EP3325591B1 - Mehrphasiges geschirrspülmittel umfassend einen tensid-kern - Google Patents

Mehrphasiges geschirrspülmittel umfassend einen tensid-kern Download PDF

Info

Publication number
EP3325591B1
EP3325591B1 EP16741024.0A EP16741024A EP3325591B1 EP 3325591 B1 EP3325591 B1 EP 3325591B1 EP 16741024 A EP16741024 A EP 16741024A EP 3325591 B1 EP3325591 B1 EP 3325591B1
Authority
EP
European Patent Office
Prior art keywords
phase
acid
branched
dishwashing detergent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16741024.0A
Other languages
English (en)
French (fr)
Other versions
EP3325591A1 (de
Inventor
Inga Kerstin Vockenroth
David MATULLA
Oliver Kurth
Volker Blank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56464213&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3325591(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to PL16741024T priority Critical patent/PL3325591T3/pl
Publication of EP3325591A1 publication Critical patent/EP3325591A1/de
Application granted granted Critical
Publication of EP3325591B1 publication Critical patent/EP3325591B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D1/721End blocked ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces

Definitions

  • the present invention relates to a solid, multiphase dishwashing agent comprising at least two phases and the use of such a dishwashing agent and a method for cleaning dishes using such a dishwashing agent.
  • pressed powder phases which in particular consist of dishwasher tablets, do not meet the aesthetic demands of customers.
  • the present invention was based on the object of providing a dishwashing detergent whose composition ensures efficient removal of cooking fat residues from the dishwasher even at low washing temperatures and at the same time has a more appealing aesthetic than current dishwashing detergents, especially tabs made from pressed powder phases.
  • the use of a surfactant melt made of nonionic surfactants can remove the fat from the dishwasher filter more efficiently compared to current formulations.
  • the provision of the surfactant melt in the form of a surfactant core which is inserted into a core recess of a dishwashing tablet made of pressed powder, can lead to a visually appealing tablet.
  • the present invention is therefore directed to a dishwashing detergent comprising at least one first solid, compacted phase and at least one second phase, characterized in that the at least one second phase is a surfactant melt, comprising 10-100% by weight, preferably 20-100%, more preferably 50-100% by weight of surfactant (s), comprising nonionic surfactants, the nonionic surfactants contained in the at least one second phase not end-capped, poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH 2 O] x H, characterized in that R 1 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals with 2 to 30 carbon atoms, preferably with 4 to 22 carbon atoms, and where x stands for values between 1 and 80 , preferably for values between 15 and 50 and in particular for values between 25 and 50 and the at least one second phase in addition to the non-end-capped poly (oxyalkylated) non-ionic surfact
  • s
  • the present invention is directed to the use of a dishwashing detergent according to the invention for machine cleaning of dishes.
  • the present invention is directed to a method for machine cleaning of dishes, characterized in that a dishwashing detergent according to the invention is used in at least one method step.
  • a dishwashing agent is to be understood as meaning all agents which are suitable for washing or cleaning hard surfaces, in particular dishes.
  • Other suitable ingredients are described in detail below.
  • At least one refers to 1 or more, for example 1, 2, 3, 4, 5, 6, 7, 8, 9 or more.
  • the dishwashing detergent according to the invention comprises at least two phases, the first phase being solid and compacted and the second phase being a surfactant melt.
  • a "melt” is a composition that liquefies under the action of elevated temperatures (e.g.> 50 ° C or> 60 ° C), which solidifies again when it cools down to room temperature and forms a solid form.
  • a phase in the sense of the present invention is a spatial area in which physical parameters and the chemical composition are homogeneous.
  • One phase is different from another phase by different features, for example ingredients, physical properties, external appearance, etc.
  • Different phases can preferably be distinguished optically.
  • the at least one first phase can be clearly distinguished from the at least one second phase. If the washing or cleaning agent according to the invention has more than one first phase, then these can also be differentiated from one another with the naked eye, because they differ from one another, for example, in terms of color. The same applies if there are two or more second phases. In this case, too, an optical differentiation of the phases is possible, for example on the basis of a color or transparency difference.
  • Phases in the sense of the present invention are thus self-contained areas that can be visually distinguished from one another by the consumer with the naked eye.
  • the individual phases can have different properties, such as, for example, the speed with which the phase dissolves in water and thus the speed and the sequence in which the ingredients contained in the respective phase are released.
  • the phases are typically spatially separated from one another. This can take place in various embodiments such that, if one or both of the phases are liquid phases, the liquid phase is present in a separate, closed area, for example the chamber of a pouch, separated from the other phase.
  • Such assembly forms are known in the prior art.
  • the two phases are also packaged spatially separately from one another, for example in the form of a multi-chamber pouch, each of the phases being in a separate chamber.
  • the two phases can be arranged spatially directly adjacent in such a way that the phases are formulated separately and contact each other, but cannot mix.
  • the dishwashing detergent according to the invention comprises at least two different phases. Both the at least one first phase and the at least one second phase are described below. In the event that the dishwashing detergent according to the invention has more than two phases, each further phase corresponds to either the at least one first phase, as defined herein, or the at least one second phase, as defined herein.
  • the compositions of the phases corresponding to one another can differ to the extent that the respective definitions listed below allow both the at least one first phase and the at least one second phase. For example, it can be a three-phase dishwashing detergent that has two phases the first phase, as defined herein, and a phase corresponding to the second phase, as defined herein.
  • the at least one second phase of the dishwashing detergent is a surfactant melt of which 10-100% by weight, preferably 20-100% by weight, more preferably 50-100% by weight, consists of surfactant ( en), in particular nonionic (m) surfactant (s).
  • the second phase is accordingly also referred to below as “surfactant melt” or “surfactant melt phase”.
  • One class of preferably usable nonionic surfactants that can be used in combination with other nonionic surfactants as part of the surfactant melt are alkoxylated (preferably ethoxylated or ethoxylated and propoxylated) fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain.
  • R 1 O [CH 2 CH 2 O] x H there are not end-capped, poly (oxyalkylated) nonionic surfactants according to the formula R 1 O [CH 2 CH 2 O] x H, where R 1 stands for linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals with 2 to 30 carbon atoms, preferably with 4 to 22 carbon atoms, and x represents values between 1 and 80, preferably values between 15 and 50 and in particular values between 25 and 50, are used.
  • Fatty alcohol ethoxylates in which R 1 represents a linear or branched C 12-20 alkyl radical, in particular a linear or branched C 16-18 alkyl radical are very particularly preferred.
  • the above-described non-end-capped, poly (oxyalkylated) nonionic surfactants of the surfactant melt phase are used in amounts of 5-100, preferably 5-50% by weight, preferably 10-30% by weight, based on the surfactant melt Phase used.
  • non-end-capped, poly (oxyalkylated) non-ionic surfactants of the surfactant melt phase described above are combined with another surfactant from the group of end-group-capped, poly (oxyalkylated) non-ionic surfactants, namely those end-group-capped, poly (oxyalkylated) nonionic surfactants which, according to the formula R.
  • R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals with 2 to 30 carbon atoms, or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals with 2 to 30 carbon atoms, preferably with 4 to 22 carbon atoms, furthermore linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals R 2 with 1 to 30 carbon atoms, where x is Values between 1 and 80, preferably values between 15 and 50 and in particular values between 25 and 50.
  • End-capped fatty alcohol ethoxylates in which R 1 is a linear or branched C 12-20 alkyl radical, in particular a linear or branched C 16-18 alkyl radical, and / or R 2 is a linear or branched C 6-22 alkyl radical, are very particularly preferred. in particular represents a linear or branched C 8-10 alkyl radical.
  • the above-described end-group-capped, poly (oxyalkylated) nonionic surfactants of the surfactant melt phase are used in amounts of 5-60% by weight, preferably 40-60% by weight, based on the surfactant melt phase.
  • the mass ratio between the end-capped non-ionic surfactants described above and the non-end-capped non-ionic surfactants in the surfactant melt phase is from 20: 1 to 1: 5, preferably from 10: 1 to 1: 1. In particularly preferred embodiments, the ratio is 3: 1 to 2: 1.
  • nonionic surfactants used in the surfactant melt phase have a melting point above room temperature.
  • the surfactant melt phase can also contain other ingredients.
  • such ingredients include, for example, polyethylene glycols (PEG).
  • PEG polyethylene glycols
  • the at least one first phase of the dishwasher detergent according to the invention is a solid, compacted phase, typically a pressed powder phase.
  • This at least one first phase of the dishwashing detergent according to the invention usually contains at least one surfactant, preferably at least one nonionic surfactant. Suitable surfactants are described below.
  • Suitable nonionic surfactants in the first phase are, for example, alkyl glycosides of the general formula RO (G) x , in which R corresponds to a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical with 8 to 22, preferably 12 to 18, carbon atoms and G is the symbol that stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants which can be used either as the sole nonionic surfactant or in combination with other nonionic surfactants in the first phase of the dishwashing detergent, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the Alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half that.
  • surfactants are the polyhydroxy fatty acid amides known as PHFA.
  • low-foaming nonionic surfactants in the first phase preference is given to using low-foaming nonionic surfactants in the first phase, in particular alkoxylated, especially ethoxylated, low-foaming nonionic surfactants.
  • the machine dishwashing detergents particularly preferably contain nonionic surfactants from the group of alkoxylated alcohols.
  • nonionic surfactants that can be used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain.
  • Surfactants to be used with preference come from the groups of ethoxylated primary alcohols and mixtures of these surfactants with structurally complex surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • structurally complex surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are characterized by good foam control.
  • Suitable nonionic surfactants are those which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are again preferred, one to ten EO or AO groups being bonded to one another before a block from the other groups follows.
  • nonionic surfactants of the general formula preferably in which R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 -alkyl or -alkenyl radical; each group R 2 or R 3 is independently selected from —CH 3 , —CH 2 CH 3 , —CH 2 CH 2 —CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently of one another stand for whole numbers from 1 to 6.
  • nonionic surfactants which have a C 9-15 -alkyl radical with 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units.
  • R 1 O [CH 2 CH (CH 3 ) O] x [CH 2 CH 2 O] y CH 2 CH (OH) R 2 , in which R 1 represents a linear or branched aliphatic hydrocarbon radical with 4, are particularly preferred up to 18 carbon atoms or mixtures thereof, R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof, and x stands for values between 0.5 and 1.5 and y stands for a value of at least 15.
  • Especially the C (EO) -2-hydroxyalkyl ether 15-40 8-10 fatty alcohol (PO) 1 - - to the group of these nonionic surfactants include the C 2-26 fatty alcohol, for example (PO) 1 (EO) 22 -2 hydroxydecyl ether.
  • nonionic surfactants are the end group-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 , in which R 1 and R 2 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals with 1 to 30 carbon atoms, R 3 represents H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2- Butyl or 2-methyl-2-butyl radical, x stands for values between 1 and 30, k and j for values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 can be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 are H, -CH 3 or -CH 2 CH 3 particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula can be different if x 2.
  • the value 3 for x has been chosen as an example and can be larger, with the range of variation increasing with increasing x values and including, for example, a large number of (EO) groups combined with a small number of (PO) groups, or vice versa .
  • R 1 , R 2 and R 3 are as defined above and x stands for numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • the group of these nonionic surfactants includes, for example, the C 4-22 fatty alcohol (EO) 10-80 -2-hydroxyalkyl ethers, in particular also the C 8-12 fatty alcohol (EO) 22 -2-hydroxydecyl ethers and the C 4-22 fatty alcohol (EO) 40-80 -2-hydroxyalkyl ethers.
  • the specified carbon chain lengths and degrees of ethoxylation or degrees of alkoxylation of the nonionic surfactants represent statistical mean values which, for a specific product, can be a whole number or a fraction. Due to the manufacturing process, commercial products of the formulas mentioned mostly do not consist of an individual representative, but rather of mixtures, which can result in mean values and fractional numbers for both the carbon chain lengths and the degrees of ethoxylation or alkoxylation.
  • nonionic surfactants can be used not only as individual substances but also as surfactant mixtures of two, three, four or more surfactants.
  • Surfactant mixtures are not mixtures of nonionic surfactants which in their entirety fall under one of the general formulas mentioned above, but rather mixtures which contain two, three, four or more nonionic surfactants which can be described by different ones of the general formulas mentioned above .
  • the dishwashing detergents described herein which in the at least one first phase comprise at least one surfactant, preferably a nonionic surfactant, preferably a nonionic surfactant from the group of hydroxy mixed ethers, contain the surfactant in various embodiments in an amount based on the total weight of the agent of at least 2% by weight, preferably at least 5% by weight.
  • the absolute amounts used per application can, for example, be in the range from 0.5-10 g / job, preferably in the range from 0.5-5 g / job.
  • Nonionic surfactants which have a melting point above room temperature.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which are solid at room temperature.
  • the first phase can also contain the surfactants described above in connection with the second phase, in particular the optionally described end-group-capped fatty alcohol ethoxylates.
  • the first phase of the dishwashing detergent according to the invention can also contain surfactants from the group of anionic, cationic and amphoteric surfactants.
  • anionic surface-active substances are suitable as anionic surfactants in dishwashing detergents. These are characterized by a water-solubilizing, anionic group such.
  • B a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 8 to 30 carbon atoms.
  • the molecule can contain glycol or polyglycol ether groups, ester, ether and amide groups, and hydroxyl groups.
  • Suitable anionic surfactants are preferably in the form of the sodium, potassium and ammonium as well as the mono-, di- and trialkanolammonium salts with 2 to 4 carbon atoms in the alkanol group, but also zinc, manganese (II), magnesium, calcium or Mixtures of these can serve as counterions.
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids with 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule.
  • Cationic and / or amphoteric surfactants such as betaines or quaternary ammonium compounds, can also be used instead of the surfactants mentioned or in conjunction with them. However, it is preferred that no cationic and / or amphoteric surfactants are used.
  • the dishwashing detergent can contain further ingredients which further improve the application-related and / or aesthetic properties of the dishwashing detergent.
  • the dishwashing detergent contains in various embodiments at least one or preferably more substances from the group of builders, polymers, bleaches, bleach activators, bleach catalysts, enzymes, thickeners, sequestering agents, electrolytes, corrosion inhibitors, glass corrosion inhibitors, foam inhibitors, dyes, additives for improvement the drainage and drying behavior, disintegration aids, preservatives, pH adjusters, fragrances and perfume carriers.
  • builders such as silicates, aluminum silicates (especially zeolites), salts of organic di- and polycarboxylic acids and mixtures of these substances, preferably water-soluble builders, can be advantageous.
  • the use of phosphates is largely or completely dispensed with.
