JP6014774B2 - Omnidirectional dual-polarized antenna - Google Patents

Omnidirectional dual-polarized antenna Download PDF

Info

Publication number
JP6014774B2
JP6014774B2 JP2015545682A JP2015545682A JP6014774B2 JP 6014774 B2 JP6014774 B2 JP 6014774B2 JP 2015545682 A JP2015545682 A JP 2015545682A JP 2015545682 A JP2015545682 A JP 2015545682A JP 6014774 B2 JP6014774 B2 JP 6014774B2
Authority
JP
Japan
Prior art keywords
antenna
reflector
polarized
dual
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015545682A
Other languages
Japanese (ja)
Other versions
JP2016504843A (en
Inventor
シュトッレ・マンフレート
ゲットゥル・マクシミリアン
Original Assignee
カトライン−ベルケ・カーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カトライン−ベルケ・カーゲー filed Critical カトライン−ベルケ・カーゲー
Publication of JP2016504843A publication Critical patent/JP2016504843A/en
Application granted granted Critical
Publication of JP6014774B2 publication Critical patent/JP6014774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/005Antennas or antenna systems providing at least two radiating patterns providing two patterns of opposite direction; back to back antennas

Description

本発明は、請求項1の全項に記載する全方向性二(デュアル)偏波型アンテナに関する。   The present invention relates to an omnidirectional dual (dual) polarization antenna described in the first aspect of the present invention.

全方向性アンテナ(無指向性放射器)は、例えば特許文献1から公知である。この種の全方向性放射器、即ち無指向性放射器は、例えば、中心軸を中心に互いに角度120°ずつ変位してそれぞれ配置され、軸方向上方から見て三角形断面を形成する3個のアンテナアレイ装置を有する。そのアンテナ構造により、各アンテナアレイは、ほぼ120°のアジマス角度(衛星や飛行機など飛翔体の運動する方位角)領域を作動範囲とする。   An omnidirectional antenna (omnidirectional radiator) is known from, for example, Patent Document 1. This kind of omnidirectional radiator, that is, an omnidirectional radiator, is arranged, for example, with three positions displaced from each other by an angle of 120 ° around the central axis and forming a triangular cross section when viewed from above in the axial direction. It has an antenna array device. Due to the antenna structure, each antenna array has an azimuth angle region (azimuth angle where a flying object such as a satellite or an airplane moves) as an operating range.

従来の種々の放射器と放射器装置、例えばダイポール、所謂ベクトルダイポール、パッチ放射器等を該当するアンテナに設けることができる。所謂二偏波ベクトル放射器は、例えば、特許文献2から公知である。   Various conventional radiators and radiator devices, such as dipoles, so-called vector dipoles, patch radiators, etc. can be provided in the corresponding antenna. A so-called dual-polarized vector radiator is known from, for example, Patent Document 2.

角度方向又は円周方向に互いに変位して設けられる3個の各アンテナアレイは、例えば、等間隔でかつ互いに高さ方向に重ねて配置される複数の二偏波放射器装置を有する。適切な給電装置を介して各二偏波放射器に電力が供給される。循環電流を各放射器に供給してもよい。常法通り互いに垂直に配置するほか、水平又は垂直に配置される平面に対し+45°又は−45°の角度領域で傾斜して、2つの偏波平面を配置することが好ましい。   Each of the three antenna arrays provided to be displaced from each other in the angular direction or the circumferential direction has, for example, a plurality of dual-polarized radiator devices arranged at equal intervals and overlapping each other in the height direction. Power is supplied to each dual-polarized radiator via a suitable power supply. A circulating current may be supplied to each radiator. In addition to being arranged perpendicular to each other as usual, it is preferable to arrange the two polarization planes at an angle of + 45 ° or −45 ° with respect to a horizontal or vertical arrangement plane.

また、複数の入出力信号を処理する受信システムの一部として、多入力・多出力(Multi-Input Multi-Output、MIMO)可能に各区分アンテナを構成できる。   In addition, as a part of a receiving system that processes a plurality of input / output signals, each segmented antenna can be configured to be capable of multi-input multi-output (MIMO).

垂直偏波型アンテナは、例えば、特許文献3からも公知である。垂直偏波型アンテナは、複数のダイポールを備える垂直の細長い支持構造体を有し、ダイポールは、支持構造体に沿い種々の高さに配置されかつ同軸電流供給ケーブルに接続される。前記構造では、各高さ当たり各1個のダイポールが設けられる。ダイポールは、特に前記構造上に相前後して配置される2系列に分割され、共平面上かつ正確に共直線上に取り付けられる。2系列内のダイポールは、互いに逆方向に配置されるので、2群の水平偏波構成部品は、逆向きに配置される。その場合に、2系列のダイポールの位相中心を整合、即ち心合わせできる僅かな間隔を2系列のダイポール間に形成して2群の水平偏波構成部品を配置して、ダイポールへの接地面の作用に基づき、位相を僅かに偏移(移相、シフト)することができる。   A vertically polarized antenna is also known from Patent Document 3, for example. A vertically polarized antenna has a vertical elongated support structure with a plurality of dipoles, which are arranged at various heights along the support structure and connected to a coaxial current supply cable. In the structure, one dipole is provided for each height. In particular, the dipole is divided into two series arranged one after the other on the structure, and is attached on a coplanar surface and precisely on a colinear line. Since the dipoles in the two series are arranged in opposite directions, the two groups of horizontally polarized components are arranged in opposite directions. In this case, the phase centers of the two series of dipoles are matched, that is, a small interval that can be centered is formed between the two series of dipoles, and two groups of horizontally polarized components are arranged, and the ground plane to the dipole is arranged. Based on the action, the phase can be slightly shifted (phase shift).

その他、単偏波でのみ放射又は受信するが、多入力・多出力(MIMO)不能な垂直偏波型無指向性放射器も知られている。例えば、3個又は4個の板状反射・放射素子(パネル)を有する垂直偏波型無指向性放射器は、無指向性放射線図(ダイアグラム)を目的としてアンテナ塔を中心に同一平面内で相互に接続される。互いに回転して複数の平面を接続して、より良好な無指向性を得ることもできる。そのとき、小周波数領域でのみ良好な無指向放射特性を達成できるに過ぎない(幾何学的配置の位相による消失が生じる)。   In addition, a vertically polarized omnidirectional radiator that emits or receives only with a single polarization but cannot perform multiple inputs and multiple outputs (MIMO) is also known. For example, a vertically polarized omnidirectional radiator having three or four plate-like reflecting / radiating elements (panels) is formed in the same plane around the antenna tower for the purpose of omnidirectional radiation diagrams (diagrams). Connected to each other. It is also possible to obtain a better omnidirectionality by rotating each other and connecting a plurality of planes. At that time, only good omnidirectional radiation characteristics can be achieved only in the small frequency region (disappearance due to the phase of the geometric arrangement occurs).

多周波数帯域(マルチ区分)アンテナは、例えば特許文献4からも知られている。水平面内で異なる指向作用を生ずる多数の導体(エレメント)アンテナを使用して、所望の方向に唯一の無線ビームを放射することができる。垂直平面内に配置される各導体アンテナの少なくとも1つは、他の導体アンテナの高さとは異なる高さに配置される。セクタアンテナの垂直軸に対して、導体アンテナは、非対称に配置される。
従来の全方向性アンテナは、米国特許第6369774号に開示される。この公報は、例えば、X軸に沿って重なりかつ離隔する領域内に3個のダイポールアンテナをそれぞれ配置し、各ダイポールアンテナは、自体単独で考えて反射器として作用するアンテナを開示する。
X軸に沿って互いに離間して3個のダイポールアンテナを配置し、また、高インピーダンスの第1の媒体により各ダイポールアンテナを包囲して、更に、第1の媒体より低いインピーダンスを有する第2の媒体により高インピーダンスの媒体により各ダイポールを包囲して、各アンテナ相互の減結合を確実に達成することができる。
他の実施の形態では、角度120°離間しかつX軸に沿い互いに離間して3個のパッチ放射器を配置したセクタアンテナが設けられる。
また、ベクトルダイポールを有する個別放射器は、国際公開第WO2008/017386A1号公報から公知である。この個別放射器は、特別にかつ上方から見て矩形に形成された反射器の前方に取り付けられ、反射器の4個の全側縁は、反射器外縁により包囲され、反射器外縁は、反射器平面に対して横方向に、特に垂直にかつ放射方向に突出する。
更に、前記公報は、重ねて配置した各反射器領域内に必要な進路誘導型(ベクトル)放射器を配置し、各放射器と同様に、進路誘導型放射器の反射器外縁により各放射器外縁の周囲を全4側縁で包囲する単柱状アンテナを開示する。この構造では、反射器外縁は、無線ビーム成形に用いられる。
基本概念を形成する全方向性アンテナは、欧州特許出願公開第0802579A2号公報から公知である。この公報は、軸方向に重ねてかつ例えば互いに角度120°変位して配置した3個の反射器平面を有するアンテナを示す。3個の反射器平面は、軸方向上方から見て、中心軸に沿いかつ中心軸内で交差する。反射器平面の前方に必要な放射器が配置される。反射器の前方で放射器の周囲に延伸する反射器外縁で形成される部分内に取り付けられる二偏波放射器としてこの反射器を使用できる。
前記公報は、それぞれ1対の互いに平行に延びる反射器平面も記述し、その場合に、一対の反射器平面の各々は、異なるアジマス角度で方向づけされかつ中心軸に沿い互いに軸方向に変位する。これが、互いに間隔を空けて平行に延伸する2個の反射器の対向する側に、適切な放射器を配置できる、可能性を拓く。この場合に、中心軸は、一対の反射器の互いに平行に延伸する2つの各反射器平面間を通過する。
A multi-frequency band (multi-section) antenna is also known from Patent Document 4, for example. Multiple conductor (element) antennas that produce different directing effects in the horizontal plane can be used to radiate a single radio beam in the desired direction. At least one of the conductor antennas arranged in the vertical plane is arranged at a height different from the height of the other conductor antennas. The conductor antenna is arranged asymmetrically with respect to the vertical axis of the sector antenna.
A conventional omnidirectional antenna is disclosed in US Pat. No. 6,369,774. This publication discloses, for example, antennas that each have three dipole antennas arranged in regions that overlap and are separated from each other along the X axis, and each dipole antenna is considered as a single element and acts as a reflector.
Three dipole antennas are spaced apart from each other along the X axis, each dipole antenna is surrounded by a high impedance first medium, and a second impedance having a lower impedance than the first medium. The medium can surround each dipole with a high impedance medium to reliably achieve decoupling between the antennas.
In another embodiment, a sector antenna is provided that has three patch radiators spaced 120 degrees apart and spaced from each other along the X axis.
Also, an individual radiator having a vector dipole is known from International Publication No. WO2008 / 017386A1. This individual radiator is mounted in front of a reflector that is specially and rectangularly shaped when viewed from the top, with all four side edges of the reflector being surrounded by a reflector outer edge, the reflector outer edge being a reflective It projects transversely to the container plane, in particular perpendicularly and radially.
Further, in the above publication, a necessary route guidance type (vector) radiator is arranged in each reflector region arranged in an overlapping manner, and each radiator is provided by a reflector outer edge of the route guidance type radiator similarly to each radiator. A single columnar antenna that surrounds the periphery of the outer edge with all four side edges is disclosed. In this structure, the reflector outer edge is used for radio beam shaping.
An omnidirectional antenna forming the basic concept is known from EP-A-0802579A2. This publication shows an antenna having three reflector planes arranged in an axial direction and displaced by an angle of 120 ° relative to each other, for example. The three reflector planes cross along the central axis and within the central axis when viewed from above in the axial direction. Necessary radiators are arranged in front of the reflector plane. This reflector can be used as a dual-polarized radiator mounted in the part formed by the reflector outer edge extending around the radiator in front of the reflector.
The publication also describes a pair of mutually parallel reflector planes, where each of the pair of reflector planes is oriented at a different azimuth angle and axially displaced from one another along the central axis. This opens up the possibility that a suitable radiator can be placed on the opposite side of two reflectors extending parallel and spaced apart. In this case, the central axis passes between two reflector planes extending parallel to each other of the pair of reflectors.

