hier eine abschaltbare Einheit eines Gesamt-Stromversorgungssystems verstanden. Dieses Subsystem umfasst in der Regel ein oder mehrere elektrische Betriebsmittel.Under subsystem here is a turn-off unit of a total power supply system understood. This subsystem typically includes one or more electrical resources.

Kommt zu der Unterbrechung einer Schutzleiterverbindung (erster Fehler) ein weiterer (zweiter) Fehler hinzu, wie beispielsweise das Versagen der Basisisolierung durch Überbrücken von Luft- und Kriechstrecken oder aufgrund einer schadhaften Isolierung, besteht ein erhöhtes Risiko für einen elektrischen Schlag.If another (second) fault is added to the interruption of one protective conductor connection (first fault), such as the failure of the basic insulation by bridging clearances and creepage distances or due to faulty insulation, there is an increased risk of electric shock.

Da das Auftreten dieser Zweifehlersituation in Stromversorgungsystemen nicht vernachlässigbar gering ist, hat sich in geerdeten Stromversorgungssystemen als zusätzlicher Schutz der Einsatz von Fehlerstrom-Schutzeinrichtungen (RCDs) durchgesetzt.Since the occurrence of this two-fault situation in power supply systems is not negligible, the use of residual-current-operated protective devices (RCDs) has gained ground in grounded power supply systems as additional protection.

In vielen industriellen Stromversorgungsystemen ist der Einsatz von RCDs als zusätzlicher Schutz gegen elektrischen Schlag jedoch nicht möglich, da beispielsweise durch in dem Stromversorgungssystem vorhandene sehr große Netzableitkapazitäten auch ohne einen zusätzlichen Fehlerstrom bereits ein Ableitstrom fließt, der deutlich über 30 mA liegen kann und somit in dem Stromversorgungssystem vorhandene RCDs sofort zum Auslösen bringen würde.In many industrial power supply systems, however, the use of RCDs as additional protection against electric shock is not possible, since, for example, even without an additional fault current, a leakage current already flowing through the power supply system which can well exceed 30 mA and thus in the Power supply system would cause existing RCDs to trip immediately.

Kann in einem geerdeten Stromversorgungssystem das RCD aufgrund zu hoher Ableitströme nicht eingesetzt werden oder ist das eingesetzte RCD nicht für den Schutz gegen elektrischen Schlag geeignet (nur für den Brand- und Anlagenschutz ausgelegt), so besteht bei einer unterbrochenen Schutzleiterverbindung und einem zweiten Fehler die Gefahr, dass eine Person bei bestimmungsgemäßer Bedienung des Betriebsmittels einen gefährlichen Elektrounfall erleidet, da sich der Fehlerstromkreis über den Körper der Person schließt.If the RCD can not be used in a grounded power supply system due to excessively high leakage currents or if the RCD used is not suitable for protection against electric shock (designed only for fire and system protection), there is a danger of an interrupted protective conductor connection and a second fault in that a person, when the equipment is used as intended, suffers a dangerous electrical accident, as the fault circuit closes over the person's body.

Bei intakter Schutzleiterverbindung hingegen fließt der Fehlerstrom bei Versagen der Basisisolierung fast ausschließlich über den Schutzleiter zurück zum Einspeisepunkt des geerdeten Stromversorgungssystems. Allerdings führt dies - bei richtiger Auslegung des geerdeten Stromversorgungssystems - zu sehr hohen Erdschlussströmen und meistens auch zu Berührungsspannungen mit gefährlich hoher Amplitude. Aus diesem Grund muss ein geerdetes Stromversorgungssystem bei einem ersten Fehler schnell genug abgeschaltet werden.In the case of an intact protective conductor connection, on the other hand, if the basic insulation fails, the residual current flows almost exclusively via the protective conductor back to the feeding point of the grounded power supply system. However, this leads - with correct design of the grounded power supply system - to very high ground fault currents and usually also to touch voltages with dangerously high amplitude. For this reason, a grounded power supply system must be shut down fast enough at a first fault.

Besonderes Augenmerk im Hinblick auf Schutzvorkehrungen verdient die Installation von Umrichtersystemen in geerdeten Stromversorgungssystemen. Die Schutzleiterverbindung zu einem Umrichtersystem ist besonders kritisch, da Isolationsfehler am Ausgang des Umrichtersystems gegen berührbare und leitfähige Teile eines umrichtergesteuerten Antriebs zu Fehlerströmen führen können, die neben netzfrequenten Anteilen auch ein recht breitbandiges Spektrum an umrichterspezifischen Spektralanteilen von Gleichstrom-Komponenten bis hin zu Anteilen im MHz-Bereich aufweisen können.Special attention should be paid to the installation of converter systems in grounded power systems. The protective conductor connection to a converter system is particularly critical, since insulation faults at the output of the converter system against touchable and conductive parts of a converter-controlled drive can lead to fault currents, in addition to mains frequency shares also a fairly broad spectrum of converter-specific spectral components of DC components up to shares in MHz Range.

Auch ist zu beachten, dass große Ableitkapazitäten zwischen den Ausgangsphasen des Umrichters und dem Antriebsgehäuse (Ausgangsfilter) für die höherfrequenten Anteile eine niederimpedante Verbindung darstellen können.It should also be noted that large leakage capacitances between the output phases of the converter and the drive housing (output filter) for the higher-frequency components can represent a low-impedance connection.

Herkömmliche RCDs vom Typ A liefern hier keinen zuverlässigen zusätzlichen Schutz. Eine Berührung des umrichtergesteuerten Antriebs kann bei einer fehlerhaften Schutzleiterverbindung zu einem elektrischen Schlag führen, ohne dass ein RCD Typ A dies erkennt. Selbst der Einsatz mischfrequenzsensitiver RCDs vom Typ F hilft meist nicht zuverlässig gegen die Gefährdung durch elektrischen Schlag.Conventional type A RCDs do not provide reliable additional protection here. A contact between the converter-controlled drive and an incorrect protective conductor connection can cause an electric shock without an RCD type A recognizing this. Even the use of mixed-frequency sensitive RCDs of type F usually does not help reliably against the risk of electric shock.

