EP3326285B1 - Apparatus for avoiding harmful bearing currents - Google Patents

Apparatus for avoiding harmful bearing currents Download PDF

Info

Publication number
EP3326285B1
EP3326285B1 EP16722125.8A EP16722125A EP3326285B1 EP 3326285 B1 EP3326285 B1 EP 3326285B1 EP 16722125 A EP16722125 A EP 16722125A EP 3326285 B1 EP3326285 B1 EP 3326285B1
Authority
EP
European Patent Office
Prior art keywords
potential
stator
tap
electronics
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16722125.8A
Other languages
German (de)
French (fr)
Other versions
EP3326285A1 (en
Inventor
Sebastian Schroth
Roland Oberst
Malte Pils
Marco Weckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Mulfingen GmbH and Co KG
Original Assignee
Ebm Papst Mulfingen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Mulfingen GmbH and Co KG filed Critical Ebm Papst Mulfingen GmbH and Co KG
Publication of EP3326285A1 publication Critical patent/EP3326285A1/en
Application granted granted Critical
Publication of EP3326285B1 publication Critical patent/EP3326285B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a device for reducing and in particular for avoiding harmful bearing currents in an electrical machine, such as an EC motor, and an electrical machine which is equipped with such a device.
  • an inverter circuit (inverter) which, on average, applies a voltage to the terminals of the EC motor using PWM, so that the desired current form is set.
  • the inverter typically works with a switching frequency outside the audible range (> 16kHz).
  • a second type of electrical bearing stress occurs, namely a capacitively coupled-in bearing voltage.
  • the switched pulse pattern of the inverter results in a common mode voltage (common mode voltage) with respect to earth at the switching frequency of the inverter.
  • This common mode voltage is also transferred to the warehouse via capacitive coupling networks.
  • the physical cause of this type of bearing voltage are the voltage changes at the inverter output, which are generated by the fast switching processes, and the control process of the pulse-controlled inverter, which is directly related to the common mode voltage.
  • the oil film between the inner and outer ring of the bearing can be considered electrically as a capacitance. If the insulation breaks down due to insufficient insulation of the oil film or high bearing voltages, the oil film capacity discharges and the charge carriers between the inner and outer bearing rings are balanced (electric discharge machining).
  • stator and rotor are conductively connected to one another.
  • isolation required between the Windings and the stator are reinforced accordingly. Signs of wear also appear on the sliding contact and an additional bypass element also causes additional costs.
  • Another known measure consists in isolating the shaft and overmolding the stator. Due to the additional insulation layer between the shaft and the stator, part of the bearing voltage is reduced over the insulation. The disadvantage here is that the bearing stresses that occur can nevertheless be sufficiently high that undesirable bearing currents occur.
  • a solution such as the impedance matching of the end shield, such as. B. from the US 2011/0234026 A1 known, is only suitable for designs in which conductive end shields are provided at all.
  • the problem here is that the connection of the stator to the earth potential has an influence on the filter properties of the EMC filter and has a significant effect
  • the EMC properties deteriorate because the impedance to the earth is reduced at the same time, which results in a significantly increased filter volume, which means that the motor has to be adapted individually so that such a solution is also not universally applicable .
  • the invention is therefore based on the object of providing a solution with which the undesired bearing currents can be effectively reduced or completely prevented, in which the aforementioned disadvantages do not occur and which can be used universally.
  • the basic idea of the invention is to be seen in the fact that the protection of the bearing against undesired bearing currents is achieved by connecting the stator to a high-frequency potential which is stable with respect to the earth potential, preferably the electronic potential, the connection either directly as a short-circuit connection or alternatively via a capacitance or an impedance takes place, which at the same time ensures the insulation gap required for protection against accidental contact by the impedance introduced.
  • stator to a stable electronics potential via any impedance
  • any impedance can therefore be realized ohmic, inductive, capacitive or by integrating entire network topologies.
  • a typical converter with a DC link (also known as a U-converter) regularly consists of a rectifier, the DC link with constant voltage and an inverter, whereby a three-phase voltage system is generated from the constant DC link voltage.
  • the DC link voltage is related to the earth potential via the rectifier and / or the EMC filter.
  • a voltage occurs between the earth potential and the motor lines that corresponds to half the DC link voltage ( ⁇ U ZK / 2). This voltage occurs in all three strands as an in-phase common mode voltage.
  • the aforementioned stable potential of the electronics to which the stator is electrically connected is a potential of a preferably filtered U-converter that is different from the ground potential. So can be the connection either with the DC link potential DC + of the DC link or the ground potential of the electronics or DC-, the potential before or after the rectifier of the rectifier circuit, the potential within the EMC filter or alternatively also the output potential of the low voltage supply or the switching power supply.
  • a device for reducing and / or avoiding harmful bearing currents in an electrical machine such as. B. a three-phase EC motor, with a rotor and with an insulated stator, wherein a bearing outer ring and a bearing inner ring are provided between the rotor and stator, further comprising a connection electronics for connecting the motor, the stator by an electrical connection with a high frequency is connected to a potential tap of the connection electronics with respect to the earth potential which is different and to this stable electronics potential.
  • the electrical connection between the stator and the electronic potential is formed via an intermediate capacitance or via any intermediate impedance.
  • the electrical connection between the stator and the electronic potential is designed as an electrical short-circuit connection.
  • the stator is thus directly at the electronic potential during operation of the motor.
  • the potential tap for connecting the stator to the electronic potential can also be a tap immediately before or immediately after the rectifier.
  • a network which reduces impedance in the frequency range of the bearing voltage is connected in parallel with one, several or all diodes of the rectifier.
  • connection electronics furthermore have an EMC filter on the input side and the potential tap for the stator is a tap within the EMC filter.
  • connection electronics are connected to a low-voltage supply or a switching power supply
  • potential tap for the stator is provided as a tap at the outputs of the low-voltage supply or the switching power supply.
  • Another aspect of the present invention relates to an electric motor, preferably an EC motor, which is designed with a device as described above.
  • the invention is based on preferred embodiments with reference to the Figures 1 to 13 described, the same reference numerals indicating the same functional and / or structural features.
  • FIG. 1 A representation of an exemplary embodiment of an overall system is shown, in which a device 1 for reducing and / or avoiding harmful bearing currents in the three-phase-fed EC motor M is shown.
  • the motor M is designed with a rotor 2 and with an insulated stator 3, which are only shown schematically here.
  • the device 1 comprises (as further in FIG Figure 1 can be seen) a connection electronics 10 for connecting the motor M with a rectifier 14, an intermediate circuit 15 and an inverter 16 and on the input side with an EMC filter 17.
  • the stator 3 is connected via a connection 20 to the potential tap 20a on the inverter 16.
  • the DC link voltage DC +, DC- of the DC link 15 (as in FIG Figure 1 shown) on the inverter 16.
  • the voltages applied to the motor terminals are marked with u u , u v and u w , while the half bridges are shown with the simplified half bridge symbol.
  • the voltage applied to the motor terminals by the inverter 16 is broken down into a common-mode component (u CM ) and a push-pull component (u DM ).
  • the common mode component is made up of the mean value of the voltage provided by the half bridges of the inverter.
  • the push-pull voltage from the difference between the voltage at the switch and the common-mode voltage.
  • FIG. 3 there is an equivalent circuit diagram of the parasitic bearing capacities with the main current path of the bearing current through the bearings of the motor M.
  • the rotor 2 is rotatably supported relative to the stator 3 via a bearing outer ring 4a (stator side) and a bearing inner ring 4b (rotor side).
  • the rotor-stator capacitance C RS which is comparable to the capacitance of a cylindrical capacitor, is located between the rotor and the stator. Parasitic capacitances occur between the stator 3 and the earth, as well as the rotor 2 and the earth.
  • the capacitive coupling of the iron yoke to the housing cover or the electronics leads to the parasitic stator earth capacitance C SE , while the parasitic rotor earth capacitance C RE is typically caused by attachments to the rotor (for example metal impellers).
  • the bearing capacity between the bearing outer ring 4a and the bearing inner ring 4b is referred to as C bearing .
  • a change in the star point potential of the C WS / C WR star connection can only be generated by a change in the common mode voltage, which is provided by the inverter 16.
  • the push-pull component of the voltage which is only present between the windings, cannot cause a change in the star point potential due to the symmetrical star connection of the capacitances from the winding to the rotor 2 and from the winding to the stator 3 (C WS and C WR ). This means that push-pull voltages are not transferred to the remaining capacities of the network.
  • a closed current path is also required for the formation of common mode currents over the capacitive network. This is generated by connecting the inverter 16 to the earth potential U E of the earth via the Y capacitors, EMC filters or the grid installation. The common mode currents that form thus flow from the inverter 16 to the capacitive network to earth and from there via the filter components and the network back to the inverter 16.
  • the common mode currents therefore flow mainly via the capacitances C WS and, in the case of such a circuit topology, therefore via the bearing rings 4a, 4b.
  • the implementation of the invention is shown on the basis of an equivalent circuit diagram of the parasitic storage capacitances in the connection, ie the connection of the stator 3 via an impedance Z at the potential tap 20a of the inverter 16.
  • the positive DC link potential DC + is present here during operation of the motor M. This ensures that the potential of the stator 3 for high frequencies is kept constant with respect to the earth potential U E and that the majority of the currents i do not flow back via the bearing, ie the bearing outer ring 4a or bearing inner ring 4b, but directly back to the intermediate circuit potential.
  • the dashed line shows the pulsed DC voltage clock component U CM and the solid line shows the bearing voltage U b .
  • the dashed line shows the pulsed DC voltage clock component U CM and the solid line shows the bearing voltage U b .
  • the bearing voltage U b shows the bearing voltage
  • Figures 7 to 13 show alternative embodiments of the invention according to two further main variants.
  • the first (previously shown) variant concerned the connection of the stator 3 to a potential tap 20a of the intermediate circuit potential.
  • Figure 7 A solution is shown in which the connection of the stator 3 was not realized with the positive, but with the negative DC link potential DC-. Since only common-mode processes are decisive for the bearing voltage, possible bearing currents that occur via DC link of the intermediate circuit 14 can be closed via the intermediate circuit capacitor C DC .
  • the intermediate circuit capacitor C DC has significantly higher capacitances than the parasitic capacitances of the motor and can be assumed to be a short circuit for simplicity. This creates a direct connection to the electronic ground and the potential of the stator 3 can be kept constant for high frequencies with respect to earth.
  • a second variant relates to any other suitable connection that is at the potential of the intermediate circuit, such as. B. in the Figure 8 a potential tap 20a is shown on the center tap of the intermediate circuit 15.
  • a third variant relates to a suitable connection which is at a potential of the connection electronics 10 which deviates from the intermediate circuit potential, such as, for. B. in the two figures of the Figure 9 shown, in which the potential tap 20a takes place before the rectifier 14.
  • a connection can also be made on the AC side of the rectifier 14.
  • Such a configuration would correspond to an alternating connection of the stator 3 to the ground potential and the intermediate circuit potential, depending on the sign of the mains voltage currently applied to the rectifier 14.
  • no common mode chokes or filter elements which increase the impedance may lie between the intermediate circuit 15 and the potential tap 20a, in order not to counteract the technical effect of the present invention.
  • the duration of the rectifier 14 must be given over the longest possible time interval within the mains half-wave. This can be achieved, for example, by an active PFC circuit.
  • a passive rectifier 14 in the case of a passive rectifier 14, on the other hand, it must be ensured that either the rectifier 14 has a sufficiently large diode capacitance or, alternatively, corresponding impedances are connected in parallel with the rectifier, which reduce the rectifier impedance for the high-frequency bearing voltage.
  • a corresponding version is in the Figure 10 shown.
  • Another aspect that has to be taken into account in the various embodiments is the protection against accidental contact of the motor M and thus the protection of persons against electric shock, since the connection 20 between the Stator 3 and the electronics potential, the insulation distance reduced compared to conventional designs and in a first approximation to the insulation distance between the bearing seat and the rotor 2.
  • One way of producing the required protection against accidental contact is to connect the stator 3 via impedances with adequate protective insulation.
  • Y capacitors can be used for this.
  • the Y capacitance nevertheless acts like a short circuit and thus like a direct connection.
  • the capacitance used in the frequency range of the bearing voltage has a significantly lower impedance than the capacitive network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Inverter Devices (AREA)