国際公開第WO2011/120090A号公報International Publication No. WO2011 / 120090A 欧州特許第1057224B1号公報European Patent No. 1057224B1 独国特許出願公開第60019412T2号公報German Patent Application Publication No. 60019412T2 独国特許出願公開第69734172T2号公報German Patent Application Publication No. 69734172T2

本発明の課題は、極力小さい組立体積と、従来より改良された無指向性放射特性とを有する全方向性二偏波アンテナ又は集合アンテナを提供することである。   An object of the present invention is to provide an omnidirectional dual-polarized antenna or a collective antenna having an assembly volume as small as possible and an omnidirectional radiation characteristic improved from the conventional one.

請求項1に記載する必須構成要件の特徴を有する本発明により、前記課題を解決する。本発明の好適な実施の形態を下位請求項に記載する。   According to the present invention having the essential constituent features described in claim 1, the above-described problems are solved. Preferred embodiments of the invention are described in the subclaims.

アンテナアレイを同一の高さに配置する基本概念の従来技術とは異なり、本発明の解決手段は、互いに角度120°変位してかつ特に垂直取付方向に互いに変位して放射する複数、例えば3個のセクタアンテナ装置を設けることを特徴とする。即ち、(基本概念を形成する従来技術とは異なり)放射方向に対して逆に又は交差して各セクタアンテナを中心軸又は取付軸に取り付けて、上方から見て種々のセクタアンテナ上に均等に位相中心を最終的に配置することができる。位相中心は、受信領域から見て電磁アンテナ放射を送信すると認められるアンテナの電子的基準点である。   Unlike the prior art of the basic concept of arranging the antenna arrays at the same height, the solution of the present invention is a plurality of, for example three, radiating with an angle displacement of 120 ° relative to each other and in particular with respect to each other in the vertical mounting direction. The sector antenna apparatus is provided. That is, (unlike the prior art that forms the basic concept), each sector antenna is mounted on the central axis or mounting axis in reverse or cross with respect to the radiation direction, and evenly on various sector antennas when viewed from above The phase center can finally be placed. The phase center is the electronic reference point of the antenna that is perceived to transmit electromagnetic antenna radiation as seen from the reception area.

従って、全セクタアンテナの基準点は同一であるから、無指向性放射特性を明らかに改善することができる。   Therefore, since the reference points of all the sector antennas are the same, the omnidirectional radiation characteristic can be clearly improved.

中央の垂直軸又は取付軸付近に全セクタアンテナを配置するので、全体に減少した直径−全高は、特に垂直方向に大きいが−を備えるアンテナ装置が得られる。本発明の技術的範囲内では、装置全体の直径は、従来のアンテナよりも極めて小さいので、装置全体の視覚的影響も小さい。また、本発明の解決手段では、風負荷も減少する。   Since all the sector antennas are arranged in the vicinity of the central vertical axis or the mounting axis, an antenna device having an overall reduced diameter—although the overall height is particularly large in the vertical direction—is obtained. Within the technical scope of the present invention, the overall device diameter is much smaller than a conventional antenna, so the visual impact of the entire device is also small. Also, with the solution of the present invention, the wind load is also reduced.

本発明の技術的範囲内では、中心軸に沿い互いに変位して隣接して配置される2つのセクタアンテナ間に減結合装置を設けるので、セクタアンテナを更に改良できる。付属の反射器の反射器平面に対し横方向に配置される反射器外縁で減結合装置を構成することが好ましい。減結合装置を反射器外縁に設けるこの種の反射器は、例えば、独国特許出願公開第10316787A1号公報により公知である。この種の反射器は、側方の縦外縁と、隣り合う放射器装置間に延伸する横外縁とをそれぞれ有する少なくとも2個の反射器ユニット備えかつ反射器全体にユニット化できる通常の単柱状移動型無線アンテナである。   Within the technical scope of the present invention, the sector antenna can be further improved by providing a decoupling device between two sector antennas arranged adjacent to each other along the central axis. Preferably, the decoupling device comprises a reflector outer edge that is disposed transverse to the reflector plane of the attached reflector. A reflector of this type in which a decoupling device is provided on the outer edge of the reflector is known, for example, from DE 10316787 A1. This kind of reflector has a normal single columnar movement which comprises at least two reflector units each having a lateral longitudinal outer edge and a lateral outer edge extending between adjacent radiator devices and can be unitized throughout the reflector. Type wireless antenna.

本発明の好適な実施の形態では、垂直中心軸が全反射器平面を通過するか又は反射器平面と垂直中心軸との間隔は、従来の間隔よりも極めて小さく、各セクタアンテナの少なくとも1個の反射器平面は、中心軸付近に配置される。即ち、セクタアンテナの該当する反射器装置の反射器平面の中央領域を通常位相中心に少なくとも近似するとみなせる。   In a preferred embodiment of the invention, the vertical central axis passes through the total reflector plane or the spacing between the reflector plane and the vertical central axis is much smaller than the conventional spacing, and at least one of each sector antenna. The reflector plane is arranged near the central axis. That is, it can be considered that the central area of the reflector plane of the corresponding reflector device of the sector antenna is at least approximate to the normal phase center.

従って、本発明の技術的範囲内では、平面図上装置全体の位相中心を各アンテナの位相中心と同一とみなせる利点がある。それにより、装置全体の群因子(グループファクタ)は、周波数に依存せず、無指向性放射特性図が極端に広周波数帯域となる(従って、2種周波数帯域アンテナにも適する)。装置全体の同心性は、各アンテナの半波幅のみに依存する。   Therefore, within the technical scope of the present invention, there is an advantage that the phase center of the entire apparatus can be regarded as the same as the phase center of each antenna on the plan view. Thereby, the group factor (group factor) of the entire apparatus does not depend on the frequency, and the omnidirectional radiation characteristic diagram becomes an extremely wide frequency band (and is therefore also suitable for the two types of frequency band antennas). The concentricity of the entire device depends only on the half-wave width of each antenna.

本発明の好適な実施の形態では、更に、個別放射器又は指向性アンテナの最適化減結合構造が得られる。例えば、全体的に又は部分的に一周する反射器外縁を各反射器平面に対して横方向に配置し、垂直に重ねて配置した各セクタアンテナ間に形成される反射器外縁に減結合構造を設けることができる。   The preferred embodiment of the present invention further provides an optimized decoupling structure for individual radiators or directional antennas. For example, a reflector outer edge that circulates in whole or in part is arranged transversely to each reflector plane, and a decoupling structure is formed on the reflector outer edge formed between the sector antennas arranged vertically. Can be provided.

また、本発明の技術的範囲内では、全方向性単一周波数帯域アンテナのみならず、例えば全方向性2種周波数帯域(デュアルバンド)アンテナ又は更に複数(多)周波数帯域アンテナ、更に二(デュアル)偏波アンテナ又はサイクル偏波アンテナで送信及び/又は受信できる全方向複数周波数帯域アンテナも、実現することができる。   Further, within the technical scope of the present invention, not only an omnidirectional single frequency band antenna but also, for example, an omnidirectional two-frequency band (dual band) antenna or a plurality of (multi) frequency band antennas, and further two (dual) An omnidirectional multi-frequency band antenna that can transmit and / or receive with a polarization antenna or a cycle polarization antenna can also be realized.

例えば、例えば欧州特許第1082728B1号公報及び欧州特許第1470615B1号公報から既知の所謂ダイポール放射器形式、ベクトル放射器形式又はパッチ放射器形式の適切な放射器と放射器装置を使用して、本発明の全方向性二(デュアル)偏波型アンテナを実現することが好ましい。特に、最後の引用文献は、支柱付傘形状で大型の二偏波放射器と、中心に配置される小型の高周波数帯域領域用二偏波放射器を示す。   For example, the invention can be achieved using suitable radiators and radiator devices of the so-called dipole radiator type, vector radiator type or patch radiator type known from eg EP 1082728 B1 and EP 1470615 B1. It is preferable to realize an omnidirectional dual (dual) polarization antenna. In particular, the last cited document shows an umbrella-shaped large-sized two-polarization radiator with a column and a small two-polarization radiator for a high frequency band region arranged in the center.

本発明の好適な実施の形態と進展した形態では、例えば、セクタアンテナを設ける箇所に逆方向又は交差方向に放射する同一の反射器平面の他のセクタアンテナを使用して、専有空間を低減しつつ放射器数を増加することもできる。従って、逆方向又は交差方向に放射するほぼ2倍のセクタアンテナを各取付位置に設けることができる。   In the preferred and advanced embodiments of the present invention, for example, other sector antennas that radiate in the opposite or cross direction at the location where the sector antenna is provided are used to reduce the proprietary space. However, the number of radiators can be increased. Accordingly, approximately twice as many sector antennas that radiate in the opposite direction or the crossing direction can be provided at each mounting position.

通常垂直に重なる配列で又は別法として通常のアンテナと同様に、複数の単一周波数帯域放射器、2種周波数帯域放射器又は多数周波数帯域放射器又は放射器装置を各柱状アンテナ内に配置することもできる。その場合に、中心軸周りに周方向に変位して、重ねて配置される複数の放射器を有する各柱状アンテナを異なるアジマス角度で配置することができる。前記の通り、各反射器平面に関して(従って180°変位して)逆方向又は交差方向に放射器装置を配置して、放射器数を倍にすることができる。   A plurality of single frequency band radiators, dual frequency band radiators or multiple frequency band radiators or radiator devices are arranged in each columnar antenna, usually in a vertically overlapping arrangement or alternatively like a normal antenna You can also. In that case, the columnar antennas having a plurality of radiators that are displaced in the circumferential direction around the central axis and arranged in a superposed manner can be arranged at different azimuth angles. As mentioned above, the number of radiators can be doubled by arranging the radiator devices in the opposite or cross direction with respect to each reflector plane (and thus displaced by 180 °).

例えば、必要な放射器装置を有する2個の柱状アンテナを使用するとき、コラムアンテナの位相中心に配置される共通の平面又は位相中心に少なくとも近似的に配置される共通の平面を、中心軸を通過して又は中心軸の近傍に配置することが好ましい。   For example, when using two columnar antennas having the required radiator device, a common plane disposed at the phase center of the column antenna or a common plane disposed at least approximately at the phase center is defined with the central axis. It is preferable to pass through or in the vicinity of the central axis.