Betriebsmäßig liegen die Ableitströme im Schaltfrequenzbereich des Umrichters (kHz-Bereich) meistens schon deutlich über 30 mA, häufig wird in leistungsstarken Umrichterantrieben sogar betriebsmäßig die Ableitstromgrenze von 300 mA überschritten. Der Einsatz eines RCDs ist in solchen Systemen selbst aus Brandschutzgründen nicht möglich.In terms of operation, the leakage currents in the switching frequency range of the inverter (kHz range) are usually well above 30 mA; in high-performance converter drives, the leakage current limit of 300 mA is often exceeded during operation. The use of an RCD is not possible in such systems, even for reasons of fire safety.

Eine der wichtigsten Schutzvorkehrungen ist vor allem in leistungsstarken Umrichterantrieben somit eine zuverlässige Schutzerdung der berührbaren leitfähigen Antriebsteile.One of the most important protective measures, especially in high-performance converter drives, is thus a reliable protective earthing of the accessible conductive drive parts.

Auch in einem ungeerdeten Stromversorgungssystem, bei dem definitionsgemäß alle aktiven Teile des Stromversorgungssystems von dem Erdpotenzial - gegenüber Erde - getrennt und die angeschlossenen Betriebsmittel durch einen Schutzleiter mit einer Erdungsanlage verbunden sind, kann eine Zweifehlersituation bei Berührung eines Betriebsmittels gefährlich werden, wenn es sich um ein weit ausgedehntes ungeerdetes Stromversorgungssystem mit einer demzufolge großen Gesamtnetzableitkapazität handelt. Der Fehlerstromkreis wird in dieser Zweifehlersituation über die berührende Person und die Netzableitkapazitäten geschlossen.Even in an unearthed power system where, by definition, all active parts of the power system are disconnected from earth potential - ground and the connected equipment is grounded to a grounding system through a protective grounding conductor, a two fault situation can be dangerous if a piece of equipment is touched wide unearthed power system with a consequently large total network leakage capacity. The fault circuit is closed in this two-fault situation on the touching person and the network leakage capacity.

Bei intakter Schutzleiterverbindung fließt der Fehlerstrom bei fehlerhafter Basisisolierung nahezu vollständig über den Schutzleiter und die Netzableitkapazitäten. Dies führt auch im einfachen Fehlerfall in einem ungeerdeten Stromversorgungssystem nur zu ungefährlichen Berührungsspannungen an dem Betriebsmittel. Aus diesem Grund kann ein ungeerdetes Stromversorgungssystem bei einem ersten Fehler weiterbetrieben werden.If the protective conductor connection is intact, the fault current in the case of faulty basic insulation flows almost completely across the protective conductor and the system leakage capacitances. Even in the case of a simple fault in an unearthed power supply system, this only leads to harmless contact voltages on the equipment. For this reason, an ungrounded power supply system can continue operating on a first fault.

Um der durch einen unterbrochenen Schutzleiter entstehenden Gefährdung zu begegnen, sind aus dem Stand der Technik Lösungen bekannt, die jedoch teils erhebliche Nachteile aufweisen.In order to counteract the risk arising from an interrupted protective conductor, solutions are known from the prior art which, however, sometimes have considerable disadvantages.

Aus der Offenlegungsschrift WO 03/100938 A1 ist ein Fehlerstrom-Schutzschalter mit einer auf spektraler Charakterisierung beruhender Signalanalyse des Fehlerstroms bekannt. Insbesondere bei nicht rein sinusförmigen Fehlerströmen soll damit ein vorhersagbares Auslöseverhalten erreicht werden. Leistungsarbeitspunkte eines Umrichtersystems werden dabei nicht berücksichtigt.From the publication WO 03/100938 A1 is a residual current circuit breaker with a spectral characterization based signal analysis of the fault current known. In particular, with not purely sinusoidal fault currents so that a predictable tripping behavior can be achieved. Power work points of an inverter system are not taken into account.

Die Offenlegungsschrift EP 2568557 A1 zeigt ein Verfahren zur Detektion von Fehlerströmen für einen Fehlerstrom-Schutzschalter bei Umrichterbetrieb. Dabei werden zur zuverlässigeren Auswertung des Frequenzspektrums des Ableitstroms Schaltinformationen über Schaltvorgänge des Frequenzumrichters an den Fehlerstrom-Schutzschalter benötigt.The publication EP 2568557 A1 shows a method for detecting fault currents for a residual-current circuit breaker in inverter operation. In this case, for more reliable evaluation of the frequency spectrum of the leakage current switching information about switching operations of the frequency converter to the residual current circuit breaker required.

Die Offenlegungsschrift EP 2568560 A1 beschreibt ein Verfahren zum Erkennen und gegebenenfalls Blockieren eines Fehlerstroms in einem Frequenzumrichter, wobei der zeitliche Verlauf oder ein spektrales Band eines über den Frequenzumrichter fließenden Stroms ausgewertet wird.The publication EP 2568560 A1 describes a method for detecting and optionally blocking a fault current in a frequency converter, wherein the time course or a spectral band of a current flowing through the frequency converter current is evaluated.

Weitere Vorschläge existieren für eine selektive Fehlerstromerfassung, welche zwischen Ableitströmen und Fehlerströmen unterscheiden kann. RCDs auf Basis dieser Ideen sind jedoch nicht verfügbar, da die zuverlässige Funktion im 3-Phasen-Wechselstrom-System bislang nicht nachgewiesen werden konnte.Further proposals exist for a selective fault current detection, which can distinguish between leakage currents and fault currents. However, RCDs based on these ideas are not available because the reliable function in the 3-phase AC system has not been proven so far.

Weiterhin sind Geräte auf dem Markt verfügbar, die den Einsatz von Fehlerstrom-Schutzeinrichtungen zum Schutz gegen elektrischen Schlag auch in industriellen Systemen ermöglichen sollen, indem kapazitive Ableitströme kompensiert werden. Allerdings ist nicht bekannt, wie zuverlässig derartige Schutzeinrichtungen in weitverzweigten Industrienetzen mit wechselnden, komplexen Betriebszuständen arbeiten.Furthermore, devices are available on the market, which are to enable the use of residual current protective devices for protection against electric shock in industrial systems by compensating for capacitive leakage currents. However, it is not known how reliably such protective devices work in widely branched industrial networks with changing, complex operating states.