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zur Reduzierung und insbesondere zur Vermeidung von schädlichen Lagerströmen in einer elektrischen Maschine, wie einem EC-Motor sowie eine elektrische Maschine, die mit einer solchen Vorrichtung ausgestattet ist.The present invention relates to a device for reducing and in particular for avoiding harmful bearing currents in an electrical machine, such as an EC motor, and an electrical machine which is equipped with such a device.

Drehzahlveränderbare Motoren werden heute überwiegend von Spannungszwischenkreisumrichtern gespeist. Die Speisung durch den Spannungszwischenkreisumrichter führt jedoch zu Lagerströmen in den Lagern des Motors.Today's variable-speed motors are mainly fed by voltage intermediate circuit converters. However, the supply by the voltage intermediate circuit converter leads to bearing currents in the motor bearings.

Ein solcher Stromfluss durch die Lager kann bei elektrischen Maschinen mit Wälz- und Gleitlagern zu Schäden bis hin zum totalen Ausfall führen. Im Netzbetrieb können sogenannte Wellenspannungen auftreten, welche in einer Leiterschleife induziert werden, die aus der Welle, den beiden Lagern, den Lagerschilden sowie dem Gehäuse besteht.Such a current flow through the bearings can lead to damage or even complete failure in electrical machines with roller and plain bearings. So-called shaft voltages can occur during mains operation, which are induced in a conductor loop consisting of the shaft, the two bearings, the end shields and the housing.

Die Hintergründe und physikalischen Ursachen von Wellenspannungen sind umfangreich in der Literatur beschrieben. Vereinfacht ausgedrückt, treten aufgrund von Asymmetrien des magnetischen Kreises, die sich nicht zu "Null" addieren magnetische Flüsse innerhalb der elektrischen Maschine auf, die den besagten magnetischen Ringfluss verursachen.The background and physical causes of shaft voltages are extensively described in the literature. In simple terms, due to asymmetries in the magnetic circuit that do not add up to "zero", magnetic fluxes occur within the electrical machine, which cause said magnetic ring flux.

Zur Erzeugung der benötigten Stromform wird eine Wechselrichterschaltung (Inverter) eingesetzt, die mittels PWM im Mittel eine Spannung an die Klemmen des EC-Motors anlegt, so dass sich die gewünschte Stromform einstellt. Der Inverter arbeitet dabei typischerweise mit einer Schaltfrequenz außerhalb des hörbaren Bereichs (>16kHz).To generate the required current form, an inverter circuit (inverter) is used which, on average, applies a voltage to the terminals of the EC motor using PWM, so that the desired current form is set. The inverter typically works with a switching frequency outside the audible range (> 16kHz).

Bei Speisung der elektrischen Maschine aus einem Pulswechselrichter entsteht eine zweite Art der elektrischen Lagerbeanspruchung, nämlich eine kapazitiv eingekoppelte Lagerspannung. Durch das geschaltete Pulsmuster des Inverters ergibt sich an dessen Ausgang eine mit der Schaltfrequenz des Inverters springende Gleichtaktspannung (common mode voltage) gegenüber Erde. Diese Gleichtaktspannung wird über kapazitive Koppelnetzwerke auch auf das Lager übertragen. Die physikalische Ursache dieser Art der Lagerspannung sind die Spannungsänderungen am Wechselrichterausgang, die durch die schnellen Schaltvorgänge erzeugt werden sowie das Steuerverfahren des Pulswechselrichters, das im direkten Zusammenhang mit der Gleichtaktspannung (common mode voltage) steht.When the electrical machine is supplied from a pulse-controlled inverter, a second type of electrical bearing stress occurs, namely a capacitively coupled-in bearing voltage. The switched pulse pattern of the inverter results in a common mode voltage (common mode voltage) with respect to earth at the switching frequency of the inverter. This common mode voltage is also transferred to the warehouse via capacitive coupling networks. The physical cause of this type of bearing voltage are the voltage changes at the inverter output, which are generated by the fast switching processes, and the control process of the pulse-controlled inverter, which is directly related to the common mode voltage.

