EP3331089B1 - Ortho mode transducer for reducing coupling of fundamental modes - Google Patents

Ortho mode transducer for reducing coupling of fundamental modes Download PDF

Info

Publication number
EP3331089B1
EP3331089B1 EP17204899.3A EP17204899A EP3331089B1 EP 3331089 B1 EP3331089 B1 EP 3331089B1 EP 17204899 A EP17204899 A EP 17204899A EP 3331089 B1 EP3331089 B1 EP 3331089B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
connections
orthomode transducer
orthomode
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17204899.3A
Other languages
German (de)
French (fr)
Other versions
EP3331089A1 (en
Inventor
Philipp Kohl
Michael Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP3331089A1 publication Critical patent/EP3331089A1/en
Application granted granted Critical
Publication of EP3331089B1 publication Critical patent/EP3331089B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/082Transitions between hollow waveguides of different shape, e.g. between a rectangular and a circular waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions

Definitions

  • An orthomode coupler for reducing coupling of basic modes is provided.
  • An arrangement for generating a circularly polarized electromagnetic wave in the waveguide of the orthomode coupler is also provided.
  • An orthomode coupler arrangement is also provided.
  • stubs are usually used.
  • Compensation with stubs is frequency dependent and only works within a limited frequency range. This takes up space and increases the weight, which is a limiting factor when used in space on a satellite.
  • Computer Orthomode Transducers Using Digital Polarization Synthesis discloses an orthomode coupler with a 90 ° measuring head arrangement and an orthomode coupler with a 120 ° measuring head arrangement.
  • US 5,459,441 A discloses a 90 ° measuring head arrangement.
  • DE 199 22 709 A1 discloses an arrangement with opposite waveguides that are rotated 90 ° to each other.
  • US 7,408,427 B1 discloses an arrangement of 4 waveguides, one waveguide being arranged at 90 °, 180 ° and 270 ° to another waveguide.
  • JPH 11 355 004 A discloses an orthomode coupler based on a circular waveguide with two connections, the connections being rotated by an angle of 100 ° to one another.
  • an orthomode coupler for reducing coupling of basic modes, comprising: a waveguide that is designed to carry a dual polarized electromagnetic wave; a first connection that is arranged on the waveguide in such a way that one that is guided through the first connection electromagnetic wave has a first polarization direction; a second connection, which is arranged on the waveguide such that an electromagnetic wave guided through the second connection has a second polarization direction; wherein the first and second connections are arranged in the circumferential direction of the waveguide at an angle other than 90 ° relative to one another, and wherein longitudinal directions of the first and second connections form an angle between 110 ° and 115 °.
  • the first and second connections can also be referred to as ports or gates.
  • the first and second connection can be a rectangular waveguide.
  • a respective long side of the first and second rectangular waveguide can be aligned in the longitudinal direction of the waveguide.
  • the saving in weight makes the orthomodal coupler, the arrangement and the orthomodal coupler arrangement useful for a satellite. Because the available payload is limited and therefore a larger proportion of the payload can be used elsewhere, for example for fuel (e.g. xenon).
  • fuel e.g. xenon
  • FIG 1A schematically shows an orthomode coupler 100 for reducing coupling of basic modes.
  • the orthomode coupler 100 comprises a waveguide 101, a first connection 110 and a second connection 120.
  • the waveguide 101 is designed to carry a dual polarized electromagnetic wave.
  • the first connection 110 is arranged on the waveguide 101 such that an electromagnetic wave guided through the first connection 110 has a first polarization direction Ex.
  • the second connection 120 is arranged on the waveguide 101 such that an electromagnetic wave guided through the second connection 120 has a second polarization direction Ey.
  • the first 110 and second 120 connections are arranged in the circumferential direction of the waveguide at an angle different from one another by 90 °. In Figure 1A the angle is shown as an example with an angle> 90 °.
  • Figure 1B also schematically shows the orthomode coupler Figure 1A in a 3D view.
  • embodiments relating to the orthomode coupler are made out Figure 1A and Figure 1B described.
  • the first 110 and second 120 connections are, as ports or gates, connection points 110 and 120 for rectangular waveguides.
  • a flange can be used for the connection, which is adapted in such a way that a rectangular waveguide, elliptical waveguide or web waveguide dimensioned for a specific frequency range can be attached to it.
  • a respective long side of the first 110 and second 120 rectangular waveguide is aligned in the longitudinal direction of the waveguide 101.
  • the waveguide 101 is in Figure 1A and Figure 1B shown as a circular waveguide. It is also conceivable that the waveguide 101 is a coaxial conductor.
  • the first 110 and second 120 connections are arranged such that the electromagnetic wave passed through the first connection 110 and the electromagnetic wave passed through the second 120 connection form the dual polarized electromagnetic wave.
  • the first 110 and second 120 connections are arranged on a circumference of the circular waveguide 101 and form an angle with one another which is greater than 90 °.
  • the first Ex and the second polarization direction Ey essentially orthogonal to each other. In this way, the basic modes can be essentially decoupled from one another.
  • the first 110 and second 120 connections are arranged on the circular waveguide 101 such that the first 110 and second 120 connections have the same position in the longitudinal direction of the waveguide.
  • the longitudinal direction is determined by a direction of wave propagation in the circular waveguide 101.
  • connections 110 and 120 themselves can have longitudinal directions.
  • the longitudinal directions correspond to the feed directions of the first 110 and second 120 connections.
  • the feed direction is the mode propagation direction of the mode adapted to the specific frequency range.
  • the longitudinal directions of the first 110 and second 120 connection are perpendicular to the longitudinal direction of the circular waveguide 101.
  • the longitudinal directions of the first and second connection can assume an angle between 100 ° and 130 °.
  • the longitudinal directions of the first and second connections form an angle between 100 ° and 115 °.
  • the two connections 110 and 120 are arranged along the circumferential direction of the circular semiconductor 101 on the circumference of the circular semiconductor at a 110 ° angle relative to one another.
  • FIG. 2A shows schematically cascaded orthomodal couplers 200 and 202 in an orthomodel coupler arrangement 205, at least one of which is an orthomodal coupler 200 as in FIG Figure 1A and Figure 2A is.
  • the at least one first orthomodal coupler 200 is designed for a first frequency range.
  • the first frequency range can be provided (used), for example, for a reception frequency band and the second frequency range for a transmission frequency band.
  • the first frequency range can be provided (used) for a transmission frequency band and the second frequency range for a reception frequency band.
  • the orthomode coupler arrangement further comprises at least one second orthomode coupler 205.
  • the at least one second orthomode coupler 205 is cascaded in the longitudinal direction of the waveguide to the at least one first orthomode coupler 200.
  • the at least one second orthomodal coupler is designed for a second frequency range.
  • the first frequency range differs from the second frequency range.
  • the at least one second orthomode coupler can be designed in exactly the same way as the at least one first
  • Figure 2B schematically shows a 3D view of the cascaded orthomodal coupler arrangement 205 Figure 2A and Figure 2B further embodiments are described.
  • the two orthomode couplers 200 and 205 shown in FIG Figures 2A and 2B are connected in series along a common axis.
  • the first orthomodal coupler comprises a circular waveguide 201 and two connections 210 and 220.
  • the second orthomodal coupler comprises a circular waveguide and two connections with stubs 232 and 234.
  • "Stubs" are understood here as matching lines in the waveguide design.
  • the circular waveguides 201 and 203 are connected to one another via a connecting piece 213, which is used for adaptation in accordance with the two different frequency ranges. Rectangular waveguides can be connected to the respective connections 210 and 220 of the first orthomodal coupler 200 and to the respective connections 232 and 234.
  • connections 232 and 234 are shown with so-called stubs, at one end of which a corresponding rectangular waveguide can be attached.
  • the stubs serve as filters to reflect electromagnetic waves of the first (undesired) frequency range and to let electromagnetic waves of the second (desired) frequency range pass.
  • FIG 3 schematically shows a 90 ° hybrid 307 as a ballast for an orthomode coupler.
  • This 90 ° Hybrid 307 can be used as external circuitry to feed the connections in accordance with the Figures 1A, 1B . 2A and 2B be used.
  • Other options for external wiring, also in combination, for the 90 ° hybrid are a T or a Magic-T branch in combination with one or more phase shifters.
  • the wiring used here, or these components, can be used for wiring according to a representation Figure 4A and 4B Find use.
  • FIG 4A schematically shows an arrangement for generating a circularly polarized electromagnetic wave in the waveguide of an orthomode coupler as in FIGS Figures 1A, 1B . 2A and 2B shown.
  • the arrangement 440 comprises the orthomode coupler 400.
  • the arrangement 440 can comprise a 90 ° hybrid 407.
  • the 90 ° hybrid 407 can be arranged and configured with the first and second Connection to be connected.
  • the arrangement 440 can comprise a T-branch 407 instead of the 90 ° hybrid 407.
  • the T-junction can be arranged and designed to be connected to the first and second connection of the orthomode coupler in connection with one or more upstream phase shifters.
  • the arrangement 440 may further comprise a Magic-T branch 407.
  • the Magic-T junction 407 can be arranged and configured to be connected to the first and second connection of the orthomode coupler in connection with the one or more upstream phase shifters.
  • the arrangement 440 may further comprise a circular polarizer 407 arranged in the waveguide.
  • a circularly polarized electromagnetic wave can therefore be realized with just a few components.
  • Figure 4B schematically shows an orthomode coupler arrangement 450, wherein, as in FIG Figure 2A and 2B , cascaded orthomodal couplers 405 are coupled to or contain one or more components 407.
  • the cascaded orthomode couplers 405 represent the orthomode coupler arrangement 405 in Figure 4B
  • the components are the components described above Figure 4A
  • the orthomode coupler arrangement 405 can consist of a plurality of orthomode couplers. Namely at least a first and at least a second orthomodel coupler.
  • the orthomode coupler arrangement 450 can further comprise at least one 90 ° hybrid 407.
  • the 90 ° hybrid can be arranged and configured to be connected to the first and second connection of the at least one first and / or second orthomodal coupler.
  • the orthomode coupler arrangement may further comprise at least one T-branch 407.
  • the T-junction 407 can be arranged and designed to be connected to the first and second connection of the at least one first and / or second orthomodal coupler in connection with one or more upstream phase shifters.
  • the orthomode coupler arrangement may further include at least one Magic T junction 407.
  • the Magic-T junction 407 can be arranged and designed to be connected in connection with the one or more upstream phase shifters, in each case to the first and second connection of the at least one first and / or second orthomode coupler.
  • the orthomode coupler arrangement 450 can further comprise at least one circular polarizer 407 arranged in the respective waveguide of the at least one first and / or second orthomode coupler.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

