EP3340384A1 - Ultra-broadband antenna array with constant beamwidth throughout operating frequency band - Google Patents

Ultra-broadband antenna array with constant beamwidth throughout operating frequency band Download PDF

Info

Publication number
EP3340384A1
EP3340384A1 EP17202685.8A EP17202685A EP3340384A1 EP 3340384 A1 EP3340384 A1 EP 3340384A1 EP 17202685 A EP17202685 A EP 17202685A EP 3340384 A1 EP3340384 A1 EP 3340384A1
Authority
EP
European Patent Office
Prior art keywords
antenna
antenna elements
spacing
symmetry
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17202685.8A
Other languages
German (de)
French (fr)
Inventor
John Howard
Chuck Wah Fung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/388,509 external-priority patent/US9905936B2/en
Application filed by Individual filed Critical Individual
Publication of EP3340384A1 publication Critical patent/EP3340384A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas

Definitions

  • This application relates to ultra-broadband antenna arrays.
  • Embodiments disclosed herein generally relate to antennas and, more particularly, relate to circular, spherical, conformal ultra-broadband antenna arrays having a substantially constant beamwidth throughout a band of operation.
  • an antenna array which includes a plurality of antenna elements configured in a flare such that each of the plurality of antenna elements is uniformly spaced apart from at least one adjacent antenna element.
  • Each of the plurality of antenna elements is coupled in a common area, and each of the plurality of antenna elements extends radially outward from the common area.
  • the plurality of antenna elements may be configured in at least one of a circle, half circle, sphere, and plane. At least one of the plurality of antenna elements may include at least one of a bow tie antenna, log-periodic antenna, and Vivaldi antenna.
  • the antenna array may include an axis of symmetry extending through the common area, and at least one of the plurality of antenna elements may include a planar area, which includes an edge that is disposed non-parallel to the axis of symmetry when viewed normal to the axis of symmetry.
  • the antenna array may include an axis of symmetry, and at least one of the plurality of antenna elements may be disposed at a tilt with respect to the axis of symmetry.
  • the feed may be disposed in the common area and operatively coupled to at least one of the plurality of antenna elements.
  • a method of arranging antenna elements in an antenna array includes configuring a plurality of antenna elements in a flare such that each antenna element is uniformly spaced apart from at least one adjacent antenna element, and each of the plurality of antenna elements extends radially outward from a common area; and coupling each of the plurality of antenna elements in the common area.
  • the method may include configuring the plurality of antenna elements in at least one of a circle, half circle, sphere, and plane. At least one of the plurality of antenna elements may include at least one of a bow tie antenna, log-periodic antenna, and Vivaldi antenna.
  • the antenna array may include an axis of symmetry extending through the common area, and at least one of the plurality of antenna elements may include a planar area.
  • the planar area may include an edge, and the method may include disposing the edge non-parallel to the axis of symmetry when viewed normal to the axis of symmetry.
  • the antenna array may include an axis of symmetry, and the method may include disposing at least one of the plurality of antenna elements at a tilt with respect to the axis of symmetry.
  • the antenna array may include a feed, and the method may include disposing the feed in the common area, and operatively coupling the feed to at least one of the plurality of antenna elements.
  • an antenna array which includes a plurality of antenna elements.
  • the plurality of antenna elements is coupled in a common area and extends radially outward from the common area.
  • At least one of the plurality of antenna elements includes a first antenna portion and a second antenna portion.
  • the first antenna portion and the second antenna portion are arranged in a configuration such that a gap is formed between the first antenna portion and the second antenna portion.
  • the gap includes a first spacing and a second spacing.
  • the first spacing is associated with a first operating frequency and a first operating wavelength
  • the second spacing is associated with a second operating frequency and a second operating wavelength.
  • a proportion of the first spacing to the first wavelength is substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band.
  • the plurality of antenna elements may be configured in at least one of a circle, half circle, sphere, and/or plane. At least one of the plurality of antenna elements may include at least one of a bow tie antenna, log periodic antenna, and/or Vivaldi antenna. An axis of symmetry may extend through the common area, at least one of the plurality of antenna elements may include a planar area, and the planar area may include an edge disposed non-parallel to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  • At least one of the plurality of antenna elements may be disposed at a tilt with respect to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  • the antenna array may include a feed disposed in the common area, which is operatively coupled to at least one of the plurality of antenna elements.
  • the gap may include a serpentine configuration.
  • a method of arranging a plurality of antenna elements in an antenna array includes coupling a plurality of antenna elements in a common area, and configuring at least one of the plurality of antenna elements to comprise a first antenna portion and a second antenna portion.