Hierdurch bildet sich eine Spannung zwischen dem Lagerinnen- und Lageraußenring und der auf einem isolierenden Ölfilm laufenden Kugel des Lagers aus, wobei der Ölfilm zwischen Lagerinnen- und Lageraußenring elektrisch als Kapazität betrachtet werden kann. Kommt es nun aufgrund unzureichender Isolationsstärke des Ölfilms, bzw. zu hohen Lagerspannungen zu einem Durchschlag der Isolation, so entlädt sich die Ölfilmkapazität und es findet ein Ausgleich der Ladungsträger zwischen Lagerinnen- und Lageraußenring statt (electric discharge machining).This creates a tension between the inner and outer ring of the bearing and the ball of the bearing running on an insulating oil film, the oil film between the inner and outer ring of the bearing can be considered electrically as a capacitance. If the insulation breaks down due to insufficient insulation of the oil film or high bearing voltages, the oil film capacity discharges and the charge carriers between the inner and outer bearing rings are balanced (electric discharge machining).

Solche Lagerströme können je nach Ausführung des Motors zu einem vorzeitigen Ausfall der Lager führen, welcher zu einer Riffelbildung an den Laufflächen des Lagers und zu einer Zersetzung des Lagerfetts führt.Depending on the design of the motor, such bearing currents can lead to premature failure of the bearings, which leads to the formation of ripples on the bearing treads and to decomposition of the bearing grease.

Als Abhilfe wurden in der Vergangenheit hierzu stromisolierte Lager, z. B. Lager mit einer Keramikisolierung am Außenring oder Hybridlager mit Keramik-Walzkörpern, verwendet. Da diese Lager jedoch sehr teuer sind, eignet sich eine solche Lösung nicht in idealer Weise für die Massenfertigung.To remedy this, current-insulated bearings, e.g. B. bearings with ceramic insulation on the outer ring or hybrid bearings with ceramic rolling elements used. However, since these bearings are very expensive, such a solution is not ideal for mass production.

Aus dem Stand der Technik sind weitere Abhilfemaßnahmen bekannt. So lehren die Druckschriften EP 1 445 850 A1 bzw. DE 10 2004 016 738 B3 eine Vorrichtung zum Schutz eines Lagers einer Elektromaschine zu verwenden, die eine Kompensationsschaltung bzw. eine Kompensationseinrichtung zur Erzeugung eines Kompensationsstroms für die Kompensation eines Störstroms durch die Lager vorsieht.Further remedial measures are known from the prior art. This is how the publications teach EP 1 445 850 A1 respectively. DE 10 2004 016 738 B3 to use a device for protecting a bearing of an electric machine, which provides a compensation circuit or a compensation device for generating a compensation current for the compensation of an interference current through the bearings.

Eine alternative Lösung wird durch einen gezielten Kurzschluss zwischen den Lagerringen erzielt. Die US 20080088187A1 lehrt z. B. eine leitende Verbindung zwischen Rotor und Stator vorzusehen und einen Kurzschluss zwischen Rotor und Stator über eine Feder zu realisieren. Hierzu sind noch Alternativen bekannt, bei denen ein Bypass-Element (z.B. Bypass-Kondensator) zwischen den Lagern eingesetzt wird.An alternative solution is achieved by a targeted short circuit between the bearing rings. The US 20080088187A1 teaches e.g. B. to provide a conductive connection between the rotor and stator and to realize a short circuit between the rotor and stator via a spring. Alternatives to this are also known, in which a bypass element (for example a bypass capacitor) is used between the bearings.

Nachteilig ist dabei unter anderem, dass der Stator und Rotor leitfähig miteinander verbunden sind. Somit muss die erforderliche Isolation zwischen den Wicklungen und dem Stator entsprechend verstärkt werden. Am Schleifkontakt treten ferner Verschleißerscheinungen auf und ein zusätzliches Bypass-Element verursacht auch zusätzliche Kosten.It is disadvantageous, among other things, that the stator and rotor are conductively connected to one another. Thus, the isolation required between the Windings and the stator are reinforced accordingly. Signs of wear also appear on the sliding contact and an additional bypass element also causes additional costs.

Eine weitere bekannte Maßnahme besteht in dem Isolieren der Welle und dem Umspritzen des Stators. Durch die zusätzliche Isolationsschicht zwischen der Welle und dem Stator wird ein Teil der Lagerspannung über der Isolation abgebaut. Nachteilig ist hierbei, dass die auftretenden Lagerspannungen dennoch ausreichend hoch sein können, dass es zu unerwünschten Lagerströmen kommt.Another known measure consists in isolating the shaft and overmolding the stator. Due to the additional insulation layer between the shaft and the stator, part of the bearing voltage is reduced over the insulation. The disadvantage here is that the bearing stresses that occur can nevertheless be sufficiently high that undesirable bearing currents occur.

Eine Lösung, wie die der Impedanzanpassung des Lagerschildes, wie z. B. aus der US 2011/0234026 A1 bekannt, eignet sich nur für Ausführungen bei denen überhaupt leitfähige Lagerschilde vorgesehen sind.A solution, such as the impedance matching of the end shield, such as. B. from the US 2011/0234026 A1 known, is only suitable for designs in which conductive end shields are provided at all.

Aus der Publikation von S. Schroth, D. Bortis, J. W. Kolar "Impact of Stator Grounding in Low Power Single-Phase ECMotors, Proceedings of the 29th Applied Power Electronics Conference and Exposition (APEC 2014), Texas, Houston, USA, March 16-20, 2014 " ist eine Lösung bekannt, bei der der Stator isoliert aufgebaut ist und eine kapazitiven Anbindung des Stators an das Erdpotential erfolgt. Problematisch ist dabei, dass die Anbindung des Stators an das Erdpotential einen Einfluss auf die Filtereigenschaften des EMV-Filters hat und zu einer deutlichen Verschlechterung der EMV-Eigenschaften führt, da gleichzeitig die Impedanz gegen die Erde verringert wird. Dies hat ein deutlich erhöhtes Filtervolumen zu Folge. Das bedeutet, dass jeweils eine Adaption individuell an den Motor erfolgen muss, so dass eine solche Lösung ebenfalls nicht universell einsetzbar ist.From the publication of S. Schroth, D. Bortis, JW Kolar "Impact of Stator Grounding in Low Power Single-Phase ECMotors, Proceedings of the 29th Applied Power Electronics Conference and Exposition (APEC 2014), Texas, Houston, USA, March 16-20, 2014 " A solution is known in which the stator is constructed in an isolated manner and a capacitive connection of the stator to the earth potential takes place. The problem here is that the connection of the stator to the earth potential has an influence on the filter properties of the EMC filter and has a significant effect The EMC properties deteriorate because the impedance to the earth is reduced at the same time, which results in a significantly increased filter volume, which means that the motor has to be adapted individually so that such a solution is also not universally applicable .

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Lösung bereit zu stellen, mit der die unerwünschten Lagerströme wirksam reduziert oder ganz verhindert werden können, bei der vorgenannte Nachteile nicht auftreten und die universell einsetzbar ist.The invention is therefore based on the object of providing a solution with which the undesired bearing currents can be effectively reduced or completely prevented, in which the aforementioned disadvantages do not occur and which can be used universally.

Diese Aufgabe wird mittels einer Vorrichtung zur Vermeidung von schädlichen Lagerströmen in einer elektrischen Maschine mit den Merkmalen von Anspruch 1, sowie mit einem Motor mit den Merkmalen von Anspruch 10 gelöst.This object is achieved by means of a device for avoiding harmful bearing currents in an electrical machine with the features of claim 1, and with a motor with the features of claim 10.

Der Grundgedanke der Erfindung ist darin zu sehen, dass der Schutz des Lagers vor unerwünschten Lagerströmen durch Verbinden des Stators an ein hochfrequentes und gegenüber dem Erdpotential stabiles Potential vorzugsweise das Elektronikpotential erfolgt, wobei die Verbindung entweder direkt als Kurzschlussverbindung oder alternativ über eine Kapazität oder eine Impedanz erfolgt, wodurch gleichzeitig die für den Berührschutz erforderliche Isolationsstrecke durch die eingebrachte Impedanz sichergestellt wird.The basic idea of the invention is to be seen in the fact that the protection of the bearing against undesired bearing currents is achieved by connecting the stator to a high-frequency potential which is stable with respect to the earth potential, preferably the electronic potential, the connection either directly as a short-circuit connection or alternatively via a capacitance or an impedance takes place, which at the same time ensures the insulation gap required for protection against accidental contact by the impedance introduced.