Es wird ein Orthomodenkoppler zur Reduzierung einer Verkopplung von Grundmoden bereitgestellt. Ferner wird eine Anordnung zur Erzeugung einer zirkular polarisierten elektromagnetischen Welle in dem Wellenleiter des Orthomodenkopplers bereitgestellt. Ferner wird eine Orthomodenkoppler-Anordnung bereitgestellt.An orthomode coupler for reducing coupling of basic modes is provided. An arrangement for generating a circularly polarized electromagnetic wave in the waveguide of the orthomode coupler is also provided. An orthomode coupler arrangement is also provided.

Um eine Verkopplung von Grundmoden bei dualer Polarisation in einem Hohleiter zu kompensieren, werden üblicherweise Stubs (zu Deutsch: Stichleitung) verwendet.To compensate for the coupling of basic modes with dual polarization in a semiconductor, stubs are usually used.

Die Kompensation mit Stubs ist frequenzabhängig und funktioniert nur innerhalb eines begrenzten Frequenzbereichs. Das benötigt Platz und erhöht das Gewicht, welches bei einem Einsatz im Weltraum auf einem Satelliten einen beschränkenden Faktor darstellt.Compensation with stubs is frequency dependent and only works within a limited frequency range. This takes up space and increases the weight, which is a limiting factor when used in space on a satellite.

"Compact Orthomode Transducers Using Digital Polarization Synthesis" offenbart einen Orthomodenkoppler mit 90° Messkopfanordnung und eine Orthomodenkoppler mit 120° Messkopfanordnung."Compact Orthomode Transducers Using Digital Polarization Synthesis" discloses an orthomode coupler with a 90 ° measuring head arrangement and an orthomode coupler with a 120 ° measuring head arrangement.

US 5 459 441 A offenbart eine 90° Messkopfanordnung. US 5,459,441 A discloses a 90 ° measuring head arrangement.

DE 199 22 709 A1 offenbart eine Anordnung mit gegenüberliegenden Hohlleitern, die zueinander 90° gedreht sind. DE 199 22 709 A1 discloses an arrangement with opposite waveguides that are rotated 90 ° to each other.

US 7 408 427 B1 offenbart eine Anordnung von 4 Hohlleitern, wobei ein Hohlleiter jeweils 90°, 180° und 270° zu einem anderen Hohlleiter angeordnet ist. US 7,408,427 B1 discloses an arrangement of 4 waveguides, one waveguide being arranged at 90 °, 180 ° and 270 ° to another waveguide.

