EP3324002A1 - Axial turbomachine and sealing system for an axial turbomachine - Google Patents

Axial turbomachine and sealing system for an axial turbomachine Download PDF

Info

Publication number
EP3324002A1
EP3324002A1 EP17198765.4A EP17198765A EP3324002A1 EP 3324002 A1 EP3324002 A1 EP 3324002A1 EP 17198765 A EP17198765 A EP 17198765A EP 3324002 A1 EP3324002 A1 EP 3324002A1
Authority
EP
European Patent Office
Prior art keywords
shroud
sealing
sealing system
tip
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17198765.4A
Other languages
German (de)
French (fr)
Other versions
EP3324002B1 (en
Inventor
Hermann Klingels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP3324002A1 publication Critical patent/EP3324002A1/en
Application granted granted Critical
Publication of EP3324002B1 publication Critical patent/EP3324002B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the present invention relates to a sealing system for an axial flow machine according to the preamble of claim 1. Furthermore, the present invention relates to an axial flow machine according to claim 14.
  • the pressure in the working fluid changes from stage to stage.
  • the pressure in the compressor is usually downstream of a row of blades higher than the pressure upstream, in the turbine, however downstream of a row of blades less than the pressure upstream.
  • a sealing system is provided in the region of an outer annular space boundary, which is designed for example as a labyrinth system.
  • Such sealing systems have the task of keeping a leakage current through a sealing gap between the rotating blading and a housing minimal and thus to allow a stable operating behavior with high efficiency.
  • the rotating components of a turbine on sealing fins or sealing tips, which can strip or shrink against honeycomb seals.
  • the seals are designed as a squint and inlet coverings.
  • An object of the present invention is to propose a further sealing system for an axial flow machine. It is another object of the present invention to provide an axial flow machine with a sealing system according to the invention.
  • the object of the invention is achieved by a sealing system having the features of claim 1. It is further achieved by an axial flow machine having the features of claim 14.
  • a sealing system for an axial flow machine which comprises at least one impeller with a shroud arranged radially on the outside and a housing surrounding the impeller. Between the shroud and the housing, a gap is arranged. The gap is bounded on the one hand by means of a seal connected to the housing and on the other hand by means of at least one sealing tip arranged on the cover band.
  • This arranged on the shroud sealing tip can be referred to as a rotating sealing tip, as it rotates with the impeller.
  • the seal is, viewed in the radial direction, arranged opposite the shroud. The limitation of the gap by the seal and the shroud can reduce the flow losses of the slit flow.
  • static sealing tip At the downstream end portion of the housing-side seal another, connected to the housing, static sealing tip is arranged.
  • this static sealing tip By means of this static sealing tip, the flow through the gap is influenced, in particular reduced.
  • the flow downstream of the static sealing tip is influenced by means of the static sealing tip.
  • An influence in particular a reduction of the flow through the gap by means of the static sealing tip, can be caused by flow losses of the static sealing tip.
  • a possible vortex formation downstream of the static sealing tip can be influenced by the static sealing tip.
  • the gap flow between the static sealing tip and the shroud may cause a vortex or vortex region downstream, the direction of rotation of which has primarily the same flow direction as the adjacent main flow.
  • the flow losses and / or the disturbance of the main flow through these vortices can be reduced. This can advantageously increase the efficiency of the axial flow machine by the sealing system according to the invention.
  • a reduced main flow disturbance due to the described direction of rotation of the vortices may be referred to as a low loss mixing with the main flow.
  • a sealing system without static sealing tip lead to a vortex formation whose primary direction of rotation is opposite to the main flow. This would lead to a lossy mixture with the main flow and could contribute to a reduction in the efficiency of the turbomachine.
  • the shroud arranged radially on the outside of the impeller can be referred to as an outer shroud or as a shovel outer shroud.
  • the arranged between the shroud and the housing gap may be referred to as a running gap.
  • the axial flow machine according to the invention comprises at least one low-pressure turbine stage with a sealing system according to the invention.
  • the axial flow machine may further comprise at least one high-pressure turbine stage, a low-pressure compressor stage and a high-pressure compressor stage. Each of said stages may comprise a sealing system according to the invention.
  • the axial flow machine may be a gas turbine, in particular an aircraft gas turbine or an aircraft engine.
  • Inventive exemplary embodiments may have one or more of the following features.
  • a static and / or a circumferential sealing tip can be referred to as Dichtfin.
  • the seal associated with the housing may be an inlet seal.
  • An inlet seal can be called an abradable seal.
  • An inlet seal may have an insertable coating or an insertable layer into which, for example, a sealing tip can penetrate to form a sealing gap. This sealing gap can be made small by the penetration or shrinkage of a sealing tip, in particular during an intended operating state and thus contribute advantageously to optimize the efficiency of the turbomachine.
  • the inlet seal may comprise a honeycomb structure for penetrating a sealing tip.
  • the inlet seal may be connected to the housing cohesively and / or positively.
  • the inlet seal may be glued, soldered, riveted or clamped, or otherwise attached to the housing.
  • the inlet seal is attached only to the housing.
  • the inlet seal is thus arranged only on one side of the gap.
  • the shroud may include at least two sealing tips.
  • Two sealing tips can engage in two opposite inlet seals on the housing and form a sealing gap.
  • the at least two sealing tips can be arranged axially one behind the other on a radius or at a radial height.
  • the two sealing tips can be arranged axially one behind the other at different radii or at radially different heights, that is, offset radially.
  • the shroud has no seal, in particular no inlet seal.
  • the shroud has three or more sealing tips.
  • the sealing tips may be arranged radially at a height or at different heights. For example, two axially successively arranged sealing tips have the same radius, whereas a third sealing tip is arranged radially further outside.
  • the at least one sealing tip of the shroud is arranged inclined upstream.
  • the angle of inclination between the radial direction and the axial direction may be, for example, at least 15 degrees.
  • a non-sloped sealing tip in the radial direction would be zero degrees.
  • An inclined sealing tip can favor the flow losses due to a smaller flow through the gap influence.
  • An inclined sealing tip can also be advantageous in terms of the shroud configuration, for example, in an arrangement of multiple sealing tips on the shroud.
  • the structural strength of the shroud with an inclined sealing tip can be advantageously higher.
  • the upstreammost sealing tip of the shroud can be inclined.
  • the incline can be twenty degrees, twenty-five degrees, thirty degrees or more.
  • the shroud has wear protection in the opposite region of the static sealing tip.
  • the wear protection can advantageously prevent direct contact of the static sealing tip with the base material of the shroud. Direct contact could damage the shroud causing more damage.
  • the wear protection of the shroud extends beyond the opposite region of the static sealing tip, in particular at least to the adjacent shroud end.
  • the wear protection can extend over more area of the shroud.
  • the wear protection is a, at least in sections, coating of the shroud.
  • the wear-resistant layer can also be understood as a flake-like element fastened to the shroud in a material- and / or non-positive manner, for example of a material with the trade name "stellite".
  • the wear protection is arranged in regions over the circumference of the shroud.
  • the wear protection can be arranged only at individual points of the shroud.
  • the material of the static sealing tip has a lower hardness than the hardness of the wear protection layer.
  • the hardness of the material can be a measure of the resistance of the material to wear.
  • the material of the wear protection layer preferably differs from the base material of the shroud and, in particular, also has a greater hardness relative to this base material.
  • greater hardness in the sense of the present invention is meant in particular a “greater wear resistance”.
  • the wear protection is superior to the rest of the shroud surface, or in other words, the height of the wear protection extends beyond the surface of the shroud.
  • the wear protection thickness can have, for example, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m or another thickness.
  • a wear protection is produced by means of a local surface layer hardening, in particular by means of a laser-supported method.
  • the static sealing tip is fastened to the housing with a positive-locking component, in particular a holding element.
  • the static sealing tip can be materially connected to the holding element.
  • the static sealing tip is secured to the housing with a positive fit component, particularly a retainer, on the downstream baffle, or the baffle connection.
  • the static sealing tip can be materially connected to the holding element.
  • the impeller is a turbine runner, particularly a low-pressure turbine runner.
  • the shroud is segmented about the circumference of the impeller.
  • the segments are designed as z-shroud segments.
  • the impeller blades can advantageously be braced with one another.
  • the contact regions of the shroud segments have wear protection in the circumferential direction.
  • This wear protection can be designed as wear protection in the opposite region of the static sealing tip.
  • this wear protection projects as a wear protection layer beyond the shroud surface, so that in the event of contact of the static sealing tip with the shroud, initially only the wear protection layer touches becomes.
  • the hardness of the wear protection layer is greater than the hardness of the static sealing tip. This advantageously allows the shroud to be protected from contact with the static sealing tip. Such contact could damage the shroud.
  • the wear protection can be integrally connected to the shroud, for example by means of welding (for example by laser deposition welding).
  • the material of the wear protection can be a cobalt-based hard alloy, for example a cobalt-chromium alloy, or have such.
  • the hardness of the wear-resistant coating can be greater than 600 Vickers hardness (HV for short) purely by way of example.
  • the static sealing tip is connected in a form-fitting and / or material-locking manner to the housing by means of a holding element.
  • the static sealing tip on the side opposite the shroud has a circumferentially variable, in particular wave-shaped structure.
  • a circumferentially variable, in particular wave-shaped structure By means of the variable or wave-like structure, when the sealing tip contacts the shroud, or with a wear protection layer on the shroud, an axially larger area of a contact surface of the sealing tip can be used in comparison with a non-variable or wavy, ie straight, structure over the circumference.
  • the heat input during a contact process or a rubbing process between the sealing tip and the shroud (or the wear protection layer) can advantageously be distributed over a larger area and a larger volume of material. As a result, the load, in particular the thermal material stress, of the wear protection layer can be locally reduced.
  • Some or all embodiments according to the invention may have one, several or all of the advantages mentioned above and / or below.
  • the leakages that is to say the bypass flow or the gap flow
  • the leaks can be referred to as primary losses.
  • the gap flow can be reduced.
  • the main flow less disturbed and thus the efficiency of the turbomachine can be increased.
  • the disturbances of the main flow can be called secondary losses.
  • the vortex formation can be influenced downstream of the static sealing tip and thus the vortex rotation direction of the main flow direction can be adjusted. As a result, a low-loss mixture of the vortices resulting from the slit flow can be achieved with the main flow.
  • FIG. 1 shows a known from the prior art sealing system 100 'of a turbine stage with an inlet seal 12 and two rotating (rotating) sealing tips 5 in longitudinal section.
  • a sealing system 100 ' may be synonymously referred to as a sealing system.
  • the inlet seal 12 may be referred to as inlet lining.
  • a housing portion 10 is shown on the housing side, in which a seal carrier 11 is mounted.
  • the housing portion 10 could also be referred to as a static sealing part.
  • the inlet seal 12 is fixed, for example, materially by means of soldering or gluing.
  • two sealing tips 5, which can be referred to as sealing fins In the inlet seal 12 engage two sealing tips 5, which can be referred to as sealing fins.
  • a running gap 6 between the inlet seal 12 and the sealing tips 5 is generated or generated by means of shrinkage or cutting in of the sealing tips 5.
  • the sealing tips 5 are arranged on a radially outer shroud 4, which in turn is connected to an impeller 3.
  • the shroud 4 may be integrally connected to the impeller 3, for example by means of a laser sintering process.
  • the flow direction of a leakage flow (the leakage flow may be referred to as a split flow or bypass flow) is shown by the arrow of the reference numeral 6 of the nip 6.
  • the flow direction is in the arrow direction of the reference character of the nip 6.
  • a stiffening structure 13 is optionally shown on the shroud 4.
  • the moving blade 3 is unambiguously positioned with respect to the inlet seal 12, and thus with respect to the surrounding housing 30 and the guide wheels 1, 2, which may be referred to as stator.
  • the rotor connected to the impeller 3 (in Fig. 1 not shown) move axially within certain limits relative to the stator, for example due to a play of the bearings, thermal expansions and other factors. Due to these axial movements of the rotor and the impeller 3, only a few sealing tips 5 can be arranged on the shroud 4.
  • Fig. 1 are two sealing tips 5 are arranged as an example. Due to this limited number of sealing tips 5, the sealing effect, depending on the running gap 6, limited.
  • Fig. 2 shows a sealing system according to the invention 100 a turbine stage with an inlet seal 12, two circumferential sealing tips 5 and connected to a housing 30 static sealing tip 20 in longitudinal section.
  • the arrangement of the upstream stator 1, the downstream stator 2, the blade 3, the housing portion 10 and the seal carrier 11 (which is shown in FIG Fig. 2 designed differently than in Fig. 1 ) is analogous to the description of Fig. 1 ,
  • the two rotating sealing tips 5 are axially offset on the shroud 5 relative to the arrangement of Fig. 1 arranged.
  • a case-side static sealing tip 20 is installed opposite to the downstream end portion of the shroud 4.
  • the static sealing tip 20 is in the exemplary embodiment of Fig. 2 fixed by means of a holding element 21 on the static housing section 10 and the housing-side holder of the downstream stator 2.
  • the fixation can be designed as a clamp.
  • An additional cohesive fixation of the static sealing tip 20 on the holding element 21 and / or of the holding element 21 on the housing section 10, for example by means of a soldered or welded connection, is optionally possible.
  • Fig. 2 a so-called Griffinbegrenzer 22 introduced into the housing 30 inside.
  • the room delimiter 22 can for example contribute to the reduction of flow losses.
  • the additional static sealing tip 20 can advantageously reduce the leakage resulting from the running gap 6. Furthermore, the direction of rotation of the downstream of the static sealing tip 20 forming vortex W with respect to the direction of rotation of the sealing system 100 'from the Fig. 1 reverse, so that a low-loss mixture with the main flow H is advantageously possible.
  • the low-loss mixture with the main flow H is through the same parallel flow direction of the main flow H with the flow direction of the immediately emerging vortex in Fig. 2 shown. Due to these two effects of the static sealing tip 20, reduction of the leakage and low-loss mixing of the vortex W with the main flow H, the total losses of the turbine stage can be advantageously reduced.
  • the front upstream seal tip 5 is inclined, with respect to the radial direction r, against the main flow direction aligned in the axial direction.
  • the inclination is about 30 degrees.
  • the leakage flow can be influenced by the running gap 6.
  • the two sealing tips 5 are arranged radially offset and thus approximately form the widening flow channel of the turbine stage.
  • the shroud 4 is executed segmented over the circumference u.
  • the segments are often executed as so-called z-shrouds (see Fig. 4 that look as View B Fig. 2 is shown), since their peripheral edges are not rectilinear in the axial direction of the turbomachine, but are formed substantially z-fömig. With this z-shape, it is possible to clamp in the mounted state, the circumferentially adjacent blades 3 a rotor stage with each other.
  • a wear protection layer 8 which in the Figures 2 . 3 and 4 is shown dark.
  • the wear protection view 8 is applied in the axial direction of the turbomachine not only in the central region of the z-fömigen peripheral edge of the shroud 4, in which by contact substantially the bracing forces between two circumferentially adjacent blades 3 are transmitted to the shroud 4, but the wear protection layer extends axially even further to the rear.
  • the wear protection layer 8 extends in the axial direction of the turbomachine at least up to the axial position of the static sealing tip 20 to the rear. In the present embodiment, the wear protection layer 8 extends even to the downstream end of the shroud. 4
  • the wear protection layer 8 projects beyond the surface of the shroud 4. This has the advantage that in case of an unwanted contact of the static sealing tip 20 with the shroud 4, for example in the case of a hard landing of an aircraft provided with the turbomachine as an engine, the static sealing tip 20 does not If the material of the wear protection layer 8 has a higher hardness than the material of the static sealing tip 20, the static sealing tip 20 is removed from the rotating impeller 3 or abraded.
  • the static sealing tip 20 may be slightly shortened, for example, in the radial direction r. In this way, damage to the impeller 3 is prevented.
  • a grinding of the static sealing tip 20 through the wear protection layer 8, however, is much less critical and the static sealing tip 20 can also be replaced relatively easily and inexpensively.
  • Fig. 3 shows the sealing system 100 according to the invention in a cross-sectional plane (section A - A, see Fig. 2 ) with the static sealing tip 20, the seal carrier 11, the impeller 3 with shroud 4 and a wear protection layer 8 between the shroud segments.
  • the shroud 4 is segmented.
  • the so-called z-shroud has wear protection layers 7, 8 at the contact points of the abutting segments.
  • the wear protection layer 8 which extends in the axial direction further downstream than the wear protection layer 7, projects slightly beyond the radial extent of the shroud surface. In Fig. 3 this is represented by the heel height 23.
  • the static sealing tip 20 Due to this increase of the wear protection layer 8 over the surface of the shroud 4, the static sealing tip 20, for example, in the aforementioned case, first the increased wear protection layer 8 touched at a lower hardness of the material of the static sealing tip 20 against the hardness of the material of the wear protection layer 8 the static sealing tip 20 ground or deformed, but without touching the shroud 4 itself and damage.
  • the wear-resistant layer 8 used for the contact of two circumferentially adjacent shrouds 4 can be synergistically used here in order to prevent possible damage to the base material of the shroud 4 by contact with the static sealing tip 20.
  • the wear protection layer 8 in the axial and radial directions of the turbomachine is to be dimensioned only slightly larger than would otherwise be the case.
  • Fig. 4 shows the shroud 4 in a view B from the radial outside (see Fig. 2 ) with the wear protection layers 7, 8.
  • the profile shape of the blade shape of the impeller 3 is schematically indicated below the shroud.
  • the sealing tips 5 of the shroud 4 project out of the plane of representation.
  • the wear protection layers 7, 8 are located at the contact surfaces of the z-shroud to the circumferentially adjacent (not shown) segments of other bucket cover strips.
  • the shaded anti-wear layer 8 was already in the cutting plane of Fig. 2 opposite the static sealing tip 20.
  • Fig. 5a, b show two different courses of the radially inner edge, or inner edge of the static sealing tip 20 in the circumferential direction u in a view C (see Fig. 3 ).
  • Fig. 5a is a straight waveform and shown in Fig. 5b a waveform.
  • the waveform has the advantage that in the case of contact of the static sealing tip 20 with the wear protection layer 8 of the shroud 4, an axially larger area of the wear protection layer 8 for a grinding or deformation of the static sealing tip 20 is available.
  • the heat input is distributed over a larger volume of material, as a result of which the wear protection layer 8 is loaded less locally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Dichtungssystem (100) für eine axiale Strömungsmaschine, insbesondere für eine Gasturbine, umfassend ein Laufrad (3) mit einem radial außen angeordneten Deckband (4) und ein das Laufrad (3) umgebendes Gehäuse (30), wobei zwischen dem Deckband (4) und dem Gehäuse (30) ein Spalt (6) angeordnet ist, und wobei der Spalt (6) mittels einer mit dem Gehäuse (30) verbundenen Dichtung (12) und wenigstens einer am Deckband (4), gegenüber der Dichtung (12) angeordneten Dichtspitze (5) zum Verringern der Strömungsverluste durch den Spalt (6) begrenzt ist. Am stromabseitigen Endbereich der Dichtung (12) ist eine weitere, mit dem Gehäuse (30) verbundene statische Dichtspitze (20) zum Beeinflussen der Strömung durch den Spalt und/oder zum Beeinflussen der Strömung stromab der statischen Dichtspitze (20) angeordnet ist. Weiterhin betrifft die vorliegende Erfindung eine axiale Strömungsmaschine, insbesondere eine Gasturbine, mit wenigstens einer Niederdruckturbinenstufe, wobei die Niederdruckturbinenstufe ein erfindungsgemäßes Dichtungssystem (100) umfasst.The invention relates to a sealing system (100) for an axial flow machine, in particular for a gas turbine, comprising an impeller (3) with a shroud (4) arranged radially on the outside and a housing (30) surrounding the impeller (3), between which Shroud (4) and the housing (30) a gap (6) is arranged, and wherein the gap (6) by means of a housing (30) connected to the seal (12) and at least one of the shroud (4), opposite the seal (12) arranged sealing tip (5) for reducing the flow losses through the gap (6) is limited. At the downstream end portion of the seal (12) is another static sealing tip (20) connected to the housing (30) for influencing the flow through the gap and / or influencing the flow downstream of the static sealing tip (20). Furthermore, the present invention relates to an axial flow machine, in particular a gas turbine, with at least one low-pressure turbine stage, wherein the low-pressure turbine stage comprises a sealing system (100) according to the invention.