  • the agent contains preferably less than 5% by weight, particularly preferably less than 3% by weight, in particular less than 1% by weight of phosphate (s).
  • the agent is particularly preferably completely phosphate-free, i.e. the agents contain less than 0.1% by weight of phosphate (s).
  • the builders include, in particular, carbonates, citrates, phosphonates, organic builders and silicates.
  • the proportion by weight of the total builders in the total weight of the compositions according to the invention is preferably 15 to 80% by weight and in particular 20 to 70% by weight.
  • Organic builders suitable according to the invention are, for example, the polycarboxylic acids (polycarboxylates) which can be used in the form of their sodium salts, polycarboxylic acids being understood as meaning those carboxylic acids which have more than one, in particular two to eight acid functions, preferably two to six, in particular two, three, four or five acid functions carry throughout the molecule.
  • Preferred polycarboxylic acids are dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids and pentacarboxylic acids, in particular di-, tri- and tetracarboxylic acids.
  • the polycarboxylic acids can also carry further functional groups, such as hydroxyl or amino groups.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, saccharic acids (preferably aldaric acids, for example galactaric acid and glucaric acid), aminocarboxylic acids, in particular aminodicarboxylic acids, aminotricarboxylic acids, aminotetracarboxylic acids, such as, for example, nitro-tetracarboxylic acids diacetic acid (also known as N, N-bis (carboxymethyl) -L-glutamic acid or GLDA), methylglycine diacetic acid (MGDA)) and their derivatives and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, GLDA, MGDA and mixtures of these.
  • polymeric polycarboxylates organic polymers with a large number of (in particular more than ten) carboxylate functions in the macromolecule
  • polyaspartates organic polymers with a large number of (in particular more than ten) carboxylate functions in the macromolecule
  • polyacetals polyacetals and dextrins.
  • the free acids typically also have the property of an acidifying component and can thus, if desired, also be used to set a lower acidity Serve pH value.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures of these should be mentioned in particular.
  • dishwashing detergents preferably automatic dishwashing detergents
  • these are preferably in a proportion of 2 to 40% by weight, in particular 5 to 30% by weight, especially 7 to 28% by weight, particularly preferably 10 to 25% by weight, very particularly preferably 15 to Contain 20 wt .-%, each based on the total weight of the agent.
  • dishwashing detergents preferably automatic dishwashing agents
  • dishwashing detergents are characterized in that they contain at least two builders from the group of silicates, phosphonates, carbonates, aminocarboxylic acids and citrates, the proportion by weight of these builders, based on the total weight of the cleaning agent according to the invention, is preferably 5 to 70% by weight, preferably 15 to 60% by weight and in particular 20 to 50% by weight.
  • the combination of two or more builders from the group mentioned above has proven to be advantageous for the cleaning and rinsing performance of cleaning agents according to the invention, in particular dishwashing detergents, preferably automatic dishwashing detergents.
  • one or more other builders can also be included.
  • Preferred cleaning agents in particular dishwashing detergents, preferably machine dishwashing detergents, are characterized by a builder combination of citrate and carbonate and / or hydrogen carbonate.
  • a mixture of carbonate and citrate is used, the amount of carbonate preferably being from 5 to 40% by weight, in particular from 10 to 35% by weight, very particularly preferably from 15 to 30% by weight and the amount of citrate is preferably from 5 to 35% by weight, in particular 10 to 25% by weight, very particularly preferably 15 to 20% by weight, in each case based on the total amount of the cleaning agent, the total amount of these two Builders preferably 20 to 65% by weight, in particular 25 to 60% by weight, preferably 30 to 50% by weight.
  • one or more other builders can also be included.
  • the cleaning agents according to the invention can in particular contain phosphonates as a further builder.
  • a hydroxyalkane and / or aminoalkane phosphonate is preferably used as the phosphonate compound.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Ethylenediamine tetramethylene phosphonate (EDTMP), diethylenetriamine pentamethylene phosphonate (DTPMP) and their higher homologues are preferred as aminoalkanephosphonates.
  • Phosphonates are preferably used in agents according to the invention in amounts from 0.1 to 10% by weight, in particular in amounts from 0.5 to 8% by weight, very particularly preferably from 2.5 to 7.5% by weight, in each case based on the total weight of the agent.
  • citrate, (hydrogen) carbonate and phosphonate are particularly preferred. These can be used in the abovementioned amounts. In particular, amounts of, based on the total weight of the agent, 10 to 25% by weight of citrate, 10 to 30% by weight of carbonate (or hydrogen carbonate), and 2.5 to 7.5% by weight Phosphonate used.
  • dishwashing detergents preferably automatic dishwashing detergents
  • they contain at least one further phosphorus-free builder.
  • this is selected from the aminocarboxylic acids, the further phosphorus-free builder preferably being selected from methylglycine diacetic acid (MGDA), glutamic acid diacetate (GLDA), aspartic acid diacetate (ASDA), hydroxyethyliminodiacetate (HEIDA), iminodisuccinate (IDSDS) and ethylene diamine disuccinate (preferably from MGDA or GLDA.
  • MGDA methylglycine diacetic acid
  • GLDA glutamic acid diacetate
  • ASDA aspartic acid diacetate
  • HEIDA hydroxyethyliminodiacetate
  • IDSDS iminodisuccinate
  • ethylene diamine disuccinate preferably from MGDA or GLDA.
  • a particularly preferred combination is, for example, citrate, (hydrogen) carbonate and MGDA and optionally phosphonate.
  • the percentage by weight of the further phosphorus-free builder, in particular of MGDA and / or GLDA, is preferably 0 to 40% by weight, in particular 5 to 30% by weight, especially 7 to 25% by weight.
  • the use of MGDA or GLDA, in particular MGDA, as granules is particularly preferred. MGDA granulates which contain as little water as possible and / or have a lower hygroscopicity (water absorption at 25 ° C., normal pressure) compared to the non-granulated powder are advantageous.
  • Polymeric polycarboxylates are also suitable as organic builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of 2000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates from this group, which have molecular weights from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, can be preferred.
  • the (homo) polymeric polycarboxylate content of the cleaning agents according to the invention is preferably 0.5 to 20% by weight, more preferably 2 to 15% by weight and in particular 4 to 10% by weight.
  • Cleaning agents according to the invention in particular dishwashing detergents, preferably machine dishwashing detergents, can furthermore contain crystalline layered silicates of the general formula NaMSi x O 2x + 1 ⁇ y H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 22, preferably from 1.9 to 4, particularly preferred values for x being 2, 3 or 4, and y being a number from 0 to 33, preferably from 0 to 20.
  • Amorphous sodium silicates with a Na 2 O: SiO 2 module of 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which can also be used are preferably delayed in dissolution and have secondary washing properties.
  • the silicate content based on the total weight of the detergent, is limited to amounts below 10% by weight, preferably below 5% by weight and in particular below 2% by weight .
  • the washing or cleaning agents according to the invention can also contain alkali metal hydroxides.
  • alkali carriers are used in the detergents or cleaning agents and in particular in the second phases preferably only in small amounts, preferably in amounts below 10% by weight, preferably below 6% by weight, preferably below 5% by weight, particularly preferably between 0.1 and 5 wt .-% and in particular between 0.5 and 5 wt .-%, each based on the total weight of the washing or cleaning agent used.
  • Alternative cleaning agents according to the invention are free from alkali metal hydroxides.
  • the at least one first phase of the dishwashing detergents described herein can also contain various polymers.
  • homopolymers of ⁇ , ⁇ ethylenically unsaturated carboxylic acids can be used in various embodiments.
  • Particularly preferred unsaturated carboxylic acids are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl acrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid (methyl maleic acid), methylenemalonic acid, sorbic acid, cinnamic acid or mixtures thereof.
  • Acrylic acid is very particularly preferred.
  • the homopolymer is therefore a polyacrylic acid.
  • the carboxylic acid groups can be wholly or partly in neutralized form, i.e. that the acidic hydrogen atom of the carboxylic acid group in some or all of the carboxylic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized polymers is preferred according to the invention.
  • the molar mass of the homopolymers used can be varied in order to adapt the properties of the polymers to the desired application.
  • Preferred dishwashing detergents are characterized in that the homopolymers, in particular the polyacrylic acids, have molar masses M n of 1000 to 20,000 g / mol. Because of their superior solubility can be made from of this group, in turn, the short-chain polyacrylates, which have molar masses from 1100 to 10000 g / mol, and particularly preferably from 1200 to 5000 g / mol, are preferred.
  • the agents also contain at least one sulfopolymer.
  • the polymers that can be used in this connection are, in particular, copolymers which can have two, three, four or more different monomer units, at least one monomer unit bearing a sulfonic acid group.
  • Preferred copolymers contain, in addition to monomer (s) containing sulfonic acid groups, at least one monomer from the group of unsaturated carboxylic acids.
  • the unsaturated carboxylic acids described above are / are used with particular preference as the unsaturated carboxylic acid (s).
  • Acrylic acid is very particularly preferred.
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) prop1-2-methylsulfonic acid, 2-propenyloxy) propanesulfonic acid sulfonic acid, styrene sulfonic acid, vinyl sulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate, sulfomethacrylamide, sulfomethyl methacrylamide
  • the acid groups can be wholly or partly in neutralized form, i.e. that the acidic hydrogen atom of the sulfonic and / or carboxylic acid group in some or all acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized copolymers is preferred according to the invention.
  • the monomer distribution of the copolymers used with preference is, in the case of copolymers which only contain monomers containing carboxylic acid groups and monomers containing sulfonic acid groups, preferably in each case from 5 to 95% by weight; the proportion of the monomer containing sulphonic acid groups is particularly preferably 50 to 90% by weight and the proportion of the monomer containing carboxylic acid groups is 10 to 50% by weight, the monomers here being preferably selected from those mentioned above.
  • the copolymers can contain further monomers, in particular unsaturated monomers containing carboxylic acid ester groups.
  • Particularly preferred unsaturated carboxylic acid esters are alkyl esters of monocarboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl acrylic acid, sorbic acid, cinnamic acid or mixtures thereof.
  • C 1-8 alkyl esters of acrylic acid, such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate are very particularly preferred.
  • Ethyl acrylate is very particularly preferred.
  • the molar mass of the copolymers used can be varied in order to adapt the properties of the polymers to the intended use.
  • Preferred dishwashing detergents are characterized in that the copolymers have molar masses M n from 2000 to 200,000 g / mol, preferably from 4000 to 25,000 g / mol and in particular from 5000 to 15,000 g / mol.
  • the homopolymers and copolymers described above can each be used in amounts of 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total weight of the agent. Absolute amounts are typically in the range from 0.1 to 2 g / job, preferably in the range from 0.2 to 1.0 g / job.
  • the mass ratio of the polymers to one another, i.e. Homopolymer to copolymer, in various embodiments, is 5: 1 to 1: 5, preferably 2: 1 to 1: 2.
  • the dishwashing detergents can alternatively or additionally contain other polymers.
  • the group of suitable polymers includes in particular the cleaning-active amphoteric, zwitterionic or cationic polymers, for example the rinse aid polymers and / or polymers that act as softeners.
  • Preferred amphoteric polymers that can be used originate from the group of the alkyl acrylamide / acrylic acid copolymers, the alkyl acrylamide / methacrylic acid copolymers, the alkyl acrylamide / methyl methacrylic acid copolymers, the alkyl acrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkyl acrylamide / methacrylic acid / alkylaminoalkyl (meth ) acrylic acid copolymers, the alkyl acrylamide / methyl methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkyl acrylamide / alkymethacrylate / alkylaminoethyl methacrylate / alkyl methacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally
  • zwitterionic polymers that can be used come from the group of acrylamidoalkyltrialkylammonium chloride / acrylic acid copolymers and their alkali and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali and ammonium salts and methacroylethylbetaine / methacrylate copolymers.
  • Cationic polymers that can be used originate from the groups of quaternized cellulose derivatives, polysiloxanes with quaternary groups, cationic guar derivatives, polymeric dimethyldiallylammonium salts and their copolymers with acrylic acid and methacrylic acid and their esters and amides, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoacrylate methacrylate, the vinylpyrrolidone-methoimidazolinium chloride copolymers, the quaternized polyvinyl alcohols or the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27 indicate polymers.
  • Dishwashing detergents according to the invention preferably contain one or more enzyme (s) as a further component in the first phase.
  • enzymes include in particular proteases, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof.
  • These enzymes are in principle of natural origin; Based on the natural molecules, improved variants are available for use in cleaning agents, which are accordingly preferred.
  • Cleaning agents according to the invention preferably contain enzymes in total amounts of 1 ⁇ 10 -6 % by weight to 5% by weight, based on active protein.
  • the protein concentration can be determined using known methods, for example the BCA method or the biuret method.
  • subtilisin type those of the subtilisin type are preferred.
  • subtilisins BPN 'and Carlsberg as well as their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the subtilase enzymes, but no longer the subtilisins in the narrower sense of the term, thermitase, Proteinase K and the proteases TW3 and TW7.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens, from ⁇ . stearothermophilus, from Aspergillus niger and A. oryzae as well as the improved further developments of the aforementioned amylases for use in cleaning agents. Furthermore, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948) should be emphasized.
  • lipases or cutinases can also be used, in particular because of their triglyceride-cleaving activities, but also in order to generate peracids in situ from suitable precursors.
  • suitable precursors include, for example, the lipases originally obtainable or further developed from Humicola lanuginosa (Thermomyces lanuginosus), in particular those with the amino acid exchange in positions D96L, T213R and / or N233R, particularly preferably all of the exchanges D96L, T213R and N233R.
  • oxidoreductases for example oxidases, oxygenases, catalases, peroxidases such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used to increase the bleaching effect.
  • organic, particularly preferably aromatic, compounds interacting with the enzymes are added in order to increase the activity of the oxidoreductases concerned (enhancers) or to ensure the flow of electrons (mediators) in the event of greatly differing redox potentials between the oxidizing enzymes and the soiling.
  • a protein and / or enzyme can be protected against damage such as inactivation, denaturation or disintegration, for example due to physical influences, oxidation or proteolytic cleavage, particularly during storage.
  • damage such as inactivation, denaturation or disintegration, for example due to physical influences, oxidation or proteolytic cleavage, particularly during storage.
  • inhibition of proteolysis is particularly preferred, in particular if the agents also contain proteases.
  • Cleaning agents can contain stabilizers for this purpose; the provision of such means represents a preferred embodiment of the present invention.
  • Cleansing-active proteases and amylases are generally not provided in the form of the pure protein, but rather in the form of stabilized, storable and transportable preparations.
  • These prefabricated preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, in particular in the case of liquid or gel-like agents, solutions of the enzymes, advantageously as concentrated as possible, with little water and / or with stabilizers or other auxiliaries.
  • the enzymes for the first and / or second phase can be encapsulated, for example by spray drying or extrusion of the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are enclosed in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a protective layer impermeable to water, air and / or chemicals.
  • Additional active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, can also be applied in superimposed layers.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes. Such granules are advantageously low in dust, for example due to the application of polymeric film formers, and due to the coating are stable in storage.