Das elektrische Verbinden des Stators an ein stabiles Elektronikpotential über eine beliebige Impedanz, kann demnach ohmsch, induktiv, kapazitiv oder unter Einbindung ganzer Netz-Topologien realisiert werden.The electrical connection of the stator to a stable electronics potential via any impedance can therefore be realized ohmic, inductive, capacitive or by integrating entire network topologies.

Um einen drehzahlvariablen Betrieb eines Motors zu ermöglichen, werden die Motoren über Umrichter mit entsprechend hoher Taktfrequenz gespeist. Ein typischer Stromrichter mit Gleichspannungszwischenkreis (auch U-Umrichter genannt) besteht regelmäßig aus einem Gleichrichter, dem Zwischenkreis mit konstanter Spannung und einem Wechselrichter, wobei aus der konstanten Zwischenkreisspannung ein dreiphasiges Spannungssystem erzeugt wird. Die Zwischenkreisspannung hat über den Gleichrichter und/oder den EMV-Filter einen Bezug zum Erdpotential. Infolge der Pulsung tritt zwischen dem Erdpotential und den Motorsträngen eine Spannung auf, die der halben Zwischenkreisspannung (± UZK/2) entspricht. Diese Spannung tritt in allen drei Strängen als gleichphasige Gleichtaktspannung (common mode voltage) auf.In order to enable variable-speed operation of a motor, the motors are fed via inverters with a correspondingly high clock frequency. A typical converter with a DC link (also known as a U-converter) regularly consists of a rectifier, the DC link with constant voltage and an inverter, whereby a three-phase voltage system is generated from the constant DC link voltage. The DC link voltage is related to the earth potential via the rectifier and / or the EMC filter. As a result of the pulsation, a voltage occurs between the earth potential and the motor lines that corresponds to half the DC link voltage (± U ZK / 2). This voltage occurs in all three strands as an in-phase common mode voltage.

Das zuvor genannte stabile Potential der Elektronik, mit dem der Stator elektrisch verbunden wird, ist erfindungsgemäß ein vom Erdungspotential unterschiedliches Potential eines vorzugsweise gefilterten U-Umrichters sein. So kann die Verbindung entweder mit dem Zwischenkreispotential DC+ des Zwischenkreises oder dem Massepotential der Elektronik bzw. DC-, dem Potential vor oder nach dem Gleichrichter der Gleichrichterschaltung, dem Potential innerhalb des EMV-Filters oder alternativ auch das Ausgangspotential der Niederspannungsversorgung bzw. des Schaltnetzteiles sein.According to the invention, the aforementioned stable potential of the electronics to which the stator is electrically connected is a potential of a preferably filtered U-converter that is different from the ground potential. So can be the connection either with the DC link potential DC + of the DC link or the ground potential of the electronics or DC-, the potential before or after the rectifier of the rectifier circuit, the potential within the EMC filter or alternatively also the output potential of the low voltage supply or the switching power supply.

Erfindungsgemäß wird demnach eine Vorrichtung zur Reduzierung und/ oder zur Vermeidung von schädlichen Lagerströmen in einer elektrischen Maschine vorgeschlagen, wie z. B. einem dreiphasigen EC-Motor, mit einem Rotor und mit einem isoliert aufgebauten Stator, wobei zwischen Rotor und Stator ein Lageraussenring und ein Lagerinnenring vorgesehen sind, ferner umfassend eine Anschlusselektronik zum Anschluss des Motors, wobei der Stator durch eine elektrische Verbindung mit einem hochfrequent gegenüber dem Erdpotential verschiedenen sowie gegenüber diesem stabilen Elektronikpotential an einem Potentialabgriff der Anschlusselektronik verbunden ist.According to the invention a device for reducing and / or avoiding harmful bearing currents in an electrical machine is proposed, such as. B. a three-phase EC motor, with a rotor and with an insulated stator, wherein a bearing outer ring and a bearing inner ring are provided between the rotor and stator, further comprising a connection electronics for connecting the motor, the stator by an electrical connection with a high frequency is connected to a potential tap of the connection electronics with respect to the earth potential which is different and to this stable electronics potential.

In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die elektrische Verbindung zwischen dem Stator und dem Elektronikpotential über eine zwischengeschaltete Kapazität oder über eine beliebige zwischengeschaltete Impedanz ausgebildet ist.In a preferred embodiment of the invention it is provided that the electrical connection between the stator and the electronic potential is formed via an intermediate capacitance or via any intermediate impedance.

Alternativ kann vorgesehen sein, dass die elektrische Verbindung zwischen dem Stator und dem Elektronikpotential als elektrische Kurzschlussverbindung ausgebildet ist. Somit liegt der Stator während dem Betrieb des Motors unmittelbar auf dem Elektronikpotential.Alternatively, it can be provided that the electrical connection between the stator and the electronic potential is designed as an electrical short-circuit connection. The stator is thus directly at the electronic potential during operation of the motor.

In einer weiteren vorteilhaften Ausbildung der erfindungsgemäßen Vorrichtung ist vorgesehen, dass die Anschlusselektronik wenigstens einen Gleichrichter, einen Zwischenkreis und einen Wechselrichter umfasst und der Potentialabgriff zur Verbindung des Stators in der Anschlusselektronik so vorgesehen bzw. angeordnet ist, dass das am Stator verbundene Elektronikpotential eines der im Folgenden genannten Potentiale entspricht:

  • dem Potential des Zwischenkreises, vorzugsweise dem positive Zwischenkreispotential (DC+)
  • dem Massepotential des Zwischenkreises (15),
  • dem Potential am Mittelabgriff (15') des Zwischenkreises (15) oder
  • dem negativen Zwischenkreispotential (DC-).
In a further advantageous embodiment of the device according to the invention, it is provided that the connection electronics comprise at least one rectifier, an intermediate circuit and an inverter and the potential tap for connecting the stator is provided or arranged in the connection electronics such that the electronic potential connected to the stator is one of the im The following potentials correspond to:
  • the potential of the intermediate circuit, preferably the positive intermediate circuit potential (DC +)
  • the ground potential of the intermediate circuit (15),
  • the potential at the center tap (15 ') of the intermediate circuit (15) or
  • the negative intermediate circuit potential (DC-).

Alternativ kann der Potentialabgriff zum Verbinden des Stators mit dem Elektronikpotential auch ein Abgriff unmittelbar vor oder unmittelbar nach dem Gleichrichter sein. In diesem Fall kann in einer Weiterentwicklung der Erfindung vorgesehen werden, dass ein im Frequenzbereich der Lagerspannung Impedanz reduzierendes Netzwerk parallel zu einer, mehreren oder allen Dioden des Gleichrichters geschaltet wird.Alternatively, the potential tap for connecting the stator to the electronic potential can also be a tap immediately before or immediately after the rectifier. In this case, it can be provided in a further development of the invention that a network which reduces impedance in the frequency range of the bearing voltage is connected in parallel with one, several or all diodes of the rectifier.

In einer weiteren alternativen Ausgestaltung der Erfindung weist die Anschlusselektronik eingangsseitig ferner einen EMV-Filter auf und ist der Potentialabgriff für den Stator ein Abgriff innerhalb des EMV-Filters.In a further alternative embodiment of the invention, the connection electronics furthermore have an EMC filter on the input side and the potential tap for the stator is a tap within the EMC filter.

Weiter alternativ kann vorgesehen sein, dass, sofern die Anschlusselektronik an einer Niederspannungsversorgung oder einem Schaltnetzteil angeschlossen ist, der Potentialabgriff für den Stator als ein Abgriff an den Ausgängen der Niederspannungsversorgung oder des Schaltnetzteils vorgesehen ist.Further alternatively, it can be provided that if the connection electronics are connected to a low-voltage supply or a switching power supply, the potential tap for the stator is provided as a tap at the outputs of the low-voltage supply or the switching power supply.

Ein weiterer Aspekt der vorliegenden Erfindung betrifft einen Elektromotor, vorzugsweise einen EC-Motor, der mit einer wie zuvor beschriebenen Vorrichtung ausgebildet ist.Another aspect of the present invention relates to an electric motor, preferably an EC motor, which is designed with a device as described above.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt.Other advantageous developments of the invention are characterized in the subclaims or are shown below together with the description of the preferred embodiment of the invention with reference to the figures.

