EP3322547B1 - Method for producing a casting core, and a casting core - Google Patents

Method for producing a casting core, and a casting core Download PDF

Info

Publication number
EP3322547B1
EP3322547B1 EP16744851.3A EP16744851A EP3322547B1 EP 3322547 B1 EP3322547 B1 EP 3322547B1 EP 16744851 A EP16744851 A EP 16744851A EP 3322547 B1 EP3322547 B1 EP 3322547B1
Authority
EP
European Patent Office
Prior art keywords
foundry core
core
deformation
foundry
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16744851.3A
Other languages
German (de)
French (fr)
Other versions
EP3322547A1 (en
Inventor
Sebastian TEWES
Franz-Josef Feikus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nemak SAB de CV
Original Assignee
Nemak SAB de CV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemak SAB de CV filed Critical Nemak SAB de CV
Publication of EP3322547A1 publication Critical patent/EP3322547A1/en
Application granted granted Critical
Publication of EP3322547B1 publication Critical patent/EP3322547B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2273Polyurethanes; Polyisocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/103Multipart cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the invention relates to a method for producing a casting core for the casting production of a casting and a casting core as such.
  • the casting core in each case consists of a molding material which is mixed from a binder and a foundry sand and optionally added additives.
  • Cast cores of the type in question are typically used for the casting production of castings from a molten metal. They are referred to as "lost parts" because they are destroyed when the casting is removed from the mold.
  • a casting mold comprises several casting cores. These form cavities, channels and other recesses within the casting. For molds that are so However, they also form the outer contour of the casting from.
  • the cores are made in molds called “core shooters” which comprise a core box divided into upper and lower core box halves.
  • the core box delimits with its core box halves a mold cavity which depicts the casting core to be produced.
  • a molding material is shot with the core box closed with pressure. This process is called “core shooting”.
  • the casting core is cured in the core box.
  • the core box is opened by moving at least one of the core box halves to remove the casting core. If their size permits, in industrial mass production usually several casting cores are molded simultaneously in a core box.
  • Molded materials used for the production of casting cores of the type in question are usually mixed from a molding base material, for example an inorganic refractory molding sand, and a binder.
  • a molding base material for example an inorganic refractory molding sand, and a binder.
  • inorganic or organic binders are used for this purpose.
  • hot box process heat and moisture removal
  • organic binder the cores are gassed in the mold with a reaction gas to a chemical reaction of the binder with the Reaction gas to cause the solidification
  • hot box process heat and moisture removal
  • organic binder the cores are gassed in the mold with a reaction gas to a chemical reaction of the binder with the Reaction gas to cause the solidification
  • Both based on inorganic and on organic binder systems molding materials are available in the market in a variety of designs. If necessary, such molding materials contain additives in order to adjust their properties, in particular with regard to storability, flow behavior, etc.
  • the strength of filigree casting cores can also be increased by applying a foil to the circumference of the cores.
  • the object has arisen to give a method that allows the production of complex shaped or optimized in terms of their quality cores in a simple manner.
  • the invention has achieved this object by carrying out at least the steps specified in claim 1 during the production of casting cores.
  • a casting core which dissolves the abovementioned object is accordingly distinguished by the fact that it is made of a molding material which consists of a mixture of a binder and a foundry sand and optionally added additives, wherein the casting core is deformed by a deformation caused by an external force finished shape is brought.
  • a casting core can be produced in particular by using the method according to the invention.
  • the invention is based on the surprising finding, contrary to the previous estimates of the experts, that casting cores produced in a conventional manner can also be deformed at a suitable temperature if they have already been given their basic shape in a conventional core shooter. Deformation may be caused by bending, compression, tension, shear, torsional deformation, or any other deformation due to external forces applied to the respective core.
  • the deformation according to the invention allows casting cores produced from commercially available molding materials to subsequently obtain a shape which can not be produced with conventional core shooting machines at all, only with limited quality or only with a particularly high outlay.
  • the invention thus provides a high degree of design freedom and complexity in casting development. This makes it possible to implement novel casting core designs in a technically simple way. In particular, the production of undercuts is possible by the inventive subsequent forming of the cores without the need for complex core boxes with loose parts are used.
  • the process according to the invention can also be used for the subsequent optimization of properties of the core cores obtained after core shooting.
  • casting cores can be subsequently densified in the manner according to the invention with the result that they have a higher dimensional stability and improved surface properties.
  • the deformation according to the invention should be carried out at a slow deformation rate.
  • the respectively suitable maximum deformation rate can be determined experimentally in a simple manner. By means of practical tests it could be shown here that even filigree casting cores can be reliably deformed according to the invention if the deformation speed is limited to 2 mm / s at the most, in practice deformation rates of at least 0.01 mm / s are the rule should.
  • Optimal deformation speeds are in the range of 0.1 to 1.0 mm / s, in particular 0.3 to 0.7 mm / s.
  • casting cores which have an elongated, filigree shape can be safely bent, twisted, pulled or compressed when these deformation rates are selected.
  • the deformation forces to be applied in the deformation according to the invention and acting on the respective casting core from the outside can also be determined by simple experiments. Practical tests have shown here that with deformation forces which are 8 mm in diameter of a sample which is circular in cross-section in the range of 5-100 N or correspond to specific strengths of the cores of 0.2-0.6 N / mm 2 , Also filigree shaped cores can subsequently deform in accordance with the invention. This applies in particular if the deformation takes place at deformation speeds which are in the ranges mentioned in the preceding paragraph. Deformation forces of 20-80 N (corresponding to specific strengths of 0.1-0.4 N / mm 2 ), in particular 30-70 N (corresponding to specific strengths of 0.15-0.35 N / mm 2 ), have here proved to be particularly effective.
  • the invention can be applied to any type of foundry cores made of molded materials of the type in question. This applies both to mold materials containing an inorganic binder and to mold materials based on an organic binder. Practical experiments have shown here that the invention can be used particularly well in casting cores in which an organic binder is used. In this case, it is assumed that, in particular, such organic binders act in the manner of an adhesive as a result of the heating of the casting cores according to the invention and thus bond together the grains of the molding material from which the casting cores are formed.
  • the optimum deformation temperature to which the cores are heated before the deformation according to the invention can also be determined by simple experiments. Practical experiments have shown here that deformation temperatures which are in the range of 150-320 ° C, in particular 180-300 ° C, are practical. The upper limit of 300 ° C proves to be particularly important for mold materials with organic binders because otherwise there is a risk of premature deterioration of the binder.
  • the deformation temperature should be kept within the above range during the subsequent deformation, optimally maintaining a constant temperature level.
  • the heating rate when heating the cores should be 1 - 15 ° C / s, especially 4 - 8 ° C / s.
  • a heated tool for example, a convection oven or an infrared lamp can serve as the heat source for the heating according to the invention.
  • a general or local heating of the casting core by means of a concentrated hot air jet or the like.
  • the method according to the invention is also suitable for optimizing the shape of a casting core in the sense of a calibration.
  • the casting core is heated in accordance with the invention after removal from the core shooting machine and deformed by external force so that it corresponds exactly to the respective specifications of its geometry.
  • a first casting core can be produced, which has a recess.
  • a second casting core is provided, which has a projection, which is adapted to the shape of the recess of the first casting core. The second casting core can now be joined to the first casting core such that the projection of the second casting core engages in the recess of the first casting core to form a joining zone.
  • At least one of the casting cores passes through the work steps d) - f) and is thereby deformed in step e) such that in the region of the joining zone a dense positive connection is formed, by which the two casting cores are connected to each other.
  • two or more cores can be interconnected by connections, which are formed for example in the manner of plug-in or snap-in connections.
  • a first casting core with a recess (A) and a second casting core are provided, which is then positioned on the first casting core in a predetermined position, said after Positioning at least the second casting core the steps d) - f) passes through and is deformed in step e) by applying an external force such that material of the second casting core, which is arranged in the region of the recess of the first casting core, into the recess of the first casting core enters and fills this recess, so that a tight positive connection is formed, by which the two casting cores are interconnected.
  • FIGS. 1 and 3a - 4b illustrated casting cores G1, G3 are exemplary of elongated, delicate caster cores, for example, when filing cylinder heads for internal combustion engines filigree shaped ⁇ llays- or coolant channels. Cylinder heads of this type are usually cast today from cast aluminum materials.
  • the in Fig. 2 illustrated cylindrical casting core G2 is intended to mold a cavity, for example, when casting a cylinder crankcase for an internal combustion engine.
  • FIGS. 5a-5d illustrated cores G4, G5 stand for such cores, which are connected together to form a G intelligentkernkombination GK to complex shapes of cavities or channels in one of a Imagine any molten cast casting.
  • the casting cores G1 - G5 have each been produced in the so-called "PU cold box process".
  • the binder used in the PU cold box process comprises two components, namely phenol-formaldehyde resin as the first component and isocyanate as the second component. Fumigation with a tertiary amine causes a polyaddition of these two components to form polyurethane.
  • the foundry sand is in a suitable mixing unit, e.g. a vibratory mixer or blade mixer, the phenol-formaldehyde resin and the isocyanate for two to five minutes, especially three minutes, mixed.
  • a suitable mixing unit e.g. a vibratory mixer or blade mixer
  • the phenol-formaldehyde resin and the isocyanate for two to five minutes, especially three minutes, mixed.
  • the added amount of the two components of the binder may vary depending on the application and foundry sand. Typically, they are based on the added amount of molding material between 0.4 and 1.2% per part. A ratio of 0.7% per part has proved particularly favorable.
  • the ready-mixed molding material has been formed into the casting cores G1-G5 in a conventional core shooter.
  • the molding material with a shooting pressure of about 2 - 6 bar, in particular 3 bar, shot in a core box and compacted there.
  • the gassing cores G1-G5 in the core box were gassed with the gaseous catalyst, the tertiary amine, in order to effect the hardening of the cores.
  • Curing was carried out until cores G1-G5 reached a strength of 150-300 N / cm 2 typical for PU cold box cores.
  • the target was an optimal value of 220 N / cm 2 .
  • the rod-shaped casting core G1 thus produced had, for example, a circular cross-section of 10 mm and a length of 200 mm.
  • the casting core G3 was dimensioned accordingly.
  • the casting cores G1-G3 obtained in each case have now been heated to a preheating temperature of 220 ° C. in a circulating-air oven at a heating rate of 5 ° C./s.
  • the casting core G1 has been positioned with its end portions on two mutually spaced blocks B1, B2 with rounded supports. Subsequently, a force was applied by a force acting in the direction of force K.
  • This external force K has been applied by means of a stamp not shown here in detail, the center is aligned with the longitudinal extent of the G confusekerns G1 and is rounded at its coming into contact with the casting core G1 face to avoid pressure load peaks of the G confusekerns G1 in the deformation.
  • the load by the force K was quasi-static with a forming speed of 0.5 mm / s.
  • the initiated force K was 40 N.
  • the forming process was terminated after the desired deformation angle ⁇ of about 20-30 degrees was reached.
  • the casting core G1 was kept constant in a range around the deformation temperature of 220 ° C ⁇ 30 ° C.
  • the casting core G1 plastically deformed in this way has been cooled to room temperature in still air. Subsequently, it could be used in the casting process like a conventionally shaped casting core.
  • the casting core G2 like the casting core G1, has been heated in the manner described above and subsequently deformed by external force application KA with the aid of a punch-like tool, likewise not shown here, in such a way that it has the shape of an hourglass. There was a compression of the molding material, which had a positive effect on its dimensional stability and its surface texture. At the same time, the casting core has been calibrated so that its shape optimally met the geometric specifications.
  • the casting core G3 has also been heated to the deformation temperature in the manner described above for the casting core G1. Subsequently, the heated casting core G3 has been clamped with its one end in a holder and acted upon at its other end as an external force with a force acting about its longitudinal axis L torque M. In this way, the casting core G3 could be twisted about its longitudinal axis L by an angle of 90 °.
  • the two casting cores G4, G5 have also been produced in the manner described above for the casting cores G1-G3.
  • the casting core G4 has on its one end face a projection V, whereas in the associated end face of the casting core G5 a recess A has been formed, whose shape represents with a certain excess a negative of the shape of the projection V of the casting core G4.
  • the casting core G4 could be introduced with its projection V into the recess A of the casting core G5, so that the casting cores G4, G5 were joined in the region of a joining zone F delimited by the recess A.
  • the casting core G5 has been brought to a deformation temperature lying in the range of 180-300 ° C. by concentrated heating, for example in the hot air jet. Then, the casting core G5 has been acted upon by means of a suitable tool, not shown here, with an external force KX such that the material of the casting core G5 surrounding the recess A has been compressed. The material of the casting core G5 surrounding the recess A has been pressed against this projection against the projection V until the projection V is tightly enclosed by the material of the casting core G5 and a dense form-fitting connection is formed by which the casting core G4 is related in every degree of freedom fixed undetachably on the casting core G5 and the G deviskernkombination GK is formed.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines Gießkerns für die gießtechnische Herstellung eines Gussteils sowie einen Gießkern als solchen. Dabei besteht der Gießkern jeweils aus einem Formstoff, der aus einem Binder und einem Formsand sowie optional zugegebenen Additiven gemischt ist.The invention relates to a method for producing a casting core for the casting production of a casting and a casting core as such. In this case, the casting core in each case consists of a molding material which is mixed from a binder and a foundry sand and optionally added additives.