  • the plurality of antenna elements extend radially outward from the common area, and the first antenna portion and the second antenna portion are arranged in a configuration such that a gap is formed between the first antenna portion and the second antenna portion.
  • the gap includes a first spacing and a second spacing.
  • the first spacing is associated with a first operating frequency and a first operating wavelength
  • the second spacing is associated with a second operating frequency and a second operating wavelength.
  • a proportion of the first spacing to the first wavelength is substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band.
  • the method may include configuring the plurality of antenna elements in at least one of a circle, half circle, sphere, and/or plane.
  • the method may include configuring the at least one of the plurality of antenna elements to comprise at least one of a bow tie antenna, log periodic antenna, and/or Vivaldi antenna.
  • the method may include configuring the antenna array to include an axis of symmetry extending through the common area, and configuring at least one of the plurality of antenna elements to comprise a planar area.
  • the planar area may include an edge disposed non-parallel to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  • the method may include disposing at least one of the plurality of antenna elements at a tilt with respect to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  • the method may include configuring the antenna array to comprise a feed, disposing the feed in the common area, and coupling the feed being operatively to at least one of the plurality of antenna elements.
  • the method may include configuring the gap to include a serpentine configuration.
  • a circular antenna array is an antenna, which includes antenna elements arranged in a circle.
  • a conformal antenna array is an antenna that is designed to conform or follow a predetermined shape.
  • elements on the circular and/or conformal array are spaced at a certain distance in relation to an operating wavelength ⁇ or operating band of wavelengths. This spacing remains constant from element to element at all frequencies of operation.
  • Figure 1 shows a circular antenna array 10 with bow tie antenna elements 12 arranged in a vertical polarization. Although bow tie antenna elements 12 are shown in the circular antenna array 10, any type of antenna element may be used in the illustrated configuration.
  • Embodiments disclosed herein include ultra-broadband antenna arrays, in connection with which large frequency bands are used that can result in large fluctuations in beamwidth.
  • ultra-broadband operation includes a wide band of frequencies
  • the corresponding frequency f changes substantially, which causes the wavelength ⁇ to change significantly as the frequency f changes.
  • the antenna elements in the broadband antenna array are flared to maintain adequate spacing in relation to the wavelength ⁇ throughout the frequency range of operation. Since the minimum and maximum operating frequencies of the broadband antenna array are known, the distance between each element at the minimum and maximum operating frequency can be calculated using equation (1).
  • the flare between antenna elements for this example is as shown in Figure 6 , in which antenna elements 11 are separated at one end by dimension 13, which is approximately 1 meter, and separated at another end by dimension 15, which is approximately 0.1 meter.
  • the view of the antenna elements 11 shown in Figure 6 is essentially a top view, which is similar to the view of the antenna elements 16 shown in Figure 2D and the view of the antenna elements 26, 28 shown in Figure 4C .
  • flares 14, 15 of antenna elements 16 are used as shown in Figures 2A-D . These flares 14, 15 maintain inter-element distance between the antenna elements 16 with respect to the wavelength ⁇ of the operating signal, which results in a constant beamwidth over the operating frequency range.
  • Figures 2A and 2B show a flare 14 of antenna elements configured as a circular and conformal antenna array.
  • Figures 2C and 2D show a flare 15 of antenna elements configured as a half circular and conformal antenna array.
  • the antenna elements 16 are configured in the flare 14, 15 such that each of the plurality of antenna elements 16 is uniformly spaced apart from at least one adjacent antenna element 16, each of the plurality of antenna elements 16 is coupled in a common area 46, and each of the plurality of antenna elements extends radially outward from a common area 46.
  • the antenna elements in the flare are spaced apart from each other based on the high and low frequencies in the operational frequency bandwidth.
  • the quantity of antenna elements can be increased or decreased to form a circle, which can be result in a semi-sphere 52 shown in Figure 7A and 7B , a sphere 54, as shown in Figures 8A and 8B , and/or a conformal shape to provide azimuth and/or elevation coverage up to 360 degrees.
  • the disclosed embodiments utilize one or more broadband antenna elements.
  • the flare refers to an antenna array in which the antenna elements are configured such that each antenna element is uniformly spaced apart from at least one adjacent antenna element, and each antenna element extends radially outward from a common central area.
  • the antenna elements can be separately fed, which results in lower gain than when using a beam forming network.
  • the beam forming network can be used to provide 360 degree coverage. Multiple beams can be generated using the beam forming network at, for example 0, 45, 90, 135, 180 degrees, each of which has substantially the same beamwidth due to the flare.
  • the antenna elements are fed from the common central area, from which the antenna elements radiate outward.
  • log periodic antennas are fed in the opposite direction since the antenna elements radiate in the opposite direction, that is, towards the common central area.