Description

Die vorliegende Erfindung betrifft ein Dichtungssystem für eine axiale Strömungsmaschine gemäß dem Oberbegriff des Anspruchs 1. Des Weiteren betrifft die vorliegende Erfindung eine axiale Strömungsmaschine gemäß Anspruch 14.The present invention relates to a sealing system for an axial flow machine according to the preamble of claim 1. Furthermore, the present invention relates to an axial flow machine according to claim 14.

In axialen Strömungsmaschinen, insbesondere in mehrstufigen axialen Strömungsmaschinen, ändert sich der Druck im Arbeitsmedium (oder Fördermedium) von Stufe zu Stufe. In einer als Gasturbine ausgeführten Strömungsmaschine ist im Verdichter der Druck in der Regel stromabwärts einer Schaufelreihe höher als der Druck stromaufwärts, in der Turbine dagegen stromabwärts einer Schaufelreihe geringer als der Druck stromaufwärts. Zum Erzielen eines hohen Wirkungsgrades der Strömungsmaschine ist es notwendig, dass das Arbeitsmedium durch die Beschaufelung der einzelnen Stufen geleitet wird, und nicht als Leckagestrom (oder Bypassstrom), ohne Arbeitsabgabe, die Schaufelreihen umgeht. Hierzu ist im Bereich einer äußeren Ringraumbegrenzung ein Dichtungssystem vorgesehen, welches beispielsweise als Labyrinthsystem ausgebildet ist.In axial flow machines, especially in multi-stage axial flow machines, the pressure in the working fluid (or fluid) changes from stage to stage. In a turbomachine designed as a gas turbine, the pressure in the compressor is usually downstream of a row of blades higher than the pressure upstream, in the turbine, however downstream of a row of blades less than the pressure upstream. To achieve high efficiency of the turbomachine, it is necessary that the working medium is passed through the blading of the individual stages, and not as a leakage flow (or bypass flow), with no work output, which bypasses rows of blades. For this purpose, a sealing system is provided in the region of an outer annular space boundary, which is designed for example as a labyrinth system.

