EP3337073B1 - Procédé et dispositif destinés à la formation d'un champ de commande comprenant des informations sur des unités de ressource dans un système lan sans fil - Google Patents

Procédé et dispositif destinés à la formation d'un champ de commande comprenant des informations sur des unités de ressource dans un système lan sans fil Download PDF

Info

Publication number
EP3337073B1
EP3337073B1 EP16835422.3A EP16835422A EP3337073B1 EP 3337073 B1 EP3337073 B1 EP 3337073B1 EP 16835422 A EP16835422 A EP 16835422A EP 3337073 B1 EP3337073 B1 EP 3337073B1
Authority
EP
European Patent Office
Prior art keywords
field
sta
frequency band
ppdu
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16835422.3A
Other languages
German (de)
English (en)
Other versions
EP3337073A4 (fr
EP3337073A1 (fr
Inventor
Jinsoo Choi
Dongguk Lim
Hangyu Cho
Eunsung Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of EP3337073A1 publication Critical patent/EP3337073A1/fr
Publication of EP3337073A4 publication Critical patent/EP3337073A4/fr
Application granted granted Critical
Publication of EP3337073B1 publication Critical patent/EP3337073B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0043Realisations of complexity reduction techniques, e.g. use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present specification relates to a technique for transmitting/receiving data in wireless communication, and more particularly, to a method and apparatus for constructing a control field including information regarding a resource unit in a wireless local area network (WLAN) system.
  • WLAN wireless local area network
  • next-generation wireless local area network Discussion for a next-generation wireless local area network (WLAN) is in progress.
  • IEEE institute of electronic and electronics engineers
  • PHY physical
  • MAC medium access control
  • an object is to 1) improve an institute of electronic and electronics engineers (IEEE) 802.11 physical (PHY) layer and a medium access control (MAC) layer in bands of 2.4 GHz and 5 GHz, 2) increase spectrum efficiency and area throughput, 3) improve performance in actual indoor and outdoor environments such as an environment in which an interference source exists, a dense heterogeneous network environment, and an environment in which a high user load exists, and the like.
  • IEEE institute of electronic and electronics engineers
  • PHY physical
  • MAC medium access control
  • next-generation WLAN An environment which is primarily considered in the next-generation WLAN is a dense environment in which access points (APs) and stations (STAs) are a lot and under the dense environment, improvement of the spectrum efficiency and the area throughput is discussed. Further, in the next-generation WLAN, in addition to the indoor environment, in the outdoor environment which is not considerably considered in the existing WLAN, substantial performance improvement is concerned.
  • scenarios such as wireless office, smart home, stadium, Hotspot, and building/apartment are largely concerned in the next-generation WLAN and discussion about improvement of system performance in a dense environment in which the APs and the STAs are a lot is performed based on the corresponding scenarios.
  • HE-SIG-B Structure IEEE 802.11-15/0821R2, XP055514113, outlines an HE signal field structure for which HE-SIG-B does not have any OFDM symbol that is fully duplicated over operating BW and information regarding resource allocation and STA-ID in HE SIG-B.
  • the present specification proposes a control field including information regarding a resource unit in a wireless local area network (WLAN) system.
  • WLAN wireless local area network
  • control field according to the present specification may be constructed on the basis of multiple channels or frequency bands.
  • FIG. 1 is a conceptual view illustrating the structure of a wireless local area network (WLAN).
  • WLAN wireless local area network
  • FIG. 1 An upper part of FIG. 1 illustrates the structure of an infrastructure basic service set (BSS) of institute of electrical and electronic engineers (IEEE) 802.11.
  • BSS infrastructure basic service set
  • IEEE institute of electrical and electronic engineers
  • the wireless LAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, referred to as BSS).
  • BSSs 100 and 105 as a set of an AP and an STA such as an access point (AP) 125 and a station (STA1) 100-1 which are successfully synchronized to communicate with each other are not concepts indicating a specific region.
  • the BSS 105 may include one or more STAs 105-1 and 105-2 which may be joined to one AP 130.
  • the distribution system 110 may implement an extended service set (ESS) 140 extended by connecting the multiple BSSs 100 and 105.
  • ESS 140 may be used as a term indicating one network configured by connecting one or more APs 125 or 230 through the distribution system 110.
  • the AP included in one ESS 140 may have the same service set identification (SSID).
  • a portal 120 may serve as a bridge which connects the wireless LAN network (IEEE 802.11) and another network (e.g., 802.X).
  • IEEE 802.11 the wireless LAN network
  • 802.X another network
  • a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1, and 105-2 may be implemented.
  • the network is configured even between the STAs without the APs 125 and 130 to perform communication.
  • a network in which the communication is performed by configuring the network even between the STAs without the APs 125 and 130 is defined as an Ad-Hoc network or an independent basic service set (IBSS).
  • the STA as a predetermined functional medium that includes a medium access control (MAC) that follows a regulation of an Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard and a physical layer interface for a radio medium may be used as a meaning including all of the APs and the non-AP stations (STAs).
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the STA may be called various a name such as a mobile terminal, a wireless device, a wireless transmit/receive unit (WTRU), user equipment (UE), a mobile station (MS), a mobile subscriber unit, or just a user.
  • WTRU wireless transmit/receive unit
  • UE user equipment
  • MS mobile station
  • a mobile subscriber unit or just a user.
  • FIG. 2 is a diagram illustrating an example of a PPDU used in an IEEE standard.
  • an improved technique is provided, which is associated with a signal (alternatively, a control information field) used for the data field of the PPDU.
  • the signal provided in the embodiment may be applied onto high efficiency PPDU (HE PPDU) according to an IEEE 802.11ax standard. That is, the signal improved in the embodiment may be HE-SIG-A and/or HE-SIG-B included in the HE PPDU.
  • the HE-SIG-A and the HE-SIG-B may be represented even as the SIG-A and SIG-B, respectively.
  • the improved signal proposed in the embodiment is not particularly limited to an HE-SIG-A and/or HE-SIG-B standard and may be applied to control/data fields having various names, which include the control information in a wireless communication system transferring the user data.
  • FIG. 3 is a diagram illustrating an example of an HE PDDU.
  • the control information field provided in the embodiment may be the HE-SIG-B included in the HE PPDU.
  • the HE PPDU according to FIG. 3 is one example of the PPDU for multiple users and only the PPDU for the multiple users may include the HE-SIG-B and the corresponding HE SIG-B may be omitted in a PPDU for a single user.
  • the HE-PPDU for multiple users may include a legacy-short training field (L-STF), a legacy-long training field (L-LTF), a legacy-signal (L-SIG), a high efficiency-signal A (HE-SIG A), a high efficiency-signal-B (HE-SIG B), a high efficiency-short training field (HE-STF), a high efficiency-long training field (HE-LTF), a data field (alternatively, an MAC payload), and a packet extension (PE) field.
  • L-STF legacy-short training field
  • L-LTF legacy-long training field
  • L-SIG legacy-signal
  • HE-SIG A high efficiency-signal A
  • HE-SIG B high efficiency-short training field
  • HE-LTF high efficiency-long training field
  • PE packet extension
  • the respective fields may be transmitted during an illustrated time period (that is, 4 or 8 ⁇ s).