Gießkerne der hier in Rede stehenden Art werden typischerweise für die gießtechnische Herstellung von Gussteilen aus einer Metallschmelze verwendet. Sie werden als "verlorene Teile" bezeichnet, da sie zerstört werden, wenn das Gussteil aus der jeweiligen Gießform entformt wird.Cast cores of the type in question are typically used for the casting production of castings from a molten metal. They are referred to as "lost parts" because they are destroyed when the casting is removed from the mold.

Wie beispielsweise in der DE 102 09 183 A1 beschrieben, wird zur Herstellung eines Gussstücks Metallschmelze in den von der jeweiligen Gießform umschlossenen Formhohlraum abgegossen. Nach oder im Zuge der Erstarrung der Metallschmelze zu dem Gussstück wird die Gießform von dem Gussstück getrennt.Such as in the DE 102 09 183 A1 described, is poured to produce a casting molten metal in the mold cavity enclosed by the respective mold cavity. After or in the course of the solidification of the molten metal to the casting, the casting mold is separated from the casting.

Üblicherweise umfasst eine Gießform mehrere Gießkerne. Diese bilden innerhalb des Gussteils Hohlräume, Kanäle und sonstige Ausnehmungen ab. Bei Gießformen, die als so genanntes "Kernpaket" zusammengesetzt sind, formen sie jedoch auch die Außenkontur des Gussteils ab.Usually, a casting mold comprises several casting cores. These form cavities, channels and other recesses within the casting. For molds that are so However, they also form the outer contour of the casting from.

Die Gießkerne werden in Formwerkzeugen, so genannten "Kernschießmaschinen" hergestellt, die einen in eine obere und eine untere Kernkastenhälfte geteilten Kernkasten umfassen. Der Kernkasten umgrenzt mit seinen Kernkastenhälften einen den herzustellenden Gießkern abbildenden Formhohlraum. In diesen Formhohlraum wird bei geschlossenem Kernkasten mit Druck ein Formstoff geschossen. Dieser Vorgang wird als "Kernschießen" bezeichnet. Anschließend erfolgt das Aushärten des Gießkerns im Kernkasten. Dann wird der Kernkasten durch eine Bewegung mindestens einer der Kernkastenhälften geöffnet, um den Gießkern zu entnehmen. Sofern ihre Größe dies zulässt, werden in der industriellen Massenfertigung in der Regel mehrere Gießkerne gleichzeitig in einem Kernkasten abgeformt.The cores are made in molds called "core shooters" which comprise a core box divided into upper and lower core box halves. The core box delimits with its core box halves a mold cavity which depicts the casting core to be produced. In this mold cavity, a molding material is shot with the core box closed with pressure. This process is called "core shooting". Subsequently, the casting core is cured in the core box. Then, the core box is opened by moving at least one of the core box halves to remove the casting core. If their size permits, in industrial mass production usually several casting cores are molded simultaneously in a core box.