JPH 11 355 004 A offenbart einen Orthomodenkoppler auf Basis eines Rundhohlleiters mit zwei Anschlüssen, wobei die Anschlüsse um einen Winkel von 100° zueinander gedreht sind. JPH 11 355 004 A. discloses an orthomode coupler based on a circular waveguide with two connections, the connections being rotated by an angle of 100 ° to one another.

Es ist Aufgabe der vorliegenden Erfindung, Platz einzusparen und Gewicht zu reduzieren.It is an object of the present invention to save space and to reduce weight.

Es wird ein Orthomodenkoppler entsprechend den angehängten Ansprüchen offenbart. Entsprechend einem ersten Aspekt wird ein Orthomodenkoppler zur Reduzierung einer Verkopplung von Grundmoden, umfassend:einen Wellenleiter, der ausgebildet ist, eine dual polarisierte elektromagnetische Welle zu führen;einen ersten Anschluss, der so an dem Wellenleiter angeordnet ist, dass eine durch den ersten Anschluss geführte elektromagnetische Welle eine erste Polarisationsrichtung aufweist;einen zweiten Anschluss, der so an dem Wellenleiter angeordnet ist, dass eine durch den zweiten Anschluss geführte elektromagnetische Welle eine zweite Polarisationsrichtung aufweist; wobei der erste und zweite Anschluss in Umfangsrichtung des Wellenleiters in einem von 90° verschiedenen Winkel relativ zueinander angeordnet sind, und wobei longitudinale Richtungen des ersten und zweiten Anschlusses einen Winkel zwischen 110° und 115° bilden.An orthomode coupler according to the appended claims is disclosed. According to a first aspect, there is provided an orthomode coupler for reducing coupling of basic modes, comprising: a waveguide that is designed to carry a dual polarized electromagnetic wave; a first connection that is arranged on the waveguide in such a way that one that is guided through the first connection electromagnetic wave has a first polarization direction; a second connection, which is arranged on the waveguide such that an electromagnetic wave guided through the second connection has a second polarization direction; wherein the first and second connections are arranged in the circumferential direction of the waveguide at an angle other than 90 ° relative to one another, and wherein longitudinal directions of the first and second connections form an angle between 110 ° and 115 °.

Das hat den Vorteil, dass durch die Anordnung der zwei Anschlüsse Platz gespart wird. Zum einen, da keine Vorkompensation durch Spezial-Koppler nötig ist, und zum anderen, da keine Kompensation durch Stubs nötig ist. Durch die Anbindung von zwei Hohlleitern an den ersten und zweiten Anschluss kann somit der Nachteil einer unsymmetrischen Einspeisestruktur von zwei Hohlleitern mit dem Vorteil einer symmetrischen Einspeisestruktur von vier Hohlleitern, nämlich Minimierung einer Grundmoden-Verkopplung, kombiniert werden.This has the advantage that the arrangement of the two connections saves space. On the one hand, since no pre-compensation by special couplers is necessary, and on the other hand, since no compensation by stubs is necessary. By connecting two waveguides to the first and second connection, the disadvantage of an asymmetrical feed structure of two waveguides can be combined with the advantage of a symmetrical feed structure of four waveguides, namely minimization of a basic mode coupling.

Der erste und zweite Anschluss können auch als Port oder Tor bezeichnet sein. Ferner kann der erste und zweite Anschluss ein Rechteckhohlleiter sein. Eine jeweilige lange Seite des ersten und zweiten Rechteckhohlleiters kann in Längsrichtung des Wellenleiters ausgerichtet sein.The first and second connections can also be referred to as ports or gates. Furthermore, the first and second connection can be a rectangular waveguide. A respective long side of the first and second rectangular waveguide can be aligned in the longitudinal direction of the waveguide.

Vor allem die Einsparung von Gewicht macht den Orthomodenkoppler, die Anordnung und die Orthomodenkoppler-Anordnung für einen Satelliten nützlich. Denn die zur Verfügung stehende Nutzlast ist begrenzt und somit kann an anderer Stelle, zum Beispiel für Treibstoff (Bsp. Xenon), ein größerer Anteil der Nutzlast verwendet werden.Above all, the saving in weight makes the orthomodal coupler, the arrangement and the orthomodal coupler arrangement useful for a satellite. Because the available payload is limited and therefore a larger proportion of the payload can be used elsewhere, for example for fuel (e.g. xenon).

Auch wenn einige der voranstehend beschriebenen Aspekte in Bezug auf den Orthomodenkoppler beschrieben wurden, so können diese Aspekte auch auf die Anordnung oder die Orthomodenkoppler-Anordnung zutreffen. Genauso können die voranstehend in Bezug auf die Anordnung oder die Orthomodenkoppler-Anordnung beschriebenen Aspekte in entsprechender Weise auf den Orthomodenkoppler zutreffen.Even if some of the above-described aspects have been described with regard to the orthomode coupler, these aspects can also apply to the arrangement or the orthomode coupler arrangement. In the same way, the aspects described above in relation to the arrangement or the orthomodal coupler arrangement can apply correspondingly to the orthomodel coupler.

Weitere Ziele, Merkmale, Vorteile und Anwendungsmöglichkeiten ergeben sich aus der nachfolgenden Beschreibung von nicht einschränkend zu verstehenden Ausführungsbeispielen mit Bezug auf die zugehörigen Zeichnungen. Dabei zeigen alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den hier offenbarten Gegenstand, auch unabhängig von ihrer Gruppierung in den Ansprüchen oder deren Rückbeziehungen. Die Abmessungen und Proportionen der in den Figuren gezeigten Komponenten sind hierbei nicht unbedingt maßstäblich; sie können bei zu implementierenden Ausführungsformen vom hier Veranschaulichten abweichen.