  • FIG. 4 is a diagram illustrating a layout of resource units (RUs) used in a band of 20 MHz.
  • resource units corresponding to tone (that is, subcarriers) of different numbers are used to constitute some fields of the HE-PPDU.
  • the resources may be allocated by the unit of the RU illustrated with respect to the HE-STF, the HE-LTF, and the data field.
  • 26 units that is, units corresponding to 26 tones.
  • 6 tones may be used as a guard band in a leftmost band of the 20 MHz band and 5 tones may be used as the guard band in a rightmost band of the 20 MHz band.
  • 7 DC tones may be inserted into a center band, that is, a DC band and a 26-unit corresponding to each 13 tones may be present at left and right sides of the DC band.
  • the 26-unit, a 52-unit, and a 106-unit may be allocated to other bands. Each unit may be allocated for a receiving station, that is, a user.
  • the RU layout of FIG. 4 may be used even in a situation for a single user (SU) in addition to the multiple users (MUs) and in this case, as illustrated in a lowermost part of FIG. 4 , one 242-unit may be used and in this case, three DC tones may be inserted.
  • FIG. 5 is a diagram illustrating a layout of resource units (RUs) used in a band of 40MHz.
  • 26-RU, 52-RU, 106-RU, 242-RU, 484-RU, and the like may be used even in one example of FIG. 5 .
  • 5 DC tones may be inserted into a center frequency, 12 tones may be used as the guard band in the leftmost band of the 40 MHz band and 11 tones may be used as the guard band in the rightmost band of the 40MHz band.
  • FIG. 6 is a diagram illustrating a layout of resource units (RUs) used in a band of 80MHz.
  • 26-RU, 52-RU, 106-RU, 242-RU, 484-RU, and the like may be used even in one example of FIG. 6 .
  • 7 DC tones may be inserted into the center frequency
  • 12 tones may be used as the guard band in the leftmost band of the 80MHz band
  • 11 tones may be used as the guard band in the rightmost band of the 80MHz band.
  • the 26-RU may be used, which uses 13 tones positioned at each of left and right sides of the DC band.
  • 996-RU when the RU layout is used for the single user, 996-RU may be used and in this case, 5 DC tones may be inserted. Meanwhile, the detailed number of RUs may be modified similarly to one example of each of FIG. 4 or 5 .
  • the detailed number of RUs may be modified similarly to one example of each of FIG. 4 or 5 .
  • FIG. 7 is a diagram illustrating another example of the HE PPDU.
  • a block illustrated in FIG. 7 is another example of describing the HE-PPDU block of FIG. 3 in terms of a frequency.
  • An illustrated L-STF 700 may include a short training orthogonal frequency division multiplexing (OFDM) symbol.
  • the L-STF 700 may be used for frame detection, automatic gain control (AGC), diversity detection, and coarse frequency/time synchronization.
  • AGC automatic gain control
  • An L-SIG 720 may be used for transmitting control information.
  • the L-SIG 720 may include information regarding a data rate and a data length. Further, the L-SIG 720 may be repeatedly transmitted. That is, a new format, in which the L-SIG 720 is repeated (for example, may be referred to as R-LSIG) may be configured.
  • An HE-SIG-A 730 may include the control information common to the receiving station.
  • the HE-SIG-A 730 may include information on 1) a DL/UL indicator, 2) a BSS color field indicating an identify of a BSS, 3) a field indicating a remaining time of a current TXOP period, 4) a bandwidth field indicating at least one of 20, 40, 80, 160 and 80+80 MHz, 5) a field indicating an MCS technique applied to the HE-SIG-B, 6) an indication field regarding whether the HE-SIG-B is modulated by a dual subcarrier modulation technique for MCS, 7) a field indicating the number of symbols used for the HE-SIG-B, 8) a field indicating whether the HE-SIG-B is configured for a full bandwidth MIMO transmission, 9) a field indicating the number of symbols of the HE-LTF, 10) a field indicating the length of the HE-LTF and a CP length, 11) a field indicating whether an OFDM symbol is present for LDPC coding, 12
  • An HE-SIG-B 740 may be included only in the case of the PPDU for the multiple users (MUs) as described above. Principally, an HE-SIG-A 750 or an HE-SIG-B 760 may include resource allocation information (alternatively, virtual resource allocation information) for at least one receiving STA.
  • resource allocation information alternatively, virtual resource allocation information
  • FIG. 8 is a block diagram illustrating one example of HE-SIG-B according to an embodiment.
  • the HE-SIG-B field includes a common field at a frontmost part and the corresponding common field is separated from a field which follows therebehind to be encoded. That is, as illustrated in FIG. 8 , the HE-SIG-B field may include a common field including the common control information and a user-specific field including user-specific control information.
  • the common field may include a CRC field corresponding to the common field, and the like and may be coded to be one BCC block.
  • the user-specific field subsequent thereafter may be coded to be one BCC block including the "user-specific field" for 2 users and a CRC field corresponding thereto as illustrated in FIG. 8 .
  • a previous field of the HE-SIG-B 740 may be transmitted in a duplicated form on an MU PPDU.
  • the HE-SIG-B 740 transmitted in some frequency band may even include control information for a data field corresponding to a corresponding frequency band (that is, the fourth frequency band) and a data field of another frequency band (e.g., a second frequency band) other than the corresponding frequency band.
  • a format may be provided, in which the HE-SIG-B 740 in a specific frequency band (e.g., the second frequency band) is duplicated with the HE-SIG-B 740 of another frequency band (e.g., the fourth frequency band).
  • the HE-SIG B 740 may be transmitted in an encoded form on all transmission resources.
  • a field after the HE-SIG B 740 may include individual information for respective receiving STAs receiving the PPDU.
  • the L-STF 700, the L-LTF 710, the L-SIG 720, the HE-SIG-A 730, and the HE-SIG-B 740 on the PPDU of FIG. 7 is referred to as a first field
  • at least one of the data field 770, the HE-STF 750, and the HE-LTF 760 may be referred to as a second field.
  • the first field may include a field associated with a legacy system and the second field may include a field associated with an HE system.
  • 256 FFT/IFFT may be applied to a bandwidth of 20 MHz
  • 512 FFT/IFFT may be applied to a bandwidth of 40 MHz
  • 1024 FFT/IFFT may be applied to a bandwidth of 80 MHz
  • 2048 FFT/IFFT may be applied to a bandwidth of continuous 160 MHz or discontinuous 160 MHz.
  • the length of the OFDM symbol may be a value acquired by adding the length of a guard interval (GI) to the IDFT/DFT length.
  • the length of the GI may have various values such as 0.4 ⁇ s, 0.8 ⁇ s, 1.6 ⁇ s, 2.4 ⁇ s, and 3.2 ⁇ s.
  • a frequency band used by the first field and a frequency band used by the second field accurately coincide with each other, but both frequency bands may not completely coincide with each other, in actual.
  • a primary band of the first field (L-STF, L-LTF, L-SIG, HE-SIG-A, and HE-SIG-B) corresponding to the first frequency band may be the same as the most portions of a frequency band of the second field (HE-STF, HE-LTF, and Data), but boundary surfaces of the respective frequency bands may not coincide with each other.
  • FIGS. 4 to 6 since multiple null subcarriers, DC tones, guard tones, and the like are inserted during arranging the RUs, it may be difficult to accurately adjust the boundary surfaces.
  • data which the AP transmits to the STA may be expressed as a terms called downlink data (alternatively, a downlink frame) and data (alternatively, a frame) which the STA transmits to the AP may be expressed as a term called uplink data (alternatively, an uplink frame).
  • downlink data alternatively, a downlink frame
  • uplink data alternatively, an uplink frame
  • transmission from the AP to the STA may be expressed as downlink transmission and transmission from the STA to the AP may be expressed as a term called uplink transmission.