Schließlich existieren Schleifenüberwachungsgeräte auf dem Markt, die eine Schutzleiteranschlussüberwachung direkt an den Betriebsmitteln vornehmen. Bei einer Vielzahl von Betriebsmitteln an verschiedenen Netzzweigen werden entsprechend viele Schleifenüberwachungsgeräte benötigt.Finally, there are loop monitoring devices on the market, which make a protective conductor connection monitoring directly to the resources. With a variety of resources at different network branches a corresponding number of loop monitoring devices are required.

Der vorliegenden Erfindung liegt somit die Aufgabe zu Grunde, ein Verfahren und eine elektrische Schutzeinrichtung anzugeben, die in geerdeten verzweigten, d.h. mit abschaltbaren Einheiten (Subsystemen) versehenen, Stromversorgungssystemen eine Unterbrechung einer Schutzleiterverbindung zu einem Subsystem im Vorfeld erkennen, ohne dass es zu einer Betriebsunterbrechung kommt. Besondere Bedeutung soll dabei in einem geerdeten Stromversorgungssystem dem Sonderfall eines an das Subsystem angeschlossenen Umrichtersystems zukommen.The present invention is therefore based on the object to provide a method and an electrical protective device, in grounded branched, ie provided with turn-off units (subsystems), power supply systems interruption of a Detecting the protective earth connection to a subsystem beforehand without interrupting the operation. Of particular importance in a grounded power supply system is the special case of an inverter system connected to the subsystem.

Für ein geerdetes Stromversorgungssystem, an dessen Subsystem ein Umrichtersystem angeschlossen ist, wird die Aufgabe gelöst durch ein erfindungsgemäßes Verfahren nach Anspruch 1.For a grounded power supply system to the subsystem of which an inverter system is connected, the object is achieved by a method according to the invention as claimed in claim 1.

Ausgangspunkt ist in dieser Konstellation eine Messung eines für das Umrichtersystem spezifischen Ableitstroms in einem fehlerfreien Zustand des geerdeten Stromversorgungssystems. Diese Messung wird für alle relevanten, betriebsmäßig zu erwartenden Leistungsarbeitspunkte des Umrichtersystems vorgenommen.The starting point in this constellation is a measurement of a leakage current specific for the converter system in a fault-free state of the grounded power supply system. This measurement is made for all relevant, operationally expected power operating points of the converter system.

Eine Transformation des zeitlichen Verlaufs des jeweiligen Ableitstroms in den Spektralbereich dient als für dieses Umrichtersystem spezifisches Referenz-Ableitstromspektrum und zeigt eine für einen bestimmten Leistungsarbeitspunkt des Umrichters charakteristische Ausprägung bei intakter Schutzleiterverbindung.A transformation of the time profile of the respective leakage current in the spectral range serves as reference for this inverter system reference leakage current spectrum and shows a characteristic of a particular power operating point of the inverter expression with intact protective conductor connection.

Eine Unterbrechung der Schutzleiterverbindung zu dem an das Subsystem angeschlossenen Umrichtersystem bewirkt einen Wegfall der Teilnetzableitkapazität des Subsystems und infolgedessen eine detektierbare Änderung in den Ableitstromspektren.An interruption of the protective conductor connection to the converter system connected to the subsystem causes a omission of the subsystem discharge capacity of the subsystem and, as a result, a detectable change in the leakage current spectra.

Während des Betriebs des Stromversorgungssystems mit dem über das Subsystem angeschlossenen Umrichtersystem wird kontinuierlich der aktuelle Ableitstrom gemessen und daraus ein dem augenblicklichen Leistungsarbeitspunkt des Umrichters entsprechendes aktuelles Ableitstromspektrum berechnet. Dieses Ableitstromspektrum wird mit dem korrespondierenden Referenz-Ableitstromspektrum verglichen, wobei eine Abweichung zwischen dem aktuell berechneten Ableitstromspektrum und dem korrespondierenden Referenz-Ableitstromspektrum auf eine Unterbrechung der Schutzleiterverbindung schließen lässt.During operation of the power supply system with the inverter system connected via the subsystem, the current leakage current is continuously measured and from this a current leakage current spectrum corresponding to the instantaneous power working point of the converter is calculated. This leakage current spectrum is compared with the corresponding reference leakage current spectrum, wherein a deviation between the currently calculated leakage current spectrum and the corresponding reference leakage current spectrum indicates an interruption of the protective conductor connection.

In weiterer Ausgestaltung umfasst das Berechnen des Umrichtersystem-spezifischen Referenz-Ableitstromspektrums und das Berechnen des aktuellen Ableitstromspektrums während des Betriebs des Umrichtersystems eine Berechnung von signifikanten Ableitstrom-Spektralkomponenten, wobei die signifikanten Ableitstrom-Spektralkomponenten während der Inbetriebnahme des Umrichtersystems in einer Lernphase den Leistungsarbeitspunkten zugeordnet werden.In a further embodiment, the calculation of the converter system-specific reference leakage current spectrum and the calculation of the current leakage current spectrum during operation of the converter system a calculation of significant leakage spectral components, wherein the significant leakage spectral components are assigned to the power work points during commissioning of the power conversion system in a learning phase.

Im Hinblick auf eine Reduzierung des Rechenaufwands bei der Berechnung der Ableitstromspektren genügt die Berechnung bestimmter signifikanter Spektralkomponenten innerhalb des gesamten Ableitstromspektrums. Die Signifikanz der ausgewählten Ableitstrom-Spektralkomponenten ergibt sich dadurch, dass an diesen Frequenzstellen eine deutliche (Amplituden-)Änderung infolge des Wegfalls der Teilnetzableitkapazität des Subsystems erkennbar wird.With regard to a reduction of the computational effort in the calculation of the leakage current spectra, the calculation of certain significant spectral components within the entire leakage current spectrum is sufficient. The significance of the selected leakage current spectral components results from the fact that a clear (amplitude) change is recognizable at these frequency locations as a result of the omission of the subsystem discharge capacity of the subsystem.

In einer Lernphase während der Inbetriebnahme des Umrichtersystems erfolgt die Zuordnung der signifikanten Ableitstrom-Spektralkomponenten zu den Leistungsarbeitspunkten.In a learning phase during commissioning of the converter system, the assignment of the significant leakage current spectral components to the power work points takes place.

In vorteilhafter Weise wird das Prüfen der aktuell berechneten Ableitstromspektren jeweils durch einen Vergleich an Stellen der signifikanten Ableitstrom-Spektralkomponenten durchgeführt.In an advantageous manner, the testing of the currently calculated leakage current spectra is carried out in each case by a comparison at locations of the significant leakage current spectral components.