Figur 1A
zeigt schematisch einen Orthomodenkoppler zur Reduzierung einer Verkopplung von Grundmoden;
Figur 1B
zeigt schematisch einen Orthomodenkoppler zur Reduzierung der Verkopplung von Grundmoden;
Figur 2A
zeigt schematisch kaskadierte Orthomodenkoppler;
Figur 2B
zeigt schematisch kaskadierte Orthomodenkoppler;
Figur 3
zeigt schematisch einen 90° Hybrid als Vorschaltung für einen Orthomodenkoppler;
Figur 4A
zeigt schematisch eine Anordnung zur Erzeugung einer zirkular polarisierten elektromagnetischen Welle in dem Wellenleiter eines Orthomodenkopplers; und
Figur 4B
zeigt schematisch eine Orthomodenkoppler-Anordnung.
Further objectives, features, advantages and possible applications result from the following description of non-restrictive exemplary embodiments with reference to the accompanying drawings. All of the features described and / or illustrated depict the subject matter disclosed here, alone or in any combination, regardless of their grouping in the claims or their relationships. The dimensions and proportions of the components shown in the figures are not necessarily to scale; in the case of embodiments to be implemented, they can differ from what is illustrated here.
Figure 1A
schematically shows an orthomode coupler for reducing coupling of basic modes;
Figure 1B
schematically shows an orthomode coupler for reducing the coupling of basic modes;
Figure 2A
schematically shows cascaded orthomodal couplers;
Figure 2B
schematically shows cascaded orthomodal couplers;
Figure 3
schematically shows a 90 ° hybrid as a ballast for an orthomodal coupler;
Figure 4A
schematically shows an arrangement for generating a circularly polarized electromagnetic wave in the waveguide of an orthomode coupler; and
Figure 4B
shows schematically an Orthomodenkoppler arrangement.

Die hier beschriebenen Varianten der, sowie deren, Funktions- und Betriebsaspekte dienen lediglich dem besseren Verständnis ihrer Struktur, Funktionsweise und Eigenschaften; sie schränken die Offenbarung nicht etwa auf die Ausführungsbeispiele ein. Die Figuren sind teilweise schematisch, wobei wesentliche Eigenschaften und Effekte zum Teil deutlich vergrößert dargestellt sind, um die Funktionen, Wirkprinzipien, technischen Ausgestaltungen und Merkmale zu verdeutlichen. Dabei kann jede Funktionsweise, jedes Prinzip, jede technische Ausgestaltung und jedes Merkmal, welches/welche in den Figuren oder im Text offenbart ist/sind, mit allen Ansprüchen, jedem Merkmal im Text und in den anderen Figuren, anderen Funktionsweisen, Prinzipien, technischen Ausgestaltungen und Merkmalen, die in dieser Offenbarung enthalten sind oder sich daraus ergeben, frei und beliebig kombiniert werden, so dass alle denkbaren Kombinationen den beschriebenen Vorrichtungen zuzuordnen sind. Dabei sind auch Kombinationen zwischen allen einzelnen Ausführungen im Text, das heißt in jedem Abschnitt der Beschreibung, in den Ansprüchen und auch Kombinationen zwischen verschiedenen Varianten im Text, in den Ansprüchen und in den Figuren umfasst und können zum Gegenstand weiterer Ansprüche gemacht werden. Auch die Ansprüche limitieren nicht die Offenbarung und damit die Kombinationsmöglichkeiten aller aufgezeigten Merkmale untereinander. Alle offenbarten Merkmale sind explizit auch einzeln und in Kombination mit allen anderen Merkmalen hier offenbart.The variants of, as well as their, functional and operational aspects described here only serve to better understand their structure, functioning and properties; they do not restrict the disclosure to the exemplary embodiments. The figures are partially schematic, with essential properties and effects being shown in a partially enlarged manner in order to clarify the functions, operating principles, technical designs and features. Each mode of operation, each principle, each technical design and each feature, which / which is / are disclosed in the figures or in the text, can with all claims, each feature in the text and in the other figures, other functions, principles, technical designs and features that are contained in or result from this disclosure can be combined freely and as desired, so that all conceivable combinations can be assigned to the described devices. Combinations between all individual versions in the text, that is to say in each section of the description, in the claims and also combinations between different variants in the text, in the claims and in the figures are also included and can be made the subject of further claims. The claims also do not limit the disclosure and thus the possible combinations of all the features shown. All disclosed features are explicitly disclosed here individually and in combination with all other features.

In den Figuren sind einander entsprechende oder funktionsähnliche Bauteile mit gleichen Bezugszeichen versehen. Der Orthomodenkoppler, die Anordnung zur Erzeugung zirkularer Polarisation und die Orthomodenkoppler-Anordnung werden nun anhand von Ausführungsbeispielen beschrieben.Corresponding or functionally similar components are provided with the same reference symbols in the figures. The orthomode coupler, the arrangement for generating circular polarization and the orthomode coupler arrangement are now described using exemplary embodiments.

Im Folgenden werden ohne hierauf beschränkt zu sein, spezifische Details dargelegt, um ein vollständiges Verständnis der vorliegenden Offenbarung zu liefern. Es ist einem Fachmann jedoch klar, dass die vorliegende Offenbarung in anderen Ausführungsbeispielen verwendet werden kann, die von den nachfolgend dargelegten Details abweichen können.Specific details are set forth below, without limitation, to provide a full understanding of the present disclosure. However, it will be apparent to one skilled in the art that the present disclosure may be used in other embodiments that may differ from the details set forth below.

Figur 1A zeigt schematisch einen Orthomodenkoppler 100 zur Reduzierung einer Verkopplung von Grundmoden. Der Orthomodenkoppler 100 umfasst einen Wellenleiter 101, einen ersten Anschluss 110 und einen zweiten Anschluss 120. Der Wellenleiter 101 ist ausgebildet, eine dual polarisierte elektromagnetische Welle zu führen. Der erste Anschluss 110 ist so an dem Wellenleiter 101 angeordnet, dass eine durch den ersten Anschluss 110 geführte elektromagnetische Welle eine erste Polarisationsrichtung Ex aufweist. Der zweite Anschluss 120 ist so an dem Wellenleiter 101 angeordnet, dass eine durch den zweiten Anschluss 120 geführte elektromagnetische Welle eine zweite Polarisationsrichtung Ey aufweist. Der erste 110 und zweite 120 Anschluss sind in Umfangsrichtung des Wellenleiters in einem von 90° verschiedenen Winkel relativ zueinander angeordnet. In Figur 1A ist der Winkel beispielhaft mit Winkel >90° dargestellt. Figure 1A schematically shows an orthomode coupler 100 for reducing coupling of basic modes. The orthomode coupler 100 comprises a waveguide 101, a first connection 110 and a second connection 120. The waveguide 101 is designed to carry a dual polarized electromagnetic wave. The first connection 110 is arranged on the waveguide 101 such that an electromagnetic wave guided through the first connection 110 has a first polarization direction Ex. The second connection 120 is arranged on the waveguide 101 such that an electromagnetic wave guided through the second connection 120 has a second polarization direction Ey. The first 110 and second 120 connections are arranged in the circumferential direction of the waveguide at an angle different from one another by 90 °. In Figure 1A the angle is shown as an example with an angle> 90 °.