  • a PHY protocol data unit (PPDU), a frame, and data transmitted through the downlink transmission may be expressed as terms such as a downlink PPDU, a downlink frame, and downlink data, respectively.
  • the PPDU may be a data unit including a PPDU header and a physical layer service data unit (PSDU) (alternatively, a MAC protocol data unit (MPDU)).
  • PSDU physical layer service data unit
  • MPDU MAC protocol data unit
  • the PPDU header may include a PHY header and a PHY preamble and the PSDU (alternatively, MPDU) may include the frame or indicate the frame (alternatively, an information unit of the MAC layer) or be a data unit indicating the frame.
  • the PHY header may be expressed as a physical layer convergence protocol (PLCP) header as another term and the PHY preamble may be expressed as a PLCP preamble as another term.
  • PLCP physical layer convergence protocol
  • a PPDU, a frame, and data transmitted through the uplink transmission may be expressed as terms such as an uplink PPDU, an uplink frame, and uplink data, respectively.
  • the whole bandwidth may be used for downlink transmission to one STA and uplink transmission to one STA.
  • the AP may perform downlink (DL) multi-user (MU) transmission based on multiple input multiple output (MU MIMO) and the transmission may be expressed as a term called DL MU MIMO transmission.
  • DL downlink
  • MU multi-user
  • MU MIMO multiple input multiple output
  • an orthogonal frequency division multiple access (OFDMA) based transmission method is preferably supported for the uplink transmission and/or downlink transmission. That is, data units (e.g., RUs) corresponding to different frequency resources are allocated to the user to perform uplink/downlink communication.
  • the AP may perform the DL MU transmission based on the OFDMA and the transmission may be expressed as a term called DL MU OFDMA transmission.
  • the AP may transmit the downlink data (alternatively, the downlink frame and the downlink PPDU) to the plurality of respective STAs through the plurality of respective frequency resources on an overlapped time resource.
  • the plurality of frequency resources may be a plurality of subbands (alternatively, sub channels) or a plurality of resource units (RUs).
  • the DL MU OFDMA transmission may be used together with the DL MU MIMO transmission.
  • the DL MU MIMO transmission based on a plurality of space-time streams (alternatively, spatial streams) may be performed on a specific subband (alternatively, sub channel) allocated for the DL MU OFDMA transmission.
  • uplink multi-user (UL MU) transmission in which the plurality of STAs transmits data to the AP on the same time resource may be supported.
  • Uplink transmission on the overlapped time resource by the plurality of respective STAs may be performed on a frequency domain or a spatial domain.
  • different frequency resources may be allocated to the plurality of respective STAs as uplink transmission resources based on the OFDMA.
  • the different frequency resources may be different subbands (alternatively, sub channels) or different resources units (RUs).
  • the plurality of respective STAs may transmit uplink data to the AP through different frequency resources.
  • the transmission method through the different frequency resources may be expressed as a term called a UL MU OFDMA transmission method.
  • the UL MU OFDMA transmission and the UL MU MIMO transmission may be used together with each other.
  • the UL MU MIMO transmission based on the plurality of space-time streams (alternatively, spatial streams) may be performed on a specific subband (alternatively, sub channel) allocated for the UL MU OFDMA transmission.
  • a wireless LAN system which supports the OFDMA technology. That is, the OFDMA technique may be applied to at least one of downlink and uplink. Further, the MU-MIMO technique may be additionally applied to at least one of downlink and uplink.
  • the OFDMA technique When the OFDMA technique is used, the multiple channels may be simultaneously used by not one terminal but multiple terminals without the limit by the primary channel rule. Therefore, the wider bandwidth may be operated to improve efficiency of operating a wireless resource.
  • per user information fields 960#1 to 960#N corresponding to the number of receiving STAs for receiving the trigger frame of FIG. 9 are preferably included.
  • the per user information field may be called an "RU allocation field”.
  • the control identifier (e.g., 1-bit identifier) may indicate whether a single RU corresponding to a full bandwidth (i.e., 40MHz band) of the transmission frequency band is allocated. That is, whether the 484-RU is allocated for 40MHz transmission may be indicated.
  • control identifier e.g., 1-bit identifier
  • the control identifier e.g., 1-bit identifier
  • the control identifier may also be used to indicate whether to use the aforementioned full bandwidth MU-MIMO.
  • FIG. 11 is a block diagram illustrating an example of a control field and data field configured according to the present embodiment.
  • a left block of FIG. 11 indicates information included in a first and/or second control field of a PPDU
  • a right block of FIG. 11 indicates information included in a data field of the PPDU.
  • the PPDU related to FIG. 11 may be a PPDU for a multi-user, that is, a plurality of receiving devices. More specifically, a field configuration may vary for the multi-user and the single user, and the example of FIG. 11 may be a PPDU for the multi-user.
  • the aforementioned control identifier (e.g., 1-bit identifier) may be omitted.
  • a different operation may be performed according to a first control field (e.g., HE-SIG-A) SU/MU identification field. That is, if the SU/MU identification field included in the first control field indicates MU transmission, an example is possible in which the control identifier is omitted and only a 26-type RU is allocated.
  • a first control field e.g., HE-SIG-A
  • each control field and the data field correspond to a 20MHz band.
  • the control identifier is included in a front portion of a common field of the SIG-B.
  • the control identifier may be called a "242 unit bitmap".
  • the same advantage as in FIG. 11 can be achieved in a sense that RU allocation information can be omitted according to the "242 unit bitmap", and also an overhead decrease effect can be achieved.
  • the aforementioned control identifier e.g., 1-bit identifier
  • the proposed identifier includes a first identifier indicating whether a 242-type RU is allocated for each 20MHz channel and a second identifier indicating whether a 484-RU (or a different sized 242 type RU) is allocated in a corresponding 20MHz.
  • FIG. 13 illustrates an example in which the present specification is applied to 80MHz transmission.
  • FIG. 13 relates to the first identifier 1310 and second identifier 1320 as illustrated.
  • an example for a frequency mapping relation between the second control field (i.e., SIG-B) and the data field may be additionally applied.
  • the SIG-B corresponding to the second channel may allocate the STA3 to a data field corresponding to the second channel, and may allocate the STA4 to a data field corresponding to the fourth channel. That is, the SIG-B corresponding to the second channel may first indicate STA identification information regarding the data field corresponding to the second channel, and thereafter may indicate STA identification information regarding the data field corresponding to the fourth channel.
  • the first/second identifiers of FIG. 14 may be used in the same manner as the first/second identifiers of FIG. 13 . Further, the example of FIG. 14 may have a predetermined mapping relation between the SIG-B and the data field similarly to the example of FIG. 13 . However, the example of FIG. 14 differs from the example of FIG. 13 in a sense that the SIG-B corresponding to the first channel is mapped to the data field corresponding to the first/second channels, and the SIG-B corresponding to the second channel is mapped to the data field corresponding to the third/fourth channels.
  • FIG. 15 illustrates another example according to the present specification.