Derartige Dichtungssysteme haben die Aufgabe, einen Leckagestrom durch einen Dichtspalt zwischen der rotierenden Beschaufelung und einem Gehäuse minimal zu halten und damit ein stabiles Betriebsverhalten bei hohem Wirkungsgrad zu ermöglichen. Üblicherweise weisen die rotierenden Bauteile einer Turbine Dichtfinnen bzw. Dichtspitzen auf, die gegen wabenförmige Dichtungen streifen bzw. einlaufen können. Die Dichtungen sind dabei als Anstreif- und Einlaufbeläge ausgebildet. Durch eine Minimierung der radialen Spalte oberhalb der Dichtfinnen wird versucht, die Leckageströme durch die Kavitäten in diesen Bereichen, insbesondere in Bereichen oberhalb von Deckbändern von Laufschaufeln und die dadurch entstehenden Wirkungsverluste zu minimieren. Dennoch entstehen oft beim Eintritt der Leckageströmung in den so genannten Hauptstrom der Strömungsmaschine Mischungsverluste durch unterschiedliche Ausrichtungen und Geschwindigkeiten des Hauptstroms und der Leckageströmung.Such sealing systems have the task of keeping a leakage current through a sealing gap between the rotating blading and a housing minimal and thus to allow a stable operating behavior with high efficiency. Usually, the rotating components of a turbine on sealing fins or sealing tips, which can strip or shrink against honeycomb seals. The seals are designed as a squint and inlet coverings. By minimizing the radial gaps above the sealing fins, it is attempted to minimize the leakage flows through the cavities in these regions, in particular in regions above shrouds of rotor blades and the resultant losses in efficiency. Nevertheless, when the leakage flow enters the so-called main flow of the turbomachine, mixing losses often occur due to different orientations and speeds of the main flow and the leakage flow.

Eine Aufgabe der vorliegenden Erfindung ist es, ein weiteres Dichtungssystem für eine axiale Strömungsmaschine vorzuschlagen. Ferner ist es Aufgabe der vorliegenden Erfindung, eine axiale Strömungsmaschine mit einem erfindungsgemäßen Dichtungssystem vorzuschlagen.An object of the present invention is to propose a further sealing system for an axial flow machine. It is another object of the present invention to provide an axial flow machine with a sealing system according to the invention.

Die erfindungsgemäße Aufgabe wird durch ein Dichtungssystem mit den Merkmalen des Anspruchs 1 gelöst. Sie wird ferner durch eine axiale Strömungsmaschine mit den Merkmalen des Anspruchs 14 gelöst.The object of the invention is achieved by a sealing system having the features of claim 1. It is further achieved by an axial flow machine having the features of claim 14.

Erfindungsgemäß wird somit ein Dichtungssystem für eine axiale Strömungsmaschine vorgeschlagen, das wenigstens ein Laufrad mit einem radial außen angeordneten Deckband und ein das Laufrad umgebendes Gehäuse umfasst. Zwischen dem Deckband und dem Gehäuse ist ein Spalt angeordnet. Der Spalt ist einerseits mittels einer mit dem Gehäuse verbundenen Dichtung und andererseits mittels wenigstens einer am Deckband angeordneten Dichtspitze begrenzt. Diese am Deckband angeordnete Dichtspitze kann als rotierende Dichtspitze bezeichnet werden, da sie sich mit dem Laufrad dreht. Die Dichtung ist, in Radialrichtung gesehen, gegenüber dem Deckband angeordnet. Die Begrenzung des Spalts durch die Dichtung und das Deckband kann die Strömungsverluste der Spaltströmung verringern. Am stromabseitigen Endbereich der gehäuseseitigen Dichtung ist eine weitere, mit dem Gehäuse verbundene, statische Dichtspitze angeordnet. Mittels dieser statischen Dichtspitze wird die Strömung durch den Spalt beeinflusst, insbesondere verringert. Alternativ oder ergänzend wird mittels der statischen Dichtspitze die Strömung stromab der statischen Dichtspitze beeinflusst.According to the invention, a sealing system for an axial flow machine is thus proposed which comprises at least one impeller with a shroud arranged radially on the outside and a housing surrounding the impeller. Between the shroud and the housing, a gap is arranged. The gap is bounded on the one hand by means of a seal connected to the housing and on the other hand by means of at least one sealing tip arranged on the cover band. This arranged on the shroud sealing tip can be referred to as a rotating sealing tip, as it rotates with the impeller. The seal is, viewed in the radial direction, arranged opposite the shroud. The limitation of the gap by the seal and the shroud can reduce the flow losses of the slit flow. At the downstream end portion of the housing-side seal another, connected to the housing, static sealing tip is arranged. By means of this static sealing tip, the flow through the gap is influenced, in particular reduced. Alternatively or additionally, the flow downstream of the static sealing tip is influenced by means of the static sealing tip.

Eine Beeinflussung, insbesondere eine Verringerung der Strömung durch den Spalt mittels der statischen Dichtspitze kann durch Strömungsverluste der statischen Dichtspitze verursacht werden.An influence, in particular a reduction of the flow through the gap by means of the static sealing tip, can be caused by flow losses of the static sealing tip.

Alternativ oder ergänzend kann eine mögliche Wirbelbildung stromab der statischen Dichtspitze durch die statische Dichtspitze beeinflusst werden. Die Spaltströmung zwischen der statischen Dichtspitze und dem Deckband kann stromab einen Wirbel oder ein Wirbelgebiet hervorrufen bzw. verursachen, dessen Drehrichtung primär die gleiche Strömungsrichtung wie die benachbarte Hauptströmung aufweist. Dadurch können die Strömungsverluste und/oder die Störung der Hauptströmung durch diese Wirbel verringert werden. Dies kann vorteilhaft den Wirkungsgrad der axialen Strömungsmaschine durch das erfindungsgemäße Dichtungssystem erhöhen.Alternatively or additionally, a possible vortex formation downstream of the static sealing tip can be influenced by the static sealing tip. The gap flow between the static sealing tip and the shroud may cause a vortex or vortex region downstream, the direction of rotation of which has primarily the same flow direction as the adjacent main flow. As a result, the flow losses and / or the disturbance of the main flow through these vortices can be reduced. This can advantageously increase the efficiency of the axial flow machine by the sealing system according to the invention.

Eine durch die beschriebene Drehrichtung der Wirbel verringerte Störung der Hauptströmung kann als verlustarme Mischung mit dem Hauptstrom bezeichnet werden. Demgegenüber kann ein Dichtungssystem ohne statischer Dichtspitze zu einer Wirbelbildung führen, dessen primäre Drehrichtung der Hauptströmung entgegengesetzt ist. Dies würde zu einer verlustreichen Mischung mit dem Hauptstrom führen und könnte zu einer Verringerung des Wirkungsgrades der Strömungsmaschine beitragen.A reduced main flow disturbance due to the described direction of rotation of the vortices may be referred to as a low loss mixing with the main flow. In contrast, can a sealing system without static sealing tip lead to a vortex formation whose primary direction of rotation is opposite to the main flow. This would lead to a lossy mixture with the main flow and could contribute to a reduction in the efficiency of the turbomachine.

Das radial außen am Laufrad angeordnete Deckband kann als Außendeckband oder als Laufschaufelaußendeckband bezeichnet werden.The shroud arranged radially on the outside of the impeller can be referred to as an outer shroud or as a shovel outer shroud.

Der zwischen dem Deckband und dem Gehäuse angeordnete Spalt kann als Laufspalt bezeichnet werden.The arranged between the shroud and the housing gap may be referred to as a running gap.

Die erfindungsgemäße axiale Strömungsmaschine umfasst wenigstens eine Niederdruckturbinenstufe mit einem erfindungsgemäßen Dichtungssystem. Die axiale Strömungsmaschine kann weiterhin wenigstens eine Hochdruckturbinenstufe, eine Niederdruckverdichterstufe und eine Hochdruckverdichterstufe aufweisen. Jede der genannten Stufen kann ein erfindungsgemäßes Dichtungssystem aufweisen.The axial flow machine according to the invention comprises at least one low-pressure turbine stage with a sealing system according to the invention. The axial flow machine may further comprise at least one high-pressure turbine stage, a low-pressure compressor stage and a high-pressure compressor stage. Each of said stages may comprise a sealing system according to the invention.

Die axiale Strömungsmaschine kann eine Gasturbine sein, insbesondere eine Fluggasturbine oder ein Flugtriebwerk.The axial flow machine may be a gas turbine, in particular an aircraft gas turbine or an aircraft engine.

Vorteilhafte Weiterentwicklungen der vorliegenden Erfindung sind jeweils Gegenstand von Unteransprüchen und Ausführungsformen.Advantageous developments of the present invention are the subject of subclaims and embodiments.

Erfindungsgemäße beispielhafte Ausführungsformen können eines oder mehrere der im Folgenden genannten Merkmale aufweisen.Inventive exemplary embodiments may have one or more of the following features.

Eine statische und/oder eine umlaufende Dichtspitze kann als Dichtfin bezeichnet werden.A static and / or a circumferential sealing tip can be referred to as Dichtfin.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen kann die mit dem Gehäuse verbundene Dichtung eine Einlaufdichtung sein. Eine Einlaufdichtung kann als Anstreifdichtung bezeichnet werden. Eine Einlaufdichtung kann einen einlauffähigen Belag oder eine einlauffähige Schicht aufweisen, in die beispielsweise eine Dichtspitze zum Ausbilden eines Dichtspalts eindringen kann. Dieser Dichtspalt kann durch das Eindringen oder Einlaufen einer Dichtspitze, insbesondere während eines vorgesehenen Betriebszustands, klein ausgebildet sein und somit vorteilhaft zur Optimierung des Wirkungsgrads der Strömungsmaschine beitragen. Die Einlaufdichtung kann eine Wabenstruktur zum Eindringen einer Dichtspitze umfassen.In some exemplary embodiments of the invention, the seal associated with the housing may be an inlet seal. An inlet seal can be called an abradable seal. An inlet seal may have an insertable coating or an insertable layer into which, for example, a sealing tip can penetrate to form a sealing gap. This sealing gap can be made small by the penetration or shrinkage of a sealing tip, in particular during an intended operating state and thus contribute advantageously to optimize the efficiency of the turbomachine. The inlet seal may comprise a honeycomb structure for penetrating a sealing tip.