Für die Herstellung von Gießkernen der in Rede stehenden Art verwendete Formstoffe sind üblicherweise aus einem Formgrundstoff, beispielsweise einem anorganischen, feuerfesten Formsand, und einem Binder gemischt. In der Praxis werden hierzu anorganische oder organische Binder eingesetzt. Bei der Verwendung anorganischer Binder erfolgt die Aushärtung des Formstoffs im Kernkasten durch Wärmezufuhr und Feuchtigkeitsentzug ("Hot-Box-Verfahren"), wogegen bei Verwendung organischer Binder die Kerne im Formwerkzeug mit einem Reaktionsgas begast werden, um durch eine chemische Reaktion des Binders mit dem Reaktionsgas die Verfestigung zu bewirken ("Cold-Box-Verfahren"). Sowohl auf anorganischen als auch auf organischen Bindersystemen beruhende Formstoffe sind im Markt in vielfältiger Ausführung erhältlich. Dabei enthalten solche Formstoffe erforderlichenfalls Additive, um ihre Eigenschaften insbesondere im Hinblick auf Lagerfähigkeit, Fließverhalten etc. einzustellen.Molded materials used for the production of casting cores of the type in question are usually mixed from a molding base material, for example an inorganic refractory molding sand, and a binder. In practice, inorganic or organic binders are used for this purpose. When using inorganic binders, the curing of the molding material in the core box by heat and moisture removal ("hot box process"), whereas using organic binder, the cores are gassed in the mold with a reaction gas to a chemical reaction of the binder with the Reaction gas to cause the solidification ("cold box process"). Both based on inorganic and on organic binder systems molding materials are available in the market in a variety of designs. If necessary, such molding materials contain additives in order to adjust their properties, in particular with regard to storability, flow behavior, etc.

Mit den bekannten, beispielsweise in der schon erwähnten DE 102 09 183 A1 beschriebenen und marktüblichen Formstoffen ist es möglich, filigran geformte, d.h. geringe Durchmesser, langgestreckte dünne Abschnitte und ebenso fein geformte Verästelungen aufweisende Gießkerne herzustellen, deren Formstabilität ausreicht, um von der Gießkernherstellung zum Formenbau transportiert zu werden, in der jeweiligen Gießform sicher zu halten und auch die beim Abgießen der Schmelze auftretenden Belastungen aufzunehmen. Jedoch bringen es die Art ihrer Herstellung und des zu ihrer Herstellung verwendeten Formstoffs mit sich, dass die Gießkerne im hohen Maße spröde und dementsprechend bruchempfindlich sind.With the known, for example, in the already mentioned DE 102 09 183 A1 described and commercially available molding materials, it is possible to produce filigree shaped, ie small diameter, elongated thin sections and also finely shaped branching having cores whose dimensional stability is sufficient to be transported from the Gießkernherstellung to mold, to keep safe in the respective mold and also to absorb the loads occurring during the pouring of the melt. However, the nature of their preparation and the molding material used to make them implies that the cores are highly brittle and therefore fragile.

Die voranstehend beschriebene, in der industriellen Massenfertigung übliche Vorgehensweise und auf dem Einsatz wiederverwendbarer Formen beruhende Art und Weise der Herstellung bringt einige Beschränkungen bei der Formgebung der Gießkerne mit sich. So müssen im Formhohlraum des Kernkastens Ausformschrägen vorgesehen sein, um eine betriebssichere, zerstörungsfreie Entnahme des fertigen Gießkerns aus dem Kernkasten zu ermöglichen. Bei Verwendung eines in der betrieblichen Praxis üblichen zweigeteilten Kernkastens können die Gießkerne keine Hinterschneidungen aufweisen, die das Entformen behindern würden. Sollen dennoch Gießkerne mit derartigen Hinterschneidungen hergestellt werden, müssen mehrteilige Kernkastenkonstruktionen verwendet werden, die einen hohen technischen Aufwand und einen entsprechend hohen Investitionseinsatz erfordern.The above-described conventional industrial-scale manufacturing approach and reusable-mold-based manufacturing method involves some limitations in the molding of the cores. So Ausformschrägen must be provided in the mold cavity of the core box to allow a reliable, non-destructive removal of the finished casting core from the core box. When using a usual two-part core box in practice, the cores can have no undercuts that would hinder the demolding. Should Nevertheless, casting cores are produced with such undercuts, multi-part core box structures must be used, which require a high technical complexity and a correspondingly high investment investment.

Um bei der bekannten Gießkernfertigung Hinterschnitte abbilden zu können, werden so genannte "Losteile" verwendet (s. Giesserei Lexikon, 19. Auflage, 2007, Fachverlag Schiele & Schön , Stichworte "Losteil" / "Ansteckteil"). Diese werden in den Kernkasten eingesetzt, dann mit Formstoff umschlossen und mit dem Gießkern aus dem Kernkasten entnommen. Aufgrund des durch die jeweils abzubildende Hinterschneidung bedingten Ineinandergreifens von Losteil und Formstoff des Gießkerns können die Losteile erst nach der Entnahme aus dem Gießkern gezogen werden. Neben den mit ihrer Verwendung einhergehenden zusätzlichen Arbeitsgängen haben solche Losteile aus produktionstechnischer Sicht in der Serienfertigung den Nachteil, dass sehr viele Losteile im Umlauf sein müssen, um einen ordnungsgemäßen, taktgerechten Arbeitsablauf zu gewährleisten.In order to depict undercuts in the known Gießkernfertigung, so-called "loose parts" are used (s. Foundry Lexicon, 19th edition, 2007, specialist publisher Schiele & Schön , Keywords "Losteil" / "Ansteckteil"). These are inserted into the core box, then enclosed with molding material and removed with the casting core from the core box. Due to the interlocking of loose part and molding material of the casting core caused by the respective undercut, the release parts can only be pulled out of the casting core after removal. In addition to the associated with their use additional operations have such Losteile from a production point of view in mass production the disadvantage that a lot of loose parts must be in circulation to ensure a proper, timely workflow.

Hinzukommt, dass selbst bei Verwendung von mehrteiligen Kernkästen die Freiheit bei der Formgebung der Gießkerne limitiert ist. So muss in jedem Fall sichergestellt sein, dass der Formstoff so in die Kernkastenkavität geschossen werden kann, dass er den Formhohlraum vollständig füllt und ausreichend verdichtet wird.In addition, even with the use of multi-part core boxes, freedom in shaping the casting cores is limited. Thus, in any case, it must be ensured that the molding material can be shot into the core box cavity so that it completely fills the mold cavity and is sufficiently compacted.

Mit der konventionellen Gießkernherstellung lassen sich daher bestimmte Kerngeometrien, wie beispielsweise nach Art einer Sanduhr, nach Art einer gewundenen Helixgeometrien oder vergleichbar komplex geformte Körper, gar nicht oder nur mit extremem Aufwand gefertigt werden. Trotz der prinzipiell hohen Gestaltungsfreiheit, die eine auf den Prinzipien des Urformens beruhende Kernherstellung bietet, kann daher nicht das volle Gestaltungspotenzial ausgeschöpft werden, das beim Gießen mit verlorenen Kernen theoretisch möglich wäre.With the conventional Gießkernherstellung therefore certain core geometries, such as, for example, according to Art an hourglass, in the manner of a helical spiral geometries or comparable complex shaped body, not at all or only with extreme effort to be made. In spite of the principally high degree of freedom of design, which offers a core production based on the principles of original molding, it is not possible to exploit the full design potential that would theoretically be possible when casting with lost cores.

Ein Beispiel für den Versuch, komplex geformte Gießkerne aus mehreren Kernteilen zusammenzusetzen, ist in der DE 297 17 661 U1 beschrieben. Die zu dem Gießkern zusammengesetzten Kernteile werden dabei mittels eines Spreitzelements gegeneinander verriegelt.An example of the attempt to assemble complex shaped core cores from several core parts is in DE 297 17 661 U1 described. The composite core parts to the casting core are locked against each other by means of a Spreitzelements.