  • a first identifier 1510 is included in a head portion of an SIG-B field corresponding to each 20MHz, followed by a second identifier 1520.
  • the first/second identifiers according to the example of FIG. 15 may correspond to the first/second identifiers of FIG. 13 and/or FIG. 14 .
  • FIG. 16 illustrates another example according to the present specification.
  • a first identifier 1610 is included in a head portion of an SIG-B field corresponding to each 20MHz, followed by a second identifier 1620.
  • all or some parts of information of the SIG-B field corresponding to first/second channels may be duplicated to third/fourth channels. That is, as shown in FIG. 16 , the SIG-B field corresponding to the first/second channels indicates ⁇ AID1, 2 ⁇ and ⁇ AID3, 2 ⁇ .
  • the SIG-B field corresponding to the third/fourth channels may also indicate ⁇ AID1, 2 ⁇ and ⁇ AID3, 2 ⁇ .
  • a second identifier 1650 corresponding to the first channel indicates "0"
  • a second identifier 1660 corresponding to the second channel indicates "1”.
  • FIG. 16 Extra other features of FIG. 16 are the same as those in the example of FIG. 13 to FIG. 15 .
  • FIG. 17 illustrates another example according to the present specification.
  • a first identifier 1710 is included in a head portion of an SIG-B field corresponding to each 20MHz, followed by a second identifier 1720.
  • all or some parts of information of the SIG-B field corresponding to first/second channels may be duplicated to third/fourth channels. That is, as shown in FIG. 17 , the SIG-B field corresponding to the first/second channels indicates ⁇ AID1 ⁇ and ⁇ AID2 ⁇ . The SIG-B field corresponding to the third/fourth channels may also indicate ⁇ AID1 ⁇ and ⁇ AID2 ⁇ .
  • a second identifier 1750 corresponding to the first channel indicates "1"
  • a second identifier 1760 corresponding to the second channel indicates "1”. This indicates that a 484-RU is not allocated to the first/second channels, and the 484-RU is allocated to the third/fourth channels.
  • FIG. 17 Extra other features of FIG. 17 are the same as those in the example of FIG. 13 to FIG. 16 .
  • FIG. 18 illustrates another example according to the present specification.
  • a first identifier 1810 is included in a head portion of an SIG-B field corresponding to each 20MHz, followed by a second identifier 1820.
  • all or some parts of information of the SIG-B field corresponding to first/second channels may be duplicated to third/fourth channels. That is, as shown in FIG. 18 , the SIG-B field corresponding to the first/second channels indicates ⁇ AID1, 2 ⁇ and ⁇ AID1, 2 ⁇ .
  • the SIG-B field corresponding to the third/fourth channels may also indicate ⁇ AID1, 2 ⁇ and ⁇ AID1, 2 ⁇ .
  • a second identifier 1850 corresponding to the first channel indicates "1"
  • a second identifier 1860 corresponding to the second channel indicates "1”. This indicates that a 484-RU is not allocated to the first/second channels, and the 484-RU is allocated to the third/fourth channels.
  • FIG. 18 Extra other features of FIG. 18 are the same as those in the example of FIG. 13 to FIG. 17 .
  • a PPDU 1901 of FIG. 19 may include all or some parts of the field shown in FIG. 7 . More specifically, as illustrated, it may include a first control field 1910, second control fields 1920 and 1930, and a data field 1940.
  • the first control field 1910 may correspond to the aforementioned SIG-A or HE-SIG-A
  • the second control field 1920 may correspond to the aforementioned SIG-B or HE-SIG B.
  • the first control field 1910 may include the HE-SIG A 730 of FIG. 7 and a technical feature shown in FIG. 11 to FIG. 18 . More specifically, the first control field 1910 may include control information for interpreting the PPDU 1901.
  • the PPDU 1901 may include a sub-field indicating a transmission frequency band at which the PPDU 1901 is transmitted (i.e., indicating 20MHz, 40MHz, 80MHz, 160MHz, etc.).
  • the first control field 1910 may include a 1-bit identifier indicating whether a single RU corresponding to a full bandwidth of the transmission frequency band is allocated. If the control identifier (e.g., 1-bit identifier) of the first control field 1910 is set to "1", it indicates that a single RU corresponding to the full bandwidth of the transmission frequency band is allocated. That is, if the transmission frequency band is a 20MHz band, it indicates that a single 242-RU is allocated, and for example, if the transmission frequency band is an 80MHz band, it indicates that a single 996-RU is allocated. Meanwhile, as described above, the 1-bit identifier has a technical advantage in that signaling for full bandwidth MU-MIMO is possible.
  • the first control field 1910 may be included in the PPDU 1901 in such a manner of being generated in unit of 20MHz and thereafter being duplicated on the basis of the transmission frequency band. That is, the first control field 1910 may be generated in unit of 20MHz, and may be duplicated according to an 80MHz band.
  • the second control field may correspond to the HE-SIG B field including the common field and user specific field shown in FIG. 8 . That is, the second control field may include the common field 1920 and the user specific field 1930.
  • common information such as RU allocation information for a user may be included in the common field 1920 of the SIG-B.
  • RU allocation information having a form of a look-up table including specific n-bit mapping information may be included.
  • the RU allocation information may indicate arrangement or allocation information of an RU applied to the corresponding data field 1940. That is, a structure in which a plurality of RUs are arranged may be indicated as shown in FIG. 4 to FIG. 6 . All STAs which have received the common field 1920 of the second control field may confirm a specific RU by which the corresponding data field 1940 is configured.
  • the second control field generally includes allocation information for a resource unit (RU) through the common field 1920.
  • a control identifier e.g., 1-bit identifier
  • the allocation information for the RU is preferably omitted. That is, the common field 1920 may be omitted. Since only a single RU is used when the control identifier is set to "1", there is no need to configure allocation information for the RU, and thus the common field 1920 can be omitted.
  • the common field 1920 of the second control field may include allocation information for the RU, and if the control identifier (e.g., 1-bit identifier) included in the first control field 1910 is set to "1", the common field 1920 of the second control field may not include the allocation information of the RU.
  • the control identifier e.g., 1-bit identifier
  • the second control fields 1920 and 1930 are used to demodulate the data field 1940.
  • the second control field and the data field 1940 may have a mapping relation as shown in FIG. 13 to FIG. 18 .
  • the second control field may correspond to first to fourth SIG-B channels. That is, the channel may be classified into four channels in unit of 20MHz.
  • the content of second control fields 1921 and 1931 corresponding to the first SIG-B channel may be the same as the content of second control fields 1912 and 1933 corresponding to the third SIG-B channel.
  • some parts of the second control field may be duplicated in the PPDU 1901.
  • the duplication for the second control field may be implemented in various manners.
  • second control fields corresponding to the first to fourth SIG-B channels may be called first, second, third, and fourth signal fields.
  • second signal fields 1922 and 1932 may be duplicated to construct fourth signal fields 1924 and 1934. That is, the content of the second control fields 1922 and 1932 corresponding to the second SIG-B channel may be the same as the content of the second control fields 1924 and 1934 corresponding to the fourth SIG-B channel.
  • the first signal fields 1921 and 1931 may correspond to a data field 1941 of the first data channel and a data field 1943 of the third data channel.
  • the second signal fields 1922 and 1932 may correspond to a data field 1942 of the second data channel and a data field 1944 of the fourth data channel.