Die Einlaufdichtung kann mit dem Gehäuse stoffschlüssig und/oder formschlüssig verbunden sein. Die Einlaufdichtung kann geklebt, gelötet, genietet oder geklemmt sein, oder anders am Gehäuse befestigt sein.The inlet seal may be connected to the housing cohesively and / or positively. The inlet seal may be glued, soldered, riveted or clamped, or otherwise attached to the housing.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist die Einlaufdichtung nur am Gehäuse befestigt. In dieser Ausführungsform ist keine Einlaufdichtung am Laufrad, insbesondere am Deckband des Laufrads befestigt. Die Einlaufdichtung ist somit nur auf einer Seite des Spalts angeordnet.In some exemplary embodiments of the invention, the inlet seal is attached only to the housing. In this embodiment, no inlet seal on the impeller, in particular attached to the shroud of the impeller. The inlet seal is thus arranged only on one side of the gap.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen kann das Deckband wenigstens zwei Dichtspitzen aufweisen. Zwei Dichtspitzen können in zwei gegenüberliegende Einlaufdichtungen am Gehäuse eingreifen und einen Dichtspalt ausbilden. Die wenigstens zwei Dichtspitzen können axial hintereinander auf einem Radius bzw. auf radial einer Höhe angeordnet sein. Alternativ können die zwei Dichtspitzen axial hintereinander auf unterschiedlichen Radien bzw. auf radial unterschiedlichen Höhen, also radial versetzt angeordnet sein.In some exemplary embodiments of the invention, the shroud may include at least two sealing tips. Two sealing tips can engage in two opposite inlet seals on the housing and form a sealing gap. The at least two sealing tips can be arranged axially one behind the other on a radius or at a radial height. Alternatively, the two sealing tips can be arranged axially one behind the other at different radii or at radially different heights, that is, offset radially.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen weist das Deckband keine Dichtung, insbesondere keine Einlaufdichtung auf.In some exemplary embodiments of the invention, the shroud has no seal, in particular no inlet seal.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen weist das Deckband drei oder mehr Dichtspitzen auf. Die Dichtspitzen können radial auf einer Höhe oder unterschiedlichen Höhen angeordnet sein. Beispielsweise können zwei axial hintereinander angeordnete Dichtspitzen den gleichen Radius aufweisen, wogegen eine dritte Dichtspitze radial weiter außen angeordnet ist.In some exemplary embodiments of the invention, the shroud has three or more sealing tips. The sealing tips may be arranged radially at a height or at different heights. For example, two axially successively arranged sealing tips have the same radius, whereas a third sealing tip is arranged radially further outside.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist die wenigstens eine Dichtspitze des Deckbandes stromaufseitig geneigt angeordnet. Der Neigungswinkel zwischen der Radialrichtung und der Achsrichtung kann beispielsweise wenigstens 15 Grad betragen. Eine nicht geneigte Dichtspitze in Radialrichtung würde null Grad betragen. Eine geneigte Dichtspitze kann die Strömungsverluste durch eine geringere Strömung durch den Spalt vorteilhaft beeinflussen. Eine geneigte Dichtspitze kann auch vorteilhaft hinsichtlich der Deckbandkonfiguration sein, beispielsweise bei einer Anordnung mehrerer Dichtspitzen am Deckband. Ebenso kann die Strukturfestigkeit des Deckbandes mit einer geneigten Dichtspitze vorteilhaft höher sein. Insbesondere die stromauf vorderste Dichtspitze des Deckbandes kann geneigt sein. Die Neigung kann zwanzig Grad, fünfundzwanzig Grad, dreißig Grad oder mehr betragen.In some exemplary embodiments of the invention, the at least one sealing tip of the shroud is arranged inclined upstream. The angle of inclination between the radial direction and the axial direction may be, for example, at least 15 degrees. A non-sloped sealing tip in the radial direction would be zero degrees. An inclined sealing tip can favor the flow losses due to a smaller flow through the gap influence. An inclined sealing tip can also be advantageous in terms of the shroud configuration, for example, in an arrangement of multiple sealing tips on the shroud. Likewise, the structural strength of the shroud with an inclined sealing tip can be advantageously higher. In particular, the upstreammost sealing tip of the shroud can be inclined. The incline can be twenty degrees, twenty-five degrees, thirty degrees or more.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen weist das Deckband im gegenüberliegenden Bereich der statischen Dichtspitze einen Verschleißschutz auf. Der Verschleißschutz kann vorteilhaft einen direkten Kontakt der statischen Dichtspitze mit dem Grundmaterial des Deckbands verhindern. Ein direkter Kontakt könnte das Deckband beschädigen, und somit einen größeren Schaden verursachen.In some exemplary embodiments of the invention, the shroud has wear protection in the opposite region of the static sealing tip. The wear protection can advantageously prevent direct contact of the static sealing tip with the base material of the shroud. Direct contact could damage the shroud causing more damage.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen erstreckt sich der Verschleißschutz des Deckbandes über den gegenüberliegenden Bereich der statischen Dichtspitze hinaus, insbesondere wenigstens bis zum angrenzenden Deckbandende. Der Verschleißschutz kann sich über weitere Bereich des Deckbandes erstrecken.In some exemplary embodiments of the invention, the wear protection of the shroud extends beyond the opposite region of the static sealing tip, in particular at least to the adjacent shroud end. The wear protection can extend over more area of the shroud.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist der Verschleißschutz eine, zumindest abschnittsweise, Beschichtung des Deckbandes. Alternativ kann unter der Verschleißschutzschicht aber auch ein stoff- und oder kraftschlüssig an dem Deckband befestigtes blättchenartiges Element, beispielsweise aus einem Material mit dem Markennamen "Stellit" verstanden werden.In some exemplary embodiments according to the invention, the wear protection is a, at least in sections, coating of the shroud. Alternatively, the wear-resistant layer can also be understood as a flake-like element fastened to the shroud in a material- and / or non-positive manner, for example of a material with the trade name "stellite".

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist der Verschleißschutz über dem Umfang des Deckbandes bereichsweise angeordnet. Beispielsweise kann der Verschleißschutz nur an einzelnen Stellen des Deckbandes angeordnet sein.In some exemplary embodiments according to the invention, the wear protection is arranged in regions over the circumference of the shroud. For example, the wear protection can be arranged only at individual points of the shroud.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen weist der Werkstoff der statischen Dichtspitze eine geringere Härte gegenüber der Härte der Verschleißschutzschicht auf. Die Härte des Werkstoffs kann ein Maß für den Widerstand des Werkstoffs gegen Verschleiß sein. Das Material der Verschleißschutzschicht unterscheidet sich vorzugsweise von dem Grundmaterial des Deckbandes und weist insbesondere gegenüber diesem Grundmaterial ebenfalls eine größere Härte auf. Mit dem Begriff "größere Härte" ist im Sinne der vorliegenden Erfindung insbesondere eine "größere Verschleißfestigkeit" gemeint.In some exemplary embodiments of the invention, the material of the static sealing tip has a lower hardness than the hardness of the wear protection layer. The hardness of the material can be a measure of the resistance of the material to wear. The material of the wear protection layer preferably differs from the base material of the shroud and, in particular, also has a greater hardness relative to this base material. By the term "greater hardness" in the sense of the present invention is meant in particular a "greater wear resistance".

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist der Verschleißschutz gegenüber der übrigen Deckbandoberfläche erhaben, oder anders ausgedrückt ragt die Verschleißschutz in ihrer Höhe über die Oberfläche des Deckbandes hinaus. Die Verschleißschutzdicke kann beispielsweise 5µm, 10µm, 20µm oder eine andere Dicke aufweisen.In some exemplary embodiments of the invention, the wear protection is superior to the rest of the shroud surface, or in other words, the height of the wear protection extends beyond the surface of the shroud. The wear protection thickness can have, for example, 5 μm, 10 μm, 20 μm or another thickness.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen wird ein Verschleißschutz mittels einer lokalen Randschichtaushärtung hergestellt, insbesondere mittels eines lasergestützen Verfahrens.In some exemplary embodiments according to the invention, a wear protection is produced by means of a local surface layer hardening, in particular by means of a laser-supported method.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist die statische Dichtspitze mit einem formschlüssigen Bauteil, insbesondere einem Halteelement, am Gehäuse befestigt. Die statische Dichtspitze kann stoffschlüssig mit dem Halteelement verbunden sein.In some exemplary embodiments according to the invention, the static sealing tip is fastened to the housing with a positive-locking component, in particular a holding element. The static sealing tip can be materially connected to the holding element.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist die statische Dichtspitze mit einem formschlüssigen Bauteil, insbesondere einem Halteelement, am stromabwärtigen Leitgitter, oder der Leitgitterverbindung, mit dem Gehäuse befestigt. Die statische Dichtspitze kann stoffschlüssig mit dem Halteelement verbunden sein.In some exemplary embodiments of the invention, the static sealing tip is secured to the housing with a positive fit component, particularly a retainer, on the downstream baffle, or the baffle connection. The static sealing tip can be materially connected to the holding element.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist das Laufrad ein Turbinenlaufrad, insbesondere ein Niederdruckturbinenlaufrad.In some exemplary embodiments of the invention, the impeller is a turbine runner, particularly a low-pressure turbine runner.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist das Deckband über dem Umfang des Laufrads segmentiert. Insbesondere sind die Segmente als z-Deckbandsegmente ausgeführt. Mittels z-Deckbandsegmenten können die Laufradschaufeln untereinander vorteilhaft verspannt werden.In some exemplary embodiments of the invention, the shroud is segmented about the circumference of the impeller. In particular, the segments are designed as z-shroud segments. By means of z-shroud segments, the impeller blades can advantageously be braced with one another.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen weisen die Kontaktbereiche der Deckband-Segmente in Umfangsrichtung einen Verschleißschutz auf. Dieser Verschleißschutz kann als Verschleißschutz im gegenüberliegenden Bereich der statischen Dichtspitze ausgeführt sein. Insbesondere kragt dieser Verschleißschutz als Verschleißschutzschicht über die Deckbandoberfläche hinaus, so dass im Falle einer Berührung der statischen Dichtspitze mit dem Deckband zunächst nur die Verschleißschutzschicht berührt wird. Insbesondere ist die Härte der Verschleißschutzschicht größer als die Härte der statischen Dichtspitze. Dadurch kann vorteilhaft das Deckband vor einem Kontakt mit der statischen Dichtspitze geschützt werden. Ein derartiger Kontakt könnte das Deckband beschädigen.In some exemplary embodiments according to the invention, the contact regions of the shroud segments have wear protection in the circumferential direction. This wear protection can be designed as wear protection in the opposite region of the static sealing tip. In particular, this wear protection projects as a wear protection layer beyond the shroud surface, so that in the event of contact of the static sealing tip with the shroud, initially only the wear protection layer touches becomes. In particular, the hardness of the wear protection layer is greater than the hardness of the static sealing tip. This advantageously allows the shroud to be protected from contact with the static sealing tip. Such contact could damage the shroud.

Der Verschleißschutz kann stoffschlüssig, beispielsweise mittels Schweißen (z.B. mittels Laserauftragsschweißen), mit dem Deckband verbunden sein. Das Material des Verschleißschutzes kann eine Hartlegierung auf Kobaldbasis, beispielsweise eine Kobalt-Chrom-Legierung, sein oder eine solche aufweisen. Die Härte der Verschleißschutzschicht kann rein exemplarisch größer als 600 Vickershärte (abgekürzt HV) betragen.The wear protection can be integrally connected to the shroud, for example by means of welding (for example by laser deposition welding). The material of the wear protection can be a cobalt-based hard alloy, for example a cobalt-chromium alloy, or have such. The hardness of the wear-resistant coating can be greater than 600 Vickers hardness (HV for short) purely by way of example.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen ist die statische Dichtspitze mittels einem Halteelement formschlüssig und/oder stoffschlüssig mit dem Gehäuse verbunden.In some exemplary embodiments according to the invention, the static sealing tip is connected in a form-fitting and / or material-locking manner to the housing by means of a holding element.