Zur Prüfung, ob das aktuell berechnete Ableitstromspektrum eine Abweichung von dem entsprechenden Referenz-Ableitstromspektrum aufweist, ist es somit nicht erforderlich, das gesamte Ableitstromspektrum zu berechnen, sondern die Prüfung erfolgt mit geringem Rechenaufwand auf Basis der ausgewählten signifikanten Ableitstrom-Spektralkomponenten.In order to check whether the currently calculated leakage current spectrum has a deviation from the corresponding reference leakage current spectrum, it is thus not necessary to calculate the total leakage current spectrum, but the test is carried out with little computational effort on the basis of the selected significant leakage current spectral components.

Mit Vorteil erfolgt das Ermitteln der Referenzwerte Referenz-Gesamtnetzableitkapazität, Referenz-Gesamtdifferenzstrom, Referenz-Ableitstromspektrum bei einer Erstinbetriebnahme und unmittelbar nach einer Wiederholungsprüfung des Stromversorgungssystems.Advantageously, the reference values Referenz-Gesamtnetzableitkapazität, Referenz-Gesamtdifferenzstrom, Reference-Ableitstromspektrum at a first commissioning and immediately after a retest of the power system takes place.

Bei einer Erstinbetriebnahme und unmittelbar nach einer Wiederholungsprüfung kann davon ausgegangen werden, dass sich das Stromversorgungssystem, insbesondere die Schutzleiterverbindungen, in fehlerfreiem Zustand befindet/befinden, sodass in dieser Phase zuverlässige Referenzwerte ermittelt werden können.During a first commissioning and immediately after a repeat test, it can be assumed that the power supply system, in particular the protective conductor connections, is in faultless condition Condition is / are located, so that reliable reference values can be determined in this phase.

Alternativ oder ergänzend zu der Ermittlung der Referenzwerte im Rahmen der Erstinbetriebnahme und der Wiederholungsprüfung erfolgt das Ermitteln der Referenzwerte Referenz-Gesamtnetzableitkapazität, Referenz-Gesamtdifferenzstrom, Referenz-Ableitstromspektrum durch eine Filterung der gemessenen Werte.As an alternative or in addition to the determination of the reference values during the initial startup and the repeat test, the determination of the reference values reference total system leakage capacitance, reference total differential current, reference leakage current spectrum is performed by filtering the measured values.

Mittels einer Filterung, beispielsweise durch eine gleitende Mittelwertbildung, wird eine kontinuierliche, träge Anpassung des Referenzwertes an sich ändernde Systembedingungen erreicht. Sprunghafte Änderungen des aktuellen Messwertes gegenüber dem so ermittelten trägen Referenzwert werden als fehlerhafte Ereignisse (Schutzleiter-Abriss) erkannt.By means of a filtering, for example by a moving averaging, a continuous, slow adaptation of the reference value to changing system conditions is achieved. Abrupt changes of the current measured value compared to the thus determined sluggish reference value are recognized as erroneous events (protective conductor demolition).

In Umsetzung des erfindungsgemäßen Verfahrens nach Anspruch 1 wird die Aufgabe für ein geerdetes Stromversorgungssystems mit einem an ein Subsystem angeschlossenen Umrichtersystem gelöst durch eine erfindungsgemäße elektrische Schutzvorrichtung nach Anspruch 6.In implementation of the method according to claim 1 of the invention, the object for a grounded power supply system with an inverter system connected to a subsystem is achieved by an inventive electrical protection device according to claim 6.

Die elektrische Schutzvorrichtung weist hierzu eine Vorrichtung zur Messung eines Ableitstroms, eine Recheneinheit zur Berechnung eines Ableitstromspektrums sowie eine Auswertungs-Prozesseinheit zur Prüfung der berechneten Ableitstromspektren und zur Signalisierung der Unterbrechung der Schutzleiterverbindung auf.For this purpose, the electrical protection device has a device for measuring a leakage current, a computing unit for calculating a leakage current spectrum and an evaluation process unit for testing the calculated leakage current spectra and for signaling the interruption of the protective conductor connection.

Die Vorrichtung zur Messung eines Ableitstroms erfasst einen für das Umrichtersystem spezifischen Ableitstrom für verschiedene Leistungsarbeitspunkte des Umrichtersystems. Die Erfassung erfolgt als Referenz-Ableitstrom in einem fehlerfreien Zustand des geerdeten Stromversorgungssystems und als aktueller Ableitstrom während des Betriebs des Umrichtersystems.The device for measuring a leakage current detects a leakage current specific for the converter system for different power operating points of the converter system. The detection takes place as a reference leakage current in a fault-free state of the grounded power supply system and as a current leakage current during operation of the converter system.

In der Recheneinheit erfolgt eine Transformation des zeitlichen Verlaufs des Ableitstroms in ein Ableitstromspektrum, auf dessen Grundlage die Auswertungs-Prozesseinheit prüft, ob eine Abweichung des aktuell berechneten Ableitstromspektrums von dem entsprechenden Referenz-Ableitstromspektrum vorliegt.In the arithmetic unit is a transformation of the time course of the leakage current in a Ableitstromspektrum, based on the The evaluation process unit checks whether there is a deviation of the currently calculated leakage current spectrum from the corresponding reference leakage current spectrum.

Weiter bilden die Vorrichtung zur Messung des Ableitstroms, die Recheneinheit zur Berechnung des Ableitstromspektrums und die Auswertungs-Prozesseinheit ein integriertes Kombigerät auf der Basis eines Gerätes zur Bestimmung der Netzqualität als bauliche Einheit aus.Furthermore, the device for measuring the leakage current, the arithmetic unit for calculating the leakage current spectrum and the evaluation process unit form an integrated combined device based on a device for determining the network quality as a structural unit.

Ein integriertes Kombigerät bietet die bereits oben genannten Vorteile einer vereinfachten Inbetriebnahme und erhöhten Zuverlässigkeit der elektrischen Schutzvorrichtung und vermindert den schaltungstechnischen Aufwand. Bevorzugt bietet ein vorhandenes Gerät zur Bestimmung der Netzqualität (PQ-Gerät) die Basis für das integrierte Kombigerät.An integrated combination device offers the advantages already mentioned above of a simplified startup and increased reliability of the electrical protection device and reduces the circuitry complexity. Preferably, an existing device for determining the power quality (PQ device) provides the basis for the integrated combination device.