  • the enzyme protein forms only a fraction of the total weight of conventional enzyme preparations.
  • Protease and amylase preparations preferably used according to the invention contain between 0.1 and 40% by weight, preferably between 0.2 and 30% by weight, particularly preferably between 0.4 and 20% by weight and in particular between 0, 8 and 10% by weight of the enzyme protein.
  • Particularly preferred cleaning agents are those which, based in each case on their total weight, 0.1 to 12% by weight, preferably 0.2 to 10% by weight and in particular 0.5 to 8% by weight of the respective enzyme preparations contain.
  • the dishwashing detergent can also contain one or more enzyme stabilizers.
  • suitable enzyme stabilizers include boron-containing compounds such as boric acid or boronic acids, and their salts and esters, polyols such as, for example, glycerol or 1,2-ethylene glycol, sugars, sugar alcohols, lactic acid or antioxidants.
  • dishwashing detergents according to the invention contain at least one zinc salt as a glass corrosion inhibitor as a further component.
  • the zinc salt can be an inorganic or organic zinc salt.
  • the zinc salt to be used according to the invention preferably has a solubility in water above 100 mg / l, preferably above 500 mg / l, particularly preferably above 1 g / l and in particular above 5 g / l (all solubilities at 20 ° C. water temperature).
  • the inorganic zinc salt is preferably selected from the group consisting of zinc bromide, zinc chloride, zinc iodide, zinc nitrate and zinc sulfate.
  • the organic zinc salt is preferably selected from the group consisting of zinc salts of monomeric or polymeric organic acids, in particular from the group Zinc acetate, zinc acetylacetonate, zinc benzoate, zinc formate, zinc lactate, zinc gluconate, zinc ricinoleate, zinc abietate, zinc valerate and zinc p-toluenesulfonate.
  • zinc acetate is used as the zinc salt.
  • the zinc salt is in cleaning agents according to the invention preferably in an amount of 0.01% by weight to 5% by weight, particularly preferably in an amount of 0.05% by weight to 3% by weight, in particular in an amount of 0.1% by weight to 2% by weight, based on the total weight of the cleaning agent.
  • Salts especially the zinc salts
  • BASF a polyethyleneimines
  • the at least one first phase of the dishwashing detergent can furthermore contain a bleach, in particular an oxygen bleach and optionally a bleach activator and / or bleach catalyst. If available, these are only included in the first phase.
  • a bleach in particular an oxygen bleach and optionally a bleach activator and / or bleach catalyst. If available, these are only included in the first phase.
  • dishwashing agents according to the invention contain an oxygen bleaching agent from the group consisting of sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate.
  • Further bleaching agents which can be used are, for example, peroxypyrophosphates, citrate perhydrates and peracid salts or peracids which provide H 2 O 2 , such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloimino peracid or diperdodecanedioic acid.
  • bleaches from the group of organic bleaches can also be used.
  • Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • Further typical organic bleaching agents are the peroxy acids, the alkyl peroxy acids and the aryl peroxy acids being mentioned as examples.
  • Sodium percarbonate is particularly preferred because of its good bleaching performance.
  • a particularly preferred oxygen bleach is sodium percarbonate.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 carbon atoms, in particular 2 to 4 carbon atoms, and / or optionally substituted perbenzoic acid. Substances which carry 0- and / or N-acyl groups with the number of carbon atoms mentioned and / or optionally substituted benzoyl groups are suitable. Multiple acylated alkylenediamines are preferred, tetraacetylethylenediamine (TAED) having proven particularly suitable.
  • TAED tetraacetylethylenediamine
  • the bleach catalysts are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salen complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru-amine complexes can also be used as bleach catalysts.
  • Manganese complexes in the II, III, IV or IV oxidation state which preferably contain one or more macrocyclic ligand (s) with the donor functions N, NR, PR, O and / or S, are used with particular preference.
  • Ligands are preferably used which have nitrogen donor functions.
  • bleach catalyst (s) in the agents according to the invention which have 1,4,7-trimethyl-1,4,7-triazacyclononane (Me-TACN), 1,4,7-triazacyclononane (TACN ), 1,5,9-trimethyl-1,5,9-triazacyclododecane (Me-TACD), 2-methyl-1-1,4,7-trimethyl-1,4,7-triazacyclononane (Me / Me-TACN ) and / or 2-methyl-1,4,7-triazacyclononane (Me / TACN).
  • Me-TACN 1,4,7-trimethyl-1,4,7-triazacyclononane
  • TACN 1,4,7-triazacyclononane
  • TACD 1,5,9-trimethyl-1,5,9-triazacyclododecane
  • 2-methyl-1-1,4,7-trimethyl-1,4,7-triazacyclononane Me TACN
  • 2-methyl-1,4,7-triazacyclononane Me TA
  • Suitable manganese complexes are, for example, [Mn III 2 ( ⁇ -O) 1 ( ⁇ -OAc) 2 (TACN) 2 ] (ClO 4 ) 2 , [Mn III Mn IV ( ⁇ -O) 2 ( ⁇ -OAc) 1 (TACN ) 2 ] (BPh 4 ) 2 , [Mn IV 4 ( ⁇ -O) 6 (TACN) 4 ] (ClO 4 ) 4 , [Mn III 2 ( ⁇ -O) 1 ( ⁇ -OAc) 2 (Me-TACN ) 2 ] (ClO 4 ) 2 , [Mn III Mn IV ( ⁇ -O) 1 ( ⁇ -OAc) 2 (Me-TACN) 2 ] (ClO 4 ) 3 , [Mn IV 2 ( ⁇ -O) 3 ( Me-TACN) 2 ] (PF 6 ) 2 and [Mn IV 2 ( ⁇ -O) 3 (Me / Me-TACN) 2 ] (PF 6 ) 2 (with OAc
  • the pH of the dishwashing detergent can be adjusted by means of customary pH regulators, the pH being selected depending on the intended use.
  • the pH is in a range from 5.5 to 11, preferably 6 to 10.5, even more preferably 7 to 10.5, in particular greater than 7, especially in the range 8.5 to 10.5.
  • Acids and / or alkalis, preferably alkalis are used as pH adjusting agents.
  • Suitable acids are in particular organic acids such as acetic acid, citric acid, glycolic acid, lactic acid, succinic acid, adipic acid, malic acid, tartaric acid and gluconic acid or amidosulphonic acid.
  • Suitable bases come from the group of alkali and alkaline earth metal hydroxides and carbonates, in particular the alkali metal hydroxides, of which potassium hydroxide and especially sodium hydroxide is preferred.
  • volatile alkali for example in the form of ammonia and / or alkanolamines, which can contain up to 9 carbon atoms in the molecule.
  • the alkanolamine is preferably selected from the group consisting of mono-, di-, triethanol- and propanolamine and mixtures thereof.
  • the dishwashing detergent according to the invention can also contain one or more buffer substances (INCI buffering agents), usually in amounts of 0.001 to 5% by weight. Preference is given to buffer substances that are at the same time Complexing agents or even chelating agents (chelators, INCI Chelating Agents) are.
  • buffer substances are citric acid or citrates, in particular sodium and potassium citrates, for example trisodium citrate ⁇ 2H 2 O and tripotassium citrate ⁇ H 2 O.
  • perfume oils or fragrances individual odoriferous compounds, e.g. the synthetic products of the type of esters, ethers, aldehydes, ketones, alcohols and hydrocarbons are used. However, it is preferred to use mixtures of different fragrances which together produce an appealing fragrance note.
  • perfume oils can also contain natural odorant mixtures, such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouli, rose or ylang-ylang oil.
  • the dishwashing detergent according to the invention can also contain preservatives.
  • preservatives from the groups of alcohols, aldehydes, antimicrobial acids and / or their salts, carboxylic acid esters, acid amides, phenols, phenol derivatives, diphenyls, diphenylalkanes, urea derivatives, oxygen, nitrogen acetals and formals, benzamidines, isothiazoles and their derivatives are suitable such as isothiazolines and isothiazolinones, phthalimide derivatives, pyridine derivatives, antimicrobial surface-active compounds, guanidines, antimicrobial amphoteric compounds, quinolines, 1,2-dibromo-2,4-dicyanobutane, iodo-2-propynyl-butyl-carbamate, iodine, iodophores and peroxides.
  • Preferred antimicrobial agents are preferably selected from the group comprising ethanol, n-propanol, i-propanol, 1,3-butanediol, phenoxyethanol, 1,2-propylene glycol, glycerol, undecylenic acid, citric acid, lactic acid, benzoic acid, salicylic acid, thymol, 2- Benzyl-4-chlorophenol, 2,2'-methylene-bis- (6-bromo-4-chlorophenol), 2,4,4'-trichloro-2'-hydroxydiphenyl ether, N- (4-chlorophenyl) -N- ( 3,4-dichlorophenyl) urea, N, N '- (1,10-decanediyldi-1-pyridinyl-4-ylidene) -bis- (1-octanamine) -dihydrochloride, N, N'-bis- (4- Chlorophenyl) -3,12-d
  • Particularly preferred preservatives are, however, selected from the group comprising salicylic acid, quaternary surfactants, in particular benzalkonium chloride and isothiazoles and their derivatives such as isothiazolines and isothiazolinones.
  • disintegration aids so-called tablet disintegrants
  • Tablet disintegrants or disintegration accelerators are understood as meaning auxiliaries that ensure the rapid disintegration of tablets in water or other media and the rapid release of the active ingredients.
  • Disintegration aids can preferably be used in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight, based in each case on the total weight of the agent containing the disintegration aid.
  • the dishwashing detergent according to the invention consists of at least two phases, the first phase being solid and compacted and the second phase consisting of a surfactant melt.
  • the first phase is first produced in the form of a pressed powder phase using methods known in the prior art.
  • the first phase preferably has a depression or the like, into which the second phase can be introduced as a surfactant melt.
  • the components of the surfactant melt are mixed at temperatures at which the components of the surfactant melt are largely, preferably completely, liquefied, for example at temperatures above 50.degree.
  • the melting temperature of the surfactant melt depends on the melting points of the respective components used.
  • the liquid surfactant melt is then poured hot into the trough provided for this purpose in the first solid phase of the dishwashing detergent so that it can harden.
  • the hot, liquid surfactant melt of the second phase can also be pre-formed in any other form provided for this purpose, in order to then be adhered to a suitable place on the surface of the solid first phase provided for this purpose.
  • a suitable location on the surface of the first solid phase can be, for example, a suitable depression or depression.
  • the cured surfactant melt has more appealing optical properties compared to pressed powder phases.
  • the dishwashing detergents described herein are preferably pre-packaged into dosing units. These metering units preferably include the amount of washing or cleaning-active substances necessary for a cleaning cycle. Preferred dosing units have a total weight between 12 and 30 g, preferably between 14 and 26 g and in particular between 15 and 22 g.
  • the volume of the aforementioned metering units and their spatial shape are particularly preferably selected so that the pre-assembled units can be metered via the metering chamber of a dishwasher.
  • the volume of the dosing unit is therefore preferably between 10 and 35 ml, preferably between 12 and 30 ml.
  • the weight ratio of the first, preferably compacted phase to the second phase (surfactant melt phase) is preferably 20: 1 to 1: 1, preferably 15: 1 to 5: 1, in particular 12: 1 to 7: 1, for example 10: 1 up to 8: 1.
  • the automatic dishwashing detergents in particular the prefabricated dosing units, particularly preferably have a water-soluble coating.
  • the water-soluble envelope is preferably formed from a water-soluble film material which is selected from the group consisting of polymers or polymer mixtures.
  • the envelope can be formed from one or from two or more layers of the water-soluble film material.
  • the water-soluble film material of the first layer and of the further layers, if any, can be the same or different.
  • Particularly preferred are foils which, for example, can be glued and / or sealed to form packagings such as tubes or pillows after they have been filled with an agent.
  • the water-soluble packaging can have one or more chambers.
  • the agent can be contained in one or more chambers, if present, of the water-soluble envelope.
  • the amount of agent preferably corresponds to the full or half the dose that is required for one wash cycle.
  • the water-soluble casing contains polyvinyl alcohol or a polyvinyl alcohol copolymer.
  • Water-soluble casings which contain polyvinyl alcohol or a polyvinyl alcohol copolymer have good stability with sufficiently high water solubility, in particular cold water solubility.
  • Suitable water-soluble films for producing the water-soluble envelope are preferably based on a polyvinyl alcohol or a polyvinyl alcohol copolymer whose molecular weight is in the range from 5,000 to 1,000,000 gmol -1 , preferably from 20,000 to 500,000 gmol -1 , particularly preferably from 30,000 to 100,000 gmol -1 and in particular from 40,000 to 80,000 gmol -1 .
  • Polyvinyl alcohol is usually produced by hydrolysis of polyvinyl acetate, since the direct synthesis route is not possible. The same applies to polyvinyl alcohol copolymers, which are prepared from polyvinyl acetate copolymers. It is preferred if at least one layer of the water-soluble coating comprises a polyvinyl alcohol whose degree of hydrolysis is 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • a polyvinyl alcohol-containing film material suitable for producing the water-soluble envelope can additionally contain a polymer selected from the group comprising (meth) acrylic acid-containing (co) polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters, polyethers, polylactic acid or mixtures of the above Polymers may be added.
  • a preferred additional polymer are polylactic acids.
  • preferred polyvinyl alcohol copolymers include dicarboxylic acids as further monomers. Suitable dicarboxylic acids are itaconic acid, malonic acid, succinic acid and mixtures thereof, with itaconic acid being preferred.
  • polyvinyl alcohol copolymers include vinyl alcohol as well as an ethylenically unsaturated carboxylic acid, its salt or its ester.
  • Such polyvinyl alcohol copolymers particularly preferably contain acrylic acid, methacrylic acid, acrylic acid esters, methacrylic acid esters or mixtures thereof in addition to vinyl alcohol.
  • the film material contains further additives.
  • the film material can contain, for example, plasticizers such as dipropylene glycol, ethylene glycol, diethylene glycol, propylene glycol, glycerine, sorbitol, mannitol or mixtures thereof.
  • Further additives include, for example, release aids, fillers, crosslinking agents, surfactants, antioxidants, UV absorbers, antiblocking agents, anti-stick agents or mixtures thereof.
  • Suitable water-soluble films for use in the water-soluble envelopes of the water-soluble packaging according to the invention are films which are sold by MonoSol LLC, for example under the designation M8630, C8400 or M8900.
  • Other suitable films include films with the designation Solublon® PT, Solublon® GA, Solublon® KC or Solublon® KL from Aicello Chemical Europe GmbH or the films VF-HP from Kuraray.
  • the multiphase dishwashing detergent is tightly wrapped in a water-soluble film
  • the water-soluble film which is preferably used for tight wrapping, particularly preferably comprises polyvinyl alcohol, as described above, the starting thickness preferably being from 10 ⁇ m to 100 ⁇ m, in particular from 12 ⁇ m to 60 ⁇ m, particularly preferably from 15 ⁇ m to 50 ⁇ m ⁇ m, especially from 20 ⁇ m to 40 ⁇ m, in particular from 22 ⁇ m to 35 ⁇ m.
  • a single portion of the detergent or cleaning agent is coated in each case.
  • the coating lies tightly against the surface of the tablets at every point.
  • the envelope is even under tension, but this is not absolutely necessary.
  • This tight fit of the envelope is conducive to disintegration: the first time it comes into contact with water, a small amount of water will let through at some point, whereby it does not need to resolve itself at first. At this point the disintegrant contained in the tablet begins to swell. As a result of the increase in volume of the tablet, the envelope now suddenly tears open and the tablet is released.
  • the mechanism described here does not work if the casing is not tightly fitting, since the tablet can swell without the casing being ruptured as a result.
  • the use of a swellable disintegrant is superior to a gas-generating system, since its disintegrating effect always leads to the covering being torn open.
  • the explosive effect can "fizzle out" as the gas escapes from a leak in the casing.
  • Preferred washing or cleaning agent single portions according to the invention are characterized in that the distance between the single portion and the water-soluble cover over the entire surface is 0.1 to 1000 ⁇ m, preferably 0.5 to 500 ⁇ m, particularly preferably 1 to 250 ⁇ m and in particular 2.5 to 100 ⁇ m.
  • the film wrapping is first loosely placed around a single portion of detergent or cleaning agent and welded and then shrunk onto it so that there is close contact between the film packaging and the cleaning agent concentrate.
  • one-time washing or cleaning agent portions according to the invention are characterized in that the cover is a film packaging shrunk onto it.
  • this wrapping can take place in that a water-soluble lower film is placed on a transport chain or a mold (s), then one or more detergent or cleaning agent portions are placed on the lower film; then a water-soluble upper film is placed on the detergent or cleaning agent portion (s) on the lower film and this is then fixed on the lower film, including the washing or cleaning agent portion (s),
  • this step can also be carried out using a single-strand film, which is then placed around the disposable portions as a tube. This is followed by sealing and optional cutting of the foils. Then the film can then be shrunk on using hot air or infrared radiation, optionally with pressure applied.