In einigen erfindungsgemäßen, beispielhaften Ausführungsformen weist die statische Dichtspitze an der dem Deckband gegenüberliegenden Seite eine in Umfangsrichtung variable, insbesondere wellenförmige Struktur auf. Mittels der variablen bzw. wellenförmigen Struktur kann bei einem Kontakt der Dichtspitze mit dem Deckband, oder mit einer Verschleißschutzschicht auf dem Deckband, ein axial größerer Bereich einer Kontaktfläche der Dichtspitze genutzt werden gegenüber einer nicht variablen bzw. wellenförmigen, also geraden Struktur über dem Umfang. Mittels eines axial größeren Bereichs der Kontaktfläche kann vorteilhaft der Wärmeeintrag bei einem Kontaktvorgang oder einem Reibvorgang zwischen der Dichtspitze und dem Deckband (oder der Verschleißschutzschicht) auf eine größere Fläche und ein größeres Materialvolumen verteilt werden. Dadurch kann die Belastung, insbesondere die thermische Materialbeanspruchung, der Verschleißschutzschicht lokal reduziert werden.In some exemplary embodiments according to the invention, the static sealing tip on the side opposite the shroud has a circumferentially variable, in particular wave-shaped structure. By means of the variable or wave-like structure, when the sealing tip contacts the shroud, or with a wear protection layer on the shroud, an axially larger area of a contact surface of the sealing tip can be used in comparison with a non-variable or wavy, ie straight, structure over the circumference. By means of an axially larger region of the contact surface, the heat input during a contact process or a rubbing process between the sealing tip and the shroud (or the wear protection layer) can advantageously be distributed over a larger area and a larger volume of material. As a result, the load, in particular the thermal material stress, of the wear protection layer can be locally reduced.

Manche oder alle erfindungsgemäßen Ausführungsformen können einen, mehrere oder alle der oben und/oder im Folgenden genannten Vorteile aufweisen.Some or all embodiments according to the invention may have one, several or all of the advantages mentioned above and / or below.

Mittels des erfindungsgemäßen Dichtungssystems können vorteilhaft die Leckagen, also die Bypassströmung bzw. die Spaltströmung, verringert werden. Die Leckagen können als Primärverluste bezeichnet werden. Insbesondere mittels der statischen Dichtspitze kann die Spaltströmung reduziert werden.By means of the sealing system according to the invention, the leakages, that is to say the bypass flow or the gap flow, can advantageously be reduced. The leaks can be referred to as primary losses. In particular, by means of the static sealing tip, the gap flow can be reduced.

Weiterhin kann mittels des erfindungsgemäßen Dichtungssystems die Hauptströmung weniger gestört und somit der Wirkungsgrad der Strömungsmaschine erhöht werden. Die Störungen der Hauptströmung können als Sekundärverluste bezeichnet werden. Insbesondere kann die Wirbelbildung stromab der statischen Dichtspitze beeinflusst und damit die Wirbeldrehrichtung der Hauptströmungsrichtung angepasst werden. Dadurch kann eine verlustarme Mischung der Wirbel, die aus der Spaltströmung resultieren, mit der Hauptströmung erreicht werden.Furthermore, by means of the sealing system according to the invention, the main flow less disturbed and thus the efficiency of the turbomachine can be increased. The disturbances of the main flow can be called secondary losses. In particular, the vortex formation can be influenced downstream of the static sealing tip and thus the vortex rotation direction of the main flow direction can be adjusted. As a result, a low-loss mixture of the vortices resulting from the slit flow can be achieved with the main flow.

Die vorliegende Erfindung wird im Folgenden anhand der beigefügten Zeichnungen, in welcher identische Bezugszeichen gleiche oder ähnliche Bauteile bezeichnen, exemplarisch erläutert. In den jeweils stark schematisch vereinfachten Figuren gilt:

Fig. 1
zeigt ein aus dem Stand der Technik bekanntes Dichtungssystem einer Turbinenstufe mit einer Einlaufdichtung und zwei umlaufenden Dichtspitzen im Längsschnitt;
Fig. 2
zeigt ein erfindungsgemäßes Dichtungssystem einer Turbinenstufe mit einer Einlaufdichtung, zwei umlaufenden Dichtspitzen und einer mit einem Gehäuse verbundenen statischen Dichtspitze im Längsschnitt;
Fig. 3
zeigt das erfindungsgemäße Dichtungssystem in einer Querschnittsebene mit der statischen Dichtspitze, einem Laufrad mit Deckband und einer Verschleißschutzschicht zwischen zwei Deckbandsegmenten;
Fig. 4
zeigt das Deckband in einer Ansicht von radial außen mit zwei Verschleißschutzschichten; und
Fig. 5a,b
zeigen zwei unterschiedliche Verläufe einer Innenkante der statischen Dichtspitze in Umfangsrichtung.
The present invention will be explained in the following with reference to the accompanying drawings, in which identical reference numerals designate identical or similar components, by way of example. In each case greatly simplified schematic figures:
Fig. 1
shows a known from the prior art sealing system of a turbine stage with an inlet seal and two circumferential sealing tips in longitudinal section;
Fig. 2
shows a sealing system according to the invention a turbine stage with an inlet seal, two circumferential sealing tips and connected to a housing static sealing tip in longitudinal section;
Fig. 3
shows the sealing system according to the invention in a cross-sectional plane with the static sealing tip, an impeller with shroud and a wear protection layer between two shroud segments;
Fig. 4
shows the shroud in a view from the radially outside with two wear protection layers; and
Fig. 5a, b
show two different courses of an inner edge of the static sealing tip in the circumferential direction.

Fig. 1 zeigt ein aus dem Stand der Technik bekanntes Dichtungssystem 100' einer Turbinenstufe mit einer Einlaufdichtung 12 und zwei umlaufenden (rotierenden) Dichtspitzen 5 im Längsschnitt. Ein Dichtungssystem 100' kann synonym als Dichtsystem bezeichnet werden. Die Einlaufdichtung 12 kann als Einlaufbelag bezeichnet werden. Fig. 1 shows a known from the prior art sealing system 100 'of a turbine stage with an inlet seal 12 and two rotating (rotating) sealing tips 5 in longitudinal section. A sealing system 100 'may be synonymously referred to as a sealing system. The inlet seal 12 may be referred to as inlet lining.

Zwischen einem stromaufseitigen Leitrad 1 und einem stromabseitigen Leitrad 2 ist gehäuseseitig ein Gehäuseabschnitt 10 dargestellt, in dem ein Dichtungsträger 11 montiert ist. Der Gehäuseabschnitt 10 könnte auch als statisches Dichtungsteil bezeichnet werden. An dem Dichtungsträger 11 ist die Einlaufdichtung 12 befestigt, beispielsweise stoffschlüssig mittels Löten oder Kleben. In die Einlaufdichtung 12 greifen zwei Dichtspitzen 5 ein, die als Dichtfins bezeichnet werden können. Ein Laufspalt 6 zwischen der Einlaufdichtung 12 und den Dichtspitzen 5 wird mittels einem Einlaufen oder Einschneiden der Dichtspitzen 5 erzeugt oder generiert. Die Dichtspitzen 5 sind an einem radial äußeren Deckband 4 angeordnet, welches wiederum mit einem Laufrad 3 verbunden ist. Das Deckband 4 kann integral mit dem Laufrad 3 verbunden sein, beispielsweise mittels eines Lasersinter-Herstellprozesses.Between an upstream stator 1 and a downstream stator 2, a housing portion 10 is shown on the housing side, in which a seal carrier 11 is mounted. The housing portion 10 could also be referred to as a static sealing part. On the seal carrier 11, the inlet seal 12 is fixed, for example, materially by means of soldering or gluing. In the inlet seal 12 engage two sealing tips 5, which can be referred to as sealing fins. A running gap 6 between the inlet seal 12 and the sealing tips 5 is generated or generated by means of shrinkage or cutting in of the sealing tips 5. The sealing tips 5 are arranged on a radially outer shroud 4, which in turn is connected to an impeller 3. The shroud 4 may be integrally connected to the impeller 3, for example by means of a laser sintering process.

Die Strömungsrichtung einer Leckageströmung (die Leckageströmung kann als Spaltströmung oder Bypasströmung bezeichnet werden) wird durch den Pfeil des Bezugszeichens des Laufspalts 6 gezeigt. In einer hier dargestellten Turbinenstufe nimmt der Druck des Strömungsmediums in der Durchströmungsrichtung des Hauptstroms H, in Fig. 1 von links nach rechts, ab. Folglich ist der Druck stromauf der Laufschaufel 3 höher gegenüber dem Druck stromab der Laufschaufel 3. Somit verläuft die Strömungsrichtung in Pfeilrichtung des Bezugszeichens des Laufspalts 6.The flow direction of a leakage flow (the leakage flow may be referred to as a split flow or bypass flow) is shown by the arrow of the reference numeral 6 of the nip 6. In a turbine stage shown here, the pressure of the flow medium in the flow direction of the main flow H, in Fig. 1 from left to right, from. Consequently, the pressure upstream of the blade 3 is higher than the pressure downstream of the blade 3. Thus, the flow direction is in the arrow direction of the reference character of the nip 6.

Stromab der zweiten Dichtspitze 5 (in Fig. 1 rechts) bildet die Leckageströmung einen Wirbel W aus. An der Mischstelle mit dem Hauptstrom H ergeben sich hohe Mischungsverluste, da die Drehrichtung des Wirbels W in einer Strömung resultiert, deren Durchströmungsrichtung des Hauptstroms H entgegengesetzt ist.Downstream of the second sealing tip 5 (in Fig. 1 right), the leakage flow forms a vortex W. At the mixing point with the main flow H, high mixing losses result since the direction of rotation of the vortex W results in a flow whose direction of flow of the main flow H is opposite.

Weiterhin ist optional eine Versteifungsstruktur 13 auf dem Deckband 4 dargestellt.Furthermore, a stiffening structure 13 is optionally shown on the shroud 4.

Die Laufschaufel 3 ist gegenüber der Einlaufdichtung 12, und somit gegenüber dem umgebenden Gehäuse 30 und den Leiträdern 1,2, die als Stator bezeichnet werden können, eindeutig positioniert. Allerdings kann sich der mit dem Laufrad 3 verbundene Rotor (in Fig. 1 nicht dargestellt) relativ zum Stator axial innerhalb bestimmter Grenzen bewegen, beispielsweise aufgrund eines Spiels der Lagerungen, thermischen Ausdehnungen und anderen Faktoren. Aufgrund dieser Axialbewegungen des Rotors und des Laufrads 3 können nur wenige Dichtspitzen 5 am Deckband 4 angeordnet werden. In dem Ausführungsbeispiel der Fig. 1 sind exemplarisch zwei Dichtspitzen 5 angeordnet. Aufgrund dieser begrenzten Anzahl von Dichtspitzen 5 ist die Dichtwirkung, in Abhängigkeit vom Laufspalt 6, begrenzt.The moving blade 3 is unambiguously positioned with respect to the inlet seal 12, and thus with respect to the surrounding housing 30 and the guide wheels 1, 2, which may be referred to as stator. However, the rotor connected to the impeller 3 (in Fig. 1 not shown) move axially within certain limits relative to the stator, for example due to a play of the bearings, thermal expansions and other factors. Due to these axial movements of the rotor and the impeller 3, only a few sealing tips 5 can be arranged on the shroud 4. In the embodiment of Fig. 1 are two sealing tips 5 are arranged as an example. Due to this limited number of sealing tips 5, the sealing effect, depending on the running gap 6, limited.