Figur 1B zeigt ferner schematisch den Orthomodenkoppler aus Figur 1A in einer 3D Ansicht. Im Folgenden werden Ausführungsformen bezüglich des Orthomodenkopplers aus Figur 1A und Figur 1B beschrieben. Figure 1B also schematically shows the orthomode coupler Figure 1A in a 3D view. In the following, embodiments relating to the orthomode coupler are made out Figure 1A and Figure 1B described.

Der erste 110 und zweite 120 Anschluss sind, als Ports oder Tore, Anschlussstellen 110 und 120 für Rechteckhohlleiter. Zum Anschluss kann ein Flansch dienen, der so angepasst ist, dass ein für einen bestimmten Frequenzbereich dimensionierter Rechteckhohlleiter, elliptischer Hohlleiter oder Steghohlleiter daran anbringbar ist. Dazu ist eine jeweilige lange Seite des ersten 110 und zweiten 120 Rechteckhohlleiters in Längsrichtung des Wellenleiters 101 ausgerichtet. Der Wellenleiter 101 ist in Figur 1A und Figur 1B als Rundhohlleiter dargestellt. Ferner ist vorstellbar, dass der Wellenleiter 101 ein Koaxialleiter ist.The first 110 and second 120 connections are, as ports or gates, connection points 110 and 120 for rectangular waveguides. A flange can be used for the connection, which is adapted in such a way that a rectangular waveguide, elliptical waveguide or web waveguide dimensioned for a specific frequency range can be attached to it. For this purpose, a respective long side of the first 110 and second 120 rectangular waveguide is aligned in the longitudinal direction of the waveguide 101. The waveguide 101 is in Figure 1A and Figure 1B shown as a circular waveguide. It is also conceivable that the waveguide 101 is a coaxial conductor.

Der erste 110 und zweite 120 Anschluss sind so angeordnet, dass die durch den ersten Anschluss 110 geführte elektromagnetische Welle und die durch den zweiten 120 Anschluss geführte elektromagnetische Welle die dual polarisierte elektromagnetische Welle bilden. Hierzu sind der erste 110 und zweite 120 Anschluss an einem Umfang des Rundhohlleiters 101 angeordnet sein und bilden zueinander einen Winkel, der größer als 90° ist. Dabei sind die erste Ex und zweite Polarisationsrichtung Ey im Wesentlichen zueinander orthogonal. Hierdurch lassen sich die Grundmoden wesentlich voneinander entkoppeln. Ferner sind der erste 110 und zweite 120 Anschluss so an dem Rundhohlleiter 101 angeordnet, dass der erste 110 und zweite 120 Anschluss in Längsrichtung des Wellenleiters eine gleiche Position aufweisen. Die Längsrichtung bestimmt sich durch eine Wellenausbreitungsrichtung im Rundhohlleiter 101. Das heisst, dass die Flächen der Anschlüsse 110 und 120 gleich groß und an derselben Stelle des Rundhohlleiters angeordnet sind. Ferner können die Anschlüsse 110 und 120 selbst longitudinale Richtungen aufweisen. Die longitudinalen Richtungen entsprechen hierbei Einspeiserichtungen des ersten 110 und zweiten 120 Anschlusses. Dabei ist die Einspeiserichtung die Modenausbreitungsrichtung der an den bestimmten Frequenzbereich angepassten Mode. Die longitudinalen Richtungen des ersten 110 und zweiten 120 Anschlusses sind senkrecht zur longitudinalen Richtung des Rundhohlleiters 101. Dabei können die longitudinalen Richtungen des ersten und zweiten Anschlusses einen Winkel zwischen 100° und 130° einnehmen. In dem gezeigten Beispiel nehmen die longitudinalen Richtungen des ersten und zweiten Anschlusses einen Winkel zwischen 100° und 115° ein. In den Darstellungen aus Figur 1A und 1B sind die zwei Anschlüsse 110 und 120 entlang der Umfangsrichtung des Rundhohleiters 101 an dem Umfang des Rundhohleiters beispielhaft in einem 110° Winkel relativ zueinander angeordnet.The first 110 and second 120 connections are arranged such that the electromagnetic wave passed through the first connection 110 and the electromagnetic wave passed through the second 120 connection form the dual polarized electromagnetic wave. For this purpose, the first 110 and second 120 connections are arranged on a circumference of the circular waveguide 101 and form an angle with one another which is greater than 90 °. The first Ex and the second polarization direction Ey essentially orthogonal to each other. In this way, the basic modes can be essentially decoupled from one another. Furthermore, the first 110 and second 120 connections are arranged on the circular waveguide 101 such that the first 110 and second 120 connections have the same position in the longitudinal direction of the waveguide. The longitudinal direction is determined by a direction of wave propagation in the circular waveguide 101. This means that the surfaces of the connections 110 and 120 are of the same size and are arranged at the same location on the circular waveguide. Furthermore, the connections 110 and 120 themselves can have longitudinal directions. The longitudinal directions correspond to the feed directions of the first 110 and second 120 connections. The feed direction is the mode propagation direction of the mode adapted to the specific frequency range. The longitudinal directions of the first 110 and second 120 connection are perpendicular to the longitudinal direction of the circular waveguide 101. The longitudinal directions of the first and second connection can assume an angle between 100 ° and 130 °. In the example shown, the longitudinal directions of the first and second connections form an angle between 100 ° and 115 °. In the representations Figures 1A and 1B For example, the two connections 110 and 120 are arranged along the circumferential direction of the circular semiconductor 101 on the circumference of the circular semiconductor at a 110 ° angle relative to one another.

Figur 2A zeigt schematisch kaskadierte Orthomodenkoppler 200 und 202 in einer Orthomodenkoppler-Anordnung 205, wobei mindestens einer davon ein Orthomodenkoppler 200 wie in Figur 1A und Figur 2A ist. Der mindestens eine erste Orthomodenkoppler 200 ist für einen ersten Frequenzbereich ausgebildet. Der erste Frequenzbereich kann zum Beispiel für ein Empfangsfrequenzband und der zweite Frequenzbereich für ein Sendefrequenzband vorgesehen sein (verwendet werden). Ebenso können der erste Frequenzbereich für ein Sendefrequenzband und der zweite Frequenzbereich für ein Empfangsfrequenzband vorgesehen sein (verwendet werden). Die Orthomodenkoppler-Anordnung umfasst ferner mindestens einen zweiten Orthomodenkoppler 205. Der mindestens eine zweite Orthomodenkoppler 205 ist in Längsrichtung des Wellenleiters zu dem mindestens einen ersten Orthomodenkoppler 200 kaskadiert. Der mindestens eine zweite Orthomodenkoppler ist für einen zweiten Frequenzbereich ausgebildet. Der erste Frequenzbereich unterscheidet sich von dem zweiten Frequenzbereich. Der mindestens eine zweite Orthomodenkoppler kann genauso wie der mindestens eine erste Orthomodenkoppler ausgebildet sein. Figure 2A shows schematically cascaded orthomodal couplers 200 and 202 in an orthomodel coupler arrangement 205, at least one of which is an orthomodal coupler 200 as in FIG Figure 1A and Figure 2A is. The at least one first orthomodal coupler 200 is designed for a first frequency range. The first frequency range can be provided (used), for example, for a reception frequency band and the second frequency range for a transmission frequency band. Likewise, the first frequency range can be provided (used) for a transmission frequency band and the second frequency range for a reception frequency band. The orthomode coupler arrangement further comprises at least one second orthomode coupler 205. The at least one second orthomode coupler 205 is cascaded in the longitudinal direction of the waveguide to the at least one first orthomode coupler 200. The at least one second orthomodal coupler is designed for a second frequency range. The first frequency range differs from the second frequency range. The at least one second orthomode coupler can be designed in exactly the same way as the at least one first orthomode coupler.