  • the common field 1921 included in the first signal fields 1920 and 1931 may indicate allocation information for an RU applied to the data field 1941 of the first data channel and allocation information for an RU applied to the data field 1943 of the third data channel.
  • the allocation information for the RU applied to the data field 1941 of the first data channel is first inserted in a form of one BCC block in the first signal fields 1921 and 1931, and thereafter one BCC block for the data field 1943 of the third data channel is inserted.
  • the user specific field 1931 included in the first signal fields 1921 and 1931 may include identification information (e.g., AID) of an STA allocated to the data field 1941 of the first data channel and identification information (e.g., AID) of an STA allocated to the data field 1943 of the third data channel.
  • identification information e.g., AID
  • the aforementioned two BCC blocks are inserted into the first signal fields 1921 and 1931 and then an BCC block for an STA allocated to the data field 1941 of the first data channel is inserted. Thereafter, a BCC block for an STA allocated to the data field 1943 of the third data channel is inserted.
  • each SIG-B channel and data channel correspond to the four frequency bands described in FIG. 7 . That is, as described in the example of FIG. 7 , each boundary surface of the data channel and each boundary surface of the SIG-B channel may not be completely aligned.
  • the second control fields 1921 and 1931 corresponding to a first frequency band correspond to the two data fields 1941 and 1943 corresponding to the first/third frequency bands.
  • the second control fields 1922 and 1932 corresponding to the second frequency band correspond to the two data fields 1942 and 1944 corresponding to the second/fourth frequency bands.
  • FIG. 20 illustrates an example of SIG-B used for 80MHz transmission.
  • the SIG-B includes a common field 2010 and a user specific field 2020.
  • the common field 2010 and user specific field 2020 of the SIG-B include four fields respectively corresponding to four frequency bands 2041, 2042, 2043, and 2044 each of which corresponds to a 20MHz channel.
  • the four distinctive SIG-B fields in FIG. 20 may be called in various terms such as first to fourth signal fields or the like.
  • the SIG-B corresponding to the first frequency band 2041 is mapped to data fields of first and third frequency bands
  • the SIG-B corresponding to the second frequency band 2042 is mapped to data fields of the second and fourth frequency bands.
  • the SIG-B corresponding to the first frequency band 2041 may be duplicated to construct the SIG-B corresponding to the third frequency band 2043
  • the SIG-B corresponding to the second frequency band 2042 may be duplicated to construct the SIG-B corresponding to the fourth frequency band 2044.
  • the common field corresponding to the first frequency band 2041 includes an RU signalling field, and this is used for the data field corresponding to the first and third frequency bands.
  • Each RU signalling field shown in FIG. 20 may be constructed of one look-up table with respect to 20MHz. Since the common field corresponding to the first frequency band 2041 corresponds to the data field corresponding to two frequency bands, two RU signalling fields are simultaneously transmitted. A first field of the two RU signalling fields indicates the data field corresponding to the first frequency band 2041, and a second field indicates the data field corresponding to the third frequency band 2043.
  • the SIG-B corresponding to the second frequency band 2042 includes two RU signalling fields for the data field corresponding to the second and fourth frequency bands 2042 and 2044.
  • the two RU signalling fields may correspond to one unified look-up table instead of being present independently with each other. That is, it may be designed to instruct non-contiguous 40MHz allocation.
  • the SIG-B corresponding to the first and second frequency bands is duplicated on the third and fourth frequency bands.
  • the aforementioned example may be modified in various manners.
  • an additional technique feature described below may be applied to the RU look-up table and the RU signalling field.
  • RUs corresponding to a 20MHz band may be constructed by combining 26-RU, 52-RU, 106-RU (or 242-RU, aggregate 484-RU, 996-RU).
  • the RU look-up table may be constructed through 5-bit information.
  • it is configured to use a MU-MIMO scheme only for at least 106-RU, about 12 cases are present regarding 106-RU allocation.
  • a 3-bit or 4-bit MU-MIMO indicator i.e., MU-MIMO field
  • signalling may be performed with respect to 20MHz for: 1) information regarding a combination of RUs; and 2) information regarding an RU to which MU-MIMO is applied.
  • signalling related to the MU-MIMO scheme may be actualized as follows.
  • a 3-bit or 4-bit MU-MIMO indicator (i.e., MU-MIMO field) may be actualized as follows.
  • 3-bit MU-MIMO indicator The total number of user STAs that can be multiplexed to the 106-RU is 8. For example, the total number of users can be indicated. More specifically, "000" and “111" may respectively indicate that 1 and 8 user STAs are multiplexed to the 106-RU according to the MU-MIMO scheme. That is, the number of user STAs to be multiplexed according to the MU-MIMO scheme may be indicated while indicating that the MU-MIMO scheme is applied.
  • the MU-MIMO indicator (i.e., MU-MIMO field) may be actualized as follows.
  • a user STA to be multiplexed to each 106-RU may be indicated in unit of 2 bits.
  • a combination of the number of users that can be multiplexed to each 106-RU may be limited, and may be configured as follows for example.
  • the combination of user STAs that can be allocated to each 106-RU may be indicated by using 16 cases expressed with 3-bit information.
  • FIG. 21 is a block diagram illustrating a wireless device to which the present embodiment is applicable.
  • a wireless device is an STA capable of implementing the aforementioned embodiment, and may be an AP 2100 or a non-AP STA.
  • the wireless device may correspond to the aforementioned user, or may correspond to a transmission device for transmitting a signal to the user.
  • the AP 2100 includes a processor 2110, a memory 2120, and a radio frequency (RF) unit 2130.
  • the RF unit 2130 may be coupled to the processor 2110 to transmit/receive a radio signal.
  • the processor 2110 may implement the functions, procedures, and/or methods proposed in the present specification.
  • the processor 2110 may be configured to perform an operation according to the aforementioned embodiment. That is, the processor 2110 may perform an operation that can be performed by the AP among operations disclosed in the embodiment of FIG. 1 to FIG. 20 .
  • a non-AP STA 2150 includes a processor 2160, a memory 2170, and an RF unit 2180.
  • the RF unit 2180 may be coupled to the processor 2160 to transmit/receive a radio signal.
  • the processor 2160 may implement the functions, procedures, and/or methods proposed in the present invention.
  • the processor 2160 may be configured to perform an operation of the non-AP STA according to the aforementioned embodiment.
  • the processor may perform the operation of the non-AP STA disclosed in the embodiment of FIG. 1 to FIG. 20 .
  • the processors 2110 and 2160 may include application-specific integrated circuits (ASICs), other chipsets, logical circuits, data processing devices, and/or converters for mutually converting a baseband signal and a radio signal.
  • the memories 2120 and 2170 may include a read-only memory (ROM), a random access memory (RAM), a flash memory, a memory card, a storage medium and/or other storage devices.
  • the RF units 2130 and 2180 may include at least one antenna to transmit and/or receive the radio signal.
  • the above-described scheme may be implemented using a module (procedure, function, etc.) which performs the above function.
  • the module may be stored in the memories 2120 and 2170, and may be executed by the processors 2110 and 2160.
  • the memories 2120 and 2170 may be disposed to the processors 2110 and 2160 internally or externally, and may be connected to the processors 2110 and 2160 using a variety of well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Claims (16)