しかしながら、本発明の進展した形態では、前記実施の形態とは異なり、放射器装置の同一高さ位置に垂直中心軸に対して径方向外側に変位して更に1個又は2倍数の他のセクタアンテナを設けることもできる。換言すれば、この種、例えば、2支柱アンテナ装置(セクタアンテナ等の)では、アンテナ装置の各中心軸に対して正確に又は極力正確に放射器の位相中心を接近させて、放射器を一方の支柱内に配置でき、例えば、第2の柱状アンテナ内に配置される放射器装置を中心軸に対して径方向、即ち側方向に変位して配置し、従って、2個の支柱は、中心軸に対して対称ではない。これにより、垂直中心軸に対して径方向に離れて他のセクタアンテナを配置するときも、他の利点を提供することができる。それにより、位相中心は非同一であるが、広周波数帯域で作動可能な放射特性図の極力最良の無指向性を有する高多入力・多出力(MIMO)態様の多支柱型(マルチコラム)アンテナを実現できる。   However, in the advanced form of the present invention, unlike the above embodiment, the radiator apparatus is displaced radially outward with respect to the vertical central axis at the same height position, and is further one or twice as many other sectors. An antenna can also be provided. In other words, in this type of, for example, a two-post antenna device (such as a sector antenna), the radiator is placed in close proximity to the center axis of the antenna device accurately or as closely as possible. For example, the radiator device disposed in the second columnar antenna is displaced in the radial direction, that is, in the lateral direction with respect to the central axis. Not symmetric about the axis. Thereby, another advantage can be provided even when other sector antennas are arranged radially away from the vertical central axis. As a result, the multi-column antenna with high multi-input / multi-output (MIMO) mode has the best omnidirectional characteristics of radiation characteristics that can be operated in a wide frequency band, although the phase centers are not identical. Can be realized.

本発明の他の利点、詳細及び特徴は、下記に説明する実施の形態から明らかとなろう。   Other advantages, details and features of the present invention will become apparent from the embodiments described below.

全方向性二偏波複数周波数帯域で作動可能なアンテナの本発明の第1の実施の形態を示す斜視図The perspective view which shows the 1st Embodiment of this invention of the antenna which can operate | move in an omnidirectional two polarization multiple frequency band 図1に示す実施の形態の軸方向図式平面図Axial schematic plan view of the embodiment shown in FIG. 反射器を除去した図2の平面図Plan view of FIG. 2 with the reflector removed 逆方向に配置された2個のセクタアンテナを有し、対称平面内に配置される共通の反射器を各セクタアンテナに設けたアンテナ(セクタアンテナ装置)の変形実施の形態を示す斜視図The perspective view which shows the deformation | transformation embodiment of the antenna (sector antenna apparatus) which has two sector antennas arrange | positioned in the opposite direction, and provided each sector antenna with the common reflector arrange | positioned in a symmetrical plane 図4aに示す実施の形態の平面図Top view of the embodiment shown in FIG. 4a 反射器を除去した図4bの平面図Top view of FIG. 4b with the reflector removed 単一周波数帯域内で電波を放射しかつ/又は受信する3個のセクタアンテナを有するアンテナ(無指向性放射器)の図1とは別の実施の形態を示す斜視図1 is a perspective view showing an antenna (an omnidirectional radiator) having three sector antennas that radiate and / or receive radio waves within a single frequency band, different from FIG. 図5に示す実施の形態の軸方向図式平面図Axial schematic plan view of the embodiment shown in FIG. 反射器を除去した図6の平面図Top view of FIG. 6 with the reflector removed 中央方向から互いに変位して配置されかつ単柱状セクタアンテナ当たり2個の放射器を有する図5〜図7とは別の実施の形態を示す斜視図The perspective view which shows another embodiment different from FIGS. 5-7 which are arrange | positioned mutually displaced from the center direction and which has two radiators per single columnar sector antenna 図8に示す実施の形態の平面図Plan view of the embodiment shown in FIG. 反射器を除去した図9の平面図Top view of FIG. 9 with the reflector removed セクタアンテナ当たり2個の柱状アンテナを有し、中央で互いに重ねて配置された各柱状アンテナに各2つの放射器を設けた図8とは別の実施の形態を示す斜視図FIG. 8 is a perspective view showing another embodiment different from FIG. 8 in which two columnar antennas are provided per sector antenna and two radiators are provided on each columnar antenna arranged in the center. 図11に示す実施の形態の軸方向図式平面図Axial schematic plan view of the embodiment shown in FIG. 反射器を除去した図12の平面図The top view of FIG. 12 with the reflector removed. 図11に示す実施の形態の2個の柱状アンテナを中心軸から横方向に変位して配置した実施の形態の斜視図FIG. 11 is a perspective view of an embodiment in which two columnar antennas of the embodiment shown in FIG. 11 are displaced laterally from the central axis. 図14に示す実施の形態の軸方向図式平面図Axial schematic plan view of the embodiment shown in FIG. 反射器を除去した図15の平面図Plan view of FIG. 15 with the reflector removed. 先行実施の形態とは異なり、各高さ領域内に中心軸周りに互いに180°変位して共通の反射器壁上に2個の放射器を取り付けた複数のセクタアンテナを有する無指向性放射器の実施の形態を示す斜視図Unlike the previous embodiment, an omnidirectional radiator having a plurality of sector antennas having two radiators mounted on a common reflector wall and displaced by 180 ° around the central axis in each height region The perspective view which shows embodiment of 図17に示す実施の形態の軸方向図式平面図Axial schematic plan view of the embodiment shown in FIG. 反射器を除去した図17の平面図The top view of FIG. 17 with the reflector removed. 放射方向に僅かな変位量だけ中心軸1から各セクタアンテナを離間して配置した図6に示す実施の形態とは異なる変形実施の形態を示す軸方向平面図An axial plan view showing a modified embodiment different from the embodiment shown in FIG. 6 in which each sector antenna is spaced apart from the central axis 1 by a slight displacement in the radial direction. 図6及び図20とは異なり、反射器の背後側ではなくセクタアンテナの放射器側でかつ反射器壁に平行に延伸する中心軸に対して、僅かな側方の径方向変位をもって各セクタアンテナを配置した別の変形実施の形態の軸方向平面図Unlike FIGS. 6 and 20, each sector antenna has a slight lateral displacement relative to the central axis extending on the radiator side of the sector antenna and parallel to the reflector wall, not on the rear side of the reflector. Plan view in the axial direction of another modified embodiment in which 同一の高さにかつ互いに角度120°離間して3個のセクタアンテナを配置した従来のアンテナ装置を示す図式的な平面図Schematic plan view showing a conventional antenna device in which three sector antennas are arranged at the same height and at an angle of 120 ° from each other.

図1〜図3に示す本発明の第1の実施の形態を以下説明する。   A first embodiment of the present invention shown in FIGS. 1 to 3 will be described below.

本明細書では、取付軸又は取付線とも称する垂直中心軸1を図1に一点鎖線で示す。   In the present specification, the vertical central axis 1, which is also referred to as an attachment shaft or an attachment line, is indicated by a one-dot chain line in FIG. 1.

図示の実施の形態では、電波(無線)を放射し又は受信する3個のセクタアンテナ5は、アジマス方向(衛星や飛行機など飛翔体の運動する方向)に、周方向に互いに角度120°ずつ離間してかつ高さ方向に互いに重ねて配置される。   In the illustrated embodiment, the three sector antennas 5 that radiate or receive radio waves (wireless) are separated from each other in the azimuth direction (direction in which a flying object such as a satellite or an airplane moves) by 120 ° in the circumferential direction. And they are arranged so as to overlap each other in the height direction.

図1に示すように、同一の高さではなく(図22に示す従来の構造とは異なり)、垂直中心軸1又は取付線1方向に互いに変位して、3個のセクタアンテナ5が配置される。   As shown in FIG. 1, three sector antennas 5 are arranged at different heights (unlike the conventional structure shown in FIG. 22) but displaced in the direction of the vertical central axis 1 or the mounting line 1. The

電波を放射し又は受信する目的で、柱状アンテナ(アンテナコラム)6内に配置される各セクタアンテナ5は、例えば、より高い第1の周波数帯域(高帯域)用の二偏波放射器7と、より低い周波数帯域(低帯域)用の他の二偏波放射器9とを有する。   For the purpose of radiating or receiving radio waves, each sector antenna 5 arranged in the columnar antenna (antenna column) 6 includes, for example, a dual polarized radiator 7 for a higher first frequency band (high band), And another dual-polarized radiator 9 for a lower frequency band (low band).

高周波数帯域用のベクトル放射器は、例えば、欧州特許第1057224B4号公報又は独国特許出願公開第19860121A1号公報に開示される構造を基本的に備える。   A vector radiator for a high frequency band basically includes, for example, the structure disclosed in European Patent No. 1057224B4 or German Patent Application Publication No. 19860121A1.

高周波数帯域用の二偏波放射器(本明細書では、「ベクトルダイポール」ともいう)は、例えば、所謂対称支柱付の傘形ダイポールの内部に配置され、傘形ダイポールも同様に二偏波放射器として構成され、大きいアンテナ寸法により低周波数帯域内の送信と受信に適する。この種の放射器は、例えば欧州特許第1470615B1号公報から基本的に公知である。   A dual-polarization radiator (also referred to as a “vector dipole” in the present specification) for a high frequency band is disposed, for example, inside an umbrella-shaped dipole with a so-called symmetrical support, and the umbrella-shaped dipole is also two-polarized. It is configured as a radiator and is suitable for transmission and reception in the low frequency band due to its large antenna dimensions. This type of radiator is basically known, for example, from EP 1 470 615 B1.

図1の正面側の付属する各反射器11を垂直に見ると、2個の放射器7と9は、同一位置に取り付けられ、図示の実施の形態では、反射器11は、反射器平面13’内に配置されかつ放射器7、9の背後に取り付けられる反射器壁13を有し、放射器7、9の周囲に反射器外縁15が一周して配置される。反射器11全体の一部としてかつ放射器7、9を一周する境界として、反射器平面13’に対して横方向、図示の実施の形態では垂直に反射器外縁15を設けることが好ましい。下方又は上方に隣接するセクタアンテナ5に対して各セクタアンテナ5を最適に減結合(反射器11間の回路結合を減少)する最適減結合化されるアンテナ構造を反射器外縁15により実現できる。   When looking at each reflector 11 attached on the front side of FIG. 1 vertically, the two radiators 7 and 9 are mounted in the same position, and in the embodiment shown, the reflector 11 is a reflector plane 13. It has a reflector wall 13 which is arranged inside and attached behind the radiators 7, 9, and a reflector outer edge 15 is arranged around the radiators 7, 9. The reflector outer edge 15 is preferably provided as a part of the entire reflector 11 and as a boundary around the radiators 7 and 9 in a direction transverse to the reflector plane 13 ′ and perpendicularly in the illustrated embodiment. The reflector outer edge 15 can realize an optimally decoupled antenna structure that optimally decouples each sector antenna 5 with respect to the sector antenna 5 adjacent to the lower side or the upper side (reducing circuit coupling between the reflectors 11).