Es zeigen:

Fig. 1
eine Darstellung des Gesamtsystems bei einer Anbindung des Stators an das Elektronikpotential,
Fig. 2
eine Modellierung des Kapazitätsnetzwerkes,
Fig. 3
ein Ersatzschaltbild der parasitären Lagerkapazitäten und dem Hauptstrompfad des Lagerstromes,
Fig. 4
ein Ersatzschaltbild der parasitären Lagerkapazitäten bei der Anbindung des Stators mit dem zufolge umgeleiteten Erdstrompfad,
Fig. 5
ein schematisch vereinfachtes Ersatzschaltbild zur Bestimmung der Lagerspannung gemäß der Ausführung nach Figur 3,
Fig. 6
vergleichende Messkurven der Gleichtaktspannung und Lagerspannung (ohne und mit Anbindung des Stators),
Fig. 7
eine alternative Ausführungsform einer erfindungsgemäßen Vorrichtung,
Fig. 8
eine weitere alternative Ausführungsform einer erfindungsgemäßen Vorrichtung in einer zweiten Variante,
Fig. 9
eine zweite alternative Ausführungsform einer erfindungsgemäßen Vorrichtung in der zweiten Variante,
Fig. 10
eine dritte alternative Ausführungsform einer erfindungsgemäßen Vorrichtung in der zweiten Variante,
Fig. 11
eine vierte alternative Ausführungsform einer erfindungsgemäßen Vorrichtung in der zweiten Variante,
Fig. 12
eine weitere alternative Ausführungsform einer erfindungsgemäßen Vorrichtung in einer dritten Variante,
Fig. 13
weitere alternative Ausführungsformen einer erfindungsgemäßen Vorrichtung in der dritten Variante.
Show it:
Fig. 1
a representation of the overall system when the stator is connected to the electronic potential,
Fig. 2
a modeling of the capacity network,
Fig. 3
an equivalent circuit diagram of the parasitic storage capacities and the main current path of the storage current,
Fig. 4
an equivalent circuit diagram of the parasitic storage capacities when the stator is connected to the earth current path which is diverted as a result,
Fig. 5
a schematically simplified equivalent circuit diagram for determining the bearing voltage according to the embodiment Figure 3 ,
Fig. 6
comparative measurement curves of common mode voltage and bearing voltage (without and with connection of the stator),
Fig. 7
an alternative embodiment of a device according to the invention,
Fig. 8
another alternative embodiment of a device according to the invention in a second variant,
Fig. 9
a second alternative embodiment of a device according to the invention in the second variant,
Fig. 10
a third alternative embodiment of a device according to the invention in the second variant,
Fig. 11
a fourth alternative embodiment of a device according to the invention in the second variant,
Fig. 12
a further alternative embodiment of a device according to the invention in a third variant,
Fig. 13
further alternative embodiments of a device according to the invention in the third variant.

Die Erfindung wir nachfolgend anhand bevorzugter Ausführungsbeispiele mit Bezug auf die Figuren 1 bis 13 beschrieben, wobei gleiche Bezugszeichen auf gleiche funktionale und/oder strukturelle Merkmale hinweisen.The invention is based on preferred embodiments with reference to the Figures 1 to 13 described, the same reference numerals indicating the same functional and / or structural features.

In der Figur 1 ist eine Darstellung eines Ausführungsbeispiels eines Gesamtsystems gezeigt, bei dem eine Vorrichtung 1 zur Reduzierung und/ oder zur Vermeidung von schädlichen Lagerströmen in dem dreiphasig gespeisten EC-Motor M dargestellt ist. Der Motor M ist mit einem Rotor 2 und mit einem isoliert aufgebauten Stator 3 ausgebildet, die vorliegend nur schematisch dargestellt sind.In the Figure 1 A representation of an exemplary embodiment of an overall system is shown, in which a device 1 for reducing and / or avoiding harmful bearing currents in the three-phase-fed EC motor M is shown. The motor M is designed with a rotor 2 and with an insulated stator 3, which are only shown schematically here.

Die Vorrichtung 1 umfasst (wie weiter in der Figur 1 ersichtlich) eine Anschlusselektronik 10 zum Anschluss des Motors M mit einem Gleichrichter 14, einem Zwischenkreis 15 und einem Wechselrichter 16 sowie eingangsseitig mit einem EMV-Filter 17. Wie ebenfalls in der Figur 1 zu erkennen ist, ist der Stator 3 über eine Verbindung 20 mit dem Potentialabgriff 20a am Wechselrichter 16 verbunden.The device 1 comprises (as further in FIG Figure 1 can be seen) a connection electronics 10 for connecting the motor M with a rectifier 14, an intermediate circuit 15 and an inverter 16 and on the input side with an EMC filter 17. As also in the Figure 1 can be seen, the stator 3 is connected via a connection 20 to the potential tap 20a on the inverter 16.

Zur Erläuterung der Funktionsweise der erfindungsgemäßen Vorrichtung wird im Folgenden mit der Figur 2 eine Modellierung des 3-Phasen-Wechselrichters 16, sowie des kapazitiven Netzwerks der parasitären Kapazitäten dargestellt.To explain the mode of operation of the device according to the invention, the Figure 2 a modeling of the 3-phase inverter 16 and the capacitive network of the parasitic capacitances are shown.

Anschlussseitig liegt die Zwischenkreisspannung DC+, DC- des Zwischenkreises 15 (wie in der Figur 1 dargestellt) am Wechselrichter 16 an. Die an den Motorklemmen angelegten Spannungen sind mit uu, uv und uw gekennzeichnet, während die Halbbrücken mit dem vereinfachten Halbbrückensymbol dargestellt sind.The DC link voltage DC +, DC- of the DC link 15 (as in FIG Figure 1 shown) on the inverter 16. The voltages applied to the motor terminals are marked with u u , u v and u w , while the half bridges are shown with the simplified half bridge symbol.

Die vom Wechselrichter 16 an den Motorklemmen angelegte Spannung wird in einen Gleichtaktanteil (uCM) und einen Gegentaktanteil (uDM) zerlegt. Der Gleichtaktanteil setzt sich aus dem Mittelwert der von den Halbbrücken des Wechselrichters zur Verfügung gestellten Spannung zusammen. Die Gegentaktspannung jeweils aus der Differenz zwischen der Spannung am Schalter und der Gleichtaktspannung.The voltage applied to the motor terminals by the inverter 16 is broken down into a common-mode component (u CM ) and a push-pull component (u DM ). The common mode component is made up of the mean value of the voltage provided by the half bridges of the inverter. The push-pull voltage from the difference between the voltage at the switch and the common-mode voltage.

In der Figur 3 findet sich ein Ersatzschaltbild der parasitären Lagerkapazitäten mit dem Hauptstrompfad des Lagerstromes durch die Lager des Motors M. Der Rotor 2 ist gegenüber dem Stator 3 über einen Lageraussenring 4a (statorseitig) und einen Lagerinnenring 4b (rotorseitig) drehbar gelagert.In the Figure 3 there is an equivalent circuit diagram of the parasitic bearing capacities with the main current path of the bearing current through the bearings of the motor M. The rotor 2 is rotatably supported relative to the stator 3 via a bearing outer ring 4a (stator side) and a bearing inner ring 4b (rotor side).

In einem vereinfachten anschaulichen Modell treten in dem System wenigstens die folgenden Kapazitäten auf, die in der Figur 3 näher bezeichnet sind. Aufgrund des geringen Abstandes der Wicklung vom Statorpaket tritt in dem System eine Wicklung-Stator-Kapazität CWS auf. Durch die Wickelköpfe des Motors entsteht ferner jeweils auch eine Wicklung-Rotor-Kapazität CWR.In a simplified, descriptive model, at least the following capacities appear in the system, which in the Figure 3 are specified. Due to the small distance between the winding and the stator package, a winding-stator capacitance C WS occurs in the system. The winding heads of the motor also create a winding-rotor capacitance C WR .