Mit dem erfindungsgemäßen Verfahren und dessen Umsetzung mittels der korrespondierenden elektrischen Schutzvorrichtung wird eine wirksame Überwachung der Schutzleiterverbindung möglich. Insbesondere kann eine Unterbrechung einer Schutzleiterverbindung zu einem Subsystem im Vorfeld erkannt werden, sodass es zu keiner zeitaufwändigen und kostenverursachenden Betriebsunterbrechung kommt.With the method according to the invention and its implementation by means of the corresponding electrical protection device, an effective monitoring of the protective conductor connection becomes possible. In particular, an interruption of a protective conductor connection to a subsystem can be detected in advance, so that there is no time-consuming and cost-causing interruption of operation.

Weitere vorteilhafte Ausgestaltungsmerkmale ergeben sich aus der nachfolgenden Beschreibung und den Zeichnungen, die eine bevorzugte Ausführungsform der Erfindung an Hand von Beispielen erläutern. Es zeigen:

Fig. 1:
eine Darstellung einer Schutzerdung in einem ungeerdeten Stromversorgungssystem mit einer elektrischen Schutzvorrichtung und
Fig. 2:
eine Darstellung einer Schutzerdung in einem geerdeten Stromversorgungssystem mit einer erfindungsgemäßen elektrischen Schutzvorrichtung.
Further advantageous design features will become apparent from the following description and the drawings, which illustrate a preferred embodiment of the invention with reference to examples. Show it:
Fig. 1:
a representation of a protective ground in an ungrounded power supply system with an electrical protection device and
Fig. 2:
a representation of a protective ground in a grounded power supply system with an electrical protection device according to the invention.

Fig. 1 zeigt eine Schutzerdung in einem ungeerdeten (IT) Dreiphasen-(Wechsel-)Stromversorgungssystem 2 mit den aktiven Leitern L1, L2, L3. Das Stromversorgungsystem 2 umfasst ein abschaltbares Subsystem 4 mit einem Betriebsmittel 6, das über eine zu dem Subsystem 4 führende Schutzleiterverbindung 8 mit einer Erdungsanlage verbunden ist. Alle aktiven Teile des ungeerdeten Stromversorgungssystems 2 sind definitionsgemäß gegenüber Erde 10 getrennt. Das Stromversorgungssystem 2 ist weiterhin gekennzeichnet durch die Netzableitkapazitäten Cnl eines Hauptsystems und die Netzableitkapazitäten Cn2 des Subsystems 4, wobei die Summe der Netzableitkapazitäten Cnl und Cn2 aufgrund ihrer Parallelschaltung eine Gesamtnetzableitkapazität des ungeerdeten Stromversorgungssystems 2 ergibt. Über die Netzableitkapazitäten Cnl und Cn2 fließen (in fehlerfreiem Zustand und bei eingeschaltetem Subsystem 4) jeweils die Ableitströme Ia1 und Ia2, die im vorliegenden Fall des Wechselstromsystems proportional zu den jeweiligen Netzableitkapazitäten Cnl und Cn2 sind. Fig. 1 shows a protective ground in an unearthed (IT) three-phase (AC) power supply system 2 with the active conductors L1, L2, L3. The power supply system 2 comprises a disconnectable subsystem 4 with a resource 6, which is connected via a leading to the subsystem 4 protective conductor connection 8 with a grounding system. All active parts of the ungrounded power supply system 2 are by definition separated from earth 10. The power supply system 2 is further characterized by the system leakage capacitances Cnl of a main system and the system leakage capacitances Cn2 of the subsystem 4, wherein the sum of the system leakage capacitances Cnl and Cn2 due to their parallel connection results in a total network leakage capacitance of the ungrounded power supply system 2. The leakage currents Ia1 and Ia2, which in the present case of the AC system are proportional to the respective system leakage capacitances Cn1 and Cn2, flow via the system leakage capacitances Cn1 and Cn2 (in the faultless state and when the subsystem 4 is switched on).

Ein zwischen den aktiven Leitern L1, L2, L3 und Erde 10 angeschlossenes Isolationsüberwachungsgerät 12 überwacht ein Isolationswiderstand Riso des Stromversorgungsystems 2 (in vereinfachter Darstellung ist vorliegend nur der Isolationswiderstand Riso des Hauptsystems eingezeichnet, erfasst werden aber auch parallel geschaltete, nicht dargestellte Isolationswiderstände vorhandener Subsysteme).An insulation monitoring device 12 connected between the active conductors L1, L2, L3 and earth 10 monitors an insulation resistance Riso of the power supply system 2 (in a simplified representation, only the insulation resistance Riso of the main system is shown here, but also parallel connected, not shown, insulation resistances of existing subsystems) ,

In dem dargestellten Betriebsfall ist eine Unterbrechung 20 (erster Fehler) der Schutzleiterverbindung 8 zu dem Subsystem 4 aufgetreten. Kommt nun ein zweiter Fehler Rf bei dem an das Subsystem 4 angeschlossenen Betriebsmittel 6 hinzu (Zweifehlersituation), beispielsweise aufgrund einer schadhaften Isolierung, so fließt ein Fehlerstrom If über die berührende Person und die Netzableitkapazitäten Cn1. Insbesondere in weitläufigen Stromversorgungssystemen 2 mit großen Netzableitkapazitäten Cnl kann der Fehlerstrom If gefährlich hohe Werte annehmen.In the illustrated operating case, an interruption 20 (first fault) of the protective conductor connection 8 to the subsystem 4 has occurred. If a second fault Rf now occurs in the operating means 6 connected to the subsystem 4 (two-fault situation), for example because of faulty insulation, then a fault current If flows via the touching person and the system leakage capacitance Cn1. Particularly in large-scale power supply systems 2 with large system leakage capacitances Cnl, the fault current If can assume dangerously high values.