Gemäß der DE 10 2008 023 336 A1 lässt sich die Festigkeit auch von filigran geformten Gießkernen durch Aufbringen einer Folie auf den Umfang der Kerne steigern.According to the DE 10 2008 023 336 A1 The strength of filigree casting cores can also be increased by applying a foil to the circumference of the cores.

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik hat sich die Aufgabe ergeben, ein Verfahren zu nennen, das auf einfache Weise die Herstellung auch komplex geformter oder hinsichtlich ihrer Beschaffenheit optimierter Gießkerne ermöglicht.Against the background of the above-described prior art, the object has arisen to give a method that allows the production of complex shaped or optimized in terms of their quality cores in a simple manner.

Ebenso sollte ein entsprechend gestalteter Gießkern geschaffen werden.Likewise, a correspondingly shaped casting core should be created.

In Bezug auf das Verfahren hat die Erfindung diese Aufgabe dadurch gelöst, dass bei der Herstellung von Gießkernen mindestens die in Anspruch 1 angegebenen Arbeitsschritte durchlaufen werden.With regard to the method, the invention has achieved this object by carrying out at least the steps specified in claim 1 during the production of casting cores.

Ein die voranstehend genannte Aufgabe erfindungsgemäß lösender Gießkern zeichnet sich dementsprechend dadurch aus, dass er aus einem Formstoff hergestellt ist, der aus einer Mischung aus einem Binder und einem Formsand sowie optional zugegebenen Additiven besteht, wobei der Gießkern durch eine durch äußere Krafteinwirkung bewirkte Verformung in seine fertige Form gebracht ist. Ein solcher Gießkern lässt sich insbesondere durch Anwendung des erfindungsgemäßen Verfahrens erzeugen.A casting core which dissolves the abovementioned object is accordingly distinguished by the fact that it is made of a molding material which consists of a mixture of a binder and a foundry sand and optionally added additives, wherein the casting core is deformed by a deformation caused by an external force finished shape is brought. Such a casting core can be produced in particular by using the method according to the invention.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained below as the general inventive concept in detail.

Das erfindungsgemäße Verfahren zum Herstellen eines aus einem Formstoff, der aus einem Binder und einem Formsand sowie optional zugegebenen Additiven gemischt ist, bestehenden Gießkerns für die gießtechnische Herstellung eines Gussteils umfasst folgende Arbeitsschritte:

  1. a) Formen des Gießkerns durch Einbringen des Formstoffs in eine Gießkernform;
  2. b) Verfestigen des Formstoffs;
  3. c) Entnehmen des Gießkerns aus der Gießkernform;
  4. d) Erwärmen des Gießkerns auf eine Verformungstemperatur;
  5. e) Verformen des erwärmten Gießkerns durch Aufbringen einer Verformungskraft auf den Gießkern;
  6. f) Abkühlen des Gießkerns.
The inventive method for producing a casting core consisting of a molding material, which is mixed from a binder and a foundry sand and optionally added additives, for the casting production of a casting comprises the following steps:
  1. a) molding the Gießkerns by introducing the molding material into a Gießkernform;
  2. b) solidifying the molding material;
  3. c) removing the casting core from the casting core mold;
  4. d) heating the casting core to a deformation temperature;
  5. e) deforming the heated casting core by applying a deformation force to the casting core;
  6. f) cooling the casting core.

Die Erfindung beruht auf der überraschenden, den bisherigen Einschätzungen der Fachwelt entgegenstehenden Erkenntnis, dass sich in konventioneller Weise hergestellte Gießkerne bei einer geeigneten Temperatur auch noch verformen lassen, wenn sie bereits ihre Grundform in einer konventionellen Kernschießmaschine erhalten haben. Die Verformung kann durch Biege-, Druck-, Zug-, Schub-, Torsionsverformung oder jede andere durch Aufbringen äußerer Kräfte bewirkte Verformung auf den jeweiligen Kern bewirkt werden. Durch die erfindungsgemäße Verformung können aus handelsüblichen Formstoffen hergestellte Gießkerne nachträglich eine Form erhalten, die mit konventionellen Kernschießmaschinen gar nicht, nur mit beschränkter Qualität oder nur mit besonders hohem Aufwand erzeugt werden können.The invention is based on the surprising finding, contrary to the previous estimates of the experts, that casting cores produced in a conventional manner can also be deformed at a suitable temperature if they have already been given their basic shape in a conventional core shooter. Deformation may be caused by bending, compression, tension, shear, torsional deformation, or any other deformation due to external forces applied to the respective core. The deformation according to the invention allows casting cores produced from commercially available molding materials to subsequently obtain a shape which can not be produced with conventional core shooting machines at all, only with limited quality or only with a particularly high outlay.

Die Erfindung gewährt so ein hohes Maß an Gestaltungsfreiheit und Komplexität bei der Gussteilentwicklung. Damit können neuartige Gießkerndesigns technisch einfach umgesetzt werden. Insbesondere wird durch das erfindungsgemäße nachträgliche Umformen der Kerne die Erzeugung von Hinterschnitten möglich, ohne dass dazu komplexe Kernkästen mit Losteilen zum Einsatz kommen müssen.The invention thus provides a high degree of design freedom and complexity in casting development. This makes it possible to implement novel casting core designs in a technically simple way. In particular, the production of undercuts is possible by the inventive subsequent forming of the cores without the need for complex core boxes with loose parts are used.

Auch kann das erfindungsgemäße Verfahren zur nachträglichen Optimierung von Eigenschaften der nach dem Kernschießen erhaltenen Gießkerne eingesetzt werden. So lassen sich Gießkerne in der erfindungsgemäßen Weise nachträglich verdichten mit dem Erfolg, dass sie eine höhere Formstabilität und verbesserte Oberflächenbeschaffenheit haben.The process according to the invention can also be used for the subsequent optimization of properties of the core cores obtained after core shooting. Thus, casting cores can be subsequently densified in the manner according to the invention with the result that they have a higher dimensional stability and improved surface properties.

Abhängig von der Sprödigkeit, das der jeweilige Formstoff bei Erwärmung noch zeigt, und unter Berücksichtigung der Grundform, die der jeweilige Gießkern nach dem Entnehmen aus der Kernschießmaschine hat, sollte die erfindungsgemäß vorgenommene Verformung mit einer langsamen Verformungsgeschwindigkeit erfolgen. Die jeweils geeignete maximale Verformungsgeschwindigkeit kann auf einfache Weise experimentell ermittelt werden. Anhand von praktischen Tests konnte hier gezeigt werden, dass sich auch filigran geformte Gießkerne betriebssicher in erfindungsgemäßer Weise verformen lassen, wenn die Verformungsgeschwindigkeit auf höchstens 2 mm/s beschränkt ist, wobei in der Praxis Verformungsgeschwindigkeiten von mindestens 0,01 mm/s die Regel sein sollten. Optimale Verformungsgeschwindigkeiten liegen im Bereich von 0,1 - 1,0 mm/s, insbesondere 0,3 - 0,7 mm/s. Bei Wahl dieser Verformungsgeschwindigkeiten lassen sich insbesondere Gießkerne, die eine langgestreckte, filigrane Form besitzen, sicher biegen, tordieren, ziehen oder stauchen.Depending on the brittleness that still shows the respective molding material when heated, and taking into account the basic shape, which has the respective core after removal from the core shooting machine, the deformation according to the invention should be carried out at a slow deformation rate. The respectively suitable maximum deformation rate can be determined experimentally in a simple manner. By means of practical tests it could be shown here that even filigree casting cores can be reliably deformed according to the invention if the deformation speed is limited to 2 mm / s at the most, in practice deformation rates of at least 0.01 mm / s are the rule should. Optimal deformation speeds are in the range of 0.1 to 1.0 mm / s, in particular 0.3 to 0.7 mm / s. In particular, casting cores which have an elongated, filigree shape can be safely bent, twisted, pulled or compressed when these deformation rates are selected.