Zwischen dem Rotor und dem Stator befindet sich die Rotor-Stator-Kapazität CRS, die vergleichbar zu der Kapazität eines Zylinderkondensators ist. Zwischen dem Stator 3 und der Erde, sowie dem Rotor 2 und der Erde treten jeweils parasitäre Kapazitäten auf. Die kapazitive Kopplung des Eisenjochs mit dem Gehäusedeckel bzw. der Elektronik führt zu der parasitäre Stator-Erdkapazität CSE,
während die parasitäre Rotor-Erdkapazität CRE typischerweise durch Anbauten am Rotor (beispielsweise Metallflügelräder) hervorgerufen wird. Die Lagerkapazität zwischen dem Lageraussenring 4a und dem Lagerinnenring 4b wird mit CLager bezeichnet.
The rotor-stator capacitance C RS , which is comparable to the capacitance of a cylindrical capacitor, is located between the rotor and the stator. Parasitic capacitances occur between the stator 3 and the earth, as well as the rotor 2 and the earth. The capacitive coupling of the iron yoke to the housing cover or the electronics leads to the parasitic stator earth capacitance C SE ,
while the parasitic rotor earth capacitance C RE is typically caused by attachments to the rotor (for example metal impellers). The bearing capacity between the bearing outer ring 4a and the bearing inner ring 4b is referred to as C bearing .

Eine Veränderung des Sternpunktpotentials der CWS/ CWR - Sternschaltung kann nur durch eine Änderungen der Gleichtaktspannung erzeugt werden, welche vom Wechselrichter 16 bereitgestellt wird.A change in the star point potential of the C WS / C WR star connection can only be generated by a change in the common mode voltage, which is provided by the inverter 16.

Der Gegentaktanteil der Spannung, der nur zwischen den Wicklungen anliegt, kann durch die symmetrische Sternschaltung der Kapazitäten von der Wicklung zum Rotor 2 und von der Wicklung zum Stator 3 (CWS und CWR) keine Veränderung des Sternpunktpotentials hervorrufen. Somit erfolgt keine Übertragung von Gegentaktspannungen in die restlichen Kapazitäten des Netzwerks.The push-pull component of the voltage, which is only present between the windings, cannot cause a change in the star point potential due to the symmetrical star connection of the capacitances from the winding to the rotor 2 and from the winding to the stator 3 (C WS and C WR ). This means that push-pull voltages are not transferred to the remaining capacities of the network.

Zur Ausbildung von Gleichtaktströmen über dem kapazitiven Netzwerk bedarf es des Weiteren eines geschlossenen Strompfades. Dieser wird durch die Anbindung des Wechselrichters 16 an das Erdpotential UE der Erde über die Y-Kondensatoren, EMV-Filter oder die Netzinstallation erzeugt. Die sich ausbildenden Gleichtaktströme fließen somit vom Wechselrichter 16 über das kapazitive Netzwerk nach Erde und von dort über die Filterbauteile und das Netz wieder zurück zum Wechselrichter 16.A closed current path is also required for the formation of common mode currents over the capacitive network. This is generated by connecting the inverter 16 to the earth potential U E of the earth via the Y capacitors, EMC filters or the grid installation. The common mode currents that form thus flow from the inverter 16 to the capacitive network to earth and from there via the filter components and the network back to the inverter 16.

Den größten Anteil dabei bilden typischerweise die in Figur 3 mit iEDM bezeichneten Ströme über den Stator 3, über den Lageraussen- bzw. Lagerinnenring 4a bzw. 4b zum Rotor 2 und dann zur Erde (dargestellt als gestrichelte Pfeillinie in Figur 3).Typically, the largest share is in Figure 3 currents denoted by i EDM via the stator 3, via the bearing outer ring or bearing inner ring 4a or 4b to the rotor 2 and then to the earth (shown as a dashed arrow line in Figure 3 ).

Aufgrund der unterschiedlichen Größe der Kapazitäten (CWS deutlich größer als die Kapazität CWR) fließen die Gleichtaktströme daher hauptsächlich über die Kapazitäten CWS und bei einer solchen Schaltungstopologie damit über die Lagerringe 4a, 4b.Because of the different sizes of the capacitances (C WS significantly larger than the capacitance C WR ), the common mode currents therefore flow mainly via the capacitances C WS and, in the case of such a circuit topology, therefore via the bearing rings 4a, 4b.

Je größer die zusätzlichen Anbauten am Rotor 2 sind, desto geringer ist das Rotorpotential gegenüber Erde und desto geringer werden die Lagerspannungen. Für die schädlichen Lagerspannungen sind jedoch nur Spannungsänderungen ΔU gegenüber dem Erdpotential UE relevant.The larger the additional attachments on the rotor 2, the lower the rotor potential with respect to earth and the lower the bearing tensions. However, only voltage changes ΔU with respect to earth potential U E are relevant for the harmful bearing voltages.

In der Figur 4 ist die Umsetzung der Erfindung anhand eines Ersatzschaltbildes der parasitären Lagerkapazitäten bei der Anbindung d. h. der Verbindung des Stators 3 über eine Impedanz Z am Potentialabgriff 20a des Wechselrichters 16 gezeigt. Hier liegt im Betrieb des Motors M das positive Zwischenkreispotential DC+ an. Hierdurch wird gewährleistet, dass das Potential des Stators 3 für hohe Frequenzen gegenüber dem Erdpotential UE konstant gehalten wird und der Hauptanteil der Ströme i nicht über das Lager d. h. den Lageraussenring 4a bzw. Lagerinnenring 4b, sondern wieder direkt zum Zwischenkreispotential zurückfließen.In the Figure 4 the implementation of the invention is shown on the basis of an equivalent circuit diagram of the parasitic storage capacitances in the connection, ie the connection of the stator 3 via an impedance Z at the potential tap 20a of the inverter 16. The positive DC link potential DC + is present here during operation of the motor M. This ensures that the potential of the stator 3 for high frequencies is kept constant with respect to the earth potential U E and that the majority of the currents i do not flow back via the bearing, ie the bearing outer ring 4a or bearing inner ring 4b, but directly back to the intermediate circuit potential.

Sofern die Impedanz von Z für die hochfrequenten Lagerströme vernachlässigt werden kann und sich die Verbindung 20 zwischen dem Stator 3 und dem Potentialabgriff 20a wie ein Kurzschluss verhält, kann sich auch das Potential des Stators 3 maximal mit der Netzfrequenz und nicht mehr mit der Frequenz des Wechselrichters 16 ändern. Das auf diese Weise resultierende (vereinfachte) Ersatzschaltbild, lässt sich mit Figur 5 angeben.If the impedance of Z for the high-frequency bearing currents can be neglected and the connection 20 between the stator 3 and the potential tap 20a behaves like a short circuit, the potential of the stator 3 can also be at a maximum with the mains frequency and no longer with the frequency of the inverter 16 change. The resulting (simplified) equivalent circuit diagram can be used with Figure 5 specify.

Aufgrund der unterschiedlichen Größe der Kapazitäten (CWS deutlich größer als die Kapazität CWR) erhöht sich demzufolge die Impedanz der gesamten Strecke und die Lagerspannung wird abgesenkt. Die nun parallel zum Lager liegende parasitäre Kapazität CRE reduziert die Lagerspannung weiter, wodurch mit dieser Vorrichtung eine signifikante Reduzierung der Lagerspannung erreicht werden kann.Due to the different size of the capacitances (C WS significantly larger than the capacitance C WR ), the impedance of the entire route increases accordingly and the bearing tension is reduced. The parasitic capacitance C RE , which is now parallel to the bearing, further reduces the bearing voltage, as a result of which a significant reduction in the bearing voltage can be achieved with this device.

Durch das Verbinden des Stators 3 mit dem positiven Zwischenkreispotential DC+ ist der Anteil der hochfrequenten Ströme, welche zu Erde abfließen, deutlich verringert. Dies hat den weiteren Vorteil, dass sich das Volumen des EMV-Filters bei der erfindungsgemäßen Lösung nicht erhöht.By connecting the stator 3 to the positive DC link potential DC +, the proportion of high-frequency currents that flow to earth is significantly reduced. This has the further advantage that the volume of the EMC filter does not increase in the solution according to the invention.

In der Figur 6 finden sich vergleichende Messkurven der Gleichtaktspannung und Lagerspannung. Die obere Abbildung zeigt den Fall ohne Anbindung des Stators 3 und die untere Abbildung die erfindungsgemäße Ausführung mit der Verbindung 20 zwischen Stator 3 und dem positiven Zwischenkreispotential DC+.In the Figure 6 there are comparative measurement curves for common mode voltage and bearing voltage. The upper illustration shows the case without connection of the stator 3 and the lower illustration the embodiment according to the invention with the connection 20 between the stator 3 and the positive intermediate circuit potential DC +.