  • Such water-soluble coatings are also in the patent applications WO 2004/031338 A such as WO 2003/099985 A already described.
  • Table 1 Basic formulation of the cleaning agents (basic tablets without surfactant melting core), in particular dishwashing detergents, preferably automatic dishwashing detergents; Unless otherwise stated, the following information relates to% by weight of active substance, based on the total weight of the agent: Wt% preferred weight% Citrate, sodium salt 10-25 15-20 Phosphonate (e.g.
  • HEDP 0-10 2.5-7.5 MGDA, sodium salt 0-40 0-25 Disilicate, sodium salt 0-40 5-35 soda 10-30 10-25 Percarbonate, sodium salt 5.0-20.0 10-15
  • Bleach catalyst preferably Mn-based
  • TAED 0.0-0.8 0.02-0.5
  • Bleach activator e.g. TAED
  • Nonionic surfactant for example fatty alcohol alkoxylate, preferably 20-40 EO, optionally endcapped 1.5-15.0 2.5-10
  • Polycarboxylate 0.5-15 4-10 Cationic copolymer 0.0 -1.0 0-0.75 Disintegrant - (e.g.
  • citric acid 0.0 - 5 0-1.5
  • Process aids 0-10 0-5 Wt% preferred weight% Fatty alcohol ethoxylate (s) without end cap, 10 - 80 EO 5.0 - 100 5 - 50 Fatty alcohol ethoxylate (s) Endcapped 0.0 - 70 5 - 60 PEG 0.0 - 70 10 - 50 Citrate, sodium salt 0.0 - 20 0.0 - 10 Sulfopolymer 0.0 - 15 0.0 - 10 Polyacrylate 0.0 - 15 0.0 - 10 Dyes 0.0 - 5.0 0.0 - 2.0
  • the corresponding use of the dishwashing detergents according to the invention is also an object of the invention.
  • the invention also relates to a method, in particular an automatic dishwashing method, in which a washing or cleaning agent according to the invention is used in at least one step of the method.
  • the present application therefore also relates to a method for cleaning dishes in a dishwasher, in which the agent according to the invention is metered into the interior of a dishwasher while a dishwasher program is running before the start of the main wash cycle or during the main wash cycle.
  • the dosing or introduction of the agent according to the invention into the interior of the dishwasher can take place manually, but the agent is preferably dosed into the interior of the dishwasher by means of the dosing chamber.
  • Example 1 Preparation of a tablet with a surfactant melt core
  • the fused body consists, for example, of 10-50% PEG (mean Mr 1000 to 8000 g / mol), 5-60% fatty alcohol ethoxylate endcap, preferably C8-C10 endcap, 5-50% fatty alcohol ethoxylate with 10-80 EO, preferably 25-50 EO.
  • the components are mixed at temperatures> 50 ° C. and poured hot into the recess of a dishwasher tab (preferably according to the basic tablet, Table 3).
  • the crowd is in the Let the well harden. Preforming and then gluing in such a melt is also conceivable.
  • Table 3 raw materials Basic tablet Fusible core Addition g / job % * g / job from to from to Na citrate 12.90 51.61 2.00 8th soda 19.35 32.26 3.00 5 Na percarbonate 12.90 22.58 2.00 3.5
  • Manganese bleach catalyst 0.01 0.32 0.00 1 0.05 TAED 3.23 6.45 0.50 1 Fatty alcohol ethoxylate C10 Endcapped 1.29 3.87 0.20 0.6 0.85 Fatty alcohol ethoxylate C12 Endcapped 0.65 3.23 0.10 0.5 Benzotriazole 0.06 0.65 0.01 0.1 Sulfopolymer 1.94 6.45 0.30 1 Polyethylene glycol medium Mr 4000 g / mol 0.65 3.23 0.10 0.5 0.5 Protease (tq) 0.45 1.42 0.07 0.22 Amylase (tq) 0.13 0.65 0.02 0.1 Perfume 0.06 0.13 0.01 0.02 Dyes 0.65 1.29 0.10 0.2 Zn acetate 0.06 0.26 0.01 0.04 Na sulfate 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft ein festes, mehrphasiges Geschirrspülmittel umfassend mindestens zwei Phasen sowie die Verwendung eines solchen Geschirrspülmittels und ein Verfahren zur Reinigung von Geschirr unter Verwendung eines solchen Geschirrspülmittels.
  • Hersteller maschineller Geschirrspülmittel werben mit immer effizienteren und damit nachhaltigeren Geschirrspülmitteln, insbesondere im Hinblick auf den Wasser- und Energieverbrauch. Damit einhergehend werden Spülprogramme mit immer niedrigeren Spültemperaturen angeboten und verwendet. Hohe Temperaturen im Reinigungsgang wirken sich günstig auf die Fettentfernung aus, da hierbei Speisefette verflüssigt und damit besser emulgiert werden können. Niedrigere Spültemperaturen führen im Geschirrspüler zu einer Akkumulation von Speisefettresten im Spülmaschinensumpf/filter.
  • Kunden bevorzugen ästhetisch ansprechende Reinigungsmittel. Insbesondere gepresste Pulverphasen, aus denen insbesondere Geschirrspültabs bestehend, genügen den ästhetischen Ansprüchen der Kunden nicht.
  • Die Patentanmeldung EP2071018 A1 beschreibt Geschirrspülmittel mit einer zweiten Phase, welche nicht endgruppenverschlossene, polyoxyalkylierte nichtionische Tenside umfasst.
  • Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, ein Geschirrspülmittel bereitzustellen, dessen Zusammensetzung auch bei niedrigen Spültemperaturen eine effiziente Entfernung von Speisefettresten aus der Spülmaschine gewährleistet und gleichzeitig eine gegenüber aktuellen Geschirrspülmitteln, insbesondere Tabs aus gepressten Pulverphasen, ansprechendere Ästhetik aufweist.
  • Wie nun überraschenderweise gefunden wurde, kann durch den Einsatz einer Tensidschmelze aus nichtionischen Tensiden im Vergleich zu aktuellen Formulierungen das Fett vom Filter der Spülmaschine effizienter entfernt werden. Darüber hinaus kann die Bereitstellung der Tensidschmelze in Form eines Tensidkerns, der in eine Kernmulde eines Geschirrspültabs aus gepresstem Pulver eingefügt wird, zu einer optisch ansprechenden Tablette führen.
  • In einem ersten Aspekt richtet sich die vorliegende Erfindung daher auf ein Geschirrspülmittel umfassend mindestens eine erste feste, kompaktierte Phase und mindestens eine zweite Phase, dadurch gekennzeichnet, dass die mindestens eine zweite Phase eine Tensidschmelze ist, umfassend 10-100 Gew.-%, vorzugsweise 20-100 %, noch bevorzugter 50-100 Gew.-% Tensid(e), umfassend nichtionische Tenside, wobei die in der mindestens einen zweiten Phase enthaltenen nichtionischen Tenside nicht endgruppenverschlossene, poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH2O]xH sind, dadurch gekennzeichnet, dass R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, und wobei x für Werte zwischen 1 und 80, vorzugsweise für Werte zwischen 15 und 50 und insbesondere für Werte zwischen 25 und 50 steht und die mindestens eine zweite Phase zusätzlich zu den nicht endgruppenverschlossenen poly(oxyalkylierten) Niotensiden, mindestens ein endgruppenverschlossenes Niotensid der Formel R1'O[CH2CH2O]xR2' enthält, wobei R1' für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, R2' für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, und x für Werte zwischen 1 und 80, vorzugsweise für Werte zwischen 15 und 50 und insbesondere für Werte zwischen 20 und 50 steht.
  • In einem weiteren Aspekt richtet sich die vorliegende Erfindung auf die Verwendung eines erfindungsgemäßen Geschirrspülmittels zum maschinellen Reinigen von Geschirr.
  • In einem letzten Aspekt richtet sich die vorliegende Erfindung auf ein Verfahren zum maschinellen Reinigen von Geschirr, dadurch gekennzeichnet, dass in mindestens einem Verfahrensschritt ein Geschirrspülmittel gemäß der Erfindung angewendet wird.
  • Unter einem Geschirrspülmittel sind erfindungsgemäß alle Mittel zu verstehen, die sich zum Waschen oder Reinigen von harten Oberflächen, insbesondere Geschirr, eignen. Weitere geeignete Inhaltsstoffe werden weiter unten detailliert beschrieben.
  • Diese und weitere Aspekte, Merkmale und Vorteile der Erfindung werden für den Fachmann aus dem Studium der folgenden detaillierten Beschreibung und Ansprüche ersichtlich. Dabei kann jedes Merkmal aus einem Aspekt der Erfindung in jedem anderen Aspekt der Erfindung eingesetzt werden. Ferner ist es selbstverständlich, dass die hierin enthaltenen Beispiele die Erfindung beschreiben und veranschaulichen sollen, diese aber nicht einschränken und insbesondere die Erfindung nicht auf diese Beispiele beschränkt ist. Alle Prozentangaben sind, sofern nicht anders angegeben, Gewichts-%. Numerische Bereiche, die in dem Format "von x bis y" angegeben sind, schließen die genannten Werte ein. Wenn mehrere bevorzugte numerische Bereiche in diesem Format angegeben sind, ist es selbstverständlich, dass alle Bereiche, die durch die Kombination der verschiedenen Endpunkte entstehen, ebenfalls erfasst werden.
  • "Mindestens ein", wie hierin verwendet, bezieht sich auf 1 oder mehr, beispielsweise 1, 2, 3, 4, 5, 6, 7, 8, 9 oder mehr.
  • Das erfindungsgemäße Geschirrspülmittel umfasst mindestens zwei Phasen, wobei die erste Phase fest und kompaktiert ist und die zweite Phase eine Tensidschmelze ist. Als "Schmelze" wird dabei eine unter Einwirkung erhöhter Temperaturen (z.B. > 50 °C oder >60 °C) verflüssigte Zusammensetzung bezeichnet, die bei Erkalten auf Raumtemperatur wieder erstarrt und eine feste Form ausbildet.
  • Eine Phase im Sinne der vorliegenden Erfindung ist ein räumlicher Bereich, in dem physikalische Parameter und die chemische Zusammensetzung homogen sind. Eine Phase unterscheidet sich von einer anderen Phase durch verschiedene Merkmale, beispielsweise Inhaltsstoffe, physikalische Eigenschaften, äußeres Erscheinungsbild etc. Bevorzugt können verschiedene Phasen optisch unterschieden werden. So ist für den Verbraucher die wenigstens eine erste Phase eindeutig von der wenigstens einen zweiten Phase zu unterschieden. Weist das erfindungsgemäße Wasch- oder Reinigungsmittel mehr als eine erste Phase auf, so können diese ebenfalls jeweils mit dem bloßen Auge voneinander unterschieden werden, weil sie sich beispielsweise in der Farbgebung voneinander unterscheiden. Gleiches gilt, wenn zwei oder mehr zweite Phasen vorliegen. Auch in diesem Fall ist eine optische Unterscheidung der Phasen, beispielsweise auf Grund eines Farb- oder Transparenzunterschiedes möglich. Phasen im Sinne der vorliegenden Erfindung sind somit in sich abgeschlossene Bereiche, die vom Verbraucher optisch mit dem bloßen Auge voneinander unterschieden werden können. Die einzelnen Phasen können bei der Verwendung unterschiedliche Eigenschaften aufweisen, wie beispielsweise die Geschwindigkeit, mit der sich die Phase in Wasser löst und somit die Geschwindigkeit und die Reihenfolge der Freisetzung der in der jeweiligen Phase enthaltenen Inhaltsstoffe.
  • Die Phasen sind typischerweise räumlich voneinander getrennt. Das kann in verschiedenen Ausführungsformen derart erfolgen, dass sie, wenn eine oder beide der Phasen flüssige Phasen sind, die flüssige Phase in einem separaten, abgeschlossenen Bereich, beispielsweise der Kammer eines Pouches, von der anderen Phase getrennt vorliegt. Derartige Konfektionsformen sind im Stand der Technik bekannt. Bei festen Mitteln, d.h. Mitteln in denen beide Phasen Feststoffe sind, werden die beiden Phasen ebenfalls räumlich getrennt voneinander konfektioniert, beispielsweise in Form eines Mehrkammer-Pouches, wobei jede der Phasen in einer separaten Kammer vorliegt. Alternativ können die beiden Phasen im Fall von kompaktierten Mitteln, wie beispielsweise Tabs oder Tabletten, insbesondere mehrphasigen Tabs wie sie im Stand der Technik bekannt sind, räumlich direkt benachbart angeordnet seien und zwar in der Art, dass die Phasen separat formuliert sind und sich kontaktieren, aber nicht vermischen können.
  • Das erfindungsgemäße Geschirrspülmittel umfasst mindestens zwei unterschiedliche Phasen. Sowohl die mindestens eine erste Phase als auch die mindestens eine zweite Phase werden nachfolgend beschrieben. Für den Fall, dass das erfindungsgemäße Geschirrspülmittel mehr als zwei Phasen aufweist, entspricht jede weitere Phase jeweils entweder der mindestens einen ersten Phase, wie hierin definiert, oder der mindestens einen zweiten Phase, wie hierin definiert. Dabei können sich die Zusammensetzungen der jeweils einander entsprechenden Phasen in dem Maße unterscheiden, wie es die nachfolgend aufgeführten jeweiligen Definitionen sowohl der mindestens einen ersten Phase als auch der mindestens einen zweiten Phase erlauben. So kann es sich beispielsweise um ein dreiphasiges Geschirrspülmittel handeln, das zwei Phasen entsprechend der ersten Phase, wie hierin definiert, und eine Phase entsprechend der zweiten Phase, wie hierin definiert, aufweist.
  • Gemäß der vorliegenden Erfindung handelt es sich bei der mindestens einen zweiten Phase des Geschirrspülmittels um eine Tensidschmelze, die zu 10-100 Gew.-%, vorzugsweise 20-100 Gew.-%, noch bevorzugter 50-100 Gew.-% aus Tensid(en), insbesondere nichtionischen(m) Tensid(en), besteht. Die zweite Phase wird dementsprechend im Folgenden auch als "Tensidschmelze" oder "Tensidschmelz-Phase" bezeichnet.
  • Eine Klasse bevorzugt einsetzbarer nichtionischer Tenside, die in Kombination mit anderen nichtionischen Tensiden als Bestandteil der Tensidschmelze eingesetzt werden können, sind demnach alkoxylierte (vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte) Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
  • Es werden nicht endgruppenverschlossene, poly(oxyalkylierten) Niotenside gemäß der Formel R1O[CH2CH2O]xH, wobei R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, und x für Werte zwischen 1 und 80, vorzugsweise für Werte zwischen 15 und 50 und insbesondere für Werte zwischen 25 und 50 steht, eingesetzt. Ganz besonders bevorzugt sind Fettalkoholethoxylate, in denen R1 für einen linearen oder verzweigten C12-20 Alkylrest, insbesondere für einen linearen oder verzweigten C16-18 Alkylrest steht.
  • In bevorzugten Ausführungsformen werden die oben beschriebenen nicht endgruppenverschlossenen, poly(oxyalkylierten) Niotenside der Tensidschmelz-Phase in Mengen von 5-100, bevorzugt von 5-50 Gew.-%, vorzugsweise 10-30 Gew.-%, bezogen auf die Tensidschmelz-Phase eingesetzt.
  • Die vorstehend beschriebenen nicht endgruppenverschlossenen, poly(oxyalkylierten) Niotenside der Tensidschmelz-Phase werden mit einem weiteren Tensid aus der Gruppe der endgruppenverschlossenen, poly(oxyalkylierten) Niotenside kombiniert, und zwar solche endgruppenverschlossenen, poly(oxyalkylierten) Niotenside, die, gemäß der Formel R1O[CH2CH2O]xR2, neben einem Rest R1, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste R2 mit 1 bis 30 Kohlenstoffatomen aufweisen, wobei x für Werte zwischen 1 und 80, vorzugsweise für Werte zwischen 15 und 50 und insbesondere für Werte zwischen 25 und 50 steht. Ganz besonders bevorzugt sind endgruppenverschlossene Fettalkoholethoxylate, in denen R1 für einen linearen oder verzweigten C12-20 Alkylrest, insbesondere für einen linearen oder verzweigten C16-18 Alkylrest, und/oder R2 für einen linearen oder verzweigten C6-22 Alkylrest, insbesondere für einen linearen oder verzweigten C8-10 Alkylrest steht.
  • In bevorzugten Ausführungsformen werden die oben beschriebenen endgruppenverschlossenen, poly(oxyalkylierten) Niotenside der Tensidschmelz-Phase in Mengen von 5-60 Gew.-%, vorzugsweise 40-60 Gew.-%, bezogen auf die Tensidschmelz-Phase eingesetzt.
  • In verschiedenen Ausführungsformen beträgt das Massenverhältnis zwischen den oben beschriebenen endgruppenverschlossenen Niotensiden und den nicht endgruppenverschlossenen Niotensiden in der Tensidschmelz-Phase von 20:1 bis 1:5, vorzugsweise von 10:1 bis 1:1. In besonders bevorzugten Ausführungsformen liegt das Verhältnis bei 3:1 bis 2:1.
  • Generell haben die in der Tensidschmelz-Phase eingesetzten nichtionische Tenside einen Schmelzpunkt oberhalb Raumtemperatur. Nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 25°C, vorzugsweise zwischen 25 und 65°C und insbesondere zwischen 26,6 und 55°C, ist/sind besonders bevorzugt.
  • Zusätzlich zu den genannten Tensiden kann die Tensidschmelz-Phase noch weitere Inhaltsstoffe enthalten. Vorzugsweise schließen derartige Inhaltsstoffe beispielsweise Polyethylenglykole (PEG) ein. Bevorzugt werden Polyethylenglykole mit mittleren Molmassen zwischen 800 und 8000 g/mol, insbesondere zwischen 1000 und 6000 g/mol, beispielsweise zwischen 1500 und 5000 PEGs können beispielsweise in Mengen von 10 bis 40 Gew.-%, vorzugsweise 25-35 Gew.-% bezogen auf das Gewicht der Tensidschmelz-Phase enthalten sein. Besonders bevorzugt sind zwischen 20 bis 35 Gew.-% Polyethylenglykole mit einer mittleren Molmasse von 2000 bis 5000 g/mol, beispielsweise Polyethylenglykole mit einem mittleren Molmasse um 4000 g/mol (vgl. INCI: PEG 4000) enthalten. Als weitere Inhaltsstoffe der Tensidschmelz-Phase sind weitere Tenside, insbesondere nichtionische Tenside, Polymere (Polycarboxylate, insbesondere Homo- und/oder Copolymere der Acrylsäure) sowie organische Builder, insbesondere Citronensäure bzw. Citrate, geeignet. Diese Inhaltsstoffe sind im Weiteren ausführlich beschrieben werden.
  • Bei der mindestens einen ersten Phase des erfindungsgemäßen Geschirrspülmittels handelt es sich um eine feste, kompaktierte Phase, typischerweise eine gepresste Pulverphase. Diese mindestens eine erste Phase des erfindungsgemäßen Geschirrspülmittels enthält üblicherweise mindestens ein Tensid, vorzugsweise mindestens ein nichtionisches Tensid. Geeignete Tenside werden nachfolgend beschrieben.
  • Als nichtionische Tenside der ersten Phase eignen sich beispielsweise Alkylglykoside der allgemeinen Formel RO(G)x, in der R einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt einsetzbarer nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden in der ersten Phase des Geschirrspülmittels eingesetzt werden können, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind die als PHFA bekannten Polyhydroxyfettsäureamide.
  • Bevorzugt werden allerdings schwachschäumende nichtionische Tenside in der ersten Phase eingesetzt, insbesondere alkoxylierte, vor allem ethoxylierte, schwachschäumende nichtionische Tenside. Mit besonderem Vorzug enthalten die maschinellen Geschirrspülmittel nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole.
  • Eine Klasse einsetzbarer nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden können, sind demnach alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
  • Bevorzugt einzusetzende Tenside stammen aus den Gruppen der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen ((PO/EO/PO)-Tenside). Solche (PO/EO/PO)-Niotenside zeichnen sich durch gute Schaumkontrolle aus.
  • Geeignete Niotenside sind solche, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind nichtionische Tenside der allgemeinen Formel
    Figure imgb0001
    bevorzugt, in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
  • Somit sind insbesondere nichtionische Tenside bevorzugt, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten aufweisen.
  • Bevorzugte nichtionische Tenside sind hierbei solche der allgemeinen Formel