Verschiedene Frequenzbereiche ermöglichen größere Einsatzgebiete und Möglichkeiten in der Anwendung.Different frequency ranges enable larger areas of application and possibilities in application.

Figur 2B zeigt schematisch eine 3D-Ansicht der kaskadierten Orthomodenkoppler-Anordnung 205. Im Folgenden werden bezüglich der Figur 2A und Figur 2B weitere Ausführungsformen beschrieben. Figure 2B schematically shows a 3D view of the cascaded orthomodal coupler arrangement 205 Figure 2A and Figure 2B further embodiments are described.

Die zwei gezeigten Orthomodenkoppler 200 und 205 in Figuren 2A und 2B werden entlang einer gemeinsamen Achse hintereinandergeschaltet. Der erste Orthomodenkoppler umfasst einen Rundhohlleiter 201 und zwei Anschlüsse 210 und 220. Der zweite Orthomodenkopller umfasst einen Rundhohlleiter und zwei Anschlüsse mit Stubs 232 und 234. "Stubs" werden hierin als Anpassungsleitungen in Hohlleiterausführung verstanden. Die Rundhohlleiter 201 und 203 werden über ein Verbindungsstück 213, das entsprechend der zwei unterschiedlichen Frequenzbereiche zur Anpassung dient, miteinander verbunden. Rechteckhohlleiter können an die jeweiligen Anschlüsse 210 und 220 des ersten Orthomodenkopplers 200, und an die jeweiligen Anschlüsse 232 und 234 angeschlossen werden. Die Anschlüsse 232 und 234 sind mit sogenannten Stubs dargestellt, an deren einem Ende ein entsprechender Rechteckhohlleiter angebracht werden kann. Die Stubs dienen als Filter, um elektromagnetische Wellen des ersten (unerwünschten) Frequenzbereichs zu reflektieren und elektromagnetische Wellen des zweiten (gewünschten) Frequenzbereichs passieren zu lassen.The two orthomode couplers 200 and 205 shown in FIG Figures 2A and 2B are connected in series along a common axis. The first orthomodal coupler comprises a circular waveguide 201 and two connections 210 and 220. The second orthomodal coupler comprises a circular waveguide and two connections with stubs 232 and 234. "Stubs" are understood here as matching lines in the waveguide design. The circular waveguides 201 and 203 are connected to one another via a connecting piece 213, which is used for adaptation in accordance with the two different frequency ranges. Rectangular waveguides can be connected to the respective connections 210 and 220 of the first orthomodal coupler 200 and to the respective connections 232 and 234. The connections 232 and 234 are shown with so-called stubs, at one end of which a corresponding rectangular waveguide can be attached. The stubs serve as filters to reflect electromagnetic waves of the first (undesired) frequency range and to let electromagnetic waves of the second (desired) frequency range pass.

Figur 3 zeigt schematisch einen 90° Hybrid 307 als Vorschaltung für einen Orthomodenkoppler. Dieser 90° Hybrid 307 kann als äußere Beschaltung zur Einspeisung der Anschlüsse gemäß den Figuren 1A, 1B, 2A und 2B verwendet werden. Weitere Möglichkeiten zur äußeren Beschaltung, auch in Kombination, zum 90° Hybrid, sind eine T- beziehungsweise eine Magic-T Verzweigung in Kombination mit einem oder mehreren Phasenschiebern. Ferner ist ein Polarisator zur Verwendung in dem Rundhohlleiter gemäß den Figuren 1A, 1B, 2A und 2B möglich. Figure 3 schematically shows a 90 ° hybrid 307 as a ballast for an orthomode coupler. This 90 ° Hybrid 307 can be used as external circuitry to feed the connections in accordance with the Figures 1A, 1B . 2A and 2B be used. Other options for external wiring, also in combination, for the 90 ° hybrid are a T or a Magic-T branch in combination with one or more phase shifters. Furthermore, a polarizer for use in the circular waveguide according to the Figures 1A, 1B . 2A and 2B possible.

Die hier verwendet Beschaltung, beziehungsweise diese Bauelemente, können zur Verschaltung entsprechend einer Darstellung aus Figur 4A und 4B Verwendung finden.The wiring used here, or these components, can be used for wiring according to a representation Figure 4A and 4B Find use.

Figur 4A zeigt schematisch eine Anordnung zur Erzeugung einer zirkular polarisierten elektromagnetischen Welle in dem Wellenleiter eines Orthomodenkopplers wie in den Figuren 1A, 1B, 2A und 2B gezeigt. Die Anordnung 440 umfasst den Orthomodenkoppler 400. Ferner kann die Anordnung 440 einen 90° Hybrid 407 umfassen. Der 90° Hybrid 407 kann angeordnet und ausgebildet sein, mit dem ersten und zweiten Anschluss verbunden zu sein. Ferner kann statt dem 90° Hybrid 407 die Anordnung 440 eine T-Verzweigung 407 umfassen. Die T-Verzweigung kann angeordnet und ausgebildet sein, in Verbindung mit einem oder mehreren vorgeschalteten Phasenschiebern, mit dem ersten und zweiten Anschluss des Orthomodenkopplers verbunden zu sein. Ferner kann die Anordnung 440 eine Magic-T-Verzweigung 407 umfassen. Die Magic-T-Verzweigung 407 kann angeordnet und ausgebildet sein, in Verbindung mit dem einen oder mehreren vorgeschalteten Phasenschiebern, mit dem ersten und zweiten Anschluss des Orthomodenkopplers verbunden zu sein. Ferner kann die Anordnung 440 einen in dem Wellenleiter angeordneten Zirkularpolarisator 407 umfassen. Figure 4A schematically shows an arrangement for generating a circularly polarized electromagnetic wave in the waveguide of an orthomode coupler as in FIGS Figures 1A, 1B . 2A and 2B shown. The arrangement 440 comprises the orthomode coupler 400. Furthermore, the arrangement 440 can comprise a 90 ° hybrid 407. The 90 ° hybrid 407 can be arranged and configured with the first and second Connection to be connected. Furthermore, the arrangement 440 can comprise a T-branch 407 instead of the 90 ° hybrid 407. The T-junction can be arranged and designed to be connected to the first and second connection of the orthomode coupler in connection with one or more upstream phase shifters. The arrangement 440 may further comprise a Magic-T branch 407. The Magic-T junction 407 can be arranged and configured to be connected to the first and second connection of the orthomode coupler in connection with the one or more upstream phase shifters. The arrangement 440 may further comprise a circular polarizer 407 arranged in the waveguide.