  • an opposing antenna element will be at -45 degrees, and since the antenna elements are spaced 90 degrees apart, the antenna elements will be orthogonal, and thus will not be blocked by radiation from opposing elements in such a configuration.
  • Embodiments disclosed herein also provide for a planar antenna array 18 shown in Figure 3A , or a circular antenna array 19 shown in Figure 3B using antenna elements 20 that are cross-polarized.
  • Cross-polarization refers to the antenna elements 18 not being disposed in a straight-up configuration, as shown in Figure 1 , but instead being disposed at a 45° or -45° tilt from a vertical straight line or axis of symmetry 22, 23.
  • Figures 3A and 3B illustrate this 45° tilt concept. Although a 45° tilt is shown, alternative angles may be used to define the degree of tilt including, but not limited to, 15°, 30°,60°, and 75° while remaining within the intended scope of the embodiments disclosed herein.
  • Figures 4A-C show isometric, side, and top views, respectively, of a flare 24 of antenna elements configured as a circular antenna array.
  • opposing front and rear antenna elements 26, 28 are disposed at a 90° difference in orientation, thereby making the antenna elements 26, 28 orthogonal with respect to each other, as shown in Figures 4A-C .
  • An axis of symmetry 42 is shown in Figures 4A-C , which extends through a common area 47.
  • the tilt concept is also illustrated by at least one of the plurality of antenna elements including a planar area, which has an edge 50 that is disposed non-parallel to the axis of symmetry 42 when viewed normal to the axis of symmetry 42.
  • Figure 5 identifies pairs of opposing antenna elements (26, 28), (30, 32), (34, 36), and (38, 40). By configuring these antenna elements at a 45 degree tilt in a circle, an inward antenna element propagates through the corresponding opposing antenna element disposed on the opposing side of the circle. As indicated above, log periodic antennas are fed in the opposite direction because the antenna elements radiate in the opposite direction. That is, the antenna elements will radiate inward towards the center of the circle.
  • the opposing antenna element disposed on the opposite side of the circle will be flared at a -45 degree angle, and since the antenna elements are 90 degrees apart, the opposing antenna elements will be orthogonal to each other, and thus opposing antenna elements will not block their respective radiations.
  • an antenna array includes a plurality of tapered slot antenna elements.
  • Each of the tapered slot antenna elements 16 includes a first antenna portion 56 and a second antenna portion 58, which are arranged in a serpentine configuration such that a gap 60 is formed therebetween, as shown in Figure 9 .
  • the serpentine configuration provides for a plurality of different distances between the first and second antenna portions 56, 58, which enables the beamwidths of the antenna element to remain constant at all frequencies of operation.
  • Figures 10A-B show an embodiment of a serpentine antenna element including a first antenna portion 62 and a second antenna portion 64, which is configured to have, for example, four (4) different spacings 66, 68, 70, 72 therebetween, Each of the spacings 66, 68, 70, 72 corresponds to one of four (4) different operating frequencies F1-4 with one of four (4) different wavelengths.
  • the different spacings 66, 68, 70, 72 between antenna portions 62, 64 are configured to have a value that is in constant proportion to the wavelength at the corresponding operating frequency.
  • the corresponding spacing 72 for the operating frequency F1 could be 1 meter, and the corresponding spacing 74 for the operating frequency F2 could be 0.1. meter, which would maintain a constant 1:1 proportion or ratio between the spacing and the corresponding operating wavelength or and/or frequency.
  • Figures 11A-B show an embodiment of a serpentine antenna element including a first antenna portion 74 and a second antenna portion 76, which is configured to have, for example, five (5) different spacings 78, 80, 82, 86, 88 therebetween, Each of the spacings 78, 80, 82, 86, 88 corresponds to one of five (5) different operating frequencies F1-5 with one of five (5) different wavelengths.
  • the plurality of tapered slot antenna elements 16 may be configured in, for example, at least one of a circle, half circle, sphere, cylinder, plane, and/or the like. At least one of the plurality of tapered slot antenna elements 16 may include at least one of a log-periodic antenna and/or Vivaldi antenna.
  • Figures 12A-D show different configurations of tapered slot antennas for use in the disclosed embodiments. Specifically, Figure 12A shows an exponentially tapered slot antenna 88, Figure 12B shows a linear tapered slot antenna 90, Figure 12C shows a continuous width slot antenna 92, and Figure 12D shows a dual exponentially tapered slot antenna 94.
  • Broadband antenna elements such as, but not limited to, log-periodic and Vivaldi antenna elements can be used in the embodiments disclosed above.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An antenna array (10) includes a plurality of antenna elements (12) coupled in a common area and extending radially outward from the common area. At least one of the plurality of antenna elements includes a first antenna portion and a second antenna portion arranged in a configuration such that a gap is formed between the first antenna portion and the second antenna portion. The gap includes first spacing associated with a first operating frequency and a first operating wavelength, and a second spacing associated with a second operating frequency and a second operating wavelength. A proportion of the first spacing to the first wavelength is substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band. A method of arranging a plurality of antenna elements in an antenna array is also disclosed.