            R1-CH(OH)CH2O-(AO)w-(A'O)x-(A"O)y-(A'''O)z-R2,

    in der
    • R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht;
    • R2 für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht;
    • A, A', A" und A'" unabhängig voneinander für einen Rest aus der Gruppe -CH2CH2, -CH2CH2-CH2, -CH2-CH(CH3), -CH2-CH2-CH2-CH2, -CH2-CH(CH3)-CH2-,-CH2-CH(CH2-CH3) stehen,
    • w, x, y und z für Werte zwischen 0,5 und 120 stehen, wobei x, y und/oder z auch 0 sein können.
  • Bevorzugt werden insbesondere solche endgruppenverschlossene, poly(oxyalkylierten) Niotenside, die, gemäß der Formel R1O[CH2CH2O]xCH2CH(OH)R2, neben einem Rest R1, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R2 mit 1 bis 30 Kohlenstoffatomen aufweisen, wobei x für Werte zwischen 1 und 90, vorzugsweise für Werte zwischen 30 und 80 und insbesondere für Werte zwischen 30 und 60 steht.
  • Besonders bevorzugt sind Tenside der Formel R1O[CH2CH(CH3)O]x[CH2CH2O]yCH2CH(OH)R2, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 sowie y für einen Wert von mindestens 15 steht.
  • Zur Gruppe dieser nichtionischen Tenside zählen beispielsweise die C2-26 Fettalkohol-(PO)1-(EO)15-40-2-hydroxyalkylether, insbesondere auch die C8-10 Fettalkohol-(PO)1-(EO)22-2-hydroxydecylether. Besonders bevorzugt werden weiterhin solche endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH2O]x[CH2CH(R3)O]yCH2CH(OH)R2, in der R1 und R2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, -CH(CH3)2, vorzugsweise jedoch für -CH3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, wobei Niotenside mit R3 = -CH3 und Werten für x von 15 bis 32 und y von 0,5 und 1,5 ganz besonders bevorzugt sind.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der oben stehenden Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der oben stehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Besonders bevorzugte endgruppenverschlossene poly(oxyalkylierte) Alkohole der oben stehenden Formel weisen Werte von k = 1 und j = 1 auf, so dass sich die vorstehende Formel zu R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
  • Als besonders wirkungsvoll haben sich schließlich die nichtionischen Tenside der allgemeinen Formel R1-CH(OH)CH2O-(AO)w-R2 erwiesen, in der
    • R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht;
    • R2 für einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht;
    • A für einen Rest aus der Gruppe CH2CH2, CH2CH2CH2, CH2CH(CH3), vorzugsweise für CH2CH2 steht, und
    • w für Werte zwischen 1 und 120, vorzugsweise 10 bis 80, insbesondere 15 bis 50 steht.
  • Zur Gruppe dieser nichtionischen Tenside zählen beispielsweise die C4-22 Fettalkohol-(EO)10-80-2-hydroxyalkylether, insbesondere auch die C8-12 Fettalkohol-(EO)22-2-hydroxydecylether und die C4-22 Fettalkohol-(EO)40-80-2-hydroxyalkylether.
  • In verschiedenen Ausführungsformen der Erfindung können anstelle der oben definierten endgruppenverschlossenen Hydroxymischether auch die entsprechenden nicht endgruppenverschlossenen Hydroxymischether eingesetzt werden. Diese können den obigen Formeln genügen, wobei R2 aber Wasserstoff ist und R1, R3, A, A', A", A''', w, x, y und z wie oben definiert sind.
  • Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade beziehungsweise Alkoxylierungsgrade der nichtionischen Tenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade beziehungsweise Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
  • Selbstverständlich können die vorgenannten nichtionischen Tenside nicht nur als Einzelsubstanzen, sondern auch als Tensidgemische aus zwei, drei, vier oder mehr Tensiden eingesetzt werden. Als Tensidgemische werden dabei nicht Mischungen nichtionischer Tenside bezeichnet, die in ihrer Gesamtheit unter eine der oben genannten allgemeinen Formeln fallen, sondern vielmehr solche Mischungen, die zwei, drei, vier oder mehr nichtionische Tenside enthalten, die durch unterschiedliche der vorgenannten allgemeinen Formeln beschrieben werden können.
  • Die hierin beschriebenen Geschirrspülmittel, die in der mindestens einen ersten Phase mindestens ein Tensid, vorzugsweise ein nichtionisches Tensid, vorzugsweise ein nichtionisches Tensid aus der Gruppe der Hydroxymischether, umfassen, enthalten das Tensid in verschiedenen Ausführungsformen in einer Menge bezogen auf das Gesamtgewicht des Mittels von mindestens 2 Gew.%, vorzugsweise mindestens 5 Gew.%. Die absolut pro Anwendung eingesetzten Mengen können beispielsweise im Bereich von 0,5-10 g/job, vorzugsweise im Bereich von 0,5-5 g/job liegen.
  • Insbesondere bevorzugt sind in der wenigstens einen ersten Phase solche nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen. Nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, ist/sind besonders bevorzugt.
  • Geeignete nichtionische Tenside, die Schmelz- beziehungsweise Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest sind.
  • Ganz allgemein kann auch die erste Phase die oben im Zusammenhang mit der zweiten Phase beschriebenen Tenside, insbesondere die beschriebenen optional endgruppenverkappten Fettalkoholethoxylate enthalten.
  • Die erste Phase des erfindungsgemäßen Geschirrspülmittels kann darüber hinaus auch Tenside aus der Gruppe der anionischen, kationischen und amphoteren Tenside enthalten.
  • Als anionische Tenside eignen sich in den Geschirrspülmitteln alle anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Geeignete anionische Tenside liegen vorzugsweise in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe vor, aber auch Zink, Mangan(II), Magnesium, Calcium oder Mischungen hieraus können als Gegenionen dienen.
  • Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül.
  • An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside, wie Betaine oder quartäre Ammoniumverbindungen, eingesetzt werden. Es ist allerdings bevorzugt, dass keine kationischen und/oder amphoteren Tenside eingesetzt werden.
  • Darüber hinaus kann das Geschirrspülmittel in der mindestens einen ersten Phase weitere Inhaltsstoffe enthalten, die die anwendungstechnischen und/oder ästhetischen Eigenschaften des Geschirrspülmittels weiter verbessern. Im Rahmen der vorliegenden Erfindung enthält das Geschirrspülmittel in verschiedenen Ausführungsformen mindestens einen oder vorzugsweise mehrere Stoffe aus der Gruppe der Builder, Polymere, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Enzyme, Verdicker, Sequestrierungsmittel, Elektrolyte, Korrosionsinhibitoren, Glaskorrosionsinhibitoren, Schauminhibitoren, Farbstoffe, Additive zur Verbesserung des Ablauf- und Trocknungsverhaltens, Desintegrationshilfsmittel, Konservierungsmittel, pH-Stellmittel, Duftstoffe und Parfümträger.
  • Der Einsatz von Buildersubstanzen (Gerüststoffen) wie Silikaten, Aluminiumsilikaten (insbesondere Zeolithen), Salze organischer Di- und Polycarbonsäuren sowie Mischungen dieser Stoffe, vorzugsweise wasserlöslicher Buildersubstanzen, kann von Vorteil sein.
  • In einer erfindungsgemäß bevorzugten Ausführungsform wird auf den Einsatz von Phosphaten (auch Polyphosphaten) weitgehend oder vollständig verzichtet. Das Mittel enthält in dieser Ausführungsform vorzugsweise weniger als 5 Gew.-%, besonders bevorzugt weniger als 3 Gew.-%, insbesondere weniger als 1 Gew.-% Phosphat(e). Besonders bevorzugt ist das Mittel in dieser Ausführungsform völlig phosphatfrei, d.h. die Mittel enthalten weniger als 0,1 Gew.-% Phosphat(e).
  • Zu den Gerüststoffen zählen insbesondere Carbonate, Citrate, Phosphonate, organische Gerüststoffe und Silikate. Der Gewichtsanteil der gesamten Gerüststoffe am Gesamtgewicht erfindungsgemäßer Mittel beträgt vorzugsweise 15 bis 80 Gew.-% und insbesondere 20 bis 70 Gew.-%.
  • Erfindungsgemäß geeignete organische Gerüststoffe sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren (Polycarboxylate), wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine, insbesondere zwei bis acht Säurefunktionen, bevorzugt zwei bis sechs, insbesondere zwei, drei, vier oder fünf Säurefunktionen im gesamten Molekül tragen. Bevorzugt sind als Polycarbonsäuren somit Dicarbonsäuren, Tricarbonsäuren Tetracarbonsäuren und Pentacarbonsäuren, insbesondere Di-, Tri- und Tetracarbonsäuren. Dabei können die Polycarbonsäuren noch weitere funktionelle Gruppen, wie beispielsweise Hydroxyl- oder Aminogruppen, tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren (bevorzugt Aldarsäuren, beispielsweise Galactarsäure und Glucarsäure), Aminocarbonsäuren, insbesondere Aminodicarbonsäuren, Aminotricarbonsäuren, Aminotetracarbonsäuren wie beispielsweise Nitrilotriessigsäure (NTA), Glutamin-N,N-diessigsäure (auch als N,N-Bis(carboxymethyl)-L-glutaminsäure oder GLDA bezeichnet), Methylglycindiessigsäure (MGDA)) und deren Derivate sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, GLDA, MGDA und Mischungen aus diesen.
  • Weiterhin geeignet als organische Gerüststoffe sind polymere Polycarboxylate (organische Polymere mit einer Vielzahl, an (insbesondere größer zehn) Carboxylatfunktionen im Makromolekül), Polyaspartate, Polyacetale und Dextrine.
  • Die freien Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und können somit, falls gewünscht, auch zur Einstellung eines niedrigeren pH-Wertes dienen. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Besonders bevorzugte erfindungsgemäße Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, enthalten als einen ihrer wesentlichen Gerüststoffe ein oder mehrere Salze der Citronensäure, also Citrate. Diese sind vorzugsweise in einem Anteil von 2 bis 40 Gew.-%, insbesondere von 5 bis 30 Gew.-%, besonders von 7 bis 28 Gew.-%, besonders bevorzugt 10 bis 25 Gew.-%, ganz besonders bevorzugt 15 bis 20 Gew.-% enthalten, jeweils bezogen auf das Gesamtgewicht des Mittels.
  • Besonders bevorzugt ist ebenfalls der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat (Soda), in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 4 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.-%, ganz besonders bevorzugt 10 bis 24 Gew.-%, jeweils bezogen auf das Gewicht des Mittels.
  • Besonders bevorzugte erfindungsgemäße Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, sind dadurch gekennzeichnet, dass sie mindestens zwei Gerüststoffe aus der Gruppe der Silikate, Phosphonate, Carbonate, Aminocarbonsäuren und Citrate enthalten, wobei der Gewichtsanteil dieser Gerüststoffe, bezogen auf das Gesamtgewicht des erfindungsgemäßen Reinigungsmittels, bevorzugt 5 bis 70 Gew.-%, vorzugsweise 15 bis 60 Gew.- % und insbesondere 20 bis 50 Gew.-% beträgt. Die Kombination von zwei oder mehr Gerüststoffen aus der oben genannten Gruppe hat sich für die Reinigungs- und Klarspülleistung erfindungsgemäßer Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, als vorteilhaft erwiesen. Über die hier erwähnten Gerüststoffe hinaus können noch ein oder mehrere andere Gerüststoffe zusätzlich enthalten sein.
  • Bevorzugte Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, sind durch eine Gerüststoffkombination aus Citrat und Carbonat und/oder Hydrogencarbonat gekennzeichnet.
  • In einer erfindungsgemäß ganz besonders bevorzugten Ausführungsform wird eine Mischung aus Carbonat und Citrat eingesetzt, wobei die Menge an Carbonat vorzugsweise von 5 bis 40 Gew.-%, insbesondere 10 bis 35 Gew.-%, ganz besonders bevorzugt 15 bis 30 Gew.-% und die Menge an Citrat vorzugsweise von 5 bis 35 Gew.-%, insbesondere 10 bis 25 Gew.-%, ganz besonders bevorzugt 15 bis 20 Gew.-%, jeweils bezogen auf die Gesamtmenge des Reinigungsmittels, beträgt, wobei die Gesamtmenge dieser beiden Gerüststoffe vorzugsweise 20 bis 65 Gew.-%, insbesondere 25 bis 60 Gew.-%, bevorzugt 30 bis 50 Gew.-%, beträgt. Darüber hinaus können noch ein oder mehrere weitere Gerüststoffe zusätzlich enthalten sein.
  • Die erfindungsgemäßen Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, können als weiteren Gerüststoff insbesondere Phosphonate enthalten. Als Phosphonat-Verbindung wird vorzugsweise ein Hydroxyalkan- und/oder Aminoalkanphosphonat eingesetzt. Unter den Hydroxyalkanphosphonaten ist das 1- Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriamin- pentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Phosphonate sind in erfindungsgemäßen Mitteln vorzugsweise in Mengen von 0,1 bis 10 Gew.-%, insbesondere in Mengen von 0,5 bis 8 Gew.-%, ganz besonders bevorzugt von 2,5 bis 7,5 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Mittels, enthalten.
  • Besonders bevorzugt ist der kombinierte Einsatz von Citrat, (Hydrogen-)Carbonat und Phosphonat. Diese können in den oben genannten Mengen eingesetzt werden. Insbesondere werden bei dieser Kombination Mengen von, jeweils bezogen auf das Gesamtgewicht des Mittels, 10 bis 25 Gew.-% Citrat, 10 bis 30 Gew.-% Carbonat (oder Hydrogencarbonat), sowie 2,5 bis 7,5 Gew.-% Phosphonat eingesetzt.
  • Weitere besonders bevorzugte Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, sind dadurch gekennzeichnet, dass sie neben Citrat und (Hydrogen-) Carbonat sowie ggf. Phosphonat mindestens einen weiteren phosphorfreien Gerüststoff enthalten. Insbesondere ist dieser ausgewählt aus den Aminocarbonsäuren, wobei der weitere phosphorfreie Gerüststoff vorzugsweise ausgewählt ist aus Methylglycindiessigsäure (MGDA), Glutaminsäurediacetat (GLDA), Asparaginsäurediacetat (ASDA), Hydroxyethyliminodiacetat (HEIDA), Iminodisuccinat (IDS) und Ethylendiamindisuccinat (EDDS), besonders bevorzugt aus MGDA oder GLDA. Eine besonders bevorzugte Kombination ist beispielsweise Citrat, (Hydrogen-)Carbonat und MGDA sowie ggf. Phosphonat.
  • Der Gew.-%-Anteil des weiteren phosphorfreien Gerüststoffs, insbesondere des MGDA und/oder GLDA, beträgt vorzugsweise 0 bis 40 Gew.-%, insbesondere 5 bis 30 Gew.-%, vor allem 7 bis 25 Gew.-%. Besonders bevorzugt ist der Einsatz von MGDA bzw. GLDA, insbesondere MGDA, als Granulat. Von Vorteil sind dabei solche MGDA-Granulate, die möglichst wenig Wasser enthalten und/oder eine im Vergleich zum nicht granulierten Pulver geringere Hygroskopizität (Wasseraufnahme bei 25 °C, Normaldruck) aufweisen. Die Kombination von mindestens drei, insbesondere mindestens vier Gerüststoffen aus der oben genannten Gruppe hat sich für die Reinigungs- und Klarspülleistung erfindungsgemäßer Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, als vorteilhaft erwiesen. Daneben können noch weitere Gerüststoffe enthalten sein.
  • Als organische Gerüststoffe sind weiterhin polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol. Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Der Gehalt der erfindungsgemäßen Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, an (homo)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, bevorzugt 2 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-%.
  • Erfindungsgemäße Reinigungsmittel, insbesondere Geschirrspülmittel, bevorzugt maschinelle Geschirrspülmittel, können als Gerüststoff weiterhin kristalline schichtförmige Silikate der allgemeinen Formel NaMSixO2x+1 · y H2O, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1,9 bis 22, vorzugsweise von 1,9 bis 4, wobei besonders bevorzugte Werte für x 2, 3 oder 4 sind, und y für eine Zahl von 0 bis 33, vorzugsweise von 0 bis 20 steht. Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche vorzugsweise löseverzögert sind und Sekundärwascheigenschaften aufweisen.
  • In bestimmten erfindungsgemäßen Reinigungsmitteln, insbesondere Geschirrspülmitteln, bevorzugt maschinellen Geschirrspülmitteln, wird der Gehalt an Silikaten, bezogen auf das Gesamtgewicht des Reinigungsmittels, auf Mengen unterhalb 10 Gew.-%, vorzugsweise unterhalb 5 Gew.-% und insbesondere unterhalb 2 Gew.-% begrenzt.
  • In Ergänzung zu den vorgenannten Gerüststoffen können die erfindungsgemäßen Wasch- oder Reinigungsmittel weiterhin Alkalimetallhydroxide enthalten. Diese Alkaliträger werden in den Wasch- oder Reinigungsmitteln und insbesondere in den zweiten Phasen bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, vorzugsweise unterhalb 5 Gew.-%, besonders bevorzugt zwischen 0,1 und 5 Gew.-% und insbesondere zwischen 0,5 und 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels eingesetzt. Alternative erfindungsgemäße Reinigungsmittel sind frei von Alkalimetallhydroxiden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Gerüststoffe eingesetzt werden.
  • Die mindestens eine erste Phase der hierin beschriebenen Geschirrspülmittel kann ferner verschiedene Polymere enthalten.
  • Erfindungsgemäß können in verschiedenen Ausführungsformen beispielsweise Homopolymere von α,β ethylenisch ungesättigten Carbonsäuren eingesetzt werden. Als ungesättigte Carbonsäure(n) wird/werden mit besonderem Vorzug ungesättigte Carbonsäuren der Formel R1(R2)C=C(R3)COOH eingesetzt, in der R1 bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Besonders bevorzugte ungesättigte Carbonsäuren sind Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloroacrylsäure, α-Cyanoacrylsäure, Crotonsäure, α-Phenyl-Acrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, Citraconsäure (Methylmaleinsäure), Methylenmalonsäure, Sorbinsäure, Zimtsäure oder deren Mischungen. Ganz besonders bevorzugt ist Acrylsäure. In verschiedenen Ausführungsformen der Erfindung ist das Homopolymer daher eine Polyacrylsäure.
  • In den Polymeren können die Carbonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Carbonsäuregruppe in einigen oder allen Carbonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten Polymeren ist erfindungsgemäß bevorzugt.
  • Die Molmasse der eingesetzten Homopolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Geschirrspülmittel sind dadurch gekennzeichnet, dass die Homopolymere, insbesondere die Polyacrylsäuren, Molmassen Mn von 1000 bis 20.000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 1100 bis 10000 g/mol, und besonders bevorzugt von 1200 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • In verschiedenen bevorzugten Ausführungsformen der Erfindung enthalten die Mittel ferner mindestens ein Sulfopolymer. Die in diesem Zusammenhang verwendbaren Polymere sind insbesondere Copolymere, die zwei, drei, vier oder mehr unterschiedliche Monomereinheiten aufweisen können, wobei mindestens eine Monomereinheit eine Sulfonsäuregruppe trägt. Bevorzugte Copolymere enthalten neben Sulfonsäuregruppen-haltigem(n) Monomer(en) wenigstens ein Monomer aus der Gruppe der ungesättigten Carbonsäuren.
  • Als ungesättigte Carbonsäure(n) wird/werden mit besonderem Vorzug die oben beschriebenen ungesättigten Carbonsäuren eingesetzt. Ganz besonders bevorzugt ist dabei Acrylsäure.
  • Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel

            R5(R6)C=C(R7)-X-SO3H

    bevorzugt, in der R5 bis R7 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 stehen, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2-, -C(O)-NH-C(CH3)2-CH2- und -C(O)-NH-CH(CH3)-CH2-.
  • Unter diesen Monomeren bevorzugt sind solche der Formeln

            H2C=CH-X-SO3H

            H2C=C(CH3)-X-SO3H

            HO3S-X-(R6)C=C(R7)-X-SO3H,

    in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, - CH2CH2CH3 und -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2-, -C(O)-NH-C(CH3)2-CH2- und -C(O)-NH-CH(CH3)-CH2-.
  • Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1-propansulfonsäure, 2-Methacrylamido-2-methyl-1-propansulfonsäure, 3-Methacrylamido-2-hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3-Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie Mischungen der genannten Säuren oder deren wasserlösliche Salze.
  • Auch in den Copolymeren können die Säuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfon- und/oder Carbonsäuregruppe in einigen oder allen Säuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten Copolymeren ist erfindungsgemäß bevorzugt.
  • Die Monomerenverteilung der bevorzugt eingesetzten Copolymere beträgt bei Copolymeren, die nur Carbonsäuregruppen-haltige Monomere und Sulfonsäuregruppen-haltige Monomere enthalten, vorzugsweise jeweils 5 bis 95 Gew.-%, besonders bevorzugt beträgt der Anteil des Sulfonsäuregruppen-haltigen Monomers 50 bis 90 Gew.-% und der Anteil des Carbonsäuregruppen-haltigen Monomers 10 bis 50 Gew.-%, die Monomere sind hierbei vorzugsweise ausgewählt aus den zuvor genannten.
  • In verschiedenen Ausführungsformen können die Copolymere neben den oben beschriebenen Carbonsäuregruppen-haltigen Monomeren und Sulfonsäuregruppen-haltigen Monomeren weitere Monomere enthalten, insbesondere ungesättigte Carbonsäureestergruppen-haltige Monomere. In solchen Terpolymeren sind die Carbonsäureestergruppen-haltigen Monomere beispielsweise solche der Formel R1(R2)C=C(R3)COOR4, in der R1 bis R3 wie oben definiert sind und R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Besonders bevorzugte ungesättigte Carbonsäureester sind Alkylester von Monocarbonsäuren wie der Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloroacrylsäure, α-Cyanoacrylsäure, Crotonsäure, α-Phenyl-Acrylsäure, Sorbinsäure, Zimtsäure oder deren Mischungen. Ganz besonders bevorzugt sind C1-8 Alkylester von Acrylsäure, wie Methylacrylat, Ethylacrylat, Propylacrylat, Butylacrylat. Ganz besonders bevorzugt ist Ethylacrylat.
  • Die Molmasse der eingesetzten Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Geschirrspülmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen Mn von 2000 bis 200.000 g/mol, vorzugsweise von 4000 bis 25.000 g/mol und insbesondere von 5000 bis 15.000 g/mol aufweisen.
  • Die oben beschriebenen Homopolymere und Copolymere können jeweils in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des Mittels eingesetzt werden. Absolute Mengen liegen typischerweise im Bereich von 0,1 bis 2 g/job, vorzugsweise im Bereich von 0,2 bis 1,0 g/job. Das Massenverhältnis der Polymere zueinander, d.h. Homopolymer zu Copolymer, beträgt dabei in verschiedenen Ausführungsformen 5:1 bis 1:5, vorzugsweise 2:1 bis 1:2.
  • Die Geschirrspülmittel können alternativ oder zusätzlich weitere Polymere enthalten. Zur Gruppe geeigneter Polymere zählen insbesondere die reinigungsaktiven amphoteren, zwitterionischen oder kationischen Polymere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere.
  • Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)-acrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere, der Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere sowie der Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Weitere einsetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.
  • Einsetzbare kationische Polymere stammen aus den Gruppen der quaternierten CelluloseDerivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Acrylsäure und Methacrylsäure und deren Estern und Amiden, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, der Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, der quaternierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung liegen die vorgenannten amphoteren, zwitterionischen oder kationischen Polymere in vorkonfektionierter Form vor. Zur Konfektionierung der Polymere eignet sich dabei u.a.
    • die Verkapselung der Polymere mittels wasserlöslicher oder wasserdispergierbarer Beschichtungsmittel, vorzugsweise mittels wasserlöslicher oder wasserdispergierbarer natürlicher oder synthetischer Polymere;
    • die Verkapselung der Polymere mittels wasserunlöslicher, schmelzbarer Beschichtungsmittel, vorzugsweise mittels wasserunlöslicher Beschichtungsmittel aus der Gruppe der Wachse oder Paraffine mit einem Schmelzpunkt oberhalb 30°C;
    • die Cogranulation der Polymere mit inerten Trägermaterialien, vorzugsweise mit Trägermaterialien aus der Gruppe der wasch- oder reinigungsaktiven Substanzen, besonders bevorzugt aus der Gruppe der Builder (Gerüststoffe) oder Cobuilder.
  • Als weiteren Bestandteil enthalten erfindungsgemäße Geschirrspülmittel in der ersten Phase vorzugsweise ein oder mehrere Enzym(e). Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen, Perhydrolasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäße Reinigungsmittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10-6 Gew.-% bis 5 Gew.-% bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
  • Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg sowie deren weiterentwickelte Formen, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7.
  • Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus β. amyloliquefaciens, aus β. stearothermophilus, aus Aspergillus niger und A. oryzae sowie die für den Einsatz in Reinigungsmitteln verbesserten Weiterentwicklungen der vorgenannten Amylasen. Des Weiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben.
  • Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch in den Positionen D96L, T213R und/oder N233R, besonders bevorzugt alle der Austausche D96L, T213R und N233R.
  • Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefasst werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und β-Glucanasen.
  • Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-Peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluss zu gewährleisten (Mediatoren). Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Reinigungsmittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
  • Reinigungsaktive Proteasen und Amylasen werden in der Regel nicht in Form des reinen Proteins sondern vielmehr in Form stabilisierter, lager- und transportfähiger Zubereitungen bereitgestellt. Zu diesen vorkonfektionierten Zubereitungen zählen beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren oder weiteren Hilfsmitteln versetzt.
  • Alternativ können die Enzyme für die erste und/oder zweite Phase verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalienundurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Wie aus der vorherigen Ausführungen ersichtlich, bildet das Enzym-Protein nur einen Bruchteil des Gesamtgewichts üblicher Enzym-Zubereitungen. Erfindungsgemäß bevorzugt eingesetzte Protease- und Amylase-Zubereitungen enthalten zwischen 0,1 und 40 Gew.-%, bevorzugt zwischen 0,2 und 30 Gew.-%, besonders bevorzugt zwischen 0,4 und 20 Gew.-% und insbesondere zwischen 0,8 und 10 Gew.-% des Enzymproteins. Bevorzugt werden insbesondere solche Reinigungsmittel, die, jeweils bezogen auf ihr Gesamtgewicht, 0, 1 bis 12 Gew.-%, vorzugsweise 0,2 bis 10 Gew.-% und insbesondere 0,5 bis 8 Gew.-% der jeweiligen Enzym-Zubereitungen enthalten.
  • Das Geschirrspülmittel kann darüber hinaus einen oder mehrere Enzymstabilisator(en), enthalten. Beispiele geeigneter Enzymstabilisatoren umfassen borhaltige Verbindungen wie Borsäure oder Boronsäuren, sowie deren Salze und Ester, Polyole, wie beispielsweise Glycerin oder 1,2-Ethylenglycol, Zucker, Zuckeralkohole, Milchsäure oder Antioxidantien.
  • Erfindungsgemäße Geschirrspülmittel enthalten in einer bevorzugten Ausführungsform als weiteren Bestandteil mindestens ein Zinksalz als Glaskorrosionsinhibitor. Bei dem Zinksalz kann es sich hierbei um ein anorganisches oder organisches Zinksalz handeln. Das erfindungsgemäß einzusetzende Zinksalz hat vorzugsweise in Wasser eine Löslichkeit oberhalb 100 mg/l, vorzugsweise oberhalb 500 mg/l, besonders bevorzugt oberhalb 1 g/l und insbesondere oberhalb 5 g/l (alle Löslichkeiten bei 20°C Wassertemperatur). Das anorganische Zinksalz ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Zinkbromid, Zinkchlorid, Zinkiodid, Zinknitrat und Zinksulfat. Das organische Zinksalz ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Zinksalzen monomerer oder polymerer organischer Säuren, insbesondere aus der Gruppe Zinkacetat, Zinkacetylacetonat, Zinkbenzoat, Zinkformiat, Zinklactat, Zinkgluconat, Zinkricinoleat, Zinkabietat, Zinkvalerat und Zink-p-toluolsulfonat. In einer erfindungsgemäß besonders bevorzugten Ausführungsform wird als Zinksalz Zinkacetat eingesetzt.
  • Das Zinksalz ist in erfindungsgemäßen Reinigungsmittel vorzugsweise in einer Menge von 0,01 Gew.-% bis 5 Gew.-%, besonders bevorzugt in einer Menge von 0,05 Gew.-% bis 3 Gew.-%, insbesondere in einer Menge von 0,1 Gew.-% bis 2 Gew.-%, enthalten, bezogen auf das Gesamtgewicht des Reinigungsmittels.
  • Zusätzlich oder alternativ zu den o.g. Salzen (insbesondere den Zinksalzen) können Polyethylenimine, wie sie beispielsweise unter dem Namen Lupasol® (BASF) erhältlich sind, vorzugsweise in einer Menge von 0 bis 5 Gew.-%, insbesondere 0,01 bis 2 Gew.-%, als Glaskorrosionsinhibitoren eingesetzt werden.
  • Die mindestens eine erste Phase des Geschirrspülmittels kann des Weiteren ein Bleichmittel enthalten, insbesondere ein Sauerstoffbleichmittel sowie gegebenenfalls einen Bleichaktivator und/oder Bleichkatalysator. Diese sind, soweit vorhanden, ausschließlich in der ersten Phase enthalten.
  • Als bevorzugtes Bleichmittel enthalten erfindungsgemäße Geschirrspülmittel ein Sauerstoffbleichmittel aus der Gruppe Natriumpercarbonat, Natriumperborattetrahydrat und Natriumperboratmonohydrat. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Weiterhin können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie zum Beispiel Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Wegen seiner guten Bleichleistung wird das Natriumpercarbonat besonders bevorzugt. Ein besonders bevorzugtes Sauerstoffbleichmittel ist Natriumpercarbonat.
  • Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die 0- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt werden mehrfach acylierte Alkylendiamine, wobei sich Tetraacetylethylendiamin (TAED) als besonders geeignet erwiesen hat.
  • Bei den Bleichkatalysatoren handelt es sich um bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe- Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar. Mit besonderem Vorzug werden Komplexe des Mangans in der Oxidationsstufe II, III, IV oder IV eingesetzt, die vorzugsweise einen oder mehrere makrocyclische(n) Ligand(en) mit den Donorfunktionen N, NR, PR, O und/oder S enthalten. Vorzugsweise werden Liganden eingesetzt, die Stickstoff-Donorfunktionen aufweisen. Dabei ist es besonders bevorzugt, Bleichkatalysator(en) in den erfindungsgemäßen Mitteln einzusetzen, welche als makromolekularen Liganden 1,4,7-Trimethyl-1,4,7-triazacyclononan (Me-TACN), 1,4,7-Triazacyclononan (TACN), 1,5,9-Trimethyl-1,5,9-triazacyclododecan (Me-TACD), 2-Methyl-1-1,4,7-trimethyl-1,4,7-triazacyclononan (Me/Me-TACN) und/oder 2-Methyl-1,4,7-triazacyclononan (Me/TACN) enthalten. Geeignete Mangankomplexe sind beispielsweise [MnIII 2(µ-O)1(µ-OAc)2(TACN)2](ClO4)2, [MnIIIMnIV(µ-O)2(µ-OAc)1(TACN)2](BPh4)2, [MnIV 4(µ-O)6(TACN)4](ClO4)4, [MnIII 2(µ-O)1(µ-OAc)2(Me-TACN)2](ClO4)2, [MnIIIMnIV(µ-O)1(µ-OAc)2(Me-TACN)2](ClO4)3, [MnIV 2(µ-O)3(Me-TACN)2](PF6)2 und [MnIV 2(µ-O)3(Me/Me-TACN)2](PF6)2(mit OAc = OC(O)CH3).
  • Generell kann der pH-Wert des Geschirrspülmittels mittels üblicher pH-Regulatoren eingestellt werden, wobei der pH-Wert abhängig von dem gewünschten Einsatzzweck gewählt wird. In verschiedenen Ausführungsformen liegt der pH-Wert in einem Bereich von 5,5 bis 11, vorzugsweise 6 bis 10,5, noch bevorzugter 7 bis 10,5, insbesondere größer 7, vor allem im Bereich 8,5 bis 10,5. Als pH-Stellmittel dienen Säuren und/oder Alkalien, vorzugsweise Alkalien. Geeignete Säuren sind insbesondere organische Säuren wie die Essigsäure, Zitronensäure, Glycolsäure, Milchsäure, Bernsteinsäure, Adipinsäure, Äpfelsäure, Weinsäure und Gluconsäure oder auch Amidosulfonsäure. Daneben können aber auch die Mineralsäuren Salzsäure, Schwefelsäure und Salpetersäure bzw. deren Mischungen eingesetzt werden. Geeignete Basen stammen aus der Gruppe der Alkali- und Erdalkalimetallhydroxide und -carbonate, insbesondere der Alkalimetallhydroxide, von denen Kaliumhydroxid und vor allem Natriumhydroxid bevorzugt ist. Besonders bevorzugt ist allerdings flüchtiges Alkali, beispielsweise in Form von Ammoniak und/oder Alkanolaminen, die bis zu 9 C-Atome im Molekül enthalten können. Das Alkanolamin ist hierbei vorzugsweise ausgewählt aus der Gruppe bestehend aus Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen.
  • Zur Einstellung und/oder Stabilisierung des pH-Werts kann das erfindungsgemäße Geschirrspülmittel auch ein oder mehrere Puffersubstanzen (INCI Buffering Agents) enthalten, üblicherweise in Mengen von 0,001 bis 5 Gew.-%. Bevorzugt sind Puffersubstanzen, die zugleich Komplexbildner oder sogar Chelatbildner (Chelatoren, INCI Chelating Agents) sind. Besonders bevorzugte Puffersubstanzen sind die Citronensäure bzw. die Citrate, insbesondere die Natrium- und Kaliumcitrate, beispielsweise Trinatriumcitrat·2H2O und Trikaliumcitrat·H2O.
  • Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pinien-, Citrus-, Jasmin-, Patchouli-, Rosen- oder Ylang-Ylang-Öl.
  • Weiterhin können Konservierungsmittel in dem erfindungsgemäßen Geschirrspülmittel enthalten sein. Geeignet sind beispielsweise Konservierungsmittel aus den Gruppen der Alkohole, Aldehyde, antimikrobiellen Säuren und/oder deren Salze, Carbonsäureester, Säureamide, Phenole, Phenolderivate, Diphenyle, Diphenylalkane, Harnstoffderivate, Sauerstoff-, Stickstoff-Acetale sowie -Formale, Benzamidine, Isothiazole und deren Derivate wie Isothiazoline und Isothiazolinone, Phthalimidderivate, Pyridinderivate, antimikrobiellen oberflächenaktiven Verbindungen, Guanidine, antimikrobiellen amphoteren Verbindungen, Chinoline, 1,2-Dibrom-2,4-dicyanobutan, lodo-2-propynyl-butyl-carbamat, Iod, lodophore und Peroxide. Bevorzugte antimikrobielle Wirkstoffe werden vorzugsweise ausgewählt aus der Gruppe umfassend Ethanol, n-Propanol, i-Propanol, 1,3-Butandiol, Phenoxyethanol, 1,2-Propylenglykol, Glycerin, Undecylensäure, Zitronensäure, Milchsäure, Benzoesäure, Salicylsäure, Thymol, 2-Benzyl-4-chlorphenol, 2,2'-Methylen-bis-(6-brom-4-chlorphenol), 2,4,4'-Trichlor-2'-hydroxydiphenylether, N-(4-Chlorphenyl)-N-(3,4-dichlorphenyl)-harnstoff, N,N'-(1,10-decandiyldi-1-pyridinyl-4-yliden)-bis-(1-octanamin)-dihydrochlorid, N,N'-Bis-(4-Chlorphenyl)-3,12-diimino-2,4,11,13-tetraazatetradecandiimidamid, antimikrobielle quaternäre oberflächenaktive Verbindungen, Guanidine. Besonders bevorzugte Konservierungsmittel sind jedoch ausgewählt aus der Gruppe umfassend Salicylsäure, quaternäre Tenside, insbesondere Benzalkoniumchlorid und Isothiazole und deren Derivate wie Isothiazoline und Isothiazolinone.