In der oberen Abbildung zeigt die gestrichelte Linie den gepulsten Gleichspannungstaktanteil UCM und die durchgezogene Linie die Lagerspannung Ub. Insbesondere im Bereich bei 50us sind deutlich Spannungsdurchbrüche der Lagerspannung zu erkennen.In the figure above, the dashed line shows the pulsed DC voltage clock component U CM and the solid line shows the bearing voltage U b . In the area around 50us, voltage breakdowns in the bearing voltage can be clearly seen.

In der unteren Abbildung der Figur 6 ist ersichtlich, dass bei isoliert aufgebautem Stator 3, durch dessen Verbindung an das Elektronikpotential die Amplituden der am Lager anliegenden Lagerspannung ub signifikant reduziert wurden und Durchschläge der Lagerspannung am Lager nicht auftreten.In the lower figure of the Figure 6 it can be seen that in the case of an insulated stator 3, by means of its connection to the electronic potential, the amplitudes of the bearing voltage u b applied to the bearing have been significantly reduced and breakdowns of the bearing voltage do not occur in the bearing.

In den Abbildungen 7 bis 13 werden alternative Ausführungsformen der Erfindung gemäß zwei weiteren Hauptvarianten dargestellt. Die erste (zuvor dargestellte) Variante betraf die Verbindung des Stators 3 an einen Potentialabgriff 20a des Zwischenkreispotentials. In Figur 7 ist eine Lösung gezeigt, bei dem die Verbindung des Stators 3 nicht mit dem positiven, sondern dem negativen Zwischenkreispotential DC- realisiert wurde. Da für die Lagerspannung nur Gleichtaktvorgänge entscheidend sind, können sich bei Anschluss an DC- des Zwischenkreises 14 mögliche auftretende Lagerströme über den Zwischenkreiskondensator CDC schließen.Figures 7 to 13 show alternative embodiments of the invention according to two further main variants. The first (previously shown) variant concerned the connection of the stator 3 to a potential tap 20a of the intermediate circuit potential. In Figure 7 A solution is shown in which the connection of the stator 3 was not realized with the positive, but with the negative DC link potential DC-. Since only common-mode processes are decisive for the bearing voltage, possible bearing currents that occur via DC link of the intermediate circuit 14 can be closed via the intermediate circuit capacitor C DC .

Der Zwischenkreiskondensator CDC weißt gegenüber den parasitären Kapazitäten des Motors deutlich höhere Kapazitäten auf und kann vereinfachend als Kurzschluss angenommen werden. Hierdurch ergibt sich eine direkte Verbindung zur Elektronikmasse und das Potential des Stators 3 kann für hohe Frequenzen gegenüber Erde konstant gehalten werden.
Eine zweite Variante betrifft einen beliebigen weiteren geeigneten Anschluss, der auf dem Potential des Zwischenkreises liegt, wie z. B. in der Figur 8 gezeigt ein Potentialabgriff 20a am Mittelabgriff des Zwischenkreises 15.
The intermediate circuit capacitor C DC has significantly higher capacitances than the parasitic capacitances of the motor and can be assumed to be a short circuit for simplicity. This creates a direct connection to the electronic ground and the potential of the stator 3 can be kept constant for high frequencies with respect to earth.
A second variant relates to any other suitable connection that is at the potential of the intermediate circuit, such as. B. in the Figure 8 a potential tap 20a is shown on the center tap of the intermediate circuit 15.

Eine dritte Variante betrifft einen geeigneten Anschluss, der auf einem von dem Zwischenkreispotential abweichenden Potential der Anschlusselektronik 10 liegt, wie z. B. in den beiden Abbildungen der Figur 9 gezeigt, bei dem der Potentialabgriff 20a vor dem Gleichrichter 14 erfolgt. Bei Verwendung beispielsweise eines Y-Kondensators kann damit auch ein Anschluss auf der AC-Seite des Gleichtrichters 14 erfolgen. Eine solche Konfiguration entspräche einer wechselnden Anbindung des Stators 3 an das Massepotential und das Zwischenkreispotential, je nach Vorzeichen der aktuell am Gleichrichter 14 anliegenden Netzspannung. Zu beachten ist hierbei jedoch, dass keine Gleichtaktdrosseln, oder stark Impedanz erhöhenden Filterelemente zwischen dem Zwischenkreis 15 und dem Potentialabgriff 20a liegen dürfen, um nicht dem technischen Effekt der vorliegenden Erfindung entgegen zu wirken. In diesem Zusammenhang ist weiter zu berücksichtigen, dass die Leitdauer des Gleichrichters 14 über ein möglichst langes Zeitintervall innerhalb der Netzhalbwelle gegeben sein muss. Dies kann beispielsweise durch eine aktive PFC-Schaltung erreicht werden. Im Falle eines passiven Gleichrichters 14 ist andererseits dafür zu sorgen, dass entweder der Gleichrichter 14 eine genügend große Dioden-Kapazität aufweist oder alternativ entsprechende Impedanzen parallel zum Gleichrichter geschaltet werden, die die Gleichrichterimpedanz für die hochfrequente Lagerspannung reduzieren. Eine entsprechende Ausführung ist in der Figur 10 dargestellt.A third variant relates to a suitable connection which is at a potential of the connection electronics 10 which deviates from the intermediate circuit potential, such as, for. B. in the two figures of the Figure 9 shown, in which the potential tap 20a takes place before the rectifier 14. If, for example, a Y capacitor is used, a connection can also be made on the AC side of the rectifier 14. Such a configuration would correspond to an alternating connection of the stator 3 to the ground potential and the intermediate circuit potential, depending on the sign of the mains voltage currently applied to the rectifier 14. However, it should be noted here that no common mode chokes or filter elements which increase the impedance may lie between the intermediate circuit 15 and the potential tap 20a, in order not to counteract the technical effect of the present invention. In this context, it should also be taken into account that the duration of the rectifier 14 must be given over the longest possible time interval within the mains half-wave. This can be achieved, for example, by an active PFC circuit. In the case of a passive rectifier 14, on the other hand, it must be ensured that either the rectifier 14 has a sufficiently large diode capacitance or, alternatively, corresponding impedances are connected in parallel with the rectifier, which reduce the rectifier impedance for the high-frequency bearing voltage. A corresponding version is in the Figure 10 shown.

Ein weiterer Aspekt, der bei den diversen Ausführungsformen zu berücksichtigen ist, ist der Berührschutz des Motors M und damit der Schutz von Personen gegen elektrischen Schlag, da sich auf Grund der Verbindung 20 zwischen dem Stator 3 und dem Elektronikpotential, die Isolationsstrecke gegenüber herkömmlichen Ausführungen reduziert und zwar in erster Näherung auf die Isolationsstrecke zwischen dem Lagersitz und dem Rotor 2.Another aspect that has to be taken into account in the various embodiments is the protection against accidental contact of the motor M and thus the protection of persons against electric shock, since the connection 20 between the Stator 3 and the electronics potential, the insulation distance reduced compared to conventional designs and in a first approximation to the insulation distance between the bearing seat and the rotor 2.

Eine Möglichkeit den erforderlichen Berührschutz herzustellen, besteht darin, die Anbindung des Stators 3 über Impedanzen mit ausreichender Schutzisolierung herzustellen. Hierzu können beispielsweise Y-Kondensatoren verwendet werden. Für die HF-Gleichtaktspannung des Wechselrichters 16 wirkt die Y-Kapazität trotzdem wie ein Kurzschluss und damit wie eine direkte Anbindung. Insbesondere dann, wenn die verwendete Kapazität im Frequenzbereich der Lagerspannung eine deutlich kleinere Impedanz aufweist als das kapazitive Netzwerk.One way of producing the required protection against accidental contact is to connect the stator 3 via impedances with adequate protective insulation. For example, Y capacitors can be used for this. For the HF common mode voltage of the inverter 16, the Y capacitance nevertheless acts like a short circuit and thus like a direct connection. Particularly when the capacitance used in the frequency range of the bearing voltage has a significantly lower impedance than the capacitive network.