  1. Procédé de transmission d'un signal dans un système de réseau local sans fil, WLAN, utilisant une pluralité d'unités de ressources, RU, utilisées pour une bande de fréquences prédéterminées, le procédé comprenant :
    la constitution d'une unité de données de protocole de couche physique, PHY, PPDU, incluant un premier, un deuxième, un troisième et un quatrième champ de données utilisés pour une première, une deuxième, une troisième et une quatrième bande de fréquences, respectivement ; et
    la transmission de la PPDU,
    dans lequel chaque RU inclut une pluralité de sous-porteuses,
    dans lequel la PPDU inclut un premier champ de signal utilisé pour la première bande de fréquences et un deuxième champ de signal utilisé pour la deuxième bande de fréquences,
    dans lequel le premier champ de signal inclut des informations d'identification relatives à une première station, STA, affectée au premier champ de données et à une troisième STA affectée au troisième champ de données, et inclut en outre des informations d'affectation relatives à une première RU pour le premier champ de données et à une troisième RU pour le troisième champ de données,
    dans lequel le deuxième champ de signal inclut des informations d'identification relatives à une deuxième STA affectée au deuxième champ de données et à une quatrième STA affectée au quatrième champ de données, et inclut en outre des informations d'affectation relatives à une deuxième RU pour le deuxième champ de données et à une quatrième RU pour le quatrième champ de données,
    dans lequel la PPDU inclut un troisième champ de signal dans lequel le premier champ de signal est dupliqué, et le troisième champ de signal est utilisé pour la troisième bande de fréquences, et
    dans lequel la PPDU inclut un quatrième champ de signal dans lequel le deuxième champ de signal est dupliqué, et le quatrième champ de signal est utilisé pour la quatrième bande de fréquences.
  2. Procédé selon la revendication 1, dans lequel le premier champ de signal inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  3. Procédé selon la revendication 1,
    dans lequel le premier champ de signal inclut un champ commun d'utilisateur et un champ spécifique d'utilisateur,
    dans lequel le champ commun d'utilisateur inclut des informations d'affectation relatives à au moins une RU pour le premier champ de données et le troisième champ de données, et
    dans lequel le champ spécifique d'utilisateur inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  4. Procédé selon la revendication 1,
    dans lequel la PPDU est transmise par l'intermédiaire d'une bande de 80 MHz,
    dans lequel chacune de la première à la quatrième bande de fréquences est utilisée pour une bande de 20 MHz, et
    dans lequel chaque RU inclut 26, 52, 106, 242, 484, ou 996 sous-porteuses.
  5. Appareil (2100) dans un système de réseau local sans fil, WLAN, utilisant une pluralité d'unités de ressources, RU, utilisées pour une bande de fréquences prédéterminées, l'appareil (2100) comprenant :
    une unité en radiofréquence, RF (2130), configurée pour transmettre un signal radio ; et
    un processeur (2110) opérationnellement couplé à l'unité RF (2130),
    dans lequel le processeur (2110) est configuré pour :
    constituer une unité de données de protocole de couche physique, PHY, PPDU, incluant un premier, un deuxième, un troisième et un quatrième champ de données utilisés pour une première, une deuxième, une troisième et une quatrième bande de fréquences, respectivement ; et
    transmettre la PPDU,
    dans lequel chaque RU inclut une pluralité de sous-porteuses,
    dans lequel la PPDU inclut un premier champ de signal utilisé pour la première bande de fréquences et un deuxième champ de signal utilisé pour la deuxième bande de fréquences,
    dans lequel le premier champ de signal inclut des informations d'identification relatives à une première station, STA, affectée au premier champ de données et à une troisième STA affectée au troisième champ de données, et inclut en outre des informations d'affectation relatives à une première RU pour le premier champ de données et à une troisième RU pour le troisième champ de données,
    dans lequel le deuxième champ de signal inclut des informations d'identification relatives à une deuxième STA affectée au deuxième champ de données et à une quatrième STA affectée au quatrième champ de données, et inclut en outre des informations d'affectation relatives à une deuxième RU pour le deuxième champ de données et à une quatrième RU pour le quatrième champ de données,
    dans lequel la PPDU inclut un troisième champ de signal dans lequel le premier champ de signal est dupliqué, et le troisième champ de signal est utilisé pour la troisième bande de fréquences, et
    dans lequel la PPDU inclut un quatrième champ de signal dans lequel le deuxième champ de signal est dupliqué, et le quatrième champ de signal est utilisé pour la quatrième bande de fréquences.
  6. Appareil (2100) selon la revendication 5, dans lequel le premier champ de signal inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  7. Appareil (2100) selon la revendication 5,
    dans lequel le premier champ de signal inclut un champ commun d'utilisateur et un champ spécifique d'utilisateur,
    dans lequel le champ commun d'utilisateur inclut des informations d'affectation relatives à au moins une RU pour le premier champ de données et le troisième champ de données, et
    dans lequel le champ spécifique d'utilisateur inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  8. Appareil (2100) selon la revendication 5,
    dans lequel la PPDU est transmise par l'intermédiaire d'une bande de 80 MHz,
    dans lequel chacune de la première à la quatrième bande de fréquences est utilisée pour une bande de 20 MHz, et
    dans lequel chaque RU inclut 26, 52, 106, 242, 484, ou 996 sous-porteuses.
  9. Procédé de réception d'un signal dans un système de réseau local sans fil, WLAN, utilisant une pluralité d'unités de ressources, RU, utilisées pour une bande de fréquences prédéterminées, le procédé comprenant :