  • Um den Zerfall vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, so genannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder anderen Medien und für die zügige Freisetzung der Wirkstoffe sorgen. Bevorzugt können Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt werden. Wie vorangehend beschrieben, besteht das erfindungsgemäße Geschirrspülmittel aus mindestens zwei Phasen, wobei die erste Phase fest und kompaktiert ist und die zweite Phase aus einer Tensidschmelze besteht. Zur Herstellung eines solchen Geschirrspülmittels wird zunächst die erste Phase nach im Stand der Technik bekannten Verfahren in Form einer gepressten Pulverphase hergestellt. Vorzugsweise weist die erste Phase nach Anfertigung eine Mulde oder ähnliches auf, in die die zweite Phase als Tensidschmelze eingebracht werden kann. Dazu werden die Komponenten der Tensidschmelze bei Temperaturen vermischt, bei denen die Komponenten der Tensidschmelze zum größten Teil, vorzugsweise vollständig, verflüssigt vorliegen, beispielsweise bei Temperaturen über 50 °C. Die Schmelztemperatur der Tensidschmelze richtet sich dabei nach den Schmelzpunkten der jeweiligen verwendeten Komponenten. Anschließend wird die flüssige Tensidschmelze heiß in die dafür vorgesehene Mulde der ersten festen Phase des Geschirrspülmittels gegossen, damit diese aushärten kann. Alternativ kann die heiße, flüssige Tensidschmelze der zweiten Phase auch in einer anderen dafür vorgesehenen Form nach Belieben vorgeformt werden, um anschließend an eine dafür vorgesehene und geeignete Stelle der Oberfläche der festen ersten Phase angeklebt zu werden. Bei einer solchen geeigneten Stelle an der Oberfläche der ersten festen Phase kann es sich beispielsweise um eine geeignete Mulde oder Vertiefung handeln. Die ausgehärtete Tensidschmelze weist im Vergleich zu gepressten Pulverphasen ansprechendere optische Eigenschaften auf.
  • Die hierin beschriebenen Geschirrspülmittel werden vorzugsweise zu Dosiereinheiten vorkonfektioniert. Diese Dosiereinheiten umfassen vorzugsweise die für einen Reinigungsgang notwendige Menge an wasch- oder reinigungsaktiven Substanzen. Bevorzugte Dosiereinheiten weisen ein Gesamtgewicht zwischen 12 und 30 g, bevorzugt zwischen 14 und 26 g und insbesondere zwischen 15 und 22 g auf. Das Volumen der vorgenannten Dosiereinheiten sowie deren Raumform sind mit besonderem Vorzug so gewählt, dass eine Dosierbarkeit der vorkonfektionierten Einheiten über die Dosierkammer einer Geschirrspülmaschine gewährleistet ist. Das Volumen der Dosiereinheit beträgt daher bevorzugt zwischen 10 und 35 ml, vorzugsweise zwischen 12 und 30 ml.
  • Bevorzugt beträgt das Gewichtsverhältnis der der ersten, bevorzugt kompaktierten Phase zu der zweiten Phase (Tensidschmelz-Phase) 20:1 bis 1:1, bevorzugt 15:1 bis 5:1, insbesondere 12:1 bis 7:1, beispielsweise 10:1 bis 8:1.
  • Die maschinellen Geschirrspülmittel, insbesondere die vorgefertigten Dosiereinheiten weisen mit besonderem Vorzug eine wasserlösliche Umhüllung auf.
  • Die wasserlösliche Umhüllung wird vorzugsweise aus einem wasserlöslichen Folienmaterial, welches ausgewählt ist aus der Gruppe, bestehend aus Polymeren oder Polymergemischen, gebildet. Die Umhüllung kann aus einer oder aus zwei oder mehr Lagen aus dem wasserlöslichen Folienmaterial gebildet werden. Das wasserlösliche Folienmaterial der ersten Lage und der weiteren Lagen, falls vorhanden, kann gleich oder unterschiedlich sein. Besonders bevorzugt sind Folien, die beispielsweise zu Verpackungen wie Schläuchen oder Kissen verklebt und/oder versiegelt werden können, nachdem sie mit einem Mittel befüllt wurden.
  • Die wasserlösliche Verpackung kann eine oder mehr Kammern aufweisen. Das Mittel kann in einer oder mehreren Kammern, falls vorhanden, der wasserlöslichen Umhüllung enthalten sein. Die Menge an Mittel entspricht vorzugsweise der vollen oder halben Dosis, die für einen Spülgang benötigt wird.
  • Es ist bevorzugt, dass die wasserlösliche Umhüllung Polyvinylalkohol oder ein Polyvinylalkoholcopolymer enthält. Wasserlösliche Umhüllungen, die Polyvinylalkohol oder ein Polyvinylalkoholcopolymer enthalten, weisen eine gute Stabilität bei einer ausreichend hohen Wasserlöslichkeit, insbesondere Kaltwasserlöslichkeit, auf.
  • Geeignete wasserlösliche Folien zur Herstellung der wasserlöslichen Umhüllung basieren bevorzugt auf einem Polyvinylalkohol oder einem Polyvinylalkoholcopolymer, dessen Molekulargewicht im Bereich von 5.000 bis 1.000.000 gmol-1, vorzugsweise von 20.000 bis 500.000 gmol-1, besonders bevorzugt von 30.000 bis 100.000 gmol-1 und insbesondere von 40.000 bis 80.000 gmol-1 liegt.
  • Die Herstellung von Polyvinylalkohol geschieht üblicherweise durch Hydrolyse von Polyvinylacetat, da der direkte Syntheseweg nicht möglich ist. Ähnliches gilt für Polyvinylalkoholcopolymere, die aus entsprechend aus Polyvinylacetatcopolymeren hergestellt werden. Bevorzugt ist, wenn wenigstens eine Lage der wasserlöslichen Umhüllung einen Polyvinylalkohol umfasst, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht.
  • Einem zur Herstellung der wasserlöslichen Umhüllung geeignetem Polyvinylalkohol-enthaltendem Folienmaterial kann zusätzlich ein Polymer ausgewählt aus der Gruppe umfassend (Meth)Acrylsäure-haltige (Co)Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether, Polymilchsäure oder Mischungen der vorstehenden Polymere zugesetzt sein. Ein bevorzugtes zusätzliches Polymer sind Polymilchsäuren.
  • Bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol Dicarbonsäuren als weitere Monomere. Geeignete Dicarbonsäuren sind Itaconsäure, Malonsäure, Bernsteinsäure und Mischungen daraus, wobei Itaconsäure bevorzugt ist.
  • Ebenfalls bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol eine ethylenisch ungesättige Carbonsäure, deren Salz oder deren Ester. Besonders bevorzugt enthalten solche Polyvinylalkoholcopolymere neben Vinylalkohol Acrylsäure, Methacrylsäure, Acrylsäureester, Methacrylsäureester oder Mischungen daraus.
  • Es kann bevorzugt sein, dass das Folienmaterial weitere Zusatzstoffe enthält. Das Folienmaterial kann beispielsweise Weichmacher wie Dipropylenglycol, Ethylenglycol, Diethylenglycol, Propylenglycol, Glycerin, Sorbitol, Mannitol oder Mischungen daraus enthalten. Weitere Zusatzstoffe umfassen beispielsweise Freisetzungshilfen, Füllmittel, Vernetzungsmittel, Tenside, Antioxidationsmittel, UV-Absorber, Antiblockmittel, Antiklebemittel oder Mischungen daraus.
  • Geeignete wasserlösliche Folien zum Einsatz in den wasserlöslichen Umhüllungen der wasserlöslichen Verpackungen gemäß der Erfindung sind Folien, die von der Firma MonoSol LLC beispielsweise unter der Bezeichnung M8630, C8400 oder M8900 vertrieben werden. Andere geeignete Folien umfassen Folien mit der Bezeichnung Solublon® PT, Solublon® GA, Solublon® KC oder Solublon® KL von der Aicello Chemical Europe GmbH oder die Folien VF-HP von Kuraray.
  • Gemäß einer bevorzugten Ausführungsform ist das mehrphasige Geschirrspülmittel von einer wasserlöslichen Folie eng umhüllt
  • Die wasserlösliche Folie, welche bei der engen Umhüllung bevorzugt eingesetzt wird, umfasst besonders bevorzugt Polyvinylalkohol, wie oben beschrieben, wobei als Ausgangsdicke vorzugsweise eine Dicke von 10 µm bis 100 µm, insbesondere von 12 µm bis 60 µm, besonders bevorzugt von 15 µm bis 50 µm, vor allem von 20 µm bis 40 µm, insbesondere von 22 µm bis 35 µm verwendet wird.
  • Im Falle einer engen Umhüllung, ist jeweils eine Einmalportion des Wasch- oder Reinigungsmittels umhüllt. Für die erfindungsgemäßen umhüllten Wasch- oder Reinigungsmitteleinmalportion ist es wichtig, dass die Umhüllung an jeder Stelle der Tabletten dicht an deren Oberfläche anliegt. Idealerweise steht die Umhüllung sogar unter Spannung, was jedoch nicht zwingend erforderlich ist. Dieses dichte Anliegen der Umhüllung ist förderlich für den Zerfall: Beim ersten Kontakt mit Wasser wird die Umhüllung an irgendeiner Stelle eine geringe Menge Wasser durchlassen, wobei sie sich zunächst überhaupt nicht zu lösen braucht. An dieser Stelle beginnt das in der Tablette enthaltene Sprengmittel zu quellen. Dies führt dazu, dass die Umhüllung nun infolge der Volumenzunahme der Tablette schlagartig aufreißt und die Tablette freigibt. Bei einer nicht eng anliegenden Umhüllung funktioniert der hier beschrieben Mechanismus nicht, da die Tablette quellen kann, ohne dass die Umhüllung dadurch gesprengt würde. Dabei ist der Einsatz eines quellbaren Desintegrationsmittels einem gasentwickelnden System überlegen, da dessen sprengende Wirkung in jedem Fall zu einem Aufreißen der Umhüllung führt. Bei einem gasentwickelnden System kann die Sprengwirkung durch Entweichen des Gases aus einer Leckstelle der Umhüllung "verpuffen".
  • Erfindungsgemäße bevorzugte Wasch- oder Reinigungsmitteleinmalportionen sind dadurch gekennzeichnet, dass der Abstand zwischen der Einmalportion und wasserlöslicher Umhüllung über die gesamte Fläche 0,1 bis 1000 µm, vorzugsweise 0,5 bis 500 µm, besonders bevorzugt 1 bis 250 µm und insbesondere 2,5 bis 100 µm, beträgt.
  • In einer bevorzugten Ausführungsform wird die Folienumhüllung zunächst lose um eine Wasch- oder Reinigungsmitteleinmalportion gelegt und verschweißt und dann auf diese aufgeschrumpft, so dass ein enger Kontakt zwischen der Folienverpackung und dem Reinigungsmittelkonzentrat gegeben ist. Demzufolge sind erfindungsgemäße Wasch- oder Reinigungsmitteleinmalportionen dadurch gekennzeichnet, dass die Umhüllung eine auf diese aufgeschrumpfte Folienverpackung ist.
  • Beispielsweise kann diese Umhüllung erfolgen, indem eine wasserlösliche Unterfolie auf eine Transportkette oder ein Form(en)werkzeug aufgelegt wird, dann eine oder mehrerer Wasch- oder Reinigungsmittelportion(en) auf die Unterfolie aufgelegt werden; anschließend eine wasserlösliche Oberfolie auf die Wasch- oder Reinigungsmittelportion(en) auf der Unterfolie aufgelegt und diese dann auf der Unterfolie unter Einschluss der Wasch- oder Reinigungsmittelportion(en) fixiert wird,
  • Alternativ kann dieser Schritt auch durch eine einsträngige Folie erfolgen, die dann als Schlauch um die Einmalportionen gelegt wird. Anschließend erfolgt ein Versiegeln und optionales Schneiden der Folien. Anschließend kann dann das Aufschrumpfen der Folie durch die Verwendung von Heißluft oder Infrarot-Strahlung, optional mit Andrücken, erfolgen.
  • Solche wasserlöslichen Umhüllungen sind auch in den Patentanmeldungen WO 2004/031338 A sowie WO 2003/099985 A bereits beschrieben. Tabelle 1: Rahmenrezeptur der Reinigungsmittel (Basistabletten ohne TensidSchmelzkern), insbesondere Geschirrspülmittel, bevorzugt maschinellen Geschirrspülmittel; Die folgenden Angaben beziehen sich, sofern nichts anderes angegeben, auf Gew.-% Aktivsubstanz, bezogen auf das Gesamtgewicht des Mittels:
    Gew.-% bevorzugt Gew.-%
    Citrat, Na-Salz 10-25 15-20
    Phosphonat (z.B. HEDP) 0-10 2,5-7,5
    MGDA, Na-Salz 0-40 0-25
    Disilicat, Na-Salz 0-40 5-35
    Soda 10-30 10-25
    Percarbonat, Na-Salz 5,0-20,0 10-15
    Bleichkatalysator (bevorzugt Mn-basiert) 0,0-0,8 0,02-0,5
    Bleichaktivator (z.B. TAED) 1,0-4,0 1-3
    Nichtionische(s) Tensid(e), z.B. Fettalkoholalkoxylat, bevorzugt 20-40 EO, ggf. endcapped 1,5-15,0 2,5-10
    Polycarboxylat 0,5-15 4-10
    Kationisches Copolymer 0,0 -1,0 0 - 0,75
    Disintegrant - (z.B. Crosslinked PVP) 0,0 -3,0 0,0 -3,0
    Protease-Zubereitung (tq) 1,0-7 1,5-5
    Amylase-Zubereitung (tq) 0,2-6 0,5-3
    Silberschutz (Benzotriazol) 0,0-1,0 0-0,5
    Parfüm 0,0-0,5 0,05-0,25
    Farbstofflösung 0,0-1,5 0,0-1
    Zn-Salz (z.B. Acetat) 0,01-0,5 0,1-0,3
    Natriumsulfat 0,0 - 25 0,0 - 10
    Wasser 0,0 - 3 0,0-1,5
    pH-Stellmittel (z.B. Citronensäure) 0,0 - 5 0-1,5
    Prozesshilfsmittel 0 - 10 0-5
    Tabelle 2: Rahmenrezeptur der Tensid-Schmelzkern zur Kombination mit Reinigungsmitteln, insbesondere Geschirrspülmitteln, bevorzugt maschinellen Geschirrspülmitteln gemäß Tabelle 1; Die folgenden Angaben beziehen sich, sofern nichts anderes angegeben, auf Gew.-% Aktivsubstanz, bezogen auf das Gesamtgewicht des Kerns:
    Gew.-% bevorzugt Gew.-%
    Fettalkoholethoxylat(e) ohne Endcap, 10 - 80 EO 5,0 - 100 5 - 50
    Fettalkoholethoxylat(e) Endcapped 0,0 - 70 5 - 60
    PEG 0,0 - 70 10 - 50
    Citrat, Na-Salz 0,0 - 20 0,0 - 10
    Sulfopolymer 0,0 - 15 0,0 - 10
    Polyacrylat 0,0 - 15 0,0 - 10
    Farbstoffe 0,0 - 5,0 0,0 - 2,0
  • Die entsprechende Verwendung der erfindungsgemäßen Geschirrspülmittel ist ebenfalls Gegenstand der Erfindung. Ebenso betrifft die Erfindung ein Verfahren, insbesondere ein maschinelles Geschirrspülverfahren, bei welchem in mindestens einem Schritt des Verfahrens ein Wasch- oder Reinigungsmitte gemäß der Erfindung eingesetzt wird. Gegenstand der vorliegenden Anmeldung ist daher weiterhin ein Verfahren zur Reinigung von Geschirr in einer Geschirrspülmaschine, bei welchem das erfindungsgemäße Mittel während des Durchlaufens eines Geschirrspülprogramms vor Beginn des Hauptspülgangs oder im Verlaufe des Hauptspülgangs in den Innenraum einer Geschirrspülmaschine eindosiert wird. Die Eindosierung bzw. der Eintrag des erfindungsgemäßen Mittels in den Innenraum der Geschirrspülmaschine kann manuell erfolgen, vorzugsweise wird das Mittel jedoch mittels der Dosierkammer in den Innenraum der Geschirrspülmaschine dosiert.
  • Die im Kontext mit den erfindungsgemäßen Mitteln beschriebenen Ausführungsformen sind ohne Weiteres auch auf die erfindungsgemäßen Verfahren und Verwendungen übertragbar und umgekehrt.
  • Beispiele Beispiel 1: Herstellung einer Tablette mit einem Tensidschmelzkern
  • Der Schmelzkörper besteht beispielsweise aus 10-50 % PEG (mittl. Mr 1000 bis 8000 g/mol), 5-60 % Fettalkoholethoxylat Endcap, bevorzugt C8-C10 Endcap, 5-50 % Fettalkoholethoxylat mit 10-80 EO, bevorzugt 25-50 EO.
  • Die Komponenten werden bei Temperaturen > 50 °C vermischt und heiß in die Mulde eines Spülmaschinentabs (bevorzugt gemäß Basistablette, Tabelle 3) gegossen. Die Masse wird in der Mulde aushärten gelassen. Ein Vorformen und anschließendes Einkleben einer solchen Schmelze ist ebenfalls denkbar. Tabelle 3:
    Rohstoffe Basistablette Schmelzkern
    Addition g/job
    %* g/job
    von bis von bis
    Na-Citrat 12,90 51,61 2,00 8
    Soda 19,35 32,26 3,00 5
    Na-Percarbonat 12,90 22,58 2,00 3,5
    Mangan-Bleichkatalysator 0,01 0,32 0,00 1 0,05
    TAED 3,23 6,45 0,50 1
    Fettalkoholethoxylat C10 Endcapped 1,29 3,87 0,20 0,6 0,85
    Fettalkoholethoxylat C12 Endcapped 0,65 3,23 0,10 0,5
    Benzotriazol 0,06 0,65 0,01 0,1
    Sulfopolymer 1,94 6,45 0,30 1
    Polyethylenglykol mittl. Mr 4000 g/mol 0,65 3,23 0,10 0,5 0,5
    Protease (tq) 0,45 1,42 0,07 0,22
    Amylase (tq) 0,13 0,65 0,02 0,1
    Parfüm 0,06 0,13 0,01 0,02
    Farbstoffe 0,65 1,29 0,10 0,2
    Zn-Acetat 0,06 0,26 0,01 0,04
    Na-sulfat 3,23 9,68 0,50 1,5
    Wasser 0,00 1,29 0,00 0,2
    Phosphonat 0,00 32,26 0,00 5
    Silikat 0,00 32,26 0,00 5
    C16-18 Fettalkoholethoxylat 25 EO - - - - 0,35
    *bezogen auf ein Basistablettengewicht von 15,5 g
  • Beispiel 2: Fettreinigungsversuch
  • Zur Bestimmung der Fettentfernung wird in einer Bosch SMS68-Spülmaschine im 40 °C Sanft Programm in fünf aufeinanderfolgenden Zyklen jeweils 10 g Fett (5 g Butter + 5 g Margarine) mit einer Geschirrspültablette (Zusammensetzung gem. Basistablette (15,5 g; ohne Tensidschmelzkern) gespült. Dies dient zum Fettaufbau auf dem Filter. Die Fettmenge im Filter wird gravimetrisch bestimmt.
  • Anschließend wird ohne Fettzugabe mit einer Geschirrspültablette gem. Basiszusammensetzung (15,5 g) ohne bzw. mit Tensidschmelzkern (gem. Beispiel 1) gespült und das Sieb erneut gewogen. Die Differenzwägung ergibt die entfernte Fettmenge und wird prozentual angegeben (Tabelle 4). Tabelle 4
    Versuch 1 Versuch 2 Mittelwert
    Abtrag in %
    Basistablette ohne Tensidschmelzkern 22,1 16,2 19,2
    Basistablette mit Tensidschmelzkern 60,3 52,3 56,3
  • Es ist klar zu erkennen, dass die Tablette mit Tensidschmelzkern zu einer erheblich besseren Fettentfernung im Filter führt.