Fig. 2 zeigt ein erfindungsgemäßes Dichtungssystem 100 einer Turbinenstufe mit einer Einlaufdichtung 12, zwei umlaufenden Dichtspitzen 5 und einer mit einem Gehäuse 30 verbundenen statischen Dichtspitze 20 im Längsschnitt. Fig. 2 shows a sealing system according to the invention 100 a turbine stage with an inlet seal 12, two circumferential sealing tips 5 and connected to a housing 30 static sealing tip 20 in longitudinal section.

Die Anordnung des stromaufseitigen Leitrads 1, des stromabseitigen Leitrads 2, der Laufschaufel 3, des Gehäuseabschnitts 10 und des Dichtungsträgers 11 (der in Fig. 2 anders ausgestaltet ist als in Fig. 1) ist analog zur Beschreibung der Fig. 1. Die beiden rotierenden Dichtspitzen 5 sind auf dem Deckband 5 axial versetzt gegenüber der Anordnung der Fig. 1 angeordnet. Zusätzlich ist eine gehäuseseitige, statische Dichtspitze 20 gegenüber dem stromabseitigen Endbereich des Deckbands 4 eingebaut. Die statische Dichtspitze 20 ist in der exemplarischen Ausführungsform der Fig. 2 mittels eines Halteelements 21 an dem statischen Gehäuseabschnitt 10 und der gehäuseseitigen Halterung des stromabseitigen Leitrads 2 fixiert. Die Fixierung kann als Klemmung ausgeführt sein. Ein zusätzliche stoffschlüssige Fixierung der statischen Dichtspitze 20 am Halteelement 21 und/oder des Halteelements 21 am Gehäuseabschnitt 10, beispielsweise mittels einer Löt- oder Schweißverbindung, ist optional möglich.The arrangement of the upstream stator 1, the downstream stator 2, the blade 3, the housing portion 10 and the seal carrier 11 (which is shown in FIG Fig. 2 designed differently than in Fig. 1 ) is analogous to the description of Fig. 1 , The two rotating sealing tips 5 are axially offset on the shroud 5 relative to the arrangement of Fig. 1 arranged. In addition, a case-side static sealing tip 20 is installed opposite to the downstream end portion of the shroud 4. The static sealing tip 20 is in the exemplary embodiment of Fig. 2 fixed by means of a holding element 21 on the static housing section 10 and the housing-side holder of the downstream stator 2. The fixation can be designed as a clamp. An additional cohesive fixation of the static sealing tip 20 on the holding element 21 and / or of the holding element 21 on the housing section 10, for example by means of a soldered or welded connection, is optionally possible.

Weiterhin ist in Fig. 2 ein sogenannter Raumbegrenzer 22 in das Gehäuse 30 innenseitig eingebracht. Der Raumbegrenzer 22 kann beispielsweise zur Verringerung von Strömungsverlusten beitragen.Furthermore, in Fig. 2 a so-called Raumbegrenzer 22 introduced into the housing 30 inside. The room delimiter 22 can for example contribute to the reduction of flow losses.

Die zusätzliche statische Dichtspitze 20 kann die Leckage resultierend aus dem Laufspalt 6 vorteilhaft reduzieren. Weiterhin kann sich die Drehrichtung des sich stromab der statischen Dichtspitze 20 bildenden Wirbels W gegenüber der Drehrichtung des Dichtungssystems 100' aus der Fig. 1 umkehren, so dass eine verlustarme Mischung mit dem Hauptstrom H vorteilhaft möglich wird. Die verlustarme Mischung mit dem Hauptstrom H wird durch die gleiche parallele Strömungsrichtung des Hauptstroms H mit der Strömungsrichtung des unmittelbar austretenden Wirbels in Fig. 2 gezeigt. Durch diese beiden Effekte der statischen Dichtspitze 20, Reduktion der Leckage und verlustarme Mischung des Wirbels W mit dem Hauptstrom H, können die Gesamtverluste der Turbinenstufe vorteilhaft reduziert werden.The additional static sealing tip 20 can advantageously reduce the leakage resulting from the running gap 6. Furthermore, the direction of rotation of the downstream of the static sealing tip 20 forming vortex W with respect to the direction of rotation of the sealing system 100 'from the Fig. 1 reverse, so that a low-loss mixture with the main flow H is advantageously possible. The low-loss mixture with the main flow H is through the same parallel flow direction of the main flow H with the flow direction of the immediately emerging vortex in Fig. 2 shown. Due to these two effects of the static sealing tip 20, reduction of the leakage and low-loss mixing of the vortex W with the main flow H, the total losses of the turbine stage can be advantageously reduced.

Die statische Dichtspitze 20 bildet zusammen mit dem hinteren Abschnitt des Deckbandes 4 eine zusätzliche Dichtstelle zu den beiden durch die Dichtspitzen 5 und der Einlaufdichtung 12 gebildeten Dichtstellen.The static sealing tip 20, together with the rear portion of the shroud 4, an additional sealing point to the two sealing points formed by the sealing tips 5 and the inlet seal 12.

Die vordere, stromaufseitige Dichtspitze 5 ist, bezogen auf die Radialrichtung r, entgegen der Hauptströmungsrichtung, die in Axialrichtung ausgerichtet ist, geneigt. Die Neigung beträgt ca. 30 Grad. Mittels einer geneigten Dichtspitze 5 kann beispielsweise die Leckageströmung durch den Laufspalt 6 beeinflusst werden.The front upstream seal tip 5 is inclined, with respect to the radial direction r, against the main flow direction aligned in the axial direction. The inclination is about 30 degrees. By means of an inclined sealing tip 5, for example, the leakage flow can be influenced by the running gap 6.

Die beiden Dichtspitzen 5 sind radial versetzt angeordnet und bilden damit näherungsweise den sich aufweitenden Strömungskanals der Turbinenstufe ab.The two sealing tips 5 are arranged radially offset and thus approximately form the widening flow channel of the turbine stage.

Das Deckband 4 ist über den Umfang u segmentiert ausgeführt. Die Segmente werden oft als sogenannte z-Deckbänder ausgeführt (siehe Fig. 4, die als Ansicht B aus Fig. 2 dargestellt ist), da ihre Umfangsränder nicht geradlinig in Axialrichtung der Strömungsmaschine, sondern im Wesentlichen z-fömig ausgebildet sind. Mit dieser z-Form ist es möglich, im montierten Zustand die in Umfangsrichtung benachbarten Laufschaufeln 3 einer Rotorstufe untereinander zu verspannen. In der Ansicht der Fig. 2 blickt man orthogonal auf den Umfangsrand eines Segments des Deckbands 4. Die stromabwärtige Hälfte dieses Umfangrandes ist mit einer Verschleißschutzschicht 8 versehen, welche in den Figuren 2, 3 und 4 dunkel dargestellt ist. Die Verschleißschutzsicht 8 ist dabei in Axialrichtung der Strömungsmaschine nicht nur in dem mittleren Bereich des z-fömigen Umfangsrandes des Deckbandes 4 aufgebracht, in welchem durch Kontakt im Wesentlichen die Verspannungskräfte zwischen zwei in Umfangsrichtung benachbarten Laufschaufeln 3 am Deckband 4 übertragen werden, sondern die Verschleißschutzschicht 8 erstreckt sich axial noch weiter nach hinten. Insbesondere erstreckt sich die Verschleißschutzschicht 8 in Axialrichtung der Strömungsmaschine mindestens bis zu der Axialposition der statischen Dichtspitze 20 nach hinten. In dem vorliegenden Ausführungsbeispiel erstreckt sich die Verschleißschutzschicht 8 sogar bis an das stromabwärtige Ende des Deckbands 4.The shroud 4 is executed segmented over the circumference u. The segments are often executed as so-called z-shrouds (see Fig. 4 that look as View B Fig. 2 is shown), since their peripheral edges are not rectilinear in the axial direction of the turbomachine, but are formed substantially z-fömig. With this z-shape, it is possible to clamp in the mounted state, the circumferentially adjacent blades 3 a rotor stage with each other. In the view of Fig. 2 one looks orthogonally on the peripheral edge of a segment of the shroud 4. The downstream half of this peripheral edge is provided with a wear protection layer 8, which in the Figures 2 . 3 and 4 is shown dark. The wear protection view 8 is applied in the axial direction of the turbomachine not only in the central region of the z-fömigen peripheral edge of the shroud 4, in which by contact substantially the bracing forces between two circumferentially adjacent blades 3 are transmitted to the shroud 4, but the wear protection layer extends axially even further to the rear. In particular, the wear protection layer 8 extends in the axial direction of the turbomachine at least up to the axial position of the static sealing tip 20 to the rear. In the present embodiment, the wear protection layer 8 extends even to the downstream end of the shroud. 4

In Radialrichtung r ragt die Verschleißschutzschicht 8 über die Oberfläche des Deckbands 4 hinaus. Dies hat den Vorteil, dass bei einem ungewollten Kontakt der statischen Dichtspitze 20 mit dem Deckband 4, zum Beispiel bei einem harten Aufsetzen eines mit der Strömungsmaschine als Triebwerk versehenen Flugzeuges, die statischen Dichtspitze 20 nicht das Deckband 4 selbst, d.h. das Grundmaterial des Deckbandes berührt und dieses eventuell beschädigt, sondern lediglich die Verschleißschutzschicht 8. Wenn das Material der Verschleißschutzschicht 8 eine höhere Härte als das Material der statischen Dichtspitze 20 aufweist, wird die statische Dichtspitze 20 von dem rotierenden Laufrad 3 abgetragen oder abgeschliffen. Die statische Dichtspitze 20 kann sich beispielsweise in der Radialrichtung r leicht verkürzen. Auf diese Weise wird eine Beschädigung am Laufrad 3 verhindert. Ein Abschleifen der statischen Dichtspitze 20 durch die Verschleißschutzschicht 8 ist demgegenüber weit weniger kritisch und die statische Dichtspitze 20 kann zudem relativ einfach und kostengünstig ausgewechselt werden.In the radial direction r, the wear protection layer 8 projects beyond the surface of the shroud 4. This has the advantage that in case of an unwanted contact of the static sealing tip 20 with the shroud 4, for example in the case of a hard landing of an aircraft provided with the turbomachine as an engine, the static sealing tip 20 does not If the material of the wear protection layer 8 has a higher hardness than the material of the static sealing tip 20, the static sealing tip 20 is removed from the rotating impeller 3 or abraded. The static sealing tip 20 may be slightly shortened, for example, in the radial direction r. In this way, damage to the impeller 3 is prevented. A grinding of the static sealing tip 20 through the wear protection layer 8, however, is much less critical and the static sealing tip 20 can also be replaced relatively easily and inexpensively.