    la réception d'une unité de données de protocole de couche physique, PHY, PPDU, incluant un premier, un deuxième, un troisième et un quatrième champ de données utilisés pour une première, une deuxième, une troisième et une quatrième bande de fréquences, respectivement,
    dans lequel chaque RU inclut une pluralité de sous-porteuses,
    dans lequel la PPDU inclut un premier champ de signal utilisé pour la première bande de fréquences et un deuxième champ de signal utilisé pour la deuxième bande de fréquences,
    dans lequel le premier champ de signal inclut des informations d'identification relatives à une première station, STA, affectée au premier champ de données et à une troisième STA affectée au troisième champ de données, et inclut en outre des informations d'affectation relatives à une première RU pour le premier champ de données et à une troisième RU pour le troisième champ de données,
    dans lequel le deuxième champ de signal inclut des informations d'identification relatives à une deuxième STA affectée au deuxième champ de données et à une quatrième STA affectée au quatrième champ de données, et inclut en outre des informations d'affectation relatives à une deuxième RU pour le deuxième champ de données et à une quatrième RU pour le quatrième champ de données,
    dans lequel la PPDU inclut un troisième champ de signal dans lequel le premier champ de signal est dupliqué, et le troisième champ de signal est utilisé pour la troisième bande de fréquences, et
    dans lequel la PPDU inclut un quatrième champ de signal dans lequel le deuxième champ de signal est dupliqué, et le quatrième champ de signal est utilisé pour la quatrième bande de fréquences.
  10. Procédé selon la revendication 9, dans lequel le premier champ de signal inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  11. Procédé selon la revendication 9,
    dans lequel le premier champ de signal inclut un champ commun d'utilisateur et un champ spécifique d'utilisateur,
    dans lequel le champ commun d'utilisateur inclut des informations d'affectation relatives à au moins une RU pour le premier champ de données et le troisième champ de données, et
    dans lequel le champ spécifique d'utilisateur inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  12. Procédé selon la revendication 9,
    dans lequel la PPDU est transmise par l'intermédiaire d'une bande de 80 MHz,
    dans lequel chacune de la première à la quatrième bande de fréquences est utilisée pour une bande de 20 MHz, et
    dans lequel chaque RU inclut 26, 52, 106, 242, 484, ou 996 sous-porteuses.
  13. Appareil (2150) dans un système de réseau local sans fil, WLAN, utilisant une pluralité d'unités de ressources, RU, utilisées pour une bande de fréquences prédéterminées, l'appareil (2150) comprenant :
    une unité en radiofréquence, RF (2180), configurée pour recevoir un signal radio ; et
    un processeur (2160) opérationnellement couplé à l'unité RF (2180),
    dans lequel le processeur (2160) est configuré pour :
    recevoir une unité de données de protocole de couche physique, PHY, PPDU, incluant un premier, un deuxième, un troisième et un quatrième champ de données utilisés pour une première, une deuxième, une troisième et une quatrième bande de fréquences, respectivement,
    dans lequel chaque RU inclut une pluralité de sous-porteuses,
    dans lequel la PPDU inclut un premier champ de signal utilisé pour la première bande de fréquences et un deuxième champ de signal utilisé pour la deuxième bande de fréquences,
    dans lequel le premier champ de signal inclut des informations d'identification relatives à une première station, STA, affectée au premier champ de données et à une troisième STA affectée au troisième champ de données, et inclut en outre des informations d'affectation relatives à une première RU pour le premier champ de données et à une troisième RU pour le troisième champ de données,
    dans lequel le deuxième champ de signal inclut des informations d'identification relatives à une deuxième STA affectée au deuxième champ de données et à une quatrième STA affectée au quatrième champ de données, et inclut en outre des informations d'affectation relatives à une deuxième RU pour le deuxième champ de données et à une quatrième RU pour le quatrième champ de données,
    dans lequel la PPDU inclut un troisième champ de signal dans lequel le premier champ de signal est dupliqué, et le troisième champ de signal est utilisé pour la troisième bande de fréquences, et
    dans lequel la PPDU inclut un quatrième champ de signal dans lequel le deuxième champ de signal est dupliqué, et le quatrième champ de signal est utilisé pour la quatrième bande de fréquences.
  14. Appareil (2150) selon la revendication 13, dans lequel le premier champ de signal inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  15. Appareil (2150) selon la revendication 13,
    dans lequel le premier champ de signal inclut un champ commun d'utilisateur et un champ spécifique d'utilisateur,
    dans lequel le champ commun d'utilisateur inclut des informations d'affectation relatives à au moins une RU pour le premier champ de données et le troisième champ de données, et
    dans lequel le champ spécifique d'utilisateur inclut des identifiants d'association, AID, de la première STA et de la troisième STA.
  16. Appareil (2150) selon la revendication 13,
    dans lequel la PPDU est transmise par l'intermédiaire d'une bande de 80 MHz,
    dans lequel chacune de la première à la quatrième bande de fréquences est utilisée pour une bande de 20 MHz, et
    dans lequel chaque RU inclut 26, 52, 106, 242, 484, ou 996 sous-porteuses.
EP16835422.3A 2015-08-10 2016-08-10 Procédé et dispositif destinés à la formation d'un champ de commande comprenant des informations sur des unités de ressource dans un système lan sans fil Active EP3337073B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562203363P 2015-08-10 2015-08-10
US201562203395P 2015-08-11 2015-08-11
PCT/KR2016/008763 WO2017026782A1 (fr) 2015-08-10 2016-08-10 Procédé et dispositif destinés à la formation d'un champ de commande comprenant des informations sur des unités de ressource dans un système lan sans fil