In der Figur 13 sind weitere Ausführungsformen dargestellt, die die Verbindung 20 des Stators 3 über eine Impedanz Z zeigen.In the Figure 13 Further embodiments are shown which show the connection 20 of the stator 3 via an impedance Z.

Claims (10)

  1. Apparatus (1) for reducing and/or avoiding harmful bearing currents in an electrical machine (M) such as preferably a three-phase EC motor (M), having a rotor (2) and a stator (3) which is constructed in an insulated manner, wherein at least one outer bearing ring (4a) and one inner bearing ring (4b) are provided between rotor (2) and stator (3), comprising a connecting electronics (10) for connecting the motor (M), characterized in that the stator (3) is connected by means of an electrical connection (20) to a high-frequency electronics potential which differs from and is stable with respect to the earth potential (UE) at a potential tap (20a) of the connecting electronics (10).
  2. Apparatus (1) according to claim 1, characterized in that the electrical connection (20) between the stator (3) and the electronics potential is formed by an intermediate capacitance (21) or via an intermediate impedance.
  3. Apparatus (1) according to claim 1, characterized in that the electrical connection (20) between the stator (3) and the electronics potential (UE) is formed as an electrical short circuit connection.
  4. Apparatus (1) according to one of the claims 1 to 3, characterized in that the connecting electronics (10) comprises a rectifier (14), an intermediate circuit (15) and an inverter (16), and the potential tap (20a) in the connecting electronics (10) is provided so that the electronics potential connected to the stator (3) corresponds to a potential of the intermediate circuit (15), preferably to the positive intermediate circuit potential (DC+), to a ground potential of the intermediate circuit (15), to a potential at the center tap (15') of the intermediate circuit (15) or to the negative intermediate circuit potential (DC-).
  5. Apparatus (1) according to one of the claims 1 to 3, characterized in that the potential tap (20a) for the stator (3) is a tap immediately before or immediately after the rectifier (14).
  6. Apparatus (1) according to one of the claims 1 to 5, characterized in that the connecting electronics (10) moreover comprises an EMC filter (17) on the input side, and the potential tap (20a) for the stator (3) is a tap within the EMC filter (17).
  7. Apparatus (1) according to one of the claims 1 to 5, characterized in that the connecting electronics (10) is connected to a low-voltage power supply or switching power supply, and the potential tap (20a) for the stator (3) is provided as a tap at the outputs of the low-voltage power supply or of the switching power supply.
  8. Apparatus (1) according to one of the claims 4 to 7, characterized in that the rectifier (14) is an active or passive rectifier.
  9. Apparatus (1) according to one of the claims 5 to 8, characterized in that a network which reduces impedance in the frequency range of the bearing voltage is connected in parallel to at least one of the diodes (14a) of the rectifier (14).
  10. Electric motor (M), preferably an EC motor, formed with an apparatus (1) according to one of the preceding claims 1 to 9.
EP16722125.8A 2015-07-24 2016-05-04 Apparatus for avoiding harmful bearing currents Active EP3326285B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015112146.8A DE102015112146A1 (en) 2015-07-24 2015-07-24 Device for avoiding harmful bearing currents
PCT/EP2016/059990 WO2017016692A1 (en) 2015-07-24 2016-05-04 Apparatus for avoiding harmful bearing currents

Publications (2)

Publication Number Publication Date
EP3326285A1 EP3326285A1 (en) 2018-05-30
EP3326285B1 true EP3326285B1 (en) 2020-04-22

Family

ID=55434009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16722125.8A Active EP3326285B1 (en) 2015-07-24 2016-05-04 Apparatus for avoiding harmful bearing currents

Country Status (5)

Country Link
US (1) US10284050B2 (en)
EP (1) EP3326285B1 (en)
CN (1) CN205081635U (en)
DE (1) DE102015112146A1 (en)
WO (1) WO2017016692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379404A1 (en) 2022-12-02 2024-06-05 ebm-papst Mulfingen GmbH & Co. KG Device for detecting error conditions in electrical machines and corresponding method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118125A1 (en) * 2017-08-09 2019-02-14 Ebm-Papst Mulfingen Gmbh & Co. Kg Device for reducing harmful bearing stresses
DE102017130647A1 (en) * 2017-12-20 2019-06-27 Ebm-Papst Mulfingen Gmbh & Co. Kg Device for reducing harmful bearing stresses
DE102018006357A1 (en) * 2018-08-11 2020-02-13 Diehl Ako Stiftung & Co. Kg Drive circuit for driving an electronically commutated motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20301956U1 (en) 2003-02-07 2004-06-17 Ab Skf Device for protecting a bearing of an electrical machine from a damaging electrical continuity
DE102004016738B3 (en) 2004-04-05 2005-11-10 Siemens Ag Compensation device for avoiding harmful bearing currents in an electrical machine and corresponding compensation method
JP2006311697A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Brushless motor system
DE102006007437B4 (en) 2006-02-17 2013-11-07 Siemens Aktiengesellschaft Electric machine with a device for preventing harmful bearing currents and corresponding method
US8115444B2 (en) * 2006-05-31 2012-02-14 Honeywell International, Inc. Common mode filter for motor controllers
US20080088187A1 (en) 2006-10-17 2008-04-17 Hitachi, Ltd Electric Motor with Reduced EMI
JP4935934B2 (en) 2008-12-12 2012-05-23 パナソニック株式会社 Electric motor and electric device including the same
EP2905888A1 (en) * 2014-02-05 2015-08-12 Grundfos Holding A/S Inverter
US10389213B2 (en) * 2016-09-22 2019-08-20 Rockwell Automation Technologies, Inc. Apparatus for reduced voltage stress on AC motors and cables

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379404A1 (en) 2022-12-02 2024-06-05 ebm-papst Mulfingen GmbH & Co. KG Device for detecting error conditions in electrical machines and corresponding method
DE102022132023A1 (en) 2022-12-02 2024-06-13 Ebm-Papst Mulfingen Gmbh & Co. Kg Stator current

Also Published As

Publication number Publication date
US10284050B2 (en) 2019-05-07
US20180301953A1 (en) 2018-10-18
CN205081635U (en) 2016-03-09
WO2017016692A1 (en) 2017-02-02
DE102015112146A1 (en) 2017-01-26
EP3326285A1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
DE102017217132B3 (en) Switching power supply with electrical circuitry for input protection circuit
DE202015103902U1 (en) Device for avoiding harmful bearing currents
EP3326285B1 (en) Apparatus for avoiding harmful bearing currents
EP3619800B1 (en) Inverter
DE112011101193B4 (en) Leakage current reduction device
EP3665763B1 (en) Device for reducing harmful bearing voltages
DE102007006719A1 (en) Arrangement and method for compensating a fault current in the event of a ground fault
WO2017102296A1 (en) Voltage converter, electric drive system and method for reducing interference voltages
EP0682402B1 (en) Output magnitudes rise limiting device for self-commutated constant voltage intermediate circuit converter
EP1220431A1 (en) Damping resonance peaks in an electric motor operated by an inverter with intermediate dc voltage link
EP2367272B1 (en) Inverter
EP0682401B1 (en) Limiting device for the output voltage slope of a self-commutated converter
DE60309754T2 (en) Drive system with a permanent magnetic synchronous motor and test method for this drive system
EP2362514B1 (en) Device for reducing earth leakage current
DE112015006679B4 (en) Line with noise filter
EP1872467A1 (en) Assembly comprising a three-phase machine and a frequency converter
WO2019122032A1 (en) Device for reducing harmful bearing voltages
DE102015003225A1 (en) inverter
DE202009013362U1 (en) Filter and arrangement with a filter at a frequency converter
DE202017107755U1 (en) Device for reducing harmful bearing stresses
DE202017103248U1 (en) Device for reducing harmful bearing stresses
EP3726724B1 (en) Device for creating electrical energy and method
DE102017111826A1 (en) Device for reducing harmful bearing stresses
DE202017104788U1 (en) Device for reducing harmful bearing stresses
DE19952886A1 (en) Multi-way current regulator e.g. for electric motor, has local earth provided for each current regulator unit coupled to common line earth via earthing impedance

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009658

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1261481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009658

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 8

Ref country code: FR

Payment date: 20230517

Year of fee payment: 8

Ref country code: DE

Payment date: 20230519

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230522

Year of fee payment: 8

Ref country code: AT

Payment date: 20230516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240522

Year of fee payment: 9