Eine zirkular polarisierte elektromagnetische Welle wird demnach durch wenige Bauelemente realisierbar.A circularly polarized electromagnetic wave can therefore be realized with just a few components.

Figur 4B zeigt schematisch eine Orthomodenkoppler-Anordnung 450, wobei, wie in Figur 2A und 2B, kaskadierte Orthomodenkoppler 405 mit einem oder mehreren Bauelementen 407 gekoppelt sind beziehungsweise diese enthalten. Die kaskadierten Orthomodenkoppler 405 stellen die Orthomodenkoppler-Anordnung 405 in Figur 4B dar. Bei den Bauelementen handelt es sich um die oben beschriebenen Bauelemente aus Figur 4A. Hierbei kann die Orthomodenkoppler-Anordnung 405, aus mehreren Orthomodenkopplern bestehen. Nämlich mindestens einem ersten und mindestens einem zweiten Orthomodenkoppler. Das heisst, dass die Orthomodenkoppler-Anordnung 450 ferner mindestens einen 90° Hybrid 407 umfassen kann. Der 90° Hybrid kann angeordnet und ausgebildet sein, jeweils mit dem ersten und zweiten Anschluss des mindestens einen ersten und/oder zweiten Orthomodenkopplers verbunden zu sein. Die Orthomodenkoppler-Anordnung kann ferner mindestens eine T-Verzweigung 407 umfassen. Die T-Verzweigung 407 kann angeordnet und ausgebildet sein, in Verbindung mit einem oder mehreren vorgeschalteten Phasenschiebern, jeweils mit dem ersten und zweiten Anschluss des mindestens einen ersten und/oder zweiten Orthomodenkopplers verbunden zu sein. Die Orthomodenkoppler-Anordnung kann ferner mindestens eine Magic-T-Verzweigung 407 umfassen. Die Magic-T-Verzweigung 407 kann angeordnet und ausgebildet sein, in Verbindung mit dem einen oder mehreren vorgeschalteten Phasenschiebern, jeweils mit dem ersten und zweiten Anschluss des mindestens einen ersten und/oder zweiten Orthomodenkopplers verbunden zu sein. Die Orthomodenkoppler-Anordnung 450 kann ferner mindestens einen in dem jeweiligen Wellenleiter des mindestens einen ersten und/oder zweiten Orthomodenkopplers angeordneten Zirkularpolarisator 407 umfassen. Figure 4B schematically shows an orthomode coupler arrangement 450, wherein, as in FIG Figure 2A and 2B , cascaded orthomodal couplers 405 are coupled to or contain one or more components 407. The cascaded orthomode couplers 405 represent the orthomode coupler arrangement 405 in Figure 4B The components are the components described above Figure 4A , In this case, the orthomode coupler arrangement 405 can consist of a plurality of orthomode couplers. Namely at least a first and at least a second orthomodel coupler. This means that the orthomode coupler arrangement 450 can further comprise at least one 90 ° hybrid 407. The 90 ° hybrid can be arranged and configured to be connected to the first and second connection of the at least one first and / or second orthomodal coupler. The orthomode coupler arrangement may further comprise at least one T-branch 407. The T-junction 407 can be arranged and designed to be connected to the first and second connection of the at least one first and / or second orthomodal coupler in connection with one or more upstream phase shifters. The orthomode coupler arrangement may further include at least one Magic T junction 407. The Magic-T junction 407 can be arranged and designed to be connected in connection with the one or more upstream phase shifters, in each case to the first and second connection of the at least one first and / or second orthomode coupler. The orthomode coupler arrangement 450 can further comprise at least one circular polarizer 407 arranged in the respective waveguide of the at least one first and / or second orthomode coupler.

Die Erfindung ist natürlich nicht in irgendeiner Weise auf die zuvor beschriebenen Ausführungsformen beschränkt. Es werden im Gegenteil viele Möglichkeiten für Modifikationen daran einem Durchschnittsfachmann ersichtlich, ohne von der zugrundeliegenden Idee der Erfindung abzuweichen, wie sie in den beigefügten Ansprüchen definiert ist.The invention is of course not in any way limited to the previously described embodiments. On the contrary, many possibilities for modifications to it will be apparent to one of ordinary skill in the art without departing from the underlying idea of the invention as defined in the appended claims.

Claims (9)