Fig. 3 zeigt das erfindungsgemäße Dichtungssystem 100 in einer Querschnittsebene (Schnitt A - A, siehe Fig. 2) mit der statischen Dichtspitze 20, dem Dichtungsträger 11, dem Laufrad 3 mit Deckband 4 und einer Verschleißschutzschicht 8 zwischen den Deckbandsegmenten. Fig. 3 shows the sealing system 100 according to the invention in a cross-sectional plane (section A - A, see Fig. 2 ) with the static sealing tip 20, the seal carrier 11, the impeller 3 with shroud 4 and a wear protection layer 8 between the shroud segments.

Das Deckband 4 ist segmentiert. Das sogenannte z-Deckband weist an den Kontaktstellen der aneinanderstoßenden Segmente Verschleißschutzschichten 7, 8 auf. Insbesondere ragt die Verschleißschutzschicht 8, welche sich in Axialrichtung weiter stromabwärts erstreckt als die Verschleißschutzschicht 7, geringfügig über die radiale Ausdehnung der Deckbandoberfläche hinaus. In Fig. 3 ist dies durch die Absatzhöhe 23 dargestellt. Aufgrund dieser Erhöhung der Verschleißschutzschicht 8 über die Oberfläche des Deckbands 4 berührt die statische Dichtspitze 20, beispielsweise im zuvor genannten Fall, zunächst die erhöhte Verschleißschutzschicht 8. Bei einer geringeren Härte des Werkstoffs der statischen Dichtspitze 20 gegenüber der Härte des Werkstoffs der Verschleißschutzschicht 8 wird die der statischen Dichtspitze 20 abgeschliffen oder verformt, ohne jedoch das Deckband 4 selbst zu berühren und zu beschädigen. Mit anderen Worten kann hier auf synergetische Weise die für den Kontakt zweier in Umfangsrichtung benachbarter Deckbänder 4 verwendete Verschleißschutzschicht 8 genutzt werden, um eine mögliche Beschädigung des Grundmaterials des Deckbands 4 durch einen Kontakt mit der statischen Dichtspitze 20 zu verhindern. Dazu ist die Verschleißschutzschicht 8 in axialer und radialer Richtung der Strömungsmaschine lediglich geringfügig größer zu dimensionieren, als dies sonst der Fall wäre.The shroud 4 is segmented. The so-called z-shroud has wear protection layers 7, 8 at the contact points of the abutting segments. In particular, the wear protection layer 8, which extends in the axial direction further downstream than the wear protection layer 7, projects slightly beyond the radial extent of the shroud surface. In Fig. 3 this is represented by the heel height 23. Due to this increase of the wear protection layer 8 over the surface of the shroud 4, the static sealing tip 20, for example, in the aforementioned case, first the increased wear protection layer 8 touched at a lower hardness of the material of the static sealing tip 20 against the hardness of the material of the wear protection layer 8 the static sealing tip 20 ground or deformed, but without touching the shroud 4 itself and damage. In other words, the wear-resistant layer 8 used for the contact of two circumferentially adjacent shrouds 4 can be synergistically used here in order to prevent possible damage to the base material of the shroud 4 by contact with the static sealing tip 20. For this purpose, the wear protection layer 8 in the axial and radial directions of the turbomachine is to be dimensioned only slightly larger than would otherwise be the case.

Fig. 4 zeigt das Deckband 4 in einer Ansicht B von radial außen (siehe Fig. 2) mit den Verschleißschutzschichten 7, 8. Die Profilform der Laufschaufelform des Laufrads 3 ist unterhalb des Deckbandes schematisch angedeutet. Fig. 4 shows the shroud 4 in a view B from the radial outside (see Fig. 2 ) with the wear protection layers 7, 8. The profile shape of the blade shape of the impeller 3 is schematically indicated below the shroud.

Die Dichtspitzen 5 des Deckbandes 4 ragen aus der Darstellungsebene heraus. Die Verschleißschutzschichten 7, 8 befinden sich an den Kontaktflächen des z-Deckbandes zu den in Umfangsrichtung angrenzenden (nicht dargestellten) Segmenten weiterer Schaufeldeckbänder. Die schattiert dargestellte Verschleißschutzschicht 8 wurde bereits in der Schnittebene der Fig. 2 gegenüber der statischen Dichtspitze 20 gezeigt.The sealing tips 5 of the shroud 4 project out of the plane of representation. The wear protection layers 7, 8 are located at the contact surfaces of the z-shroud to the circumferentially adjacent (not shown) segments of other bucket cover strips. The shaded anti-wear layer 8 was already in the cutting plane of Fig. 2 opposite the static sealing tip 20.

Fig. 5a,b zeigen zwei unterschiedliche Verläufe der radial inneren Kante, bzw. Innenkante der statischen Dichtspitze 20 in Umfangsrichtung u in einer Ansicht C (siehe Fig. 3). In Fig. 5a ist eine gerade Verlaufsform dargestellt und in Fig. 5b eine Wellenform. Die Wellenform bietet den Vorteil, dass im Kontaktfall der statischen Dichtspitze 20 mit der Verschleißschutzschicht 8 des Deckbandes 4 ein axial größerer Bereich der Verschleißschutzschicht 8 für ein Abschleifen oder ein Verformen der statischen Dichtspitze 20 nutzbar ist. Hierdurch wird bei einem Kontakt der statischen Dichtspitze 20 mit der Verschleißschutzschicht 8 der Wärmeeintrag auf ein größeres Materialvolumen verteilt, wodurch die Verschleißschutzschicht 8 lokal geringer belastet wird. Fig. 5a, b show two different courses of the radially inner edge, or inner edge of the static sealing tip 20 in the circumferential direction u in a view C (see Fig. 3 ). In Fig. 5a is a straight waveform and shown in Fig. 5b a waveform. The waveform has the advantage that in the case of contact of the static sealing tip 20 with the wear protection layer 8 of the shroud 4, an axially larger area of the wear protection layer 8 for a grinding or deformation of the static sealing tip 20 is available. As a result, upon contact of the static sealing tip 20 with the wear protection layer 8, the heat input is distributed over a larger volume of material, as a result of which the wear protection layer 8 is loaded less locally.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

aa
axial; Axialrichtungaxially; axially
rr
radial; Radialrichtungradial; radial direction
uu
Umfangsrichtungcircumferentially
HH
Durchströmungsrichtung, HauptstromFlow direction, main flow
WW
Wirbelwhirl
100, 100'100, 100 '
Dichtungssystemsealing system
11
stromaufseitiges Leitradupstream stator
22
stromabseitiges Leitraddownstream stator
33
Laufrad, LaufschaufelImpeller, blade
44
Deckbandshroud
55
Dichtspitze des DeckbandsSealing tip of the shroud
66
Laufspaltrunning gap
7, 8, 137, 8, 13
Verschleißschutzwear protection
1010
Gehäuseabschnitt (statisches Dichtungsteil)Housing section (static seal part)
1111
Dichtungsträgerseal carrier
1212
Einlaufdichtung, EinlaufbelagInlet seal, inlet lining
2020
statische Dichtspitzestatic sealing tip
2121
Halteelementretaining element
2222
RaumbegrenzerRaumbegrenzer
2323
Absatzhöhe der VerschleißschutzschichtHeel height of the wear protection layer
3030
Gehäusecasing

Claims (15)

Dichtungssystem (100) für eine axiale Strömungsmaschine, insbesondere für eine Gasturbine, umfassend ein Laufrad (3) mit einem radial außen angeordneten Deckband (4) und ein das Laufrad (3) umgebendes Gehäuse (30), wobei zwischen dem Deckband (4) und dem Gehäuse (30) ein Spalt (6) angeordnet ist, und wobei der Spalt (6) mittels einer mit dem Gehäuse (30) verbundenen Dichtung (12) und wenigstens einer am Deckband (4), gegenüber der Dichtung (12) angeordneten Dichtspitze (5) zum Verringern der Strömungsverluste durch den Spalt (6) begrenzt ist,
dadurch gekennzeichnet, dass
am stromabseitigen Endbereich der Dichtung (12) eine weitere, mit dem Gehäuse (30) verbundene statische Dichtspitze (20) zum Beeinflussen der Strömung durch den Spalt und/oder zum Beeinflussen der Strömung stromab der statischen Dichtspitze (20) angeordnet ist.
Sealing system (100) for an axial flow machine, in particular for a gas turbine, comprising an impeller (3) with a radially outer shroud (4) and a surrounding the impeller (3) housing (30), wherein between the shroud (4) and the housing (30) a gap (6) is arranged, and wherein the gap (6) by means of a housing (30) connected to the seal (12) and at least one on the shroud (4), with respect to the seal (12) arranged sealing tip (5) is limited to reduce the flow losses through the gap (6),
characterized in that
another static sealing tip (20) connected to the housing (30) for influencing the flow through the gap and / or for influencing the flow downstream of the static sealing tip (20) is arranged at the downstream end region of the seal (12).
Dichtungssystem (100) nach Anspruch 1, wobei die Dichtung (12) eine Einlaufdichtung (12) ist.The sealing system (100) of claim 1, wherein the seal (12) is an inlet seal (12). Dichtungssystem (100) nach Anspruch 1 oder 2, wobei das Deckband (4) wenigstens zwei Dichtspitzen (5) aufweist.Sealing system (100) according to claim 1 or 2, wherein the shroud (4) has at least two sealing tips (5). Dichtungssystem (100) nach einem der vorangegangenen Ansprüche, wobei die wenigstens eine Dichtspitze (5) des Deckbandes (4) stromaufseitig geneigt ist.Sealing system (100) according to one of the preceding claims, wherein the at least one sealing tip (5) of the shroud (4) is inclined upstream. Dichtungssystem (100) nach dem vorangegangenen Anspruch, wobei der Winkel (w) zwischen der Radialrichtung (r) und der Achsrichtung (a) wenigstens 15 Grad beträgt.A sealing system (100) according to the preceding claim, wherein the angle (w) between the radial direction (r) and the axial direction (a) is at least 15 degrees. Dichtungssystem (100) nach einem der vorangegangenen Ansprüche, wobei das Deckband (4) im in Radialrichtung (r) gegenüberliegenden Bereich der statischen Dichtspitze (20) einen Verschleißschutz (8) aufweist.Sealing system (100) according to one of the preceding claims, wherein the shroud (4) in the radial direction (r) opposite region of the static sealing tip (20) has a wear protection (8). Dichtungssystem (100) nach dem vorangegangenen Anspruch, wobei der Verschleißschutz (8) eine Beschichtung des Deckbandes (4) ist.Sealing system (100) according to the preceding claim, wherein the wear protection (8) is a coating of the shroud (4). Dichtungssystem (100) nach einem der beiden vorangegangenen Ansprüche, wobei der Werkstoff der statischen Dichtspitze (20) eine geringere Härte gegenüber der Härte der Verschleißschutzschicht (8) aufweist.Sealing system (100) according to one of the two preceding claims, wherein the material of the static sealing tip (20) has a lower hardness compared to the hardness of the wear protection layer (8). Dichtungssystem (100) nach einem der vorangegangenen Ansprüche, wobei das Laufrad (3) ein Turbinenlaufrad, insbesondere ein Niederdruckturbinenlaufrad, ist.Sealing system (100) according to one of the preceding claims, wherein the impeller (3) is a turbine runner, in particular a low-pressure turbine runner. Dichtungssystem (100) nach einem der vorangegangenen Ansprüche, wobei das Deckband (4) über dem Umfang (u) des Laufrads (3) segmentiert ist.Sealing system (100) according to one of the preceding claims, wherein the shroud (4) over the circumference (u) of the impeller (3) is segmented. Dichtungssystem (100) nach dem vorangegangenen Anspruch, wobei die Kontaktbereiche der Segmente (13) in Umfangsrichtung (u) den Verschleißschutz (8) aufweisen.Sealing system (100) according to the preceding claim, wherein the contact areas of the segments (13) in the circumferential direction (u) have the wear protection (8). Dichtungssystem (100) nach einem der vorangegangenen Ansprüche, wobei die statische Dichtspitze (20) mittels einem Halteelement (21) formschlüssig und/oder stoffschlüssig mit dem Gehäuse (30) verbunden ist.Sealing system (100) according to one of the preceding claims, wherein the static sealing tip (20) by means of a holding element (21) is positively and / or materially connected to the housing (30). Dichtungssystem (100) nach einem der vorangegangenen Ansprüche, wobei die statische Dichtspitze (20) an der dem Deckband (4) gegenüberliegenden Seite eine in Umfangsrichtung (u) variierende, insbesondere wellenförmige Struktur (15) aufweist.Sealing system (100) according to any one of the preceding claims, wherein the static sealing tip (20) on the side opposite the shroud (4) side in the circumferential direction (u) varying, in particular wave-shaped structure (15). Axiale Strömungsmaschine, insbesondere eine Gasturbine, mit wenigstens einer Niederdruckturbinenstufe, wobei die Niederdruckturbinenstufe ein Dichtungssystem (100) nach einem der vorangegangenen Ansprüche umfasst.An axial flow machine, in particular a gas turbine, with at least one low-pressure turbine stage, wherein the low-pressure turbine stage comprises a sealing system (100) according to one of the preceding claims. Axiale Strömungsmaschine nach dem vorangegangenen Anspruch, wobei die Strömungsmaschine ein Flugtriebwerk ist.Axial flow machine according to the preceding claim, wherein the turbomachine is an aircraft engine.
EP17198765.4A 2016-11-18 2017-10-27 Sealing system for a turbomachine and axial flowmachine Active EP3324002B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016222720.3A DE102016222720A1 (en) 2016-11-18 2016-11-18 Sealing system for an axial flow machine and axial flow machine