また、該当するセクタアンテナ5の反射器平面13’に対して横方向、好適には垂直方向に配置される少なくとも1つの反射器外縁15’を減結合される反射器構造に設け、反射器外縁15’は、隣接する2個のセクタアンテナ5間に配置される。反射器11の横に突出する反射器外縁15’は、接続線である中心軸1に対して横方向かつ特に直角に延伸して、特に隣接するセクタアンテナ5に対する減結合に役立つ。   In addition, at least one reflector outer edge 15 ′ arranged in a direction transverse to the reflector plane 13 ′ of the sector antenna 5 in question, preferably in the vertical direction, is provided in the decoupled reflector structure, 15 ′ is arranged between two adjacent sector antennas 5. A reflector outer edge 15 ′ projecting laterally of the reflector 11 extends in the lateral direction and particularly perpendicular to the central axis 1, which is a connection line, and serves particularly for decoupling to the adjacent sector antenna 5.

また、図示の実施の形態では、背後の反射器壁13に対して平行にかつ一定距離離間させて、中間反射器17を中間反射器平面17’内に配置でき、中間反射器平面17’は、低周波数領域用の二偏波放射器9’よりも小さい寸法で設計され、中間反射器17に形成される中央開口部17a内の中心に又は均衡を保つ位置に、中央開口部17aに対し電気的、電気化学的に接触せずに対応するベクトル放射器7を配置することができる。   Also, in the illustrated embodiment, the intermediate reflector 17 can be placed in the intermediate reflector plane 17 ′ parallel to the back reflector wall 13 and spaced apart by a certain distance, the intermediate reflector plane 17 ′ being Designed with a size smaller than the dual-polarized radiator 9 ′ for the low frequency region and in the center opening 17a formed in the intermediate reflector 17 or in a balanced position relative to the center opening 17a Corresponding vector radiators 7 can be arranged without electrical or electrochemical contact.

図1の斜視図に示す実施の形態に設けられる3個のセクタアンテナ5は、垂直中心軸1周りに互いに角度120°離間してそれぞれ配置される。全アンテナ構造は、原則的に同一であるが、勿論互いに異なる構造でもよい。   The three sector antennas 5 provided in the embodiment shown in the perspective view of FIG. 1 are arranged around the vertical central axis 1 with an angle of 120 ° from each other. All antenna structures are basically the same, but of course they may be different structures.

図示の実施の形態では、1列の単柱状(シングルコラム)のセクタアンテナ形式で構成される各セクタアンテナ5、即ち対応する各アンテナシステム5は、高周波数帯域と低周波数帯域で電磁波(電波、無線)を伝送する単一の対応する放射器装置を有する。後述の通り、共通の柱状アンテナ(アンテナコラム)6内に垂直方向に2個又はそれ以上のセクタアンテナをセクタアンテナ配列状態(アレイ)に組み立てることもできる。また、側方、径方向又は水平に延伸する取付方向に配置した他のアンテナシステム又はセクタアンテナを設けることもできる。   In the illustrated embodiment, each sector antenna 5 configured in a single-column (single column) sector antenna format, that is, each corresponding antenna system 5, has electromagnetic waves (radio waves, A single corresponding radiator device transmitting the radio). As will be described later, two or more sector antennas can be assembled in a sector antenna array state (array) in a common column antenna (antenna column) 6 in the vertical direction. It is also possible to provide other antenna systems or sector antennas arranged in the side, radial direction or in the mounting direction extending horizontally.

図示の実施の形態では、各反射器平面13’の中央又は各反射器壁13の中央に垂直中心軸1が配置される。これにより、通常付属の反射器平面13’及び各セクタアンテナ5の反射器壁13の中央の軸方向上方から見て垂直中心軸1上又はその近似位置に、各セクタアンテナ5の位相中心を確実に配置して、従来より格段に改善された全方向性放射・受信特性図(特性パターン)を得ることができる。   In the embodiment shown, a vertical central axis 1 is arranged at the center of each reflector plane 13 ′ or at the center of each reflector wall 13. This ensures the phase center of each sector antenna 5 on the vertical central axis 1 or its approximate position when viewed from the upper axial direction of the reflector wall 13 'and the reflector wall 13 of each sector antenna 5 that are normally attached. Thus, an omnidirectional radiation / reception characteristic diagram (characteristic pattern) that is remarkably improved as compared with the prior art can be obtained.

図4は、図示の実施の形態により2種の各周波数帯域内で駆動できる二重の個別放射器、即ち二重セクタアンテナを示す。本実施の形態では、反射器壁13を有する反射器11は、二重セクタアンテナ5に設けられ、反射器壁13は、図面平面の上下に延伸する共通の反射器平面13’内にかつ二重セクタアンテナ5の中央に共通に配置される。換言すると、本実施の形態では、互いに角度180°離間し又は変位して、反射器平面13’に対し対称に2個のセクタアンテナ5が配置される。その場合に、(先行実施の形態と同様に)互いに角度180°回動して取り付けられて異なる構造の二重セクタアンテナ5も実現でき、各セクタアンテナ5は、大きい寸法で設計(例えば、支柱付の傘形に形成)される低周波数帯域用の二偏波放射器9と、本来の反射器平面13'から離間して二偏波放射器9の中央に配置される反射器17(図4に図示しないが、同様に反射器平面17’内に付加的に設けられる反射器も)とを備える他の同様の二偏波ベクトル放射器7を具備することができる。   FIG. 4 shows dual separate radiators, ie dual sector antennas, that can be driven in each of the two frequency bands according to the illustrated embodiment. In the present embodiment, the reflector 11 having the reflector wall 13 is provided in the dual sector antenna 5, and the reflector wall 13 is disposed in a common reflector plane 13 ′ extending vertically above and below the drawing plane. Commonly disposed in the center of the heavy sector antenna 5. In other words, in the present embodiment, the two sector antennas 5 are arranged symmetrically with respect to the reflector plane 13 'while being separated from each other by an angle of 180 ° or displaced. In that case, a dual sector antenna 5 with a different structure can be realized which is mounted with an angle of 180 ° rotation (as in the previous embodiment), and each sector antenna 5 is designed with a large dimension (for example, a strut) A two-polarization radiator 9 for a low frequency band formed in the shape of an umbrella with a reflector 17 and a reflector 17 (Fig. Although not shown in FIG. 4, another similar dual-polarized vector radiator 7 can be provided which also comprises a reflector (also additionally provided in the reflector plane 17 ′).

互いに角度180°変位して配置される二重セクタアンテナ5を備える図示の構造を図1に示す3個の各セクタアンテナに適用でき、図1の各セクタアンテナに適用すれば、均等高さの軸方向構造に形成されるアンテナ装置の同一直径上に、合計6個の放射器が収容される。それにより、無指向性放射特性図を改善できるのみならず、多入力・多出力(MIMO)構造も実現される。   The illustrated structure including the dual sector antennas 5 that are displaced by an angle of 180 ° from each other can be applied to each of the three sector antennas shown in FIG. 1, and if applied to each sector antenna of FIG. A total of six radiators are accommodated on the same diameter of the antenna device formed in the axial structure. As a result, not only can the omnidirectional radiation characteristics be improved, but also a multi-input / multi-output (MIMO) structure can be realized.

次に、図1〜図3の実施の形態に基本的に類似する構造の図5〜図7に示す実施の形態を詳述するが、(2種周波数帯域アンテナ用の二偏波放射器7又は9を使用する全方向性無指向性放射器を示す)図1〜図3とは異なり、単一の周波数帯域内でのみ送信又は受信できる点で相違する。例えば、独国特許第102004057774B4号公報に開示される高周波数帯域に使用するベクトル放射器又はベクトルダイポールを図5〜図7に示す。中心軸に沿って上方からの平面図、特に図6と図7に示すように、中心軸1に沿い垂直方向に互いに重ねて配置した図示の3個全てのセクタアンテナ5は、互いに角度120°で変位して配置される。この種の無指向性放射器を図5〜図7のように基本的に配置して、所望の各周波数帯域内で特に2種偏波で送信及び/又は受信を行うことができる。また、図示の二偏波ベクトルダイポールの代わりに、例えば、パッチ放射器等の他の適切な放射器装置を使用することができる。   Next, the embodiment shown in FIGS. 5 to 7 having a structure basically similar to the embodiment of FIGS. 1 to 3 will be described in detail. Or omnidirectional omnidirectional radiators using 9) (unlike FIGS. 1-3), which differs in that they can only be transmitted or received within a single frequency band. For example, FIG. 5 to FIG. 7 show a vector radiator or a vector dipole used in a high frequency band disclosed in German Patent No. 102004057774B4. As shown in the plan view from above along the central axis, in particular, as shown in FIGS. 6 and 7, all the three sector antennas 5 shown in FIG. It is displaced and arranged. This kind of omnidirectional radiator can be basically arranged as shown in FIGS. 5 to 7, and transmission and / or reception can be performed with two types of polarization in each desired frequency band. Also, instead of the illustrated two-polarization vector dipole, other suitable radiator devices such as, for example, patch radiators can be used.

前記実施の形態を変形した図8〜図10は、単一の柱状アンテナ6を各セクタアンテナ5に設け、垂直中心軸線に沿って互いに離間して配置した2個の二偏波放射器7又は9を各柱状アンテナ6内に設けた実施の形態を示す。放射及び/又は受信すべき通常選択されるアンテナ周波数帯域により放射器7と9間の間隔が決定される。該当する周波数帯域の中央駆動周波数をλとすると、放射器7と9間の間隔は、λ/2からλの間の値、例えば通常0.7乃至0.75λである。本実施の形態は、取付方向、即ち通常垂直中心軸1方向に互いに重ねて各セクタアンテナ5を配置した少なくとも2個の二偏波放射器を有する単一周波数帯域用の全方向性無指向性二偏波放射器を示す。換言すると、垂直中心軸1に沿って互いに重ねて3個、4個等、必要な数の放射器を配置する構造に原理を拡張できる。また、図9と図10に示す他の実施の形態では、中心軸1周りに互いに角度変位させて各セクタアンテナを配置することができる。   FIGS. 8 to 10 are modifications of the above-described embodiment. In FIG. 8 to FIG. 10, a single columnar antenna 6 is provided in each sector antenna 5 and two dual-polarized radiators 7 arranged apart from each other along the vertical central axis. An embodiment in which 9 is provided in each columnar antenna 6 is shown. The spacing between radiators 7 and 9 is determined by the normally selected antenna frequency band to be radiated and / or received. If the central driving frequency of the corresponding frequency band is λ, the distance between the radiators 7 and 9 is a value between λ / 2 and λ, for example, usually 0.7 to 0.75λ. In this embodiment, omnidirectional omnidirectionality for a single frequency band having at least two dual-polarized radiators in which the respective sector antennas 5 are arranged so as to overlap each other in the mounting direction, that is, the normal vertical central axis 1 A dual polarized radiator is shown. In other words, the principle can be extended to a structure in which a necessary number of radiators such as three, four, etc. are arranged on each other along the vertical central axis 1. Further, in the other embodiments shown in FIGS. 9 and 10, the sector antennas can be arranged by being angularly displaced from each other around the central axis 1.