  1. An orthomode transducer (100; 200; 400) for reducing coupling of fundamental modes, comprising:
    a waveguide (101; 201) that is designed to guide a dual-polarized electromagnetic wave;
    a first connection (110; 210) that is situated on the waveguide (101; 201) in such a way that an electromagnetic wave that is guided by the first connection (110; 210) has a first polarization direction;
    a second connection (120; 220) that is situated on the waveguide (101; 201) in such a way that an electromagnetic wave that is guided by the second connection (120; 220) has a second polarization direction;
    wherein the first and second connections (110, 120; 210, 220) in the circumferential direction of the waveguide (101; 201) are situated at an angle relative to one another that is different from 90°,
    characterized in that
    longitudinal directions of the first and second connections (110, 120; 210, 220) form an angle between 110° and 115°.
  2. The orthomode transducer (100; 200; 400) according to Claim 1, wherein the first and second connections (110, 120; 210, 220) are situated in such a way that the electromagnetic wave that is guided by the first connection (110; 210) and the electromagnetic wave that is guided by the second connection (120; 220) form the dual-polarized electromagnetic wave.
  3. The orthomode transducer (100; 200; 400) according to Claim 1 or 2, wherein the first and second polarization directions are orthogonal to one another.
  4. The orthomode transducer (100; 200; 400) according to one of the preceding claims, wherein the first and second connections (110, 120; 210, 220) are situated on the waveguide (101; 201) in such a way that the first and second connections (110, 120;
    210, 220) have the same position in the longitudinal direction of the waveguide (101; 201).
  5. The orthomode transducer (100; 200; 400) according to one of the preceding claims, wherein the waveguide (101; 201) is a circular waveguide (101; 201) or a coaxial conductor (101; 201).
  6. The orthomode transducer (100; 200; 400) according to one of the preceding claims, wherein the first and second connections (110, 120; 210, 220) are arranged and configured in such a way that in each case a rectangular waveguide, an elliptical waveguide, or a ridge waveguide may be attached.
  7. A system (440) for generating a circularly polarized electromagnetic wave in the waveguide of an orthomode transducer (400) according to one of the preceding claims, comprising the orthomode transducer (400) according to one of the preceding claims and at least one of the following listed components (407):
    a 90° hybrid that is arranged and configured to be connected to the first and second connections;
    a T branch that is arranged and configured to be connected to the first and second connections in conjunction with one or more upstream phase shifters;
    a magic T branch that is arranged and configured to be connected to the first and second connections in conjunction with one or more upstream phase shifters; and
    a circular polarizer that is situated in the waveguide.
  8. An orthomode coupling system (205) comprising at least one first orthomode transducer (200) according to one of Claims 1 to 6 that is designed for a first frequency range, and at least one second orthomode transducer (200, 202) which in the longitudinal direction of the waveguide is cascaded with respect to the at least one first orthomode transducer (200) and is designed for a second frequency range, wherein the first frequency range differs from the second frequency range.
  9. The orthomode coupling system (450) according to Claim 8, further comprising at least one of the following listed components (407):
    at least one 90° hybrid that is arranged and configured to be respectively connected to the first and second connections of the at least one first and/or second orthomode transducer (405);
    at least one T branch that is arranged and configured, in conjunction with one or more upstream phase shifters, to be respectively connected to the first and second connections of the at least one first and/or second orthomode transducer (405);
    at least one magic T branch that is arranged and configured, in conjunction with the one or more upstream phase shifters, to be respectively connected to the first and second connections of the at least one first and/or second orthomode transducer (405); and
    at least one circular polarizer that is situated in the respective waveguide of the at least one first and/or second orthomode transducer (405).
EP17204899.3A 2016-12-05 2017-12-01 Ortho mode transducer for reducing coupling of fundamental modes Active EP3331089B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016224097.8A DE102016224097A1 (en) 2016-12-05 2016-12-05 Orthomodine coupler to reduce the coupling of fundamental modes

Publications (2)

Publication Number Publication Date
EP3331089A1 EP3331089A1 (en) 2018-06-06
EP3331089B1 true EP3331089B1 (en) 2020-02-05

Family

ID=60569721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17204899.3A Active EP3331089B1 (en) 2016-12-05 2017-12-01 Ortho mode transducer for reducing coupling of fundamental modes

Country Status (2)

Country Link
EP (1) EP3331089B1 (en)
DE (1) DE102016224097A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355004A (en) * 1998-06-10 1999-12-24 Nec Corp Orthogonal polarizer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5459441A (en) * 1994-01-13 1995-10-17 Chaparral Communications Inc. Signal propagation using high performance dual probe
US5784033A (en) * 1996-06-07 1998-07-21 Hughes Electronics Corporation Plural frequency antenna feed
US6031434A (en) * 1998-09-18 2000-02-29 Hughes Electronics Corporation Coaxially configured OMT-multiplexer assembly
US6225875B1 (en) * 1998-10-06 2001-05-01 Hughes Electronics Corporation Dual sidewall coupled orthomode transducer having septum offset from the transducer axis
US6211750B1 (en) * 1999-01-21 2001-04-03 Harry J. Gould Coaxial waveguide feed with reduced outer diameter
DE19922709A1 (en) * 1999-05-18 2000-12-21 Bosch Gmbh Robert Polarization switch
US7408427B1 (en) * 2004-11-12 2008-08-05 Custom Microwave, Inc. Compact multi-frequency feed with/without tracking
EP2355234A1 (en) * 2008-11-03 2011-08-10 Radiacion Y Microondas, S.A. Compact orthomode transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355004A (en) * 1998-06-10 1999-12-24 Nec Corp Orthogonal polarizer

Also Published As

Publication number Publication date
EP3331089A1 (en) 2018-06-06
DE102016224097A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
DE2055443C3 (en) Polarization converter for microwaves
DE2443166C3 (en) System switch for separating two signals, each consisting of two double polarized frequency bands
DE2826479C2 (en) Septum polarizer
DE102011106590B4 (en) Orthomodine coupler for an antenna system
EP2897213B1 (en) Broadband signal splitting with sum signal absorption
DE60319512T2 (en) SWIVEL
DE1016783B (en) Directional resonance coupler with cylindrical resonance cavities and slot coupling and crossover network built from it
EP3331089B1 (en) Ortho mode transducer for reducing coupling of fundamental modes
EP2656434B1 (en) Diplexer for homodyne fmcw radar device
EP0351514B1 (en) Waveguide twist
DE2322549B2 (en) Antenna splitter
DE10037554A1 (en) Arrangement for connecting two identical electromagnetic waveguides
WO2001097330A1 (en) Planar antenna with wave guide configuration
DE3345689C2 (en)
DE2304131C3 (en) Reflection filter for microwaves
DE1002815B (en) Frequency and phase shifter and modulator for very short electromagnetic waves
EP0592873B1 (en) Integrated optical polarization beam-splitter
DE3843259C1 (en)
DE3740651C2 (en)
DE102010014864A1 (en) Waveguide connection for antenna panels of e.g. planar active phased array antenna, for space application, has waveguides comprising co-ordination elements, in which phase alignment of transit phase is distinguished from antenna panel
DE4244145C1 (en) Hollow waveguide coupling for circularly polarised waves - uses 3 dB couplers coupled to hollow waveguide to allow signal propagation in either direction
WO2019206890A1 (en) Polariser for a waveguide and system for transmitting high-frequency electromagnetic signals
DE957867C (en) Filter or switch section filter with a coaxial high-frequency line
DE1466365C (en) Broadband circular polarizer for very short electromagnetic waves
DE2135611B1 (en) Mode coupler for direction finding systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180830

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 1/161 20060101AFI20190718BHEP

Ipc: H01P 5/103 20060101ALN20190718BHEP

Ipc: H01P 5/08 20060101ALN20190718BHEP

INTG Intention to grant announced

Effective date: 20190807

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNEIDER, MICHAEL

Inventor name: KOHL, PHILIPP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1230508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003686

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200628

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200505

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003686

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 7

Ref country code: DE

Payment date: 20231214

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1230508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201