Publications (2)

Publication Number Publication Date
EP3324002A1 true EP3324002A1 (en) 2018-05-23
EP3324002B1 EP3324002B1 (en) 2021-06-16

Family

ID=60190693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17198765.4A Active EP3324002B1 (en) 2016-11-18 2017-10-27 Sealing system for a turbomachine and axial flowmachine

Country Status (4)

Country Link
US (1) US20180142567A1 (en)
EP (1) EP3324002B1 (en)
DE (1) DE102016222720A1 (en)
ES (1) ES2881326T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822461A1 (en) * 2019-11-15 2021-05-19 MTU Aero Engines AG Axial turbomachine sealing system
FR3107720A1 (en) * 2020-02-27 2021-09-03 Safran Aircraft Engines TURBINE AUBE, PROCESS FOR MANUFACTURING OR RECONDITIONING THE TALON DE LADITE AUBE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060407B2 (en) * 2017-06-22 2021-07-13 General Electric Company Turbomachine rotor blade
FR3100271B1 (en) * 2019-09-04 2022-08-26 Safran Aircraft Engines Turbomachine blade comprising a heel provided with an offset platform spoiler
DE102019216646A1 (en) * 2019-10-29 2021-04-29 MTU Aero Engines AG BLADE ARRANGEMENT FOR A FLOW MACHINE
WO2021199718A1 (en) * 2020-03-30 2021-10-07 株式会社Ihi Secondary flow suppression structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604797A1 (en) * 2011-12-13 2013-06-19 MTU Aero Engines GmbH Rotor blade with a rib assembly with an abrasive coating
EP2647796A1 (en) * 2012-04-04 2013-10-09 MTU Aero Engines GmbH Seal system for a turbo engine
US20150211372A1 (en) * 2014-01-30 2015-07-30 Solar Turbines Incorporated Hot isostatic pressing to heal weld cracks
EP2957718A1 (en) * 2014-06-18 2015-12-23 Siemens Aktiengesellschaft Turbine
EP3061850A1 (en) * 2015-02-25 2016-08-31 United Technologies Corporation Hard phaseless metallic coating for compressor blade tip

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694882A (en) * 1970-09-24 1972-10-03 Westinghouse Electric Corp Method for providing a corrugated seal in an elastic fluid machine
GB1423833A (en) * 1972-04-20 1976-02-04 Rolls Royce Rotor blades for fluid flow machines
US3867060A (en) * 1973-09-27 1975-02-18 Gen Electric Shroud assembly
FR2635562B1 (en) * 1988-08-18 1993-12-24 Snecma TURBINE STATOR RING ASSOCIATED WITH A TURBINE HOUSING BINDING SUPPORT
US6131910A (en) * 1992-11-19 2000-10-17 General Electric Co. Brush seals and combined labyrinth and brush seals for rotary machines
US5234318A (en) * 1993-01-22 1993-08-10 Brandon Ronald E Clip-on radial tip seals for steam and gas turbines
US6190124B1 (en) * 1997-11-26 2001-02-20 United Technologies Corporation Columnar zirconium oxide abrasive coating for a gas turbine engine seal system
US20040124231A1 (en) * 1999-06-29 2004-07-01 Hasz Wayne Charles Method for coating a substrate
US6547522B2 (en) * 2001-06-18 2003-04-15 General Electric Company Spring-backed abradable seal for turbomachinery
US6616410B2 (en) * 2001-11-01 2003-09-09 General Electric Company Oxidation resistant and/or abrasion resistant squealer tip and method for casting same
US7059821B2 (en) * 2003-05-07 2006-06-13 General Electric Company Method and apparatus to facilitate sealing within turbines
JP4285134B2 (en) * 2003-07-04 2009-06-24 株式会社Ihi Shroud segment
GB2417053B (en) * 2004-08-11 2006-07-12 Rolls Royce Plc Turbine
EP1715224A1 (en) * 2005-04-18 2006-10-25 Siemens Aktiengesellschaft Sealing for a turbomachine
US7686568B2 (en) * 2006-09-22 2010-03-30 General Electric Company Methods and apparatus for fabricating turbine engines
DE102008023326A1 (en) * 2008-05-13 2009-11-19 Mtu Aero Engines Gmbh Shroud for blades of a turbomachine and turbomachine
GB2492546A (en) * 2011-07-04 2013-01-09 Alstom Technology Ltd A labyrinth seal for an axial fluid flow turbomachine
US8858167B2 (en) * 2011-08-18 2014-10-14 United Technologies Corporation Airfoil seal
US9151174B2 (en) * 2012-03-09 2015-10-06 General Electric Company Sealing assembly for use in a rotary machine and methods for assembling a rotary machine
ES2700788T3 (en) * 2012-04-04 2019-02-19 MTU Aero Engines AG Sealing system for a turbomachine
US9291061B2 (en) * 2012-04-13 2016-03-22 General Electric Company Turbomachine blade tip shroud with parallel casing configuration
US8936431B2 (en) * 2012-06-08 2015-01-20 General Electric Company Shroud for a rotary machine and methods of assembling same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604797A1 (en) * 2011-12-13 2013-06-19 MTU Aero Engines GmbH Rotor blade with a rib assembly with an abrasive coating
EP2647796A1 (en) * 2012-04-04 2013-10-09 MTU Aero Engines GmbH Seal system for a turbo engine
US20150211372A1 (en) * 2014-01-30 2015-07-30 Solar Turbines Incorporated Hot isostatic pressing to heal weld cracks
EP2957718A1 (en) * 2014-06-18 2015-12-23 Siemens Aktiengesellschaft Turbine
EP3061850A1 (en) * 2015-02-25 2016-08-31 United Technologies Corporation Hard phaseless metallic coating for compressor blade tip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822461A1 (en) * 2019-11-15 2021-05-19 MTU Aero Engines AG Axial turbomachine sealing system
FR3107720A1 (en) * 2020-02-27 2021-09-03 Safran Aircraft Engines TURBINE AUBE, PROCESS FOR MANUFACTURING OR RECONDITIONING THE TALON DE LADITE AUBE

Also Published As

Publication number Publication date
US20180142567A1 (en) 2018-05-24
EP3324002B1 (en) 2021-06-16
DE102016222720A1 (en) 2018-05-24
ES2881326T3 (en) 2021-11-29

Similar Documents

Publication Publication Date Title
EP3324002B1 (en) Sealing system for a turbomachine and axial flowmachine
DE60029405T2 (en) Abrasion-resistant compressor stage
DE102012013160B4 (en) labyrinth seals
DE102012106175A1 (en) Structured abrasive coatings for surfaces of stationary steam turbine components
EP1898054B1 (en) Gas turbine
EP2647795B1 (en) Seal system for a turbo engine
EP2132414B1 (en) Shiplap arrangement
DE102004024683A1 (en) Sealing system for horizontal connection points of intermediate floors of steam turbines
EP1320662A1 (en) Seal system
DE3148985C2 (en) ROTOR ASSEMBLY
DE102014117262A1 (en) L-brush seal for turbomachinery applications
DE3503423A1 (en) COMPRESSOR FOR AN AXIAL FLOW MACHINE
EP2092164B1 (en) Turbomachine, particularly a gas turbine
EP1747349A1 (en) Blade for turbomachinery comprising a shroud and a weight-optimised sealing strip
EP2647796A1 (en) Seal system for a turbo engine
EP2860356B1 (en) Flow engine
EP3056684B1 (en) Axially split inner ring for a flow machine, guide blade assembly and aircraft engine
EP2811117A2 (en) Shroud assembly for a turbo engine
EP3401503A1 (en) Rotor of a turbomachine
EP3514333B1 (en) Rotor blade tip shroud for a turbo machine, rotor blade, method for producing a rotor blade cover strip and a rotor blade
EP3521562B1 (en) Blade of a turbomachine
EP2639408B1 (en) Gas turbine, guide vane for a housing of a gas turbine and method of manufacturing a guide vane
EP2410215A1 (en) Brush seal for a flow machine
EP0894945A2 (en) Turbine and turbine blading
DE102009052883A1 (en) Coupling element for mechanical coupling of blades and rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200131

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200828

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010656

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1402481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210616

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2881326

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210916

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010656

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

26N No opposition filed

Effective date: 20220317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1402481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 7

Ref country code: DE

Payment date: 20231018

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210616