Auch die bei der erfindungsgemäßen Verformung aufzubringenden, von außen auf den jeweiligen Gießkern wirkenden Verformungskräfte können durch einfache Experimente ermittelt werden. Praktische Erprobungen haben hier gezeigt, dass sich mit Verformungskräften, die bei 8 mm betragenden Durchmesser einer im Querschnitt kreisrunden Proben im Bereich von 5 - 100 N liegen bzw. spezifischen Festigkeiten der Gießkerne von 0,2 - 0,6 N/mm2 entsprechen, auch filigran geformte Gießkerne nachträglich in erfindungsgemäßer Weise verformen lassen. Dies gilt insbesondere dann, wenn die Verformung mit Verformungsgeschwindigkeiten erfolgt, die in den im voranstehenden Absatz genannten Bereichen liegen. Verformungskräfte von 20 - 80 N (entsprechend spezifischen Festigkeiten von 0,1 - 0,4 N/mm2), insbesondere 30 - 70 N (entsprechend spezifischen Festigkeiten von 0,15 - 0,35 N/mm2), haben sich hier als besonders wirkungsvoll erwiesen.The deformation forces to be applied in the deformation according to the invention and acting on the respective casting core from the outside can also be determined by simple experiments. Practical tests have shown here that with deformation forces which are 8 mm in diameter of a sample which is circular in cross-section in the range of 5-100 N or correspond to specific strengths of the cores of 0.2-0.6 N / mm 2 , Also filigree shaped cores can subsequently deform in accordance with the invention. This applies in particular if the deformation takes place at deformation speeds which are in the ranges mentioned in the preceding paragraph. Deformation forces of 20-80 N (corresponding to specific strengths of 0.1-0.4 N / mm 2 ), in particular 30-70 N (corresponding to specific strengths of 0.15-0.35 N / mm 2 ), have here proved to be particularly effective.

Grundsätzlich lässt sich die Erfindung bei jeder Art von aus Formstoffen der hier in Rede stehenden Art hergestellten Gießkernen anwenden. Dies gilt sowohl für Formstoffe, die einen anorganischen Binder enthalten, als auch für Formstoffe, die auf einem organischen Binder basieren. Praktische Versuche haben hier ergeben, dass sich die Erfindung besonders gut bei Gießkernen nutzen lässt, bei denen ein organischer Binder zum Einsatz kommt. Dabei wird davon ausgegangen, dass insbesondere derartige organische Binder in Folge der erfindungsgemäßen Erwärmung der Gießkerne nach Art eines Klebers wirken und so die Körner des Formstoffs, aus dem die Gießkerne geformt sind, miteinander verkleben.In principle, the invention can be applied to any type of foundry cores made of molded materials of the type in question. This applies both to mold materials containing an inorganic binder and to mold materials based on an organic binder. Practical experiments have shown here that the invention can be used particularly well in casting cores in which an organic binder is used. In this case, it is assumed that, in particular, such organic binders act in the manner of an adhesive as a result of the heating of the casting cores according to the invention and thus bond together the grains of the molding material from which the casting cores are formed.

Auch die jeweils optimale Verformungstemperatur, auf die die Gießkerne vor der erfindungsgemäßen Verformung erwärmt werden, kann durch einfache Experimente ermittelt werden. Praktische Versuche haben hier ergeben, dass Verformungstemperaturen, die im Bereich von 150 - 320 °C, insbesondere 180 - 300 °C, liegen, praxisgerecht sind. Die Obergrenze von 300 °C erweist sich insbesondere bei Formstoffen mit organischen Bindern als wichtig, weil andernfalls die Gefahr eines vorzeitigen Verfalls des Binders besteht.The optimum deformation temperature to which the cores are heated before the deformation according to the invention can also be determined by simple experiments. Practical experiments have shown here that deformation temperatures which are in the range of 150-320 ° C, in particular 180-300 ° C, are practical. The upper limit of 300 ° C proves to be particularly important for mold materials with organic binders because otherwise there is a risk of premature deterioration of the binder.

Die Verformungstemperatur sollte während der nachträglichen Verformung im voranstehend genannten Bereich gehalten werden, wobei optimaler Weise ein konstantes Temperaturlevel eingehalten wird.The deformation temperature should be kept within the above range during the subsequent deformation, optimally maintaining a constant temperature level.

Die Aufheizrate bei der Erwärmung der Gießkerne sollte 1 - 15 °C/s, insbesondere 4 - 8 °C/s, betragen.The heating rate when heating the cores should be 1 - 15 ° C / s, especially 4 - 8 ° C / s.

Für die erfindungsgemäße Erwärmung können beispielsweise ein beheiztes Werkzeug, ein Umluftofen oder eine Infrarotlampe als Wärmequelle dienen. Denkbar ist auch eine allgemeine oder lokale Erwärmung des Gießkerns mittels eines konzentrierten heißen Luftstrahls oder desgleichen.For example, a heated tool, a convection oven or an infrared lamp can serve as the heat source for the heating according to the invention. Also conceivable is a general or local heating of the casting core by means of a concentrated hot air jet or the like.

Das erfindungsgemäße Verfahren eignet sich auch, um im Sinne einer Kalibrierung die Form eines Gießkerns zu optimieren. Dazu wird der Gießkern nach der Entformung aus der Kernschießmaschine in erfindungsgemäßer Weise erwärmt und durch äußere Krafteinwirkung so verformt, dass er den jeweiligen Vorgaben an seine Geometrie exakt entspricht.The method according to the invention is also suitable for optimizing the shape of a casting core in the sense of a calibration. For this purpose, the casting core is heated in accordance with the invention after removal from the core shooting machine and deformed by external force so that it corresponds exactly to the respective specifications of its geometry.

Ebenso ist es denkbar, durch eine erfindungsgemäße Verformung zwei Kerne form- oder kraftschlüssig zu fügen, die andernfalls miteinander verklebt werden müssten. Hierzu kann im Zuge der Ausführung der Arbeitsschritte a) - c) ein erster Gießkern erzeugt werden, der eine Ausnehmung aufweist. Daneben wird ein zweiter Gießkern bereitgestellt, der einen Vorsprung aufweist, welcher an die Form der Ausnehmung des ersten Gießkerns angepasst ist. Der zweite Gießkern kann nun so mit dem ersten Gießkern gefügt werden, dass der Vorsprung des zweiten Gießkerns unter Ausbildung einer Fügezone in die Ausnehmung des ersten Gießkerns greift. Anschließend durchläuft mindestens einer der Gießkerne die Arbeitsschritte d) - f) und wird dabei im Arbeitsschritt e) derart verformt, dass im Bereich der Fügezone eine dichte formschlüssige Verbindung gebildet ist, durch die die beiden Gießkerne miteinander verbunden sind. Auf diese Art und Weise lassen sich zwei oder mehr Gießkerne durch Verbindungen, die beispielsweise nach Art von Steck- oder Schnappverbindungen ausgebildet sind, miteinander verbinden.Likewise, it is conceivable to add two cores positively or non-positively by an inventive deformation, which would otherwise have to be glued together. For this purpose, in the course of carrying out the steps a) -c), a first casting core can be produced, which has a recess. In addition, a second casting core is provided, which has a projection, which is adapted to the shape of the recess of the first casting core. The second casting core can now be joined to the first casting core such that the projection of the second casting core engages in the recess of the first casting core to form a joining zone. Subsequently, at least one of the casting cores passes through the work steps d) - f) and is thereby deformed in step e) such that in the region of the joining zone a dense positive connection is formed, by which the two casting cores are connected to each other. In this way, two or more cores can be interconnected by connections, which are formed for example in the manner of plug-in or snap-in connections.