Description

  • This application relates to ultra-broadband antenna arrays.
  • BACKGROUND Field
  • Embodiments disclosed herein generally relate to antennas and, more particularly, relate to circular, spherical, conformal ultra-broadband antenna arrays having a substantially constant beamwidth throughout a band of operation.
  • SUMMARY
  • In accordance with one embodiment, an antenna array is provided, which includes a plurality of antenna elements configured in a flare such that each of the plurality of antenna elements is uniformly spaced apart from at least one adjacent antenna element. Each of the plurality of antenna elements is coupled in a common area, and each of the plurality of antenna elements extends radially outward from the common area.
  • The plurality of antenna elements may be configured in at least one of a circle, half circle, sphere, and plane. At least one of the plurality of antenna elements may include at least one of a bow tie antenna, log-periodic antenna, and Vivaldi antenna. The antenna array may include an axis of symmetry extending through the common area, and at least one of the plurality of antenna elements may include a planar area, which includes an edge that is disposed non-parallel to the axis of symmetry when viewed normal to the axis of symmetry. The antenna array may include an axis of symmetry, and at least one of the plurality of antenna elements may be disposed at a tilt with respect to the axis of symmetry. The feed may be disposed in the common area and operatively coupled to at least one of the plurality of antenna elements.
  • In accordance with another embodiment, a method of arranging antenna elements in an antenna array includes configuring a plurality of antenna elements in a flare such that each antenna element is uniformly spaced apart from at least one adjacent antenna element, and each of the plurality of antenna elements extends radially outward from a common area; and coupling each of the plurality of antenna elements in the common area.
  • The method may include configuring the plurality of antenna elements in at least one of a circle, half circle, sphere, and plane. At least one of the plurality of antenna elements may include at least one of a bow tie antenna, log-periodic antenna, and Vivaldi antenna. The antenna array may include an axis of symmetry extending through the common area, and at least one of the plurality of antenna elements may include a planar area. The planar area may include an edge, and the method may include disposing the edge non-parallel to the axis of symmetry when viewed normal to the axis of symmetry. The antenna array may include an axis of symmetry, and the method may include disposing at least one of the plurality of antenna elements at a tilt with respect to the axis of symmetry. The antenna array may include a feed, and the method may include disposing the feed in the common area, and operatively coupling the feed to at least one of the plurality of antenna elements.
  • In accordance with another embodiment, an antenna array is provided, which includes a plurality of antenna elements. The plurality of antenna elements is coupled in a common area and extends radially outward from the common area. At least one of the plurality of antenna elements includes a first antenna portion and a second antenna portion. The first antenna portion and the second antenna portion are arranged in a configuration such that a gap is formed between the first antenna portion and the second antenna portion. The gap includes a first spacing and a second spacing. The first spacing is associated with a first operating frequency and a first operating wavelength, and the second spacing is associated with a second operating frequency and a second operating wavelength. A proportion of the first spacing to the first wavelength is substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band.
  • The plurality of antenna elements may be configured in at least one of a circle, half circle, sphere, and/or plane. At least one of the plurality of antenna elements may include at least one of a bow tie antenna, log periodic antenna, and/or Vivaldi antenna. An axis of symmetry may extend through the common area, at least one of the plurality of antenna elements may include a planar area, and the planar area may include an edge disposed non-parallel to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area. At least one of the plurality of antenna elements may be disposed at a tilt with respect to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area. The antenna array may include a feed disposed in the common area, which is operatively coupled to at least one of the plurality of antenna elements. The gap may include a serpentine configuration.
  • In accordance with another embodiment, a method of arranging a plurality of antenna elements in an antenna array is provided, which includes coupling a plurality of antenna elements in a common area, and configuring at least one of the plurality of antenna elements to comprise a first antenna portion and a second antenna portion. The plurality of antenna elements extend radially outward from the common area, and the first antenna portion and the second antenna portion are arranged in a configuration such that a gap is formed between the first antenna portion and the second antenna portion. The gap includes a first spacing and a second spacing. The first spacing is associated with a first operating frequency and a first operating wavelength, and the second spacing is associated with a second operating frequency and a second operating wavelength. A proportion of the first spacing to the first wavelength is substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band.
  • The method may include configuring the plurality of antenna elements in at least one of a circle, half circle, sphere, and/or plane. The method may include configuring the at least one of the plurality of antenna elements to comprise at least one of a bow tie antenna, log periodic antenna, and/or Vivaldi antenna. The method may include configuring the antenna array to include an axis of symmetry extending through the common area, and configuring at least one of the plurality of antenna elements to comprise a planar area. The planar area may include an edge disposed non-parallel to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area. The method may include disposing at least one of the plurality of antenna elements at a tilt with respect to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area. The method may include configuring the antenna array to comprise a feed, disposing the feed in the common area, and coupling the feed being operatively to at least one of the plurality of antenna elements. The method may include configuring the gap to include a serpentine configuration.
  • Other embodiments will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of any disclosed embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following drawings are provided by way of example only and without limitation, wherein like reference numerals (when used) indicate corresponding elements throughout the several views, and wherein:
    • Figure 1 shows a circular array of antenna elements;
    • Figures 2A and 2B show isometric views of a flare of a circular and conformal array of antenna elements;
    • Figures 2C and 2D show isometric and top views, respectively, of a flare of a half circular and conformal array of antenna elements;
    • Figures 3A and 3B show side views of cross-polarized antenna elements at a 45 degree tilt in a planar antenna array and a circular antenna array, respectively;
    • Figures 4A-C show isometric, side, and top views, respectively, of cross-polarized antenna elements at a 45 degree tilt in a circular antenna array;