Claims (12)

  1. Geschirrspülmittel umfassend mindestens eine erste feste, kompaktierte Phase und mindestens eine zweite Phase, dadurch gekennzeichnet, dass die mindestens eine zweite Phase eine Tensidschmelze ist, umfassend 10-100 Gew.-%, vorzugsweise 20-100 %, noch bevorzugter 50-100 Gew.-% Tenside, umfassend nichtionische Tenside, wobei die in der mindestens einen zweiten Phase enthaltenen nichtionischen Tenside nicht endgruppenverschlossene, poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH2O]xH sind, dadurch gekennzeichnet, dass R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, und wobei x für Werte zwischen 1 und 80, vorzugsweise für Werte zwischen 15 und 50 und insbesondere für Werte zwischen 25 und 50 steht und die mindestens eine zweite Phase zusätzlich zu den nicht endgruppenverschlossenen poly(oxyalkylierten) Niotensiden, mindestens ein endgruppenverschlossenes Niotensid der Formel R1'O[CH2CH2O]xR2' enthält, wobei R1' für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, R2' für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, und x für Werte zwischen 1 und 80, vorzugsweise für Werte zwischen 15 und 50 und insbesondere für Werte zwischen 20 und 50 steht.
  2. Geschirrspülmittel gemäß Anspruch 1, dadurch gekennzeichnet, dass R1 für einen linearen oder verzweigten C12-20 Alkylrest, insbesondere für einen linearen oder verzweigten C16-18 Alkylrest steht.
  3. Geschirrspülmittel gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die mindestens eine zweite Phase die nicht endgruppenverschlossenen, poly(oxyalkylierten) Niotenside in Mengen von 5 bis 50 Gew.-%, vorzugsweise 10 bis 30 Gew.-%, bezogen auf die zweite Phase, enthält.
  4. Geschirrspülmittel gemäß Anspruch 1-3, dadurch gekennzeichnet, dass R1' für einen linearen oder verzweigten C12-20 Alkylrest, insbesondere für einen linearen oder verzweigten C16-18 Alkylrest steht, und/oder R2' für einen linearen oder verzweigten C6-22 Alkylrest, insbesondere für einen linearen oder verzweigten C8-12 Alkylrest steht.
  5. Geschirrspülmittel gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die endgruppenverschlossenen poly(oxyalkylierten) Niotenside in Mengen von 5-60 Gew.-%, vorzugsweise 40-60 Gew.-%, bezogen auf die zweite Phase, enthalten sind.
  6. Geschirrspülmittel gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Massenverhältnis zwischen den endgruppenverschlossenen Niotensiden und den nicht endgruppenverschlossenen Niotensiden in der mindestens einen zweiten Phase von 20:1 bis 1:5, vorzugsweise von 10:1 bis 1:1, insbesondere von 3:1 bis 2:1 beträgt.
  7. Geschirrspülmittel gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die nichtionischen Tenside der mindestens einen zweiten Phase einen Schmelzpunkt oberhalb von 25°C, vorzugsweise zwischen 25 und 65°C, noch bevorzugter zwischen 26,6 und 55°C, aufweisen.
  8. Geschirrspülmittel gemäße einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mindestens eine zweite Phase mindestens einen weiteren Inhaltsstoffe enthält, vorzugsweise Polyethylenglykole (PEG), bevorzugt mit einer mittleren Molmasse zwischen 800 und 8000 g/mol, in einer Menge von 10 bis 40 Gew.-%, vorzugsweise 25-35 Gew.-% bezogen auf das Gewicht der zweiten Phase.
  9. Geschirrspülmittel gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die mindestens eine erste Phase mindestens ein Tensid, vorzugsweise mindestens ein nichtionisches Tensid enthält.
  10. Geschirrspülmittel gemäß Anspruch 9, dadurch gekennzeichnet, dass die mindestens eine erste Phase mindestens einen weiteren Inhaltsstoff ausgewählt aus der Gruppe bestehend aus Buildern, Polymeren, Bleichmitteln, Bleichaktivatoren, Bleichkatalysatoren, Enzymen, Verdickern, Sequestrierungsmitteln, Elektrolyten, Korrosionsinhibitoren, Glaskorrosionsinhibitoren, Schauminhibitoren, Farbstoffen, Additiven zur Verbesserung des Ablauf- und Trocknungsverhaltens, Desintegrationshilfsmitteln, Konservierungsmitteln, pH-Stellmitteln, Duftstoffen und Parfümträgern enthält.
  11. Verwendung eines Geschirrspülmittels gemäß einem der Ansprüche 1 bis 10 zum maschinellen Reinigen von Geschirr.
  12. Verfahren zum maschinellen Reinigen von Geschirr, dadurch gekennzeichnet, dass in mindestens einem Verfahrensschritt ein Wach- oder Reinigungsmittel gemäß einem der Ansprüche 1 bis 10 angewendet wird.
EP16741024.0A 2015-07-23 2016-07-20 Mehrphasiges geschirrspülmittel umfassend einen tensid-kern Active EP3325591B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16741024T PL3325591T3 (pl) 2015-07-23 2016-07-20 Wielofazowy środek do mycia naczyń obejmujący rdzeń środka powierzchniowo czynnego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015213939.5A DE102015213939A1 (de) 2015-07-23 2015-07-23 Mehrphasiges Geschirrspülmittel umfassend einen Tensid-Kern
PCT/EP2016/067265 WO2017013161A1 (de) 2015-07-23 2016-07-20 Mehrphasiges geschirrspülmittel umfassend einen tensid-kern

Publications (2)

Publication Number Publication Date
EP3325591A1 EP3325591A1 (de) 2018-05-30
EP3325591B1 true EP3325591B1 (de) 2020-09-02

Family

ID=56464213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741024.0A Active EP3325591B1 (de) 2015-07-23 2016-07-20 Mehrphasiges geschirrspülmittel umfassend einen tensid-kern

Country Status (4)

Country Link
EP (1) EP3325591B1 (de)
DE (1) DE102015213939A1 (de)
PL (1) PL3325591T3 (de)
WO (1) WO2017013161A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111225970A (zh) 2017-11-14 2020-06-02 埃科莱布美国股份有限公司 固体控释苛性碱洗涤剂组合物
DE102018212208A1 (de) 2018-07-23 2020-01-23 Henkel Ag & Co. Kgaa Mehrphasiger Reinigungsmittelpouch
CN114222808A (zh) 2019-09-27 2022-03-22 埃科莱布美国股份有限公司 浓缩二合一洗碗机洗涤剂和漂洗助剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877134A (en) 1996-09-11 1999-03-02 The Procter & Gamble Company Low foaming automatic dishwashing compositions
GB2340842A (en) 1998-08-28 2000-03-01 Procter & Gamble Detergent tablet
EP1239029B1 (de) 2001-03-05 2005-08-31 Unilever Plc Wasch- oder Reinigungsmittel
EP1642961A1 (de) 2004-10-01 2006-04-05 Unilever N.V. Wasch- und Reinigungsmitteltabletten
WO2009071311A1 (en) 2007-12-06 2009-06-11 Dalli-Werke Gmbh & Co. Kg Detergent tablet with non-compressed portion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961367A1 (de) * 1999-12-17 2001-07-05 Henkel Kgaa Preßverfahren für mehrphasige Formkörper
DE10245262A1 (de) 2002-05-24 2004-04-08 Henkel Kgaa Einspülkammer-dosierbare Tabletten-Portionen II
DE10245260A1 (de) 2002-09-27 2004-04-15 Henkel Kgaa Verfahren zur Herstellung umhüllter Wasch- oder Reinigungsmittel-Portionen
EP1669438B1 (de) * 2004-12-08 2007-10-17 Unilever N.V. Wasch- und Reinigungsmitteltablette
EP1746151A1 (de) * 2005-07-20 2007-01-24 Unilever N.V. Wasch- und Reinigungsmitteltabletten
EP1845153A1 (de) * 2006-04-12 2007-10-17 Unilever N.V. Waschmitteltabletten
EP2392639B1 (de) * 2010-06-04 2018-01-24 Dalli-Werke GmbH & Co. KG Mischung aus einem Tensid mit einer Festverbindung zur Verbesserung der Spülleistung von automatischen Geschirrspülmitteln

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877134A (en) 1996-09-11 1999-03-02 The Procter & Gamble Company Low foaming automatic dishwashing compositions
GB2340842A (en) 1998-08-28 2000-03-01 Procter & Gamble Detergent tablet
EP1239029B1 (de) 2001-03-05 2005-08-31 Unilever Plc Wasch- oder Reinigungsmittel
EP1642961A1 (de) 2004-10-01 2006-04-05 Unilever N.V. Wasch- und Reinigungsmitteltabletten
WO2009071311A1 (en) 2007-12-06 2009-06-11 Dalli-Werke Gmbh & Co. Kg Detergent tablet with non-compressed portion

Also Published As

Publication number Publication date
WO2017013161A1 (de) 2017-01-26
EP3325591A1 (de) 2018-05-30
DE102015213939A1 (de) 2017-01-26
PL3325591T3 (pl) 2021-03-08

Similar Documents

Publication Publication Date Title
EP3325592B1 (de) Einsatz einer kombination aus komplexbildner und tensid zur verbesserung der klarspülleistung
EP3325595B1 (de) Wasch- oder reinigungsmittel umfassend wenigstens zwei phasen
EP3325596B1 (de) Maschinelles geschirrspülmittel enthaltend bleichmittel und polymere
EP3599269B1 (de) Reinigungsmittel mit schutz vor glaskorrosion
EP3102658B1 (de) Mehrphasiges vorportioniertes reinigungsmittel
EP3325591B1 (de) Mehrphasiges geschirrspülmittel umfassend einen tensid-kern
EP3325597B1 (de) Maschinelles geschirrspülmittel enthaltend bleichmittel, builder und enzyme
EP3431575B1 (de) Geschirrspülmittel enthaltend citratdihydrat und -anhydrat
EP3502224A1 (de) Maschinelles geschirrspülmittel mit verbesserter reinigungsleistung, verfahren unter einsatz dieses mittels sowie verwendung des mittels
EP3102657B1 (de) Vorportioniertes reinigungsmittel
EP4008764A1 (de) Verbesserte reinigung durch hydrogencarbonat im maschinellen geschirrspülmittel
DE102017212348A1 (de) Verwendung eines Reinigungsmittels enthaltend Aminocarbonsäuren und Sulfopolymere zur Belagsinhibierung
EP3599268A1 (de) Reinigungsmittel mit tensidhaltiger gelphase
DE102017223117A1 (de) Maschinelles Geschirrspülmittel mit verbesserter Klarspül- und Reinigungsleistung, Verfahren unter Einsatz dieses Mittels sowie Verwendung des Mittels
EP3574075A1 (de) Verfahren zur herstellung eines formkörpers
EP3842511A1 (de) Nichtionisches tensid zur verbesserung der klarspülleistung beim automatischen geschirrspülen
EP4314224A1 (de) Wasch- oder reinigungsmittel
EP4067469A1 (de) Reinigungsmittel
EP3502220A1 (de) Maschinelles geschirrspülmittel mit verbesserter klarspül- und reinigungsleistung, verfahren unter einsatz dieses mittels sowie verwendung des mittels
EP3839024A1 (de) Wirkstoffsystem gegen bildung von kalkflecken
EP4067466A1 (de) Wasch- oder reinigungsmittel
EP3498810A1 (de) Maschinelles geschirrspülmittel mit verbesserter klarspül- und reinigungsleistung, verfahren unter einsatz dieses mittels sowie verwendung des mittels
DE102017223120A1 (de) Maschinelles Geschirrspülmittel mit verbesserter Reinigungsleistung, Verfahren unter Einsatz dieses Mittels sowie Verwendung des Mittels
DE102014202223A1 (de) Verwendung von Aminocarbonsäuren zur Stabilisierung von wasserarmen flüssigen Wasch- oder Reinigungsmittelkomponenten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1308818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011043

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016011043

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: RECKITT BENCKISER FINISH B.V.

Effective date: 20210604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1308818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502016011043

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20230307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230721

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230707

Year of fee payment: 8

Ref country code: FR

Payment date: 20230726

Year of fee payment: 8

Ref country code: DE

Payment date: 20230719

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902