Publications (3)

Publication Number Publication Date
EP3337073A1 EP3337073A1 (fr) 2018-06-20
EP3337073A4 EP3337073A4 (fr) 2019-03-27
EP3337073B1 true EP3337073B1 (fr) 2021-05-05

Family

ID=57983290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16835422.3A Active EP3337073B1 (fr) 2015-08-10 2016-08-10 Procédé et dispositif destinés à la formation d'un champ de commande comprenant des informations sur des unités de ressource dans un système lan sans fil

Country Status (6)

Country Link
US (1) US10320545B2 (fr)
EP (1) EP3337073B1 (fr)
JP (1) JP6484711B2 (fr)
KR (1) KR101901449B1 (fr)
CN (1) CN107005393B (fr)
WO (1) WO2017026782A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487489B (zh) * 2015-09-01 2022-05-06 华为技术有限公司 传输信息的方法、无线局域网装置
US10057924B2 (en) * 2015-05-27 2018-08-21 Intel IP Corporation High efficiency signal field in high efficiency wireless local area network
US10505691B2 (en) * 2015-08-20 2019-12-10 Lg Electronics Inc. Method and apparatus for configuring frame unit comprising control field indicating data fields in wireless LAN system
US20170085461A1 (en) * 2015-09-23 2017-03-23 Qualcomm Incorporated Color assignments for peer-to-peer (p2p) transmissions
US10356784B2 (en) * 2016-06-14 2019-07-16 Lg Electronics Inc. Method and apparatus for constructing control field including information regarding resource unit in wireless local area network system
US10200514B2 (en) * 2016-06-29 2019-02-05 Intel IP Corporation Pre-high-efficiency (HE)-short training field preamble transmission for the HE-trigger based physical layer convergence protocol (PLCP) protocol data unit (PPDU)
JP6905580B2 (ja) * 2017-03-15 2021-07-21 株式会社東芝 無線通信装置
US11490261B2 (en) * 2018-07-10 2022-11-01 Lg Electronics Inc. Method and device for transmitting data in wireless LAN system
CN116133130A (zh) * 2018-07-11 2023-05-16 华为技术有限公司 用于数据传输的方法和装置
WO2020085783A1 (fr) * 2018-10-23 2020-04-30 엘지전자 주식회사 Procédé de configuration de champ de signal dans un système de communications sans fil
US20220377603A1 (en) * 2019-10-07 2022-11-24 Lg Electronics Inc. Signaling for data duplication transmission
CN114930779B (zh) * 2019-11-09 2023-11-17 Lg电子株式会社 在无线通信系统中构造前导码的方法
US20230006784A1 (en) * 2019-11-25 2023-01-05 Lg Electronics Inc. Method and apparatus for receiving ppdu via multiple ru in wireless lan system
KR20220088721A (ko) * 2019-11-29 2022-06-28 엘지전자 주식회사 무선랜 시스템에서 다중 ru를 통해 ppdu를 수신하는 방법 및 장치
CN113133116A (zh) * 2020-01-10 2021-07-16 华为技术有限公司 资源单元合并指示的方法和通信装置
EP4173411A4 (fr) * 2020-06-26 2023-12-13 Panasonic Intellectual Property Corporation of America Appareil de communication et procédé de communication pour signalisation d'attribution d'unités de ressources
WO2022050629A1 (fr) * 2020-09-03 2022-03-10 엘지전자 주식회사 Procédé et dispositif d'attribution de ressources en limitant des ru et des mru pour une sta fonctionnant à seulement 20 mhz dans un système lan sans fil
EP4255091A4 (fr) * 2021-01-08 2024-05-15 Lg Electronics Inc Procédé et appareil pour recevoir une adresse mac d'une autre sta à l'intérieur d'un mld de réception dans un système lan sans fil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064943A1 (fr) * 2013-10-29 2015-05-07 Lg Electronics Inc. Procédé et dispositif de transmission de données
EP3141064A1 (fr) * 2014-05-07 2017-03-15 Qualcomm Incorporated Procédés et appareil de signalisation d'attributions d'utilisateur dans des réseaux de communication sans fil multi-utilisateur
EP3185497A2 (fr) * 2014-08-21 2017-06-28 LG Electronics Inc. Procédé destiné à une transmission en liaison montante dans un système de communication sans fil, et appareil correspondant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102696270B (zh) * 2009-11-13 2016-06-29 交互数字专利控股公司 在无线通信中用于支持管理动作以得到甚高吞吐量的方法和设备
WO2011129618A2 (fr) * 2010-04-13 2011-10-20 엘지전자 주식회사 Procédé et appareil de communication dans un système lan sans fil
US20110261823A1 (en) * 2010-04-22 2011-10-27 Samsung Electronics Co., Ltd. Method and system for multiplexing data streaming in audio/video networks
CN103095629B (zh) * 2011-11-01 2017-04-26 华为技术有限公司 数据发送和接收方法、设备和系统
US9780919B2 (en) 2013-07-05 2017-10-03 Quallcomm, Incorporated High efficiency WLAN preamble structure
US20160302156A1 (en) * 2013-11-25 2016-10-13 Lg Electronics Inc. Method and device for transmitting uplink frame in wireless lan
US9681335B2 (en) * 2014-06-19 2017-06-13 Samsung Electronics Co., Ltd. Methods for bandwidth efficient operations in wireless local area networks
ES2769056T3 (es) * 2015-01-29 2020-06-24 Lg Electronics Inc Método para transmitir información de asignación de recursos de transmisión de datos en un sistema LAN inalámbrico, y aparato para el mismo
US10389563B2 (en) * 2015-05-05 2019-08-20 Intel IP Corporation Systems and methods for Wi-Fi high efficiency preambles for resource unit allocation
CN107925470B (zh) * 2015-08-07 2021-03-19 纽瑞科姆有限公司 一种用于促进无线网络通信的接入点、站、实现方法及装置
US10050751B2 (en) * 2015-08-11 2018-08-14 Lg Electronics Inc. Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
US10412718B2 (en) * 2015-12-21 2019-09-10 Qualcomm Incorporated Preamble design aspects for high efficiency wireless local area networks
US10433306B2 (en) * 2016-03-23 2019-10-01 Lg Electronics Inc. Method for configuring frame including signal field including control information for data field in wireless local area network system and apparatus therefor
US10356784B2 (en) * 2016-06-14 2019-07-16 Lg Electronics Inc. Method and apparatus for constructing control field including information regarding resource unit in wireless local area network system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064943A1 (fr) * 2013-10-29 2015-05-07 Lg Electronics Inc. Procédé et dispositif de transmission de données
EP3141064A1 (fr) * 2014-05-07 2017-03-15 Qualcomm Incorporated Procédés et appareil de signalisation d'attributions d'utilisateur dans des réseaux de communication sans fil multi-utilisateur
EP3185497A2 (fr) * 2014-08-21 2017-06-28 LG Electronics Inc. Procédé destiné à une transmission en liaison montante dans un système de communication sans fil, et appareil correspondant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOONSUK KIM ET AL: "HE-SIG-B Structure Authors: Name Affiliation Address Phone Email", IEEE 802.11-15/0821R2, 15 July 2015 (2015-07-15), pages 1 - 19, XP055514113 *

Also Published As

Publication number Publication date
JP2017533676A (ja) 2017-11-09
CN107005393B (zh) 2020-08-11
KR20170042370A (ko) 2017-04-18
EP3337073A4 (fr) 2019-03-27
WO2017026782A1 (fr) 2017-02-16
KR101901449B1 (ko) 2018-09-21
CN107005393A (zh) 2017-08-01
JP6484711B2 (ja) 2019-03-13
US20170373806A1 (en) 2017-12-28
US10320545B2 (en) 2019-06-11
EP3337073A1 (fr) 2018-06-20

Similar Documents

Publication Publication Date Title
EP3337073B1 (fr) Procédé et dispositif destinés à la formation d'un champ de commande comprenant des informations sur des unités de ressource dans un système lan sans fil
US10050751B2 (en) Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
EP3975463B1 (fr) Procédé et dispositif pour la formation d'un signal de contrôle comprenant un champ de contrôle dans un système de réseau local sans fil
US10701701B2 (en) Method and device for allocating resource unit on basis of container in wireless LAN
US10111270B2 (en) Method and apparatus for receiving signal by using resource units in a wireless local area system
US10651983B2 (en) Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
US10224987B2 (en) Method and apparatus for configuring signal field used for multiple resource units in wireless LAN system
US10433306B2 (en) Method for configuring frame including signal field including control information for data field in wireless local area network system and apparatus therefor
US10356784B2 (en) Method and apparatus for constructing control field including information regarding resource unit in wireless local area network system
US10516512B2 (en) Method and apparatus for configuring control information indicating resource unit in wireless local area network system
CN107113830B (zh) 用于在无线lan中分配资源单元的方法和装置
US10764100B2 (en) Method and device for configuring signal field in wireless LAN system
US10212005B2 (en) Method and apparatus for generating training signal using binary sequence in wireless LAN system
US10505691B2 (en) Method and apparatus for configuring frame unit comprising control field indicating data fields in wireless LAN system

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190221

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 5/00 20060101AFI20190215BHEP

Ipc: H04W 84/12 20090101ALI20190215BHEP

Ipc: H04L 1/00 20060101ALI20190215BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191114

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 5/00 20060101AFI20201103BHEP

Ipc: H04L 1/08 20060101ALI20201103BHEP

Ipc: H04W 84/12 20090101ALI20201103BHEP

Ipc: H04W 72/12 20090101ALI20201103BHEP

Ipc: H04L 1/00 20060101ALI20201103BHEP

Ipc: H04W 72/04 20090101ALI20201103BHEP

Ipc: H04L 27/26 20060101ALI20201103BHEP

INTG Intention to grant announced

Effective date: 20201118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602016057544

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1391185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016057544

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1391185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210806

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210906

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016057544

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

26N No opposition filed

Effective date: 20220208

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210810

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210810

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230706

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230705

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230705

Year of fee payment: 8

Ref country code: DE

Payment date: 20230705

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505