    • Figure 5 shows a top view of a circular antenna array, in which opposing elements have been identified;
    • Figure 6 shows a flare of antenna elements;
    • Figures 7A and 7B show a flare of antenna elements arranged in a semi-sphere;
    • Figures 8A and 8B show a flare of antenna elements arranged in a sphere; and
    • Figure 9 shows a tapered slot antenna element having antenna portions arranged in a serpentine configuration;
    • Figures 10A-B show an embodiment of a serpentine antenna element including first and second antenna portions that are configured to have different spacings therebetween;
    • Figures 11A-B show another embodiment of a serpentine antenna element including first and second antenna portions that are configured to have different spacings therebetween; and
    • Figures 12A-D show different configurations of tapered slot antennas for use in the disclosed embodiments.
  • It is to be appreciated that elements in the figures are illustrated for simplicity and clarity. Common but well-understood elements that are useful or necessary in a commercially feasible embodiment are not shown in order to facilitate a less hindered view of the illustrated embodiments.
  • DETAILED DESCRIPTION
  • A circular antenna array is an antenna, which includes antenna elements arranged in a circle. A conformal antenna array is an antenna that is designed to conform or follow a predetermined shape. In accordance with embodiments disclosed herein, elements on the circular and/or conformal array are spaced at a certain distance in relation to an operating wavelength λ or operating band of wavelengths. This spacing remains constant from element to element at all frequencies of operation.
  • Figure 1 shows a circular antenna array 10 with bow tie antenna elements 12 arranged in a vertical polarization. Although bow tie antenna elements 12 are shown in the circular antenna array 10, any type of antenna element may be used in the illustrated configuration. Embodiments disclosed herein include ultra-broadband antenna arrays, in connection with which large frequency bands are used that can result in large fluctuations in beamwidth.
  • A wavelength λ of the operating signal is given by the following equation: λ = V f
    Figure imgb0001
    where V represents the phase speed or magnitude of the phase velocity of light (3x108 meters/second), and f represents the wave frequency. Equation (1) provides a basis for explaining a flare in the embodiments disclosed herein. For every frequency f, there is a different wavelength λ since the phase velocity V is a constant. Thus, as the wavelength λ changes, so too must the frequency f change. The spacing of antenna elements in the flare in relation to the wavelength λ is maintained to provide a constant beamwidth. Thus, the flare is used to maintain the correct proportion of frequency f with respect to the wavelength λ.
  • Since ultra-broadband operation includes a wide band of frequencies, the corresponding frequency f changes substantially, which causes the wavelength λ to change significantly as the frequency f changes. Because broadband antenna arrays in accordance with embodiments disclosed herein operate over such a wide range of frequencies, the antenna elements in the broadband antenna array are flared to maintain adequate spacing in relation to the wavelength λ throughout the frequency range of operation. Since the minimum and maximum operating frequencies of the broadband antenna array are known, the distance between each element at the minimum and maximum operating frequency can be calculated using equation (1). For example, assuming an antenna that operates from 300 MHz to 3GHz, the wavelengths are as follows: wavelength λ at 300 MHZ = 3 × 10 8 / 300 × 10 6 1 meter ;
    Figure imgb0002
    and wavelength λ at 3 GHZ = 3 × 10 8 / 3 × 10 9 0.1 meter .
    Figure imgb0003
    Thus, the flare between antenna elements for this example is as shown in Figure 6, in which antenna elements 11 are separated at one end by dimension 13, which is approximately 1 meter, and separated at another end by dimension 15, which is approximately 0.1 meter. The view of the antenna elements 11 shown in Figure 6 is essentially a top view, which is similar to the view of the antenna elements 16 shown in Figure 2D and the view of the antenna elements 26, 28 shown in Figure 4C.
  • To provide adequate distance between antenna elements, flares 14, 15 of antenna elements 16 are used as shown in Figures 2A-D. These flares 14, 15 maintain inter-element distance between the antenna elements 16 with respect to the wavelength λ of the operating signal, which results in a constant beamwidth over the operating frequency range. Figures 2A and 2B show a flare 14 of antenna elements configured as a circular and conformal antenna array. Figures 2C and 2D show a flare 15 of antenna elements configured as a half circular and conformal antenna array. The antenna elements 16 are configured in the flare 14, 15 such that each of the plurality of antenna elements 16 is uniformly spaced apart from at least one adjacent antenna element 16, each of the plurality of antenna elements 16 is coupled in a common area 46, and each of the plurality of antenna elements extends radially outward from a common area 46. As discussed above, the antenna elements in the flare are spaced apart from each other based on the high and low frequencies in the operational frequency bandwidth. The quantity of antenna elements can be increased or decreased to form a circle, which can be result in a semi-sphere 52 shown in Figure 7A and 7B, a sphere 54, as shown in Figures 8A and 8B, and/or a conformal shape to provide azimuth and/or elevation coverage up to 360 degrees.
  • The disclosed embodiments utilize one or more broadband antenna elements. The flare, as used herein, refers to an antenna array in which the antenna elements are configured such that each antenna element is uniformly spaced apart from at least one adjacent antenna element, and each antenna element extends radially outward from a common central area. The antenna elements can be separately fed, which results in lower gain than when using a beam forming network. The beam forming network can be used to provide 360 degree coverage. Multiple beams can be generated using the beam forming network at, for example 0, 45, 90, 135, 180 degrees, each of which has substantially the same beamwidth due to the flare.
  • The antenna elements are fed from the common central area, from which the antenna elements radiate outward. However, log periodic antennas are fed in the opposite direction since the antenna elements radiate in the opposite direction, that is, towards the common central area. However, if the antenna elements are flared at 45 degrees, an opposing antenna element will be at -45 degrees, and since the antenna elements are spaced 90 degrees apart, the antenna elements will be orthogonal, and thus will not be blocked by radiation from opposing elements in such a configuration.
  • Embodiments disclosed herein also provide for a planar antenna array 18 shown in Figure 3A, or a circular antenna array 19 shown in Figure 3B using antenna elements 20 that are cross-polarized. Cross-polarization refers to the antenna elements 18 not being disposed in a straight-up configuration, as shown in Figure 1, but instead being disposed at a 45° or -45° tilt from a vertical straight line or axis of symmetry 22, 23. Figures 3A and 3B illustrate this 45° tilt concept. Although a 45° tilt is shown, alternative angles may be used to define the degree of tilt including, but not limited to, 15°, 30°,60°, and 75° while remaining within the intended scope of the embodiments disclosed herein.