Eine elektrische Schutzvorrichtung 30 zur Erkennung der Unterbrechung 20 der Schutzleiterverbindung 8 weist Messvorrichtungen 32, 34 und eine Auswertungs-Prozesseinheit 36 auf. Im Einzelnen sind dies eine Vorrichtung 32 zur Messung der Gesamtnetzableitkapazität des ungeerdeten Stromversorgungssystems 2, eine Vorrichtung 34 zur Messung der über das ungeerdete Stromversorgungssystem 2 aufgenommenen Gesamtleistung sowie eine Auswertungs-Prozesseinheit 36 zur Prüfung der gemessenen Gesamtnetzableitkapazität und der gemessenen aufgenommenen Gesamtleistung und zur Signalisierung der Unterbrechung 20 der Schutzleiterverbindung 8.An electrical protection device 30 for detecting the interruption 20 of the protective conductor connection 8 has measuring devices 32, 34 and an evaluation process unit 36. In detail, these are a device 32 for measuring the total system discharge capacity of the ungrounded power supply system 2, a device 34 for measuring the total power received via the ungrounded power supply system 2, and an evaluation process unit 36 for testing the measured total system discharge capacity and the measured total power consumed and for signaling the interruption 20 of the protective conductor connection 8.

Die Vorrichtung 32 bildet zur Messung der Gesamtnetzableitkapazität zusammen mit dem Isolationsüberwachungsgerät 12 ein erweitertes Isolationsüberwachungsgerät 38, welches wiederum zusammen mit der Vorrichtung 34 zur Messung der Gesamtleistung und der Auswertungs-Prozesseinheit 36 ein integriertes Kombigerät 31 als bauliche Einheit ausbildet.The apparatus 32 forms, for the measurement of the total system leakage capacitance together with the insulation monitoring device 12, an expanded insulation monitoring device 38, which in turn together with the device 34 for measuring the total power and the evaluation process unit 36 forms an integrated combination device 31 as a structural unit.

In Fig. 2 ist der gleiche Betriebsfall (Zweifehlersituation) wie für das ungeerdete Stromversorgungssystem 2 aus Fig. 1 für ein geerdetes (TN) Dreiphasen-(Wechsel-)Stromversorgungssystem 3 mit den aktiven Leitern L1, L2, L3 gezeigt. Im Gegensatz zu dem ungeerdeten Stromversorgungssystem 2 (Fig. 1) weist das geerdete Stromversorgungssystem 3 an seinem Einspeisepunkt eine direkte Erdverbindung 9 auf. Aufgrund der Unterbrechung 20 der Schutzleiterverbindung 8 fließt der Fehlerstrom If vollständig über die berührende Person.In Fig. 2 is the same operation case (two-fault situation) as for the ungrounded power supply system 2 off Fig. 1 for a grounded (TN) three-phase (AC) power supply system 3 with the active conductors L1, L2, L3. In contrast to the ungrounded power supply system 2 ( Fig. 1 ), the grounded power supply system 3 at its feed point to a direct ground connection 9. Due to the interruption 20 of the protective conductor connection 8, the fault current If flows completely across the person touching.

Durch eine Messung des Gesamtdifferenzstroms und der Gesamtleistung des geerdeten Stromversorgungssystems 3 wird in Verbindung mit einer Auswertung der Messergebnisse eine Unterbrechung 20 der Schutzleiterverbindung 8 erkannt.By measuring the total differential current and the total power of the grounded power supply system 3, an interruption 20 of the protective conductor connection 8 is detected in conjunction with an evaluation of the measurement results.

Dazu weist die elektrische Schutzvorrichtung 40 eine Vorrichtung 42 zur Messung eines Gesamtdifferenzstroms des geerdeten Stromversorgungssystems 3, eine Vorrichtung 44 zur Messung einer über das geerdete Stromversorgungssystem aufgenommenen Gesamtleistung sowie eine Auswertungs-Prozesseinheit 46 zur Prüfung des gemessenen Gesamtdifferenzstroms und der gemessenen aufgenommenen Gesamtleistung und zur Signalisierung der Unterbrechung 20 der Schutzleiterverbindung 8 auf.For this purpose, the electrical protection device 40 has a device 42 for measuring a total differential current of the grounded power supply system 3, a device 44 for measuring a grounded via the Power system recorded total power and an evaluation process unit 46 for testing the measured total differential current and the measured total recorded power and for signaling the interruption 20 of the protective conductor connection 8 on.

Die Vorrichtung 42 zur Messung des Gesamtdifferenzstroms, die Vorrichtung 44 zur Messung der aufgenommenen Gesamtleistung und die Auswertungs-Prozesseinheit 46 bilden ein integriertes Kombigerät 41 auf der Basis eines Gerätes zur Bestimmung der Netzqualität als bauliche Einheit aus.The total differential current measuring apparatus 42, the total power consumption measuring apparatus 44, and the evaluation processing unit 46 constitute an integrated combination apparatus 41 based on a network quality determination apparatus as a structural unit.

Im Fall eines an das Subsystem angeschlossenen Umrichtersystems - in Fig. 2 kann das Betriebsmittel 6 als ein solches Umrichtersystem aufgefasst werden - ist in der Zuleitung des Subsystems 4 eine elektrische Schutzvorrichtung 50 zur Erkennung einer Unterbrechung einer Schutzleiterverbindung bei Umrichterbetrieb angeordnet.In the case of an inverter system connected to the subsystem - in Fig. 2 If the operating medium 6 can be regarded as such an inverter system, an electrical protective device 50 for detecting an interruption of a protective conductor connection during converter operation is arranged in the supply line of the subsystem 4.

Die erfindungsgemäße elektrische Schutzvorrichtung 50 für Subsysteme 4 mit Umrichtersystem umfasst eine Vorrichtung 52 zur Messung eines Ableitstroms, eine Recheneinheit 54 zur Berechnung eines Ableitstromspektrums sowie eine Auswertungs-Prozesseinheit 56 zur Prüfung der berechneten Ableitstromspektren und zur Signalisierung der Unterbrechung 20 der Schutzleiterverbindung 8. Dabei kann die Implementierung der elektrischen Schutzvorrichtung 50 in Form eines integrierten Kombigerätes 51 auf der Basis eines Gerätes zur Bestimmung der Netzqualität als bauliche Einheit erfolgen.The electrical protection device 50 according to the invention for subsystems 4 with converter system comprises a device 52 for measuring a leakage current, a computing unit 54 for calculating a leakage current spectrum and an evaluation process unit 56 for testing the calculated leakage current spectra and for signaling the interruption 20 of the protective conductor connection 8. The Implementation of the electrical protection device 50 in the form of an integrated combi device 51 on the basis of a device for determining the power quality as a structural unit done.