Alternativ zur Bereitstellung eines Gießkerns mit einem an die Ausnehmung des anderen Gießkerns angepassten Vorsprung ist es auch möglich, einen ohne ausgeprägten Vorsprung ausgebildeten Gießkern an dem mit der Ausnehmung versehenen ersten Gießkern ordnungsgemäß zu positionieren und dann Material des zweiten Gießkerns in die Öffnung des ersten Gießkerns zu drücken. Hierzu kann gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens durch Ausführung der Arbeitsschritte a) - c) ein erster Gießkern mit einer Ausnehmung (A) erzeugt und ein zweiter Gießkern bereitgestellt werden, der dann am ersten Gießkern in einer vorbestimmten Lage positioniert wird, wobei nach dem Positionieren mindestens der zweite Gießkern die Arbeitsschritte d) - f) durchläuft und im Arbeitsschritt e) durch Aufbringen einer äußeren Kraft derart verformt wird, dass Material des zweiten Gießkerns, welches im Bereich der Ausnehmung des ersten Gießkerns angeordnet ist, in die Ausnehmung des ersten Gießkerns eintritt und diese Ausnehmung füllt, so dass eine dichte formschlüssige Verbindung gebildet ist, durch die die beiden Gießkerne miteinander verbunden sind. Auf diesem Weg wird nach Art eines Durchsetzfügeverfahrens eine form- oder kraftschlüssige Verbindung zwischen den Gießkernen geschaffen. Dabei können selbstverständlich an dem Gießkern, dessen Material in die Ausnehmung des jeweils anderen Gießkerns gedrückt wird, Marken, Absätze, Erhebungen oder desgleichen vorhanden sein, um die ordnungsgemäße Positionierung der Gießkerne aneinander zu erleichtern. Handelt es sich bei der Ausnehmung des ersten Gießkerns um eine Durchgangsöffnung, so ist es auch denkbar, das Material des zweiten Gießkerns soweit durch die Ausnehmung zu drücken, dass es auf der zum zweiten Gießkern gegenüberliegenden Seite sich verbreitert und eine feste Verbindung zwischen den Gießkernen nach Art einer Nietverbindung geschaffen ist.As an alternative to providing a casting core with a projection adapted to the recess of the other casting core, it is also possible to properly position a casting core without pronounced projection on the first casting core provided with the recess and then feed material of the second casting core into the opening of the first casting core to press. For this purpose, according to a further embodiment of the method according to the invention by executing the steps a) - c), a first casting core with a recess (A) and a second casting core are provided, which is then positioned on the first casting core in a predetermined position, said after Positioning at least the second casting core the steps d) - f) passes through and is deformed in step e) by applying an external force such that material of the second casting core, which is arranged in the region of the recess of the first casting core, into the recess of the first casting core enters and fills this recess, so that a tight positive connection is formed, by which the two casting cores are interconnected. In this way, a positive or non-positive connection between the casting cores is created in the manner of a clinching process. It can of course on the casting, whose material in the Recess of the other core is pressed, marks, paragraphs, surveys or the like may be present to facilitate the proper positioning of the cores to each other. If the recess of the first casting core is a passage opening, it is also conceivable to push the material of the second casting core through the recess so far that it widens on the side opposite the second casting core and establishes a firm connection between the casting cores Type of riveted joint is created.

Nachfolgend wird die Erfindung anhand einer Ausführungsbeispiele zeigenden Zeichnung näher erläutert. Deren Figuren zeigen jeweils schematisch:

Fig. 1
einen stabförmigen Gießkern vor und nach einer Verformung in seitlicher Ansicht, wobei die Form vor der Verformung gestrichelt und die Form nach der Verformung durchgezogen dargestellt ist;
Fig. 2
einen quaderförmigen Gießkern vor und nach einer Verformung in seitlicher Ansicht, wobei die Form vor der Verformung gestrichelt und die Form nach der Verformung durchgezogen dargestellt ist;
Fig. 3a
einen weiteren stabförmigen Gießkern mit einer Vielzahl von daran angeformten Abzweigungen vor einer Verformung in seitlicher Ansicht;
Fig. 3b
den Gießkern gemäß Fig. 3a in stirnseitiger Ansicht;
Fig. 4a
den Gießkern gemäß Fig. 3 nach einer Verformung in seitlicher Ansicht;
Fig. 4b
den Gießkern gemäß Fig. 4a in stirnseitiger Ansicht;
Fig. 5a - 5d
zwei Gießkerne in den verschiedenen Arbeitsschritten, die beim Verbinden dieser Gießkerne durchgeführt werden, jeweils in seitlicher, teilgeschnittener Ansicht.
The invention will be explained in more detail with reference to an exemplary embodiments showing drawing. Their figures show each schematically:
Fig. 1
a rod-shaped casting core before and after a deformation in a lateral view, wherein the mold is shown in dashed lines before the deformation and the shape after the deformation is shown drawn through;
Fig. 2
a cuboid casting core before and after a deformation in a lateral view, wherein the mold is shown in dashed lines before the deformation and the shape is shown drawn through after the deformation;
Fig. 3a
another rod-shaped casting core with a plurality of branches formed thereon before deformation in a lateral view;
Fig. 3b
the casting core according to Fig. 3a in frontal view;
Fig. 4a
the casting core according to Fig. 3 after a deformation in a lateral view;
Fig. 4b
the casting core according to Fig. 4a in frontal view;
Fig. 5a - 5d
two casting cores in the different work steps that are performed when connecting these cores, each in a side, partially cutaway view.

Die in den Figuren 1 und 3a - 4b dargestellten Gießkerne G1, G3 stehen beispielhaft für langgestreckte, feingliedrige Gießkerne, die beispielsweise beim Gießen von Zylinderköpfen für Verbrennungsmotoren filigran geformte Ölversorgungs- oder Kühlmittelkanäle abbilden. Zylinderköpfe dieser Art werden heute üblicherweise aus Aluminiumgusswerkstoffen gegossen.The in the FIGS. 1 and 3a - 4b illustrated casting cores G1, G3 are exemplary of elongated, delicate caster cores, for example, when filing cylinder heads for internal combustion engines filigree shaped Ölversorgungs- or coolant channels. Cylinder heads of this type are usually cast today from cast aluminum materials.

Der in Fig. 2 dargestellte zylindrische Gießkern G2 ist dazu vorgesehen, beispielsweise beim Gießen eines Zylinderkurbelgehäuses für einen Verbrennungsmotor eine Kavität abzuformen.The in Fig. 2 illustrated cylindrical casting core G2 is intended to mold a cavity, for example, when casting a cylinder crankcase for an internal combustion engine.

Die in den Figuren 5a - 5d dargestellten Gießkerne G4,G5 stehen für solche Gießkerne, die miteinander zu einer Gießkernkombination GK verbunden werden, um komplexe Formen von Hohlräumen oder Kanälen in einem aus einer beliebigen Metallschmelze gegossenen Gussteil abzubilden.The in the FIGS. 5a-5d illustrated cores G4, G5 stand for such cores, which are connected together to form a Gießkernkombination GK to complex shapes of cavities or channels in one of a Imagine any molten cast casting.

Die Gießkerne G1 - G5 sind jeweils im so genannten "PU Cold-Box-Verfahren" hergestellt worden.The casting cores G1 - G5 have each been produced in the so-called "PU cold box process".

Der beim PU Cold Box Verfahren zum Einsatz kommende Binder umfasst zwei Komponenten, nämlich Phenol-Formaldehyd-Harz als erste Komponente und Isocyanat als zweite Komponente. Durch Begasung mit einem tertiären Amin wird eine Polyaddition dieser beiden Komponenten zu Polyurethan bewirkt.The binder used in the PU cold box process comprises two components, namely phenol-formaldehyde resin as the first component and isocyanate as the second component. Fumigation with a tertiary amine causes a polyaddition of these two components to form polyurethane.

Zur Herstellung des Formstoffs ist der Gießereisand in einem geeigneten Mischaggregat, z.B. einem Schwingmischer oder Flügelmischer, dem Phenol-Formaldehyd-Harz und dem Isocyanat für zwei bis fünf Minuten, insbesondere drei Minuten, vermischt. Die zugegebene Menge an den beiden Komponenten des Binders können je nach Anwendung und Gießereisand variieren. Typischerweise liegen sie bezogen auf die zugegebene Menge an Formstoff zwischen 0,4 und 1,2 % je Teil. Als besonders günstig hat sich ein Verhältnis von 0,7 % je Teil herausgestellt.For the production of the molding material, the foundry sand is in a suitable mixing unit, e.g. a vibratory mixer or blade mixer, the phenol-formaldehyde resin and the isocyanate for two to five minutes, especially three minutes, mixed. The added amount of the two components of the binder may vary depending on the application and foundry sand. Typically, they are based on the added amount of molding material between 0.4 and 1.2% per part. A ratio of 0.7% per part has proved particularly favorable.