  • Figures 4A-C show isometric, side, and top views, respectively, of a flare 24 of antenna elements configured as a circular antenna array. In this flare 24, opposing front and rear antenna elements 26, 28 are disposed at a 90° difference in orientation, thereby making the antenna elements 26, 28 orthogonal with respect to each other, as shown in Figures 4A-C. An axis of symmetry 42 is shown in Figures 4A-C, which extends through a common area 47. The tilt concept is also illustrated by at least one of the plurality of antenna elements including a planar area, which has an edge 50 that is disposed non-parallel to the axis of symmetry 42 when viewed normal to the axis of symmetry 42.
  • When either the front antenna element 26 or the rear antenna element 28 is propagating, neither of the elements 26, 28 sees the opposing element since the elements 26, 28 are perpendicular to each other. That is, there is no coupling or reflection between the front and rear opposing elements 26, 28. Stated differently, an antenna element cannot see the antenna element on the other side of the circular antenna array, and thus there is no interaction between opposing antenna elements.
  • Figure 5 identifies pairs of opposing antenna elements (26, 28), (30, 32), (34, 36), and (38, 40). By configuring these antenna elements at a 45 degree tilt in a circle, an inward antenna element propagates through the corresponding opposing antenna element disposed on the opposing side of the circle. As indicated above, log periodic antennas are fed in the opposite direction because the antenna elements radiate in the opposite direction. That is, the antenna elements will radiate inward towards the center of the circle. However, if the antenna elements are flared at a 45 degree angle, the opposing antenna element disposed on the opposite side of the circle, will be flared at a -45 degree angle, and since the antenna elements are 90 degrees apart, the opposing antenna elements will be orthogonal to each other, and thus opposing antenna elements will not block their respective radiations.
  • In accordance with another embodiment, an antenna array includes a plurality of tapered slot antenna elements. Each of the tapered slot antenna elements 16 includes a first antenna portion 56 and a second antenna portion 58, which are arranged in a serpentine configuration such that a gap 60 is formed therebetween, as shown in Figure 9. The serpentine configuration provides for a plurality of different distances between the first and second antenna portions 56, 58, which enables the beamwidths of the antenna element to remain constant at all frequencies of operation.
  • For example, Figures 10A-B show an embodiment of a serpentine antenna element including a first antenna portion 62 and a second antenna portion 64, which is configured to have, for example, four (4) different spacings 66, 68, 70, 72 therebetween, Each of the spacings 66, 68, 70, 72 corresponds to one of four (4) different operating frequencies F1-4 with one of four (4) different wavelengths. The different spacings 66, 68, 70, 72 between antenna portions 62, 64 are configured to have a value that is in constant proportion to the wavelength at the corresponding operating frequency.
  • Thus, using the example provided above, and assuming that F1 = 300 MHz, F2 = 3 GHz, the corresponding wavelengths would be W1= 1 meter, W2 = 0.1 meter. Accordingly, the corresponding spacing 72 for the operating frequency F1 could be 1 meter, and the corresponding spacing 74 for the operating frequency F2 could be 0.1. meter, which would maintain a constant 1:1 proportion or ratio between the spacing and the corresponding operating wavelength or and/or frequency.
  • Similarly, Figures 11A-B show an embodiment of a serpentine antenna element including a first antenna portion 74 and a second antenna portion 76, which is configured to have, for example, five (5) different spacings 78, 80, 82, 86, 88 therebetween, Each of the spacings 78, 80, 82, 86, 88 corresponds to one of five (5) different operating frequencies F1-5 with one of five (5) different wavelengths.
  • Thus, using the example provided above, and assuming that F1 = 300 MHz, F2 = 3 GHz, the corresponding wavelengths would be W1= 1 meter, W2 = 0.1 meter. Accordingly, the corresponding spacing 86 for the operating frequency F1 could be 1 meter, and the corresponding spacing 82 for the operating frequency F2 could be 0.1. meter, which would maintain a constant 1:1 proportion or ratio between the spacing and the corresponding operating wavelength and/or frequency.
  • The plurality of tapered slot antenna elements 16 may be configured in, for example, at least one of a circle, half circle, sphere, cylinder, plane, and/or the like. At least one of the plurality of tapered slot antenna elements 16 may include at least one of a log-periodic antenna and/or Vivaldi antenna.
  • Figures 12A-D show different configurations of tapered slot antennas for use in the disclosed embodiments. Specifically, Figure 12A shows an exponentially tapered slot antenna 88, Figure 12B shows a linear tapered slot antenna 90, Figure 12C shows a continuous width slot antenna 92, and Figure 12D shows a dual exponentially tapered slot antenna 94.
  • Broadband antenna elements, such as, but not limited to, log-periodic and Vivaldi antenna elements can be used in the embodiments disclosed above.
  • Although the specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the embodiment are not limited to such standards and protocols.
  • The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and are not intended to serve as a complete description of all the elements and features of apparatuses and systems that may make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments are utilized and derived therefrom, such that structural and logical substitutions and changes are made without departing from the scope of this disclosure. Figures are also merely representational and are not drawn to scale. Certain proportions thereof are exaggerated, while others are decreased. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
  • Such embodiments of the inventive subject matter are referred to herein, individually and/or collectively, by the term "embodiment" merely for convenience and without intending to limit the scope of this application to any single embodiment or inventive concept. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
  • In the foregoing description of the embodiments, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting that the claimed embodiments have more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single embodiment. Thus, the following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate example embodiment.
  • The abstract is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as separately claimed subject matter.
  • Although specific example embodiments have been described, it will be evident that various modifications and changes are made to these embodiments without departing from the broader scope of the inventive subject matter described herein. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof, show by way of illustration, and without limitation, specific embodiments in which the subject matter are practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings herein. Other embodiments are utilized and derived therefrom, such that structural and logical substitutions and changes are made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
  • Given the teachings of the embodiments disclosed herein, one of ordinary skill in the art will be able to contemplate other implementations and applications of the techniques disclosed herein. Although illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that these embodiments are not limited to those precise embodiments disclosed, and that various other changes and modifications are made therein by one skilled in the art without departing from the scope of the appended claims.

Claims (14)

  1. An antenna array, which comprises:
    a plurality of antenna elements, the plurality of antenna elements being coupled in a common area, the plurality of antenna elements extending radially outward from the common area, at least one of the plurality of antenna elements comprising a first antenna portion and a second antenna portion, the first antenna portion and the second antenna portion being arranged in a serpentine configuration such that a gap is formed between the first antenna portion and the second antenna portion, the gap comprising a first spacing and a second spacing, the first spacing being associated with a first operating frequency and a first operating wavelength, the second spacing being associated with a second operating frequency and a second operating wavelength, a proportion of the first spacing to the first wavelength being substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band.
  2. The antenna array, as defined by Claim 1, wherein the plurality of antenna elements is configured in at least one of a circle, half circle, sphere, plane.
  3. The antenna array, as defined by Claim 1, wherein the at least one of the plurality of antenna elements comprises at least one of a bow tie antenna, log periodic antenna, Vivaldi antenna.
  4. The antenna array, as defined by Claim 1, further comprising an axis of symmetry extending through the common area, at least one of the plurality of antenna elements comprising a planar area, the planar area comprising an edge, the edge being disposed non-parallel to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  5. The antenna array, as defined by Claim 1, wherein at least one of the plurality of antenna elements is disposed at a tilt with respect to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  6. The antenna array, as defined by Claim 1, further comprising a feed, the feed being disposed in the common area, the feed being operatively coupled to at least one of the plurality of antenna elements.
  7. The antenna array, as defined by Claim 1, wherein the gap comprises a serpentine configuration.
  8. A method of arranging a plurality of antenna elements in an antenna array, which comprises:
    coupling a plurality of antenna elements in a common area, the plurality of antenna elements extending radially outward from the common area;
    configuring at least one of the plurality of antenna elements to comprise a first antenna portion and a second antenna portion, the first antenna portion and the second antenna portion being arranged in a serpentine configuration such that a gap is formed between the first antenna portion and the second antenna portion, the gap comprising a first spacing and a second spacing, the first spacing being associated with a first operating frequency and a first operating wavelength, the second spacing being associated with a second operating frequency and a second operating wavelength, a proportion of the first spacing to the first wavelength being substantially equal to a proportion of the second spacing to the second wavelength, thereby providing a constant beamwidth over an operating frequency band.
  9. The method, as defined by Claim 8, further comprising configuring the plurality of antenna elements in at least one of a circle, half circle, sphere, plane.
  10. The method, as defined by Claim 8, further comprising configuring the at least one of the plurality of antenna elements to comprise at least one of a bow tie antenna, log periodic antenna, Vivaldi antenna.
  11. The method, as defined by Claim 8, further comprising:
    configuring the antenna array to comprise an axis of symmetry extending through the common area; and
    configuring at least one of the plurality of antenna elements to comprise a planar area, the planar area comprising an edge, the edge being disposed non-parallel to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  12. The method, as defined by Claim 8, further comprising disposing at least one of the plurality of antenna elements at a tilt with respect to the axis of symmetry when viewed in a direction that is normal to the axis of symmetry and coplanar with the planar area.
  13. The method, as defined by Claim 8, further comprising: configuring the antenna array to comprise a feed;
    disposing the feed in the common area; and
    coupling the feed being operatively to at least one of the plurality of antenna elements.
  14. The method, as defined by Claim 8, further comprising configuring the gap to comprise a serpentine configuration.
EP17202685.8A 2016-12-22 2017-11-21 Ultra-broadband antenna array with constant beamwidth throughout operating frequency band Withdrawn EP3340384A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/388,509 US9905936B2 (en) 2013-09-05 2016-12-22 Ultra-broadband antenna array with constant beamwidth throughout operating frequency band

Publications (1)

Publication Number Publication Date
EP3340384A1 true EP3340384A1 (en) 2018-06-27

Family

ID=60421624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17202685.8A Withdrawn EP3340384A1 (en) 2016-12-22 2017-11-21 Ultra-broadband antenna array with constant beamwidth throughout operating frequency band

Country Status (1)

Country Link
EP (1) EP3340384A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219001B1 (en) * 1998-12-18 2001-04-17 Ricoh Company, Ltd. Tapered slot antenna having a corrugated structure
US20050012672A1 (en) * 2001-08-24 2005-01-20 Fisher James Joseph Vivaldi antenna
FR2903235A1 (en) * 2006-06-28 2008-01-04 Thomson Licensing Sas Slit-type longitudinal end-fire antenna e.g. Vivaldi type antenna, has slit formed by profiles, where one of profiles is in corrugated shape according to periodic function/hamming type mathematical rule to form photonic band gap structure
US20090251377A1 (en) * 2008-04-05 2009-10-08 Sheng Peng Wideband high gain dielectric notch radiator antenna
US20150061955A1 (en) * 2013-09-05 2015-03-05 John Howard Ultra-Broadband Antenna Array with Constant Beamwidth Throughout Operating Frequency Band

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219001B1 (en) * 1998-12-18 2001-04-17 Ricoh Company, Ltd. Tapered slot antenna having a corrugated structure
US20050012672A1 (en) * 2001-08-24 2005-01-20 Fisher James Joseph Vivaldi antenna
FR2903235A1 (en) * 2006-06-28 2008-01-04 Thomson Licensing Sas Slit-type longitudinal end-fire antenna e.g. Vivaldi type antenna, has slit formed by profiles, where one of profiles is in corrugated shape according to periodic function/hamming type mathematical rule to form photonic band gap structure
US20090251377A1 (en) * 2008-04-05 2009-10-08 Sheng Peng Wideband high gain dielectric notch radiator antenna
US20150061955A1 (en) * 2013-09-05 2015-03-05 John Howard Ultra-Broadband Antenna Array with Constant Beamwidth Throughout Operating Frequency Band

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEGUCHI H ET AL: "A compact low-cross-polarization horn antenna with serpentine-shaped taper", IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM. 2001 DIGEST. APS. BOSTON, MA, JULY 8 - 13, 2001; [IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM], NEW YORK, NY : IEEE, US, vol. 2, 8 July 2001 (2001-07-08), pages 320 - 323, XP010564093, ISBN: 978-0-7803-7070-8, DOI: 10.1109/APS.2001.959728 *

Similar Documents

Publication Publication Date Title
US11575214B2 (en) Reflectarray antenna system
CA2261625C (en) Antenna system
US3969730A (en) Cross slot omnidirectional antenna
CN100492765C (en) Slot array antenna
US20080231541A1 (en) Circularly Polarized Antenna and Radar Device Using the Same
JP6014774B2 (en) Omnidirectional dual-polarized antenna
EP2058900A1 (en) Multibeam antenna
WO2018094660A1 (en) Antenna assembly and unmanned aerial vehicle
KR20050103608A (en) Square Lattice Horn Array Antenna for Circularly Polarized Reception
US20140225796A1 (en) Ultra-broadband offset cassegrain dichroic antenna system for bidirectional satellite signal communication
US7688268B1 (en) Multi-band antenna system
US9905936B2 (en) Ultra-broadband antenna array with constant beamwidth throughout operating frequency band
US20210135366A1 (en) Slotted patch antenna
US20130201066A1 (en) Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods
US4555708A (en) Dipole ring array antenna for circularly polarized pattern
JP2006258762A (en) Radar device
CN116686169A (en) Polarizer for parallel plate waveguide
US9559430B2 (en) Ultra-broadband antenna array with constant beamwidth throughout operating frequency band
US20130201065A1 (en) Wireless communications device having loop antenna with four spaced apart coupling points and associated methods
WO2018096307A1 (en) A frequency scanned array antenna
Purnamirza Radial line slot array (RLSA) antennas
EP3340384A1 (en) Ultra-broadband antenna array with constant beamwidth throughout operating frequency band
US20120075163A1 (en) Antenna assembly providing multidirectional elliptical polarization
Ozman et al. Gain enhancement of axial mode helical antenna for UAV applications
Vincent et al. A novel planar antenna array for a ground-based synthetic aperture radar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103