Sofern nicht Schutzleiterverbindungen zu weiteren Subsystemen zu überwachen sind, kann die nicht für Umrichterbetrieb vorgesehene elektrische Schutzvorrichtung 40 entfallen.Unless protective conductor connections to other subsystems are to be monitored, the electrical protection device 40 not provided for converter operation can be dispensed with.

Claims (7)

  1. A method for detecting a disconnection (20) of a protective conductor connection (8) with a subsystem (4) of a grounded power supply system (3), comprising a converter system connected to the subsystem (4), comprising the method steps to be executed during activation of the converter system:
    - measuring a leakage current specific to the converter system for each one of different power operating points of the converter system in a fault-free state of the grounded power supply system (3),
    - calculating a reference leakage current spectrum of the respective leakage current specific to the converter system,
    and comprising the method steps to be repeatedly executed during operation of the converter system:
    - measuring a current leakage current for each of the different power operating points of the converter system,
    - calculating a current leakage-current spectrum of the respective current leakage current,
    - testing whether the currently calculated leakage current spectrum deviates from the corresponding reference leakage current spectrum,
    - signaling that there is a disconnection (20) of the protective conductor connection (8) if the test reveals that the currently calculated leakage current spectrum deviates from the corresponding reference leakage current spectrum.
  2. The method according to claim 1,
    characterized in that
    calculating the reference leakage current spectrum specific to the converter system and calculating the current leakage current spectrum during operation of the converter system comprises calculating significant leakage-current spectral components, the significant leakage-current spectral components being assigned to the power operating points in a learning phase during activation of the converter system.
  3. The method according to claim 2,
    characterized in that
    the currently calculated leakage current spectra are each tested by a comparison at points of the significant leakage-current spectral components.
  4. The method according to any one of claims 1 to 3,
    characterized in that
    the reference leakage current spectrum is determined when the power supply system (2, 3) is activated for the first time and immediately after a repeat test of the power supply system (2, 3).
  5. The method according to any one of claims 1 to 4,
    characterized in that
    the reference leakage current spectrum is determined by filtering the measured values.
  6. An electrical protection device (50) for detecting a disconnection (20) of a protective conductor connection (8) with a subsystem (4) of a grounded power supply system (3), comprising a converter system connected to the subsystem (4), the electrical protection device (50) comprising
    a device (52) for measuring a leakage current, a calculating unit (54) for calculating a leakage current spectrum and an evaluating process unit (56) for testing the calculated leakage current spectra and for signaling the disconnection (20) of the protective conductor connection (8)
    characterized in that
    the evaluating process unit (56) being configured so as to carry out the process steps according to claim 1.
  7. The electrical protection device (50) according to claim 6,
    characterized in that
    the device (52) for measuring the leakage current, the calculating unit (54) for calculating the leakage current spectrum and the evaluating process unit (56) form an integrated combined device (51) as a structural unit on the basis of a device for determining network quality.
EP18158533.2A 2016-02-10 2017-01-31 Method and devices for detecting an interruption of a protective earth connection by means of a leakage current spectrum Active EP3351951B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016202021.8A DE102016202021B3 (en) 2016-02-10 2016-02-10 Method and devices for detecting a break in a protective conductor connection
EP17153856.4A EP3206040B1 (en) 2016-02-10 2017-01-31 Method and device for detecting an interruption of a protective earth connection

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17153856.4A Division-Into EP3206040B1 (en) 2016-02-10 2017-01-31 Method and device for detecting an interruption of a protective earth connection
EP17153856.4A Division EP3206040B1 (en) 2016-02-10 2017-01-31 Method and device for detecting an interruption of a protective earth connection

Publications (2)

Publication Number Publication Date
EP3351951A1 EP3351951A1 (en) 2018-07-25
EP3351951B1 true EP3351951B1 (en) 2019-07-03

Family

ID=58185243

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17153856.4A Active EP3206040B1 (en) 2016-02-10 2017-01-31 Method and device for detecting an interruption of a protective earth connection
EP18158533.2A Active EP3351951B1 (en) 2016-02-10 2017-01-31 Method and devices for detecting an interruption of a protective earth connection by means of a leakage current spectrum

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17153856.4A Active EP3206040B1 (en) 2016-02-10 2017-01-31 Method and device for detecting an interruption of a protective earth connection

Country Status (5)