Wenn hier von "Teilen" als Dosiermaß die Rede ist, so wird darunter verstanden, dass die Menge des jeweils in Teilen abgemessenen Bestandteils mithilfe eines für alle Bestandteile gleichen Einheitsmaßes abgemessen wird und die erfindungsgemäß für die einzelnen Bestandteile jeweils vorgesehenen "Teile" das jeweilige Vielfache dieses Einheitsmaßes bezeichnen.If "parts" is mentioned here as a metering measure, it is understood that the quantity of the component measured in each case is measured with the aid of a unit measure which is the same for all components and the "parts" provided in accordance with the invention for the individual components are the respective multiple denote this unitary measure.

Der fertig gemischte Formstoff ist in einer konventionellen Kernschießmaschine zu den Gießkernen G1 - G5 geformt worden. Dabei ist der Formstoff mit einem Schießdruck von circa 2 - 6 bar, insbesondere 3 bar, in einen Kernkasten geschossen und dort verdichtet worden. Anschließend erfolgte die Begasung der Gießkerne G1 - G5 im Kernkasten mit dem gasförmigen Katalysator, dem tertiären Amin, um die Aushärtung der Kerne zu bewirken. Der Aushärtungsvorgang wurde durchgeführt, bis die Gießkerne G1 - G5 eine für PU Cold-Box-Kerne typische Festigkeit von 150 - 300 N/cm2 erreicht hatten. Als Zielvorgabe galt hier ein als optimal angesehener Wert von 220 N/cm2.The ready-mixed molding material has been formed into the casting cores G1-G5 in a conventional core shooter. Here, the molding material with a shooting pressure of about 2 - 6 bar, in particular 3 bar, shot in a core box and compacted there. Subsequently, the gassing cores G1-G5 in the core box were gassed with the gaseous catalyst, the tertiary amine, in order to effect the hardening of the cores. Curing was carried out until cores G1-G5 reached a strength of 150-300 N / cm 2 typical for PU cold box cores. The target was an optimal value of 220 N / cm 2 .

Der so erzeugte stabförmige Gießkern G1 wies beispielsweise einen kreisförmigen Querschnitt von 10 mm und eine Länge von 200 mm auf. Der Gießkern G3 war entsprechend dimensioniert.The rod-shaped casting core G1 thus produced had, for example, a circular cross-section of 10 mm and a length of 200 mm. The casting core G3 was dimensioned accordingly.

Die jeweils erhaltenen Gießkerne G1 - G3 sind nun in einem Umluftofen mit einer Aufheizrate von 5 °C/s auf eine Vorwärmtemperatur von 220 °C durcherwärmt worden.The casting cores G1-G3 obtained in each case have now been heated to a preheating temperature of 220 ° C. in a circulating-air oven at a heating rate of 5 ° C./s.

Die so erwärmten Gießkerne G1 - G3 sind anschließend verformt worden.The thus heated casting cores G1 - G3 have subsequently been deformed.

Der Gießkern G1 ist dazu mit seinen Endabschnitten auf zwei beabstandet zueinander angeordnete Böcke B1,B2 mit abgerundeten Auflagen positioniert worden. Anschließend erfolgte eine Kraftbeaufschlagung durch eine in Schwerkraftrichtung wirkende Kraft K. Diese äußere Kraft K ist mittels eines hier im Einzelnen nicht dargestellten Stempels aufgebracht worden, der mittig zur Längserstreckung des Gießkerns G1 ausgerichtet ist und an seiner mit dem Gießkern G1 in Kontakt kommenden Stirnfläche abgerundet ist, um Druckbelastungsspitzen des Gießkerns G1 bei der Verformung zu vermeiden. Die Belastung durch die Kraft K erfolgte quasi-statisch mit einer Umformgeschwindigkeit von 0,5 mm/s. Die dabei eingeleitete Kraft K betrug 40 N.The casting core G1 has been positioned with its end portions on two mutually spaced blocks B1, B2 with rounded supports. Subsequently, a force was applied by a force acting in the direction of force K. This external force K has been applied by means of a stamp not shown here in detail, the center is aligned with the longitudinal extent of the Gießkerns G1 and is rounded at its coming into contact with the casting core G1 face to avoid pressure load peaks of the Gießkerns G1 in the deformation. The load by the force K was quasi-static with a forming speed of 0.5 mm / s. The initiated force K was 40 N.

Der Umformprozess wurde beendet, nachdem der angestrebte Verformungswinkel β von ca. 20 - 30 Grad erreicht war. Während des Verformungsvorgangs ist der Gießkern G1 konstant in einem Bereich um die Verformungstemperatur von 220 °C ± 30 °C gehalten worden.The forming process was terminated after the desired deformation angle β of about 20-30 degrees was reached. During the deformation process, the casting core G1 was kept constant in a range around the deformation temperature of 220 ° C ± 30 ° C.

Der auf diese Weise plastisch verformte Gießkern G1 ist an ruhender Luft bis auf Raumtemperatur abgekühlt worden. Anschließend konnte er wie ein konventionell geformter Gießkern im Gießprozess verwendet werden.The casting core G1 plastically deformed in this way has been cooled to room temperature in still air. Subsequently, it could be used in the casting process like a conventionally shaped casting core.

Der Gießkern G2 ist wie der Gießkern G1 in der voranstehend beschriebenen Weise erwärmt und anschließend mit Hilfe eines stempelartigen, hier ebenfalls nicht gezeigten Werkzeugs durch äußere Kraftbeaufschlagung KA so verformt worden, dass er die Form einer Sanduhr erhalten hat. Dabei kam es zu einer Verdichtung des Formstoffs, die sich positiv auf seine Formstabilität und seine Oberflächenbeschaffenheit auswirkte. Gleichzeitig ist der Gießkern kalibriert worden, so dass seine Form optimal den geometrischen Vorgaben entsprach.The casting core G2, like the casting core G1, has been heated in the manner described above and subsequently deformed by external force application KA with the aid of a punch-like tool, likewise not shown here, in such a way that it has the shape of an hourglass. There was a compression of the molding material, which had a positive effect on its dimensional stability and its surface texture. At the same time, the casting core has been calibrated so that its shape optimally met the geometric specifications.

Der Gießkern G3 ist ebenso in der oben für den Gießkern G1 beschriebenen Weise auf die Verformungstemperatur erwärmt worden. Anschließend ist der erwärmte Gießkern G3 mit seinem einen Ende in eine Halterung eingespannt und an seinem anderen Ende als äußere Kraft mit einem um seine Längsachse L wirkenden Drehmoment M beaufschlagt worden. Auf diese Weise konnte der Gießkern G3 um seine Längsachse L um einen Winkel von 90° tordiert werden.The casting core G3 has also been heated to the deformation temperature in the manner described above for the casting core G1. Subsequently, the heated casting core G3 has been clamped with its one end in a holder and acted upon at its other end as an external force with a force acting about its longitudinal axis L torque M. In this way, the casting core G3 could be twisted about its longitudinal axis L by an angle of 90 °.

Die beiden Gießkerne G4,G5 sind ebenfalls in der voranstehend für die Gießkerne G1 - G3 beschriebenen Art erzeugt worden. Dabei wies der Gießkern G4 an seiner einen Stirnseite einen Vorsprung V auf, wogegen in die zugeordnete Stirnseite des Gießkerns G5 eine Ausnehmung A eingeformt worden ist, deren Form mit einem gewissen Übermaß ein Negativ der Form des Vorsprungs V des Gießkerns G4 darstellt.The two casting cores G4, G5 have also been produced in the manner described above for the casting cores G1-G3. In this case, the casting core G4 has on its one end face a projection V, whereas in the associated end face of the casting core G5 a recess A has been formed, whose shape represents with a certain excess a negative of the shape of the projection V of the casting core G4.

Dementsprechend konnte der Gießkern G4 mit seinem Vorsprung V in die Ausnehmung A des Gießkerns G5 eingeführt werden, so dass die Gießkerne G4,G5 im Bereich einer durch die Ausnehmung A umgrenzten Fügezone F gefügt waren.Accordingly, the casting core G4 could be introduced with its projection V into the recess A of the casting core G5, so that the casting cores G4, G5 were joined in the region of a joining zone F delimited by the recess A.

Anschließend ist mindestens der Gießkern G5 durch eine konzentrierte Erwärmung beispielsweise im heißen Luftstrahl auf eine im Bereich vom 180 - 300 °C liegende Verformungstemperatur gebracht worden. Dann ist der Gießkern G5 mit Hilfe eines geeigneten, hier nicht gezeigten Werkzeugs mit einer äußeren Kraft KX so beaufschlagt worden, dass das die Ausnehmung A umgebende Material des Gießkerns G5 zusammengepresst worden ist. Das die Ausnehmung A umgebende Material des Gießkerns G5 ist auf diese Wese gegen den Vorsprung V gedrückt worden, bis der Vorsprung V vom Material des Gießkerns G5 dicht umschlossen ist und eine dichte formschlüssige Verbindung gebildet ist, durch die der Gießkern G4 in jedem Freiheitsgrad in Bezug auf den Gießkern G5 unlösbar festgelegt und die Gießkernkombination GK gebildet ist.Subsequently, at least the casting core G5 has been brought to a deformation temperature lying in the range of 180-300 ° C. by concentrated heating, for example in the hot air jet. Then, the casting core G5 has been acted upon by means of a suitable tool, not shown here, with an external force KX such that the material of the casting core G5 surrounding the recess A has been compressed. The material of the casting core G5 surrounding the recess A has been pressed against this projection against the projection V until the projection V is tightly enclosed by the material of the casting core G5 and a dense form-fitting connection is formed by which the casting core G4 is related in every degree of freedom fixed undetachably on the casting core G5 and the Gießkernkombination GK is formed.

BEZUGSZEICHENREFERENCE NUMBERS

ββ
Verformungswinkeldeformation angle
AA
Ausnehmung des Gießkerns G5Recess of the casting core G5
B1,B2B1, B2
Böckebucks
FF
Fügezonejoint zone
G1 - G5G1 - G5
Gießkernecores
GKGK
GießkernkombinationGießkernkombination
K,KA,KXK, KA, KX
äußere Kräfteexternal forces
LL
Längsachse des Gießkerns G3Longitudinal axis of the casting core G3
MM
Drehmomenttorque
VV
Vorsprung des Gießkerns G4Lead of Gießkern G4

Claims (11)

  1. Method for producing a foundry core (G1 - G5) for casting a cast part, wherein the foundry core (G1 - G5) consists of a mould material which is mixed from a binder and a mould sand, as well as optionally added additives, comprising the following production steps:
    a) moulding the foundry core (G1 - G5) by introducing the mould material into a foundry core mould;
    b) hardening the mould material;
    c) removing the foundry core (G1 - G5) from the foundry core mould;
    d) heating the foundry core (G1 - G5) to a deformation temperature;
    e) deforming the heated foundry core (G1 - G5) by applying a deformation force (K, KA, KX, M) to the foundry core (G1 - G5);
    f) cooling the foundry core (G1 - G5).
  2. Method according to Claim 1, characterised in that the deformation force (K, KA, KX, M) brings about a bending deformation, compressive deformation, tensile deformation, shear deformation or torsional deformation of the foundry core (G1 - G5).
  3. Method according to any one of the preceding claims, characterised in that the deformation is carried out at a deformation rate of at most 2 mm/s.
  4. Method according to any one of the preceding claims, characterised in that the deformation force is 5 - 100 N.
  5. Method according to any one of the preceding claims, characterised in that the foundry core (G1 - G5) is fully hardened in production step b).
  6. Method according to any one of the preceding claims, characterised in that the binder of the mould material is an organic binder.
  7. Method according to any one of the preceding claims, characterised in that the deformation temperature is 180 - 300°C.
  8. Method according to any one of the preceding claims, characterised in that the heating-up rate when heating the foundry cores to the deformation temperature is 1 - 15°C/s.
  9. Method according to any one of the preceding claims, characterised in that by carrying out the production steps a) - c) a first foundry core (G5) is produced with a recess (A), in that a second foundry core (G4) is provided which has a protrusion (V) which is adapted to the shape of the recess (A) of the first foundry core (G4), in that the second foundry core (G5) is joined to the first foundry core (G4) such that the protrusion (V) of the second foundry core (G5) engages with the recess (A) of the first foundry core (G5) forming a joining zone (F), and in that subsequently at least one of the foundry cores (G4, G5) passes through the production steps d) - f) and in production step e) is deformed in such a way that in the area of the joining zone (F) a tight form-fit connection is formed, by means of which the two foundry cores (G4, G5) are joined together.
  10. Method according to any one of Claims 1 to 9, characterised in that by carrying out the production steps a) - c) a first foundry core is produced with a recess (A), in that a second foundry core is provided and this foundry core is positioned on the first foundry core in a predetermined position, in that at least the second foundry core passes through production steps d) - f) and in production step e) by applying an external force is deformed in such a way that material of the second foundry core which is located in the area of the recess of the first foundry core enters the recess of the first foundry core and fills this recess, so that a tight form-fit connection is formed, by means of which the two foundry cores are joined together.
  11. Foundry core which is produced from a mould material which consists of a mixture of a binder and a mould sand, as well as optionally added additives, characterised in that the foundry core (G1 - G5) is brought into its final shape by means of a deformation brought about by external application of force (K, KA, KX, M).
EP16744851.3A 2015-07-14 2016-07-14 Method for producing a casting core, and a casting core Active EP3322547B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015111418.6A DE102015111418A1 (en) 2015-07-14 2015-07-14 Method for producing a casting core and casting core
PCT/IB2016/000999 WO2017009708A1 (en) 2015-07-14 2016-07-14 Method for producing a casting core, and a casting core

Publications (2)

Publication Number Publication Date
EP3322547A1 EP3322547A1 (en) 2018-05-23
EP3322547B1 true EP3322547B1 (en) 2019-01-30

Family

ID=56551428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16744851.3A Active EP3322547B1 (en) 2015-07-14 2016-07-14 Method for producing a casting core, and a casting core

Country Status (5)

Country Link
US (1) US10710150B2 (en)
EP (1) EP3322547B1 (en)
CN (1) CN107848021B (en)
DE (1) DE102015111418A1 (en)
WO (1) WO2017009708A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3946776B1 (en) * 2019-03-25 2023-06-07 Safran Moulding device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742276A1 (en) * 1997-09-25 1999-04-01 Hottinger Maschb Gmbh Connection of cores
FR2785836B1 (en) * 1998-11-12 2000-12-15 Snecma PROCESS FOR PRODUCING THIN CERAMIC CORES FOR FOUNDRY
US6720028B1 (en) * 2001-03-27 2004-04-13 Howmet Research Corporation Impregnated ceramic core and method of making
AU2003221170A1 (en) 2002-11-08 2004-06-07 Sintokogio, Ltd. Dry aggregate mixture, method of foundry molding using dry aggregate mixture and casting core
DE10341712B3 (en) * 2003-09-10 2005-03-24 Dieter Mack Automatic de-burring of molding joint lines on casting cores, machines along path derived from known joint line geometry and measurements related to applied force
DE102008023336A1 (en) * 2008-05-13 2008-11-06 Daimler Ag Core used to mold cavities in complex castings, comprises body with closely-surrounding casing of metal foil or plastic film matching its contours
EP2163328A1 (en) * 2008-09-05 2010-03-17 Minelco GmbH Core or foundry sand coated and/or mixed with soluble glass with a water content in the area of >= approx. 0.25 weight % to approx 0.9 weight %
US8813812B2 (en) 2010-02-25 2014-08-26 Siemens Energy, Inc. Turbine component