図8〜図10の実施の形態は、中心軸1に沿い重ねて配置した複数の二偏波放射器を有する単一周波数帯域アンテナをも示す。本実施の形態でも、二偏波2種周波数帯域(デュアルバンド)アンテナ又は二偏波3種周波数帯域(トリバンド)アンテナ又は一般に、二偏波複数周波数帯域(マルチバンド)アンテナとして各セクタアンテナを構成することができる。例えば、欧州特許第1082782B1号公報(国際公開第WO99/062139A1号公報に相当)から基本的に公知のように、例えば2種(又はそれ以上)の周波数帯域内で各セクタアンテナ5内の放射器を放射させるとき、駆動波長により各放射器間で異なる放射器間隔が通常選択される。これは、例えば、図1又は図8の実施の形態に準拠して、中心軸1に沿って離間する低周波数帯域用の2個の二偏波放射器9と、同一取付方向に変位して配置されて高周波数帯域用の3個の二偏波放射器7とを各セクタアンテナ5に設け、例えば、低周波数帯域(例えば900MHzバンド)に比較して2倍の周波数の高周波数帯域(例えば1800MHzバンド)では、低周波数帯域用の2個の二偏波放射器9の中央の中心位置に高周波数帯域用の2個の二偏波放射器7を取付け(図1に示す)、低周波数帯域放射器と高周波数帯域放射器の中心間に高周波数帯域用の第3の二偏波放射器7を配置することができる。   The embodiment of FIGS. 8 to 10 also shows a single frequency band antenna having a plurality of dual-polarized radiators arranged along the central axis 1. Also in the present embodiment, each sector antenna is configured as a dual-polarized two-frequency band (dual-band) antenna, a dual-polarized three-frequency band (tri-band) antenna, or generally a dual-polarized multiple-frequency band (multi-band) antenna. can do. For example, as basically known from European Patent No. 1082782B1 (corresponding to International Publication No. WO99 / 062139A1), for example, radiators in each sector antenna 5 in two (or more) frequency bands When radiating, different radiator spacings are usually selected between each radiator depending on the drive wavelength. This is, for example, in accordance with the embodiment of FIG. 1 or FIG. 8 and is displaced in the same mounting direction with two dual-polarized radiators 9 for the low frequency band that are separated along the central axis 1. The three dual-polarized radiators 7 arranged for the high frequency band are provided in each sector antenna 5, for example, a high frequency band (for example, a double frequency compared to a low frequency band (for example, 900 MHz band)) In the 1800 MHz band), two dual-polarized radiators 7 for the high frequency band are attached to the center position of the center of the two dual-polarized radiators 9 for the low frequency band (shown in FIG. 1). A third dual-polarized radiator 7 for the high frequency band can be disposed between the center of the band radiator and the high frequency band radiator.

次に、基本的に互いに角度120°離間して配置されかつ他の全実施の形態と同様に、中心軸1に沿って垂直方向に互いに変位する3個のセクタアンテナ5を示す更に変形した図11〜図13の実施の形態について詳述する。先行実施の形態とは異なり、図示の全方向性無指向性放射器は、単一の柱状アンテナ6内のみに配置されず、2個の各柱状アンテナ6内に配置される二偏波放射器を有する3個のセクタアンテナ5を備える。また、前記先行実施の形態と基本的に同様に、好ましくは垂直中心軸1方向に互いに変位して少なくとも1個又は複数個の単一周波数帯域(モノバンド)放射器、2種周波数帯域(デュアルバンド)放射器又は一般的に複数周波数帯域(マルチバンド)放射器を各柱状アンテナ内に配置することができる。   Next, a further modified view showing three sector antennas 5 which are basically spaced apart from each other by an angle of 120 ° and which are displaced from each other in the vertical direction along the central axis 1 as in all other embodiments. The embodiment shown in FIGS. 11 to 13 will be described in detail. Unlike the previous embodiment, the illustrated omnidirectional omnidirectional radiator is not disposed only in the single columnar antenna 6, but is a dual-polarized radiator disposed in each of the two columnar antennas 6. Are provided with three sector antennas 5. Further, basically in the same manner as in the previous embodiment, preferably, at least one or a plurality of single frequency band (monoband) radiators, two frequency bands (dual Band) radiators or generally multiple frequency band (multiband) radiators can be placed in each columnar antenna.

その場合に、各セクタアンテナ5の2個の各柱状アンテナ6に対し、同一の反射器平面13’内に反射器11の反射器壁13が配置される。各支柱(コラム)装置に設けられる対応する反射器外縁15は、中心軸1に対して横方向に配置される反射器外縁15’を含み、柱状アンテナに属する全放射器7、9の周囲に配置される反射器外縁15は、隣り合うセクタアンテナに対し減結合を形成できる。例えば、図8又は図11とは異なり、各柱状アンテナ6内の各放射器7又は9間に横方向に延びる反射器外縁を必要に応じて更に設けることができる。   In that case, the reflector wall 13 of the reflector 11 is arranged in the same reflector plane 13 ′ for each of the two columnar antennas 6 of each sector antenna 5. The corresponding reflector outer edge 15 provided in each column (column) device includes a reflector outer edge 15 ′ arranged transversely with respect to the central axis 1 and around all radiators 7 and 9 belonging to the columnar antenna. The disposed reflector outer edge 15 can form decoupling with respect to the adjacent sector antenna. For example, unlike FIG. 8 or FIG. 11, a reflector outer edge extending in the lateral direction may be further provided as needed between each radiator 7 or 9 in each columnar antenna 6.

図11に示す変形実施の形態では、2個の柱状アンテナ6間にも中央軸方向1に延びるアンテナ外縁15”が設けられる。   In the modified embodiment shown in FIG. 11, an antenna outer edge 15 ″ extending in the central axial direction 1 is also provided between the two columnar antennas 6.

各柱状アンテナ6を通る中心長手軸間の間隔は、通常の間隔、例えば、中心駆動周波数に関するλ/2とλ間に相当する。適切値は、場合により0.65λから0.75λの間、例えば、0.7λである[単一周波数帯域(モノバンド)アンテナでは中心駆動周波数に対応し;2種周波数帯域(デュアルバンド)アンテナでは、λに基準量より低い周波数の中心周波数が利用される]。   The interval between the central longitudinal axes passing through each columnar antenna 6 corresponds to a normal interval, for example, between λ / 2 and λ with respect to the center drive frequency. Appropriate values are in some cases between 0.65λ and 0.75λ, for example 0.7λ [for single frequency band (monoband) antennas, corresponding to the center drive frequency; two frequency band (dual band) antennas Then, a center frequency having a frequency lower than the reference amount is used for λ].

前記実施の形態では、垂直の各対称平面(反射器平面13’に対して垂直な)に対して2個の柱状アンテナ6を配置するので、2個の柱状アンテナ6間の正確な分離箇所又は結合箇所で、垂直中心軸1は、反射器平面13’を通過する。即ち、隣り合う柱状アンテナ6間の各垂直対称軸1は、付属の反射器平面13’に対して平行(並行)に延伸する。それにより、全方向性二偏波アンテナ全体から見て、セクタアンテナ5(2個の柱状アンテナ6内に放射器を有する)の位相中心を中心軸1内に配置し又は少なくとも近似的に中心軸1付近に配置したものとみなすことができる。   In the above embodiment, since the two columnar antennas 6 are arranged for each vertical symmetry plane (perpendicular to the reflector plane 13 ′), an accurate separation point between the two columnar antennas 6 or At the coupling point, the vertical central axis 1 passes through the reflector plane 13 ′. That is, each vertical symmetry axis 1 between adjacent columnar antennas 6 extends parallel (parallel) to the attached reflector plane 13 '. Thereby, the phase center of the sector antenna 5 (having radiators in the two columnar antennas 6) is arranged in the central axis 1 or at least approximately the central axis when viewed from the whole omnidirectional dual-polarized antenna It can be considered that it was placed near 1.

図14〜図16は、2個の柱状アンテナ6と、各柱状アンテナ6内に設けられる単一又は複数の放射器7,9とをそれぞれ有する3個のセクタアンテナ5を備え、図1〜図10に示す実施の形態と同様に、中心軸1に沿って垂直方向に重なりかつ互いに変位して3個のセクタアンテナ5を配置し、3個のセクタアンテナ5の垂直方向の3個の対称平面(各反射器平面13'に対して垂直に)を中心軸1内で交差させて柱状アンテナ6を配置した全方向性無指向性放射器の実施の形態を示す。各第2の柱状アンテナ6は、中心軸1に対して非対称にそれぞれ側方の径方向外側に変位するので、上方から見た図15と図16では、図12及び図13とはセクタアンテナ5の配置が異なる。本実施の形態でも、先行実施の形態と同様に、少なくとも1個の付加的な他の柱状アンテナ6内に放射器7,9を配置して、側方又は径方向に変位する少なくとも1個の付加的な放射器7,9を確実に設けることができる。図11〜図13に示す実施の形態では、図14〜図16の実施の形態と同様に、図示の少なくとも2個の柱状アンテナを有する各セクタアンテナ5を横方向、即ち中心軸1に対して垂直にかつ異なる位置に配置でき、必ずしも図11〜図13及び図14〜図16に示す位置のみに配置する必要はない。中心軸に対して垂直の種々の調節位置での他の異なる任意の相対位置にセクタアンテナ5を配置できる。しかしながら、少なくとも単一又は少なくとも2個の柱状アンテナを有する該当するセクタアンテナを上方から見て、常に1個、2個又は複(多)数個の柱状アンテナを有するセクタアンテナ5に対して重なる位置に中心軸1を配置することが、効果的である。   14 to 16 include three sector antennas 5 each having two columnar antennas 6 and single or plural radiators 7 and 9 provided in each columnar antenna 6. As in the embodiment shown in FIG. 10, three sector antennas 5 are arranged in the vertical direction along the central axis 1 and displaced from each other, and three symmetry planes in the vertical direction of the three sector antennas 5 are arranged. An embodiment of an omnidirectional omni-directional radiator in which columnar antennas 6 are arranged by intersecting (perpendicular to each reflector plane 13 ′) within the central axis 1 is shown. Each of the second columnar antennas 6 is displaced to the radially outer side of the side asymmetrically with respect to the central axis 1, so in FIGS. 15 and 16 viewed from above, FIGS. The arrangement of is different. In the present embodiment, as in the previous embodiment, the radiators 7 and 9 are arranged in at least one additional columnar antenna 6 to be displaced in the lateral or radial direction. Additional radiators 7, 9 can be reliably provided. In the embodiment shown in FIGS. 11 to 13, similarly to the embodiment of FIGS. 14 to 16, each sector antenna 5 having at least two columnar antennas shown in the figure is arranged in the lateral direction, that is, with respect to the central axis 1. They can be arranged vertically and at different positions, and are not necessarily arranged only at the positions shown in FIGS. 11 to 13 and 14 to 16. The sector antenna 5 can be placed in any other different relative position at various adjustment positions perpendicular to the central axis. However, when the corresponding sector antenna having at least one or at least two columnar antennas is viewed from above, it always overlaps with the sector antenna 5 having one, two, or multiple (multiple) columnar antennas. It is effective to arrange the central axis 1 at the center.

全く同様に、例えば、他の領域内での中間位置等の中心軸1に対し水平方向の異なる位置に2個の柱状アンテナ6を配置することもできる。   Exactly in the same manner, for example, two columnar antennas 6 can be arranged at different positions in the horizontal direction with respect to the central axis 1 such as an intermediate position in another region.

セクタアンテナ当たり複数の放射器を使用する前記実施の形態では、特に2柱状(2コラム)又は複数柱状(マルチコラム)のアンテナ配列状態(アンテナアレイ)を使用するときも、特に全方向性無指向性放射器の多入力・多出力(MIMO)性能(適応性)を実現し又は更に拡張しかつ改良できる。その場合に、改良される多入力・多出力(MIMO)性能は、極力最良の無指向性の放射特性図を確実に実現する。   In the above-described embodiment in which a plurality of radiators are used per sector antenna, the omnidirectional omnidirectional signal is particularly omnidirectional even when a two-column (two-column) or multi-column (multi-column) antenna arrangement state (antenna array) is used. The multi-input / multi-output (MIMO) performance (adaptivity) of the radiating radiator can be realized or further expanded and improved. In that case, the improved multi-input / multi-output (MIMO) performance ensures the best possible omnidirectional radiation characteristics.

図4は、反射器11及び反射器壁13を有する必要な放射器構造体をほぼ左右対称(鏡像状)に両側に設けて、セクタアンテナの各位置で放射器数を2倍に増加できるセクタアンテナ5を示す。図4について説明した基本構造のセクタアンテナ増加原理を全実施の形態で実現できる。図8〜図10に示す実施の形態の原理に相当し、図4について説明した基本的概念を実現できる特殊性を有する実施の形態を図17〜図19について説明する。本実施の形態では、3箇所の各高さ領域にて角度180°方向に変位して互いに逆方向に向くほぼ2倍のセクタアンテナ5を設け、1個、2個又は3個以上の柱状アンテナ内に単一又は複数の単一周波数帯域放射器又は多周波数帯域放射器を設ける2倍数の放射器装置が得られるが、二偏波放射器又は環状偏波放射器を使用するとき、常に柱状アンテナ内に前記放射器を設けることができる。   FIG. 4 shows a sector in which the required radiator structure having the reflector 11 and the reflector wall 13 is provided on both sides almost symmetrically (mirror image shape) so that the number of radiators can be doubled at each position of the sector antenna. The antenna 5 is shown. The principle of increasing the sector antenna having the basic structure described with reference to FIG. 4 can be realized in all the embodiments. 17 to FIG. 19 will be described with reference to FIGS. 17 to 19, which correspond to the principle of the embodiment shown in FIGS. 8 to 10 and have special characteristics capable of realizing the basic concept described with reference to FIG. In the present embodiment, approximately twice as many sector antennas 5 are provided that are displaced in the direction of an angle of 180 ° and directed in opposite directions at three height regions, and one, two, or three or more columnar antennas are provided. A double radiator arrangement with single or multiple single frequency band radiators or multiple frequency band radiators in it is obtained, but it is always columnar when using dual or annular polarized radiators. The radiator can be provided in an antenna.

前記のように、少なくとも中心軸1に沿い通常垂直にかつ互いに連続して配置される全コラムアンテナの位相中心を中心軸1内に一致させ又は少なくとも中心軸1の近傍に配置した基本的アンテナ構造が設けられる。その場合、反射器壁13の反射器平面13’内に位相中心が通常配置される。上方から見て、中心軸1に沿い反射器11と反射器壁13とが少なくとも部分的に重なりかつ交差して、中心軸1周りに各セクタアンテナの反射器11が通常配置される。従来の無指向性放射アンテナ装置は、上方から見て三角形断面の放射器9を垂直に積み重ねる(二等辺三角形の辺に反射器平面を配置した)構造を有するが、何れにしても、位相中心と中心軸1との間隔は、従来の無指向性放射アンテナ装置の各反射器平面13’、反射器壁13及び中心軸xと位相中心との間の通常の間隔より小さく、その間隔の半分より大きいことが明らかに好ましい。   As described above, the basic antenna structure in which the phase centers of all column antennas arranged at least normally along the central axis 1 and continuously with each other coincide with each other in the central axis 1 or at least in the vicinity of the central axis 1 Is provided. In that case, the phase center is usually arranged in the reflector plane 13 ′ of the reflector wall 13. When viewed from above, the reflector 11 of each sector antenna is usually arranged around the central axis 1 with the reflector 11 and the reflector wall 13 overlapping and intersecting at least partially along the central axis 1. The conventional omnidirectional radiating antenna device has a structure in which radiators 9 having triangular cross-sections are vertically stacked as viewed from above (a reflector plane is disposed on the side of an isosceles triangle). And the center axis 1 is smaller than the normal distance between each reflector plane 13 ′, the reflector wall 13 and the center axis x and the phase center of the conventional omnidirectional radiating antenna device, and is half of the distance. Larger is clearly preferred.

従って、本発明の技術的範囲内では、各柱状アンテナ6の横幅(コラム幅)Bの15%より小さく、特に10%、8%、6%、5%、4%、3%、2%より小さく、かつ特に1%よりも小さい中心軸1からの径方向距離(間隔)で、反射器壁13又は各反射器平面13’を配置すること好ましい(図1、図8又は図11)。   Therefore, within the technical scope of the present invention, it is smaller than 15% of the lateral width (column width) B of each columnar antenna 6, especially from 10%, 8%, 6%, 5%, 4%, 3%, 2%. It is preferable to arrange the reflector wall 13 or each reflector plane 13 'with a radial distance (interval) from the central axis 1 which is small and in particular smaller than 1% (FIG. 1, 8 or 11).

前記実施の形態は、各セクタアンテナ5の反射器11の反射器壁13の各反射器平面13’ 内に中心軸1を配置する構造を全て備える。しかしながら、中心軸から離間する径方向間隔をもって変位して各セクタアンテナの反射器11と反射器壁を配置してもよく、それにより、中心軸からの離間間隔が過度に大きくなければ、尚本発明に基づく利点を常に実現することができる。従って、柱状アンテナ6の横幅Bの15%より小さく、特に10%、8%、6%、5%、4%、3%、2%よりも小さく、かつ特に1%より小さい中心軸からの反射器壁13又は各反射器平面13’の離間間隔が好ましい。   The embodiment includes all the structures in which the central axis 1 is arranged in each reflector plane 13 ′ of the reflector wall 13 of the reflector 11 of each sector antenna 5. However, the reflector 11 and the reflector wall of each sector antenna may be arranged by being displaced with a radial interval apart from the central axis, so that if the separation interval from the central axis is not excessively large, The advantages based on the invention can always be realized. Therefore, the reflection from the central axis is smaller than 15% of the lateral width B of the columnar antenna 6, especially smaller than 10%, 8%, 6%, 5%, 4%, 3%, 2% and especially smaller than 1%. A spacing between the wall 13 or each reflector plane 13 'is preferred.

前記主旨により、中心軸1からの小さい径方向変位で配置した各反射器平面13’の配置状態を図20に示す。この種の配置形式では、特に、異なる高さ位置に配置した3個のセクタアンテナ間に上方から見て自由空間が形成され、例えば、中心軸1によって貫通されるアンテナ塔を自由空間内に配置する構造が得られる。   FIG. 20 shows an arrangement state of the reflector planes 13 ′ arranged with a small radial displacement from the central axis 1 in accordance with the gist. In this type of arrangement, a free space is formed between the three sector antennas arranged at different heights when viewed from above, for example, an antenna tower that is penetrated by the central axis 1 is arranged in the free space. The structure to be obtained is obtained.

図21は、負方向に変位して配置した各セクタアンテナを示す。反射器壁13の関連する反射器平面13’は、反射器外縁を貫通する中心軸1から変位して配置される。換言すると、反射器平面13’の放射器7及び/又は放射器9側に中心軸1が配置される(図20の実施の形態では、放射器7/9とは逆の反射器壁13の背面側に中心軸1が延伸する)。
FIG. 21 shows each sector antenna arranged displaced in the negative direction. The associated reflector plane 13 ′ of the reflector wall 13 is arranged displaced from the central axis 1 penetrating the reflector outer edge. In other words, the central axis 1 is arranged on the radiator 7 and / or radiator 9 side of the reflector plane 13 ′ (in the embodiment of FIG. 20, the reflector wall 13 opposite to the radiator 7/9) Center axis 1 extends to the back side).

本発明を十分に理解するため、中心軸周りに角度120°離間してかつ同一の高さ位置に3個のセクタアンテナ5を配置する従来のアンテナの軸方向平面を図22に示す。中心軸1から大きな間隔で反射器壁を配置する図22の構造では、セクタアンテナ及び特にその反射器11又は反射器壁13は、上方から見て重ならず又は交差もしない。   In order to fully understand the present invention, FIG. 22 shows an axial plane of a conventional antenna in which three sector antennas 5 are arranged at the same height and separated by an angle of 120 ° around the central axis. In the structure of FIG. 22 in which the reflector walls are arranged at a large distance from the central axis 1, the sector antenna and in particular its reflector 11 or the reflector wall 13 do not overlap or intersect with each other when viewed from above.

各放射器5又は指向性アンテナ5、即ち単一又は複数のセクタアンテナ5の最適減結合化構造を実現するため、反射器壁13又は反射器11全体の反射器平面13’に対し、反射器外縁15又は15’は、横方向かつ垂直に延伸する。モノバンド放射器の中心周波数をλとすると、0.05λよりも大きい反射器外縁高さRを反射器外縁15又は15’に付与することが好ましい。2種周波数帯域(デュアルバンド)放射器装置又は多種周波数帯域(マルチバンド)放射器装置では、λは、最低周波数帯域の中心周波数である。反射器平面13’に対する反射器11の側壁又は側外縁15、15’の高さ又は幅Rは、通常反射器平面13’からの放射器7の高さ又は幅H1より高くなくかつ反射器平面13’からの放射器9の高さH2より高くてもいけない(図4)。   In order to realize an optimal decoupling structure for each radiator 5 or directional antenna 5, i.e. single or multiple sector antennas 5, the reflectors against the reflector wall 13 or the reflector plane 13 'of the entire reflector 11 The outer edge 15 or 15 'extends laterally and vertically. When the center frequency of the monoband radiator is λ, it is preferable to give the reflector outer edge height R to the reflector outer edge 15 or 15 ′ greater than 0.05λ. In a two-frequency band (dual-band) radiator device or a multi-frequency band (multi-band) radiator device, λ is the center frequency of the lowest frequency band. The height or width R of the side wall or side outer edge 15, 15 'of the reflector 11 relative to the reflector plane 13' is usually not higher than the height or width H1 of the radiator 7 from the reflector plane 13 'and the reflector plane. It must not be higher than the height H2 of radiator 9 from 13 '(Fig. 4).

換言すれば、図示の実施の形態では、反射器外縁15,15’と15”の反射器外縁高さRは、図2又は図4から明らかなように、低い周波数帯域用の二偏波又は垂直偏波のダイポール放射器又はベクトル放射器9の高さ又は幅H2よりも小さくかつより高い周波数帯域用の更に高く形成される二偏波又は垂直偏波のダイポール放射器又はベクトル放射器7の高さH1よりも更に低い。   In other words, in the illustrated embodiment, the reflector outer edge height R of the reflector outer edges 15, 15 'and 15 "is, as is apparent from FIG. 2 or FIG. Of a vertically polarized dipole radiator or vector radiator 9 which is smaller than the height or width H2 of the vertically polarized dipole radiator or vector radiator 9 and higher for a higher frequency band. It is even lower than the height H1.

前記実施の形態では、各給電システムの詳細な説明を省略する。互いに垂直の2種偏波平面に対しかつ単一又は複数の周波数帯域に対し、同軸ケーブルを介して対応する放射器とアンテナに通常個別に給電される。同様に、共通に給電される電力周波数を分割若しくは分岐し又は集約若しくは重ねる電力結合器/電力分配器も、使用することができる。その意味では、既知の解決法を参考にして、同様にセクタアンテナ5の多入力・多出力(MIMO)駆動を実現することができよう。   In the embodiment, detailed description of each power feeding system is omitted. The corresponding radiators and antennas are usually individually fed via coaxial cables for two polarization planes perpendicular to each other and for single or multiple frequency bands. Similarly, power combiners / distributors that divide or split or aggregate or superimpose commonly fed power frequencies can also be used. In that sense, referring to a known solution, a multi-input / multi-output (MIMO) drive of the sector antenna 5 could be realized as well.

また、給電ネットワークを介して、前記無指向性放射器に属しかつ専ら偏波で放射又は受信するセクタアンテナ(送受信領域を扇型に区切るアンテナ)を相互に接続できる[本明細書は、扇型送受信(セクタ)駆動には該当しない]ことを付言する。セクタアンテナに対し、互いに垂直の二偏波平面内で送信及び/又は受信する放射器を設けるとき、給電ネットワークを介して、共通の偏波平面(例えば、水平に対し+45°又は−45°方向)内で駆動する全放射器を相互に接続することができる。   In addition, sector antennas belonging to the omnidirectional radiator and radiating or receiving exclusively with polarized waves (antennas that divide a transmission / reception area into fan shapes) can be connected to each other via a feeding network [this specification is a fan type It does not apply to transmission / reception (sector) drive]. When providing a sector antenna for transmitting and / or receiving in two polarization planes perpendicular to each other, a common polarization plane (eg, + 45 ° or -45 ° direction relative to the horizontal) via a feed network ) Can be connected to each other.

(1)・・中心軸、 (5)・・セクタアンテナ、 (6)・・柱状アンテナ、 (7,9)・・二偏波放射器、 (11)・・反射器、 (13)・・反射器壁、 (13’)・・反射器平面、 (15,15’,15”)・・反射器外縁、   (1) ・ ・ Center axis, (5) ・ Sector antenna, (6) ・ ・ Columnar antenna, (7,9) ・ ・ Double polarized radiator, (11) ・ ・ Reflector, (13) ・Reflector wall, (13 ') ... reflector plane, (15,15', 15 ") ... reflector outer edge,

Claims (17)

中心軸(1)周りの周方向に互いに離間して角度変位して分離して、少なくとも3個のセクタアンテナ(5)を配置する全方向性二偏波アンテナにおいて、
各セクタアンテナ(5)は、付属の反射器(11)を備えた少なくとも1個の柱状アンテナ(6)を有し、少なくとも部分的に反射器平面(13’)内に反射器(11)を配置し、反射器(11)の前方に少なくとも1つの二偏波放射器(7,9)を柱状アンテナ(6)内に配置し、
セクタアンテナ(5)に結合された給電装置を有し、
中心軸(1)に沿い互いに変位してセクタアンテナ(5)を配置し、
反射器(11)の各反射器平面(13’)内に軸方向に見て中心軸(1)に沿い交差させてセクタアンテナ(5)の反射器壁(13)を配置し、
中心軸(1)に沿い互いに変位してかつ隣接して配置される2個のセクタアンテナ(5)間に減結合装置を設け、
セクタアンテナ(5)の反射器平面(13')と中心軸(1)との間の間隔を付属の柱状アンテナ(6)の横幅(B)の15%より小さい間隔にして、中心軸(1)に対して平行にかつ間隔を空けて反射器壁(13)又は反射器平面(13')を配置し、
反射器平面(13’)の放射器(7,9)側に中心軸(1)が延伸することを特徴とする全方向性二偏波アンテナ。
In the omnidirectional dual-polarized antenna in which at least three sector antennas (5) are arranged separated from each other in the circumferential direction around the central axis (1) and separated by angular displacement,
Each sector antenna (5) has at least one columnar antenna (6) with an attached reflector (11), and at least partially includes the reflector (11) in the reflector plane (13 '). And at least one dual-polarized radiator (7, 9) in the columnar antenna (6) in front of the reflector (11),
Having a feeding device coupled to the sector antenna (5),
Place the sector antenna (5) displaced along each other along the central axis (1),
In each reflector plane (13 ′) of the reflector (11), the reflector wall (13) of the sector antenna (5) is arranged so as to intersect along the central axis (1) when viewed in the axial direction,
A decoupling device is provided between two sector antennas (5) arranged adjacent to each other and displaced along the central axis (1),
The distance between the reflector plane (13 ′) of the sector antenna (5) and the central axis (1) is set to be smaller than 15% of the lateral width (B) of the attached columnar antenna (6), and the central axis (1 ) Parallel to and spaced from the reflector wall (13) or reflector plane (13 '),
An omnidirectional dual-polarized antenna, characterized in that the central axis (1) extends toward the radiator (7, 9) side of the reflector plane (13 ').
中心軸(1)は、反射器外縁(15,15’)を貫通しかつ中心軸(1)から変位して反射器壁(13)の付属の反射器平面(13')を配置した請求項1に記載の全方向性二偏波アンテナ。   The central axis (1) passes through the reflector outer edge (15, 15 ') and is displaced from the central axis (1) to dispose an associated reflector plane (13') of the reflector wall (13). 2. The omnidirectional dual-polarized antenna according to 1. 付属の柱状アンテナ(6)の横幅(B)の10%より小さい間隔をセクタアンテナ(5)の反射器平面(13')と中心軸(1)との間に設けて、反射器壁(13)又は反射器平面(13')を中心軸に対して平行に配置した請求項1又は2に記載の全方向性二偏波アンテナ。   An interval smaller than 10% of the width (B) of the attached columnar antenna (6) is provided between the reflector plane (13 ') of the sector antenna (5) and the central axis (1), and the reflector wall (13 ) Or reflector plane (13 ') parallel to the central axis, the omnidirectional dual-polarized antenna according to claim 1 or 2. 中心軸(1)は、位相中心を通って延伸するか又は付属の柱状アンテナ(6)の間隙幅(B)の15%より小さい間隔をもって中心軸から離間してセクタアンテナ(5)を配置した請求項1〜3の何れか1項に記載の全方向性二偏波アンテナ。   The central axis (1) extends through the phase center, or the sector antenna (5) is arranged away from the central axis with an interval smaller than 15% of the gap width (B) of the attached columnar antenna (6). The omnidirectional dual-polarized antenna according to any one of claims 1 to 3. 対応する反射器(11)の反射器平面(13’)に対して横方向に配置した少なくとも1つの反射器外縁(15,15’)を減結合装置に設けた請求項1〜4の何れか1項に記載の全方向性二偏波アンテナ。   5. The decoupling device according to claim 1, wherein the decoupling device is provided with at least one reflector outer edge (15, 15 ') arranged transversely to the reflector plane (13') of the corresponding reflector (11). The omnidirectional dual-polarized antenna according to item 1. 単一周波数帯域アンテナ内の中心周波数λに対し又は2種周波数帯域又は複数周波数帯域アンテナ内の低中心周波数に対し、反射器外縁(15,15’,15”)の高さは、0.05λより大きく、かつ、各セクタアンテナ(5)の対応する反射器(11)の反射器平面(13’)に対して、二偏波放射器(7)の高さ(H1)より小さく、かつ/又は二偏波放射器(9)の高さ(H2)よりも小さい請求項5に記載の全方向性二偏波アンテナ。   The height of the reflector outer edge (15,15 ′, 15 ″) is 0.05λ with respect to the center frequency λ in the single frequency band antenna or the low center frequency in the two frequency bands or the multiple frequency band antennas. Larger than the height (H1) of the dual-polarized radiator (7) with respect to the reflector plane (13 ') of the corresponding reflector (11) of each sector antenna (5) and / or The omnidirectional dual-polarized antenna according to claim 5, wherein the omnidirectional dual-polarized antenna is smaller than a height (H2) of the dual-polarized radiator (9). 反射器(11)の外縁部で各セクタアンテナ(5)を一周して閉鎖し又は中断部を有する反射器外縁(15)を各セクタアンテナ(5)に設け、反射器外縁(15,15’)によりセクタアンテナ(5)を包囲した請求項5又は6に記載の全方向性二偏波アンテナ。   Each sector antenna (5) is closed around the sector antenna (5) at the outer edge of the reflector (11), or a reflector outer edge (15) having an interruption portion is provided on each sector antenna (5), and the reflector outer edge (15, 15 ' The omnidirectional dual-polarized antenna according to claim 5 or 6, wherein the sector antenna (5) is surrounded by a vertical axis. 単一周波数帯域アンテナ、2種周波数帯域アンテナ又は複数周波数帯域アンテナとして各セクタアンテナ(5)を構成した請求項1〜7の何れか1項に記載の全方向性二偏波アンテナ。   The omnidirectional dual-polarized antenna according to any one of claims 1 to 7, wherein each sector antenna (5) is configured as a single frequency band antenna, two kinds of frequency band antennas or a plurality of frequency band antennas. 角度180°の逆方向に向く第2のセクタアンテナ(5)を各セクタアンテナ(5)の領域内に設け、共通の反射器(11)、特に共通の反射器平面(13')を有する共通の反射器壁(13)を第2のセクタアンテナに好適に設けた請求項1〜8の何れか1項に記載の全方向性二偏波アンテナ。   A second sector antenna (5) facing in the opposite direction at an angle of 180 ° is provided in the area of each sector antenna (5) and has a common reflector (11), in particular a common reflector plane (13 ′). The omnidirectional dual-polarized antenna according to any one of claims 1 to 8, wherein the reflector wall (13) is suitably provided for the second sector antenna. 中心軸(1)に沿い互いに変位して柱状アンテナ(6)内に配置された複数の二偏波放射器(7,9)を各セクタアンテナ(5)に設けた請求項1〜9の何れか1項に記載の全方向性二偏波アンテナ。   Any one of claims 1 to 9, wherein each sector antenna (5) is provided with a plurality of dual-polarized radiators (7, 9) that are displaced from each other along the central axis (1) and are arranged in the columnar antenna (6). The omnidirectional dual-polarized antenna according to claim 1. セクタアンテナ(5)は、互いに平行に配置された少なくとも2個の柱状アンテナ(6)を有し、柱状アンテナ(6)方向に互いに離隔してかつ各柱状アンテナ内に少なくとも1つの二偏波放射器(7,9)及び好ましくは複数の二偏波放射器(7,9)を配置した請求項1〜10の何れか1項に記載の全方向性二偏波アンテナ。   The sector antenna (5) has at least two columnar antennas (6) arranged in parallel to each other, separated from each other in the direction of the columnar antenna (6), and at least one dual-polarized radiation in each columnar antenna. The omnidirectional dual-polarized antenna according to any one of claims 1 to 10, wherein a radiator (7, 9) and preferably a plurality of dual-polarized radiators (7, 9) are arranged. セクタアンテナ(5)の各柱状アンテナ(6)内の二偏波放射器(7,9)を同一高さ位置に配置した請求項11に記載の全方向性二偏波アンテナ。   The omnidirectional dual-polarized antenna according to claim 11, wherein the dual-polarized radiators (7, 9) in each columnar antenna (6) of the sector antenna (5) are arranged at the same height position. 最低周波数帯域の中心周波数をλとすると、柱状アンテナ(6)の間隔を0.65λと0.75λの間に設定した請求項10〜12の何れか1項に記載の全方向性二偏波アンテナ。   The omnidirectional dual-polarized wave according to any one of claims 10 to 12, wherein the interval between the columnar antennas (6) is set between 0.65λ and 0.75λ, where λ is the center frequency of the lowest frequency band. antenna. 各セクタアンテナ(5)の少なくとも2個の柱状アンテナ(6)を中心軸(1)に対し対称に配置した請求項10〜13の何れか1項に記載の全方向性二偏波アンテナ。   The omnidirectional dual-polarized antenna according to any one of claims 10 to 13, wherein at least two columnar antennas (6) of each sector antenna (5) are arranged symmetrically with respect to the central axis (1). セクタアンテナ(5)の各1個の柱状アンテナ(6)を中心軸(1)に対し対称に配置し、径方向、側方向又は中心軸(1)に対して横方向に変位して少なくとも1つの他の柱状アンテナ(6)を配置した請求項10〜13の何れか1項に記載の全方向性二偏波アンテナ。   Each columnar antenna (6) of the sector antenna (5) is arranged symmetrically with respect to the central axis (1) and displaced at least 1 in the radial direction, lateral direction or lateral direction with respect to the central axis (1). The omnidirectional dual-polarized antenna according to any one of claims 10 to 13, wherein two other columnar antennas (6) are arranged. 単一又は異なる柱状アンテナ(6)内に配置される複数の二偏波放射器(7,9)を多入力・多出力アンテナとして駆動する請求項1〜15の何れか1項に記載の全方向性二偏波アンテナ。   A plurality of dual-polarized radiators (7, 9) arranged in a single or different columnar antenna (6) are driven as multi-input / multi-output antennas. Directional dual-polarized antenna. 単一周波数帯域、2種周波数帯域又は複数周波数帯域で二偏波放射器(7,9)を駆動できる請求項1〜16の何れか1項に記載の全方向性二偏波アンテナ。   The omnidirectional dual-polarized antenna according to any one of claims 1 to 16, wherein the dual-polarized radiator (7, 9) can be driven in a single frequency band, two kinds of frequency bands, or a plurality of frequency bands.
JP2015545682A 2012-12-06 2013-11-07 Omnidirectional dual-polarized antenna Active JP6014774B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012023938.6A DE102012023938A1 (en) 2012-12-06 2012-12-06 Dual polarized omnidirectional antenna
DE102012023938.6 2012-12-06
PCT/EP2013/003355 WO2014086452A1 (en) 2012-12-06 2013-11-07 Dual‑polarized, omnidirectional antenna

Publications (2)

Publication Number Publication Date
JP2016504843A JP2016504843A (en) 2016-02-12
JP6014774B2 true JP6014774B2 (en) 2016-10-25

Family

ID=49554198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015545682A Active JP6014774B2 (en) 2012-12-06 2013-11-07 Omnidirectional dual-polarized antenna

Country Status (6)

Country Link
EP (1) EP2929589B1 (en)
JP (1) JP6014774B2 (en)
KR (1) KR101672502B1 (en)
CN (1) CN105379006B (en)
DE (1) DE102012023938A1 (en)
WO (1) WO2014086452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133095B1 (en) * 2018-10-30 2020-07-13 서울특별시 Fire hose

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3120642B1 (en) 2014-03-17 2023-06-07 Ubiquiti Inc. Array antennas having a plurality of directional beams
DE102014014434A1 (en) * 2014-09-29 2016-03-31 Kathrein-Werke Kg Multiband spotlight system
US10164332B2 (en) * 2014-10-14 2018-12-25 Ubiquiti Networks, Inc. Multi-sector antennas
US10284268B2 (en) 2015-02-23 2019-05-07 Ubiquiti Networks, Inc. Radio apparatuses for long-range communication of radio-frequency information
US9761954B2 (en) 2015-10-09 2017-09-12 Ubiquiti Networks, Inc. Synchronized multiple-radio antenna systems and methods
GB2563574B (en) 2017-06-05 2021-08-04 International Electric Company Ltd A phased array antenna and apparatus incorporating the same
KR102318761B1 (en) 2017-08-24 2021-10-28 삼성전자주식회사 An electronic device comprising an antenna
GB201803433D0 (en) 2018-03-02 2018-04-18 Secr Defence Dual polarised antenna
CN110970736A (en) * 2019-12-02 2020-04-07 东软睿驰汽车技术(沈阳)有限公司 Microstrip antenna array
EP3883051A1 (en) 2020-03-19 2021-09-22 Maritime IoT Solutions BV Antenna array module
WO2021217215A1 (en) * 2020-05-01 2021-11-04 Fleet Space Technologies Pty Ltd Leo satellite communication systems and methods
USD989048S1 (en) 2021-01-15 2023-06-13 Fleet Space Technologies Pty Ltd Patch antenna

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737796A (en) * 1986-07-30 1988-04-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ground plane interference elimination by passive element
JP3456507B2 (en) * 1996-04-15 2003-10-14 日本電信電話株式会社 Sector antenna
US5969689A (en) * 1997-01-13 1999-10-19 Metawave Communications Corporation Multi-sector pivotal antenna system and method
DE19818772C2 (en) 1998-04-27 2000-05-31 Siemens Ag Process for reducing the radioactivity of a metal part
DE19823749C2 (en) 1998-05-27 2002-07-11 Kathrein Werke Kg Dual polarized multi-range antenna
DE19860121A1 (en) 1998-12-23 2000-07-13 Kathrein Werke Kg Dual polarized dipole emitter
FR2794290B1 (en) 1999-05-10 2007-04-20 Cit Alcatel VERTICAL POLARIZATION ANTENNA
FR2795240B1 (en) * 1999-06-18 2003-06-13 Nortel Matra Cellular RADIOCOMMUNICATION BASE STATION ANTENNA
JP4300724B2 (en) * 2001-09-05 2009-07-22 日立電線株式会社 Polarization diversity omnidirectional antenna
GB2383689A (en) * 2001-11-07 2003-07-02 William Hislop Dobbie Antenna assembly
DE10203873A1 (en) * 2002-01-31 2003-08-14 Kathrein Werke Kg Dual polarized radiator arrangement
DE10316787A1 (en) * 2003-04-11 2004-11-11 Kathrein-Werke Kg Reflector, especially for a cellular antenna
CN2727987Y (en) * 2004-07-28 2005-09-21 西安海天天线科技股份有限公司 A four-polarized array omnidirectional antenna
CN2752984Y (en) * 2004-09-23 2006-01-18 西安海天天线科技股份有限公司 Triangular prism eight port PHS base station antenna
DE102004057774B4 (en) 2004-11-30 2006-07-20 Kathrein-Werke Kg Mobile radio aerials for operation in several frequency bands, with several dipole radiator, in front of reflector, radiating in two different frequency bands, with specified spacing of radiator structure, radiator elements, etc
KR100807321B1 (en) * 2005-12-13 2008-02-28 주식회사 케이엠더블유 Adjustable beam antenna for mobile communication base station
DE102006037517A1 (en) * 2006-08-10 2008-02-21 Kathrein-Werke Kg Antenna arrangement, in particular for a mobile radio base station
DE102006037518B3 (en) * 2006-08-10 2008-03-06 Kathrein-Werke Kg Antenna arrangement, in particular for a mobile radio base station
DE102007060083A1 (en) * 2007-12-13 2009-06-18 Kathrein-Werke Kg Multiple gaps-multi bands-antenna-array has two groups provided by emitters or emitter modules, where emitters are formed for transmitting or receiving in common frequency band
JP4611401B2 (en) * 2008-05-30 2011-01-12 日本電業工作株式会社 Antenna device
JP5307651B2 (en) * 2009-06-26 2013-10-02 Kddi株式会社 Antenna device
WO2011026034A2 (en) * 2009-08-31 2011-03-03 Andrew Llc Modular type cellular antenna assembly
CN101714701B (en) * 2009-12-21 2013-06-19 京信通信系统(中国)有限公司 Dual-band and dual-polarization array antenna
WO2011120090A1 (en) 2010-03-31 2011-10-06 Argus Technologies (Australia) Pty Ltd Omni-directional multiple-input multiple-output antenna system
KR20120082279A (en) * 2011-01-13 2012-07-23 주식회사 에이스테크놀로지 Antenna including a radiator without plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133095B1 (en) * 2018-10-30 2020-07-13 서울특별시 Fire hose

Also Published As

Publication number Publication date
KR20150093680A (en) 2015-08-18
WO2014086452A1 (en) 2014-06-12
CN105379006A (en) 2016-03-02
EP2929589A1 (en) 2015-10-14
KR101672502B1 (en) 2016-11-04
EP2929589B1 (en) 2018-09-05
DE102012023938A1 (en) 2014-06-12
CN105379006B (en) 2018-07-06
JP2016504843A (en) 2016-02-12

Similar Documents

Publication Publication Date Title
JP6014774B2 (en) Omnidirectional dual-polarized antenna
EP3067987B1 (en) Multi-band, multi-polarized wireless communication antenna
EP3382800B1 (en) Luneburg lens antenna device
EP3028342B1 (en) Broadband antenna, multiband antenna unit and antenna array
US8970435B2 (en) Pie shape phased array antenna design
JP6365680B2 (en) Antenna module
US9871296B2 (en) Mixed structure dual-band dual-beam three-column phased array antenna
US9373884B2 (en) Dual-polarised, omnidirectional antenna
CN113454922B (en) Base station antenna with 4 ports having radiating element array without using duplexer
EP3231037B1 (en) High coverage antenna array and method using grating lobe layers
US10819022B1 (en) Partitioned variable inclination continuous transverse stub array
CN105474462A (en) Mixed structure dual-band dual-beam three-column phased array antenna
US11329390B2 (en) Multiband antenna array for mobile radio applications
CN112242603A (en) Base station antenna with multiband beamformer array and related method of operation
CN111066203A (en) Multi-band antenna array
US20170271759A1 (en) Antenna system and isolator structure thereof
JP2007295277A (en) Antenna device
EP3758141A1 (en) Base station antenna
US11581638B2 (en) Dual-beam antenna array
EP2849285B1 (en) Ultra-broadband antenna array with constant beamwidth throughout operating frequency band
WO2015159871A1 (en) Antenna and sector antenna
US4240080A (en) Short backfire antenna with sum and error patterns
US11283195B2 (en) Fast rolloff antenna array face with heterogeneous antenna arrangement
US11276943B2 (en) Low-profile vertically-polarized omni antenna
CN107104274B (en) Low-profile broadband wide-angle array beam scanning circularly polarized array antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250