Country Link
US (1) US10288664B2 (en)
EP (2) EP3206040B1 (en)
CN (2) CN107064723B (en)
DE (1) DE102016202021B3 (en)
ES (2) ES2747900T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129083A1 (en) * 2017-12-06 2019-06-06 Sma Solar Technology Ag Fail-safe operating method for a decentralized power generation plant
DE202018104044U1 (en) * 2018-07-13 2019-10-15 Wago Verwaltungsgesellschaft Mbh Ground wire monitoring
DE102018121979A1 (en) * 2018-09-10 2020-03-12 Bender Gmbh & Co. Kg Insulation monitoring method for an inverter-fed power supply system
DE102019101636A1 (en) * 2019-01-23 2020-07-23 Bender Gmbh & Co. Kg Electrical circuit device for the detection of a non-opened switch contact and a protective conductor interruption in a single or multi-phase electrical supply line
US20210072325A1 (en) * 2019-09-05 2021-03-11 Aclara Technologies Llc System and method for sensing one or more power lines
DE102019125982B4 (en) * 2019-09-26 2021-06-10 Bender Gmbh & Co. Kg Combined monitoring device for insulation resistance and protective conductor resistance monitoring of a power supply system
CN110763993A (en) * 2019-11-29 2020-02-07 松塔知识产权运营武汉有限公司 Leakage current simulator
DE102020102726B3 (en) * 2020-02-04 2021-03-25 Bender Gmbh & Co. Kg Method for monitoring the earth resistance of an electrical system
DE102020124143B4 (en) * 2020-09-16 2022-06-09 Bender Gmbh & Co. Kg Electrical measuring arrangement and method for the continuous monitoring of a protective conductor resistance
GB2601154B (en) * 2020-11-19 2023-06-07 Indra Renewable Tech Ltd Electric vehicle supply equipment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605894A (en) * 1983-08-29 1986-08-12 Genrad Semiconductor Test, Inc. High density test head
US6392422B1 (en) * 1997-06-17 2002-05-21 Dip.-Ing. Walther Bender Gmbh & Co. Kg Monitoring insulation and fault current in an A/C current network to provide load shutoff whenever differential current exceeds a certain response value
US6192496B1 (en) * 1997-11-26 2001-02-20 Agilent Technologies, Inc. System for verifying signal timing accuracy on a digital testing device
DE20220276U1 (en) * 2002-02-25 2003-06-18 Schulze Wolfgang Monitor for electric current supply, measures and evaluates individual line parameters and disconnects or gives alarm if necessary
JP3918614B2 (en) * 2002-04-09 2007-05-23 富士電機デバイステクノロジー株式会社 Disconnection failure detection circuit
AT412047B (en) 2002-05-27 2004-08-26 Moeller Gebaeudeautomation Kg FAULT CIRCUIT BREAKER
JP4200291B2 (en) * 2003-05-21 2008-12-24 富士電機アセッツマネジメント株式会社 Earth leakage breaker
FR2917838B1 (en) * 2007-06-21 2009-09-04 Schneider Electric Ind Sas LOCALIZED ISOLATION CONTROL AND MEASUREMENT DEVICE FOR INSULATED NEUTRAL ELECTRICAL NETWORK
CN101582585B (en) * 2009-06-02 2012-06-20 河北德普电器有限公司 Composite monitoring device for electrode difference protection and grounding of direct-current system
US8461855B2 (en) * 2009-10-02 2013-06-11 Teradyne, Inc. Device interface board with cavity back for very high frequency applications
US9297862B2 (en) * 2011-07-28 2016-03-29 Eaton Corporation Systems and apparatus for fault detection in DC power sources using AC residual current detection
EP2568560B1 (en) * 2011-09-07 2014-12-31 Siemens Aktiengesellschaft Frequency inverter and method for detecting and blocking a residual current in a frequency inverter
EP2568557B1 (en) * 2011-09-07 2014-02-26 Siemens Aktiengesellschaft Method of operating a residual current circuit breaker and residual current circuit breaker for a frequency converter
DE102011083792A1 (en) * 2011-09-29 2013-04-04 Bender Gmbh & Co. Kg Insulation fault locating device and device for isolation fault location in an ungrounded power supply network
DE102012207624A1 (en) * 2012-05-08 2013-11-14 Siemens Aktiengesellschaft Module unit, network and method for monitoring a power supply network
DE102012104752B3 (en) * 2012-06-01 2013-11-28 Sma Solar Technology Ag Method for measuring an insulation resistance for an inverter and inverter
CN203616420U (en) * 2013-05-10 2014-05-28 介国安 Safety grounding universal on-line detector
CN103441481B (en) * 2013-09-14 2015-07-22 西安科技大学 Self-adaptive selective leakage protection system and method for mine low-voltage electric network
CN103516053B (en) * 2013-10-17 2015-11-25 塞里克鲁能源科技江苏有限公司 A kind of outdoor lighting power distribution cabinet protection controller
DE102014201044B3 (en) * 2014-01-21 2015-03-05 Bender Gmbh & Co. Kg Insulation monitoring device for simultaneous monitoring of network sections of an ungrounded power supply system

Also Published As

Publication number Publication date
ES2747900T3 (en) 2020-03-12
CN111766542B (en) 2023-04-11
EP3206040B1 (en) 2019-07-03
US20170227593A1 (en) 2017-08-10
EP3206040A3 (en) 2017-11-01
ES2747549T3 (en) 2020-03-10
DE102016202021B3 (en) 2017-03-23
EP3351951A1 (en) 2018-07-25
CN111766542A (en) 2020-10-13
US10288664B2 (en) 2019-05-14
CN107064723B (en) 2021-02-02
CN107064723A (en) 2017-08-18
EP3206040A2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
EP3351951B1 (en) Method and devices for detecting an interruption of a protective earth connection by means of a leakage current spectrum
DE102015207456B3 (en) Insulation monitoring device with voltage monitoring and underlying method
EP3485549B1 (en) Method for preventing hazardous ground fault of a higher frequency for an electric drive system
EP3059828B1 (en) Device and method for detecting residual curent
DE102015208725B3 (en) Method and device for switching off an insulation-faulted part of an unearthed power supply system
DE102014204038A1 (en) Methods and devices for selective isolation monitoring in ungrounded IT power systems
EP3435504A2 (en) Method, electrical circuit assemblies and isolation monitoring devices for interference-resistant insulation monitoring of an ungrounded power supply system utilizing a converter
DE102014223287A1 (en) An electrical protection device and method for selectively shutting down a subsystem in a second fault in an IT power system
EP2796886B1 (en) Circuit assembly for locating of insulation faults
DE102015214615A1 (en) Method and apparatus for extended insulation fault location with multifunctional test current
DE102007007263A1 (en) Residual-current device
DE102018102959A1 (en) Device and method for insulation monitoring with detection of a faulty outer conductor in a 3-phase ungrounded power supply system
EP3360217A1 (en) Fault current protection device for monitoring an electric load for a vehicle, and method for carrying out a self-test of a fault current sensor
EP3931926B1 (en) Detection of an earth fault in a dc network
EP3206039B1 (en) Method for detecting an interruption of an active conductor in an unearthed direct current supply system
DE102014118425A1 (en) Zone selective interlocking (ZSI) power distribution systems and methods of operating a ZSI power distribution system
EP2601535A2 (en) Method and device for parasitic current detection
DE112005001480T5 (en) Device fault monitor
EP4252014B1 (en) Monitoring device for network replacement operation
EP3048685B1 (en) Fault-current protection device and method for switching switch contacts of the fault-current protection device
EP3943954A1 (en) Circuit arrangement for locating insulation faults
WO2009092398A1 (en) Method and fault locator for determining a fault location value
EP0730161B1 (en) Method and device for testing the protection arrangements of a real star-delta network
EP1322019B1 (en) Distance protection method and device
EP4246150A1 (en) Method and monitoring device for determining a partial insulation resistance and a partial grid deviation capacity in a branched unearthed power supply system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3206040

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181115

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 3206040

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1151657

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001695

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017001695

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01R0031020000

Ipc: G01R0031500000

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191004

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2747900

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200219

Year of fee payment: 4

Ref country code: SE

Payment date: 20200127

Year of fee payment: 4

Ref country code: IT

Payment date: 20200131

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200117

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001695

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200123

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1151657

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8

Ref country code: GB

Payment date: 20240124

Year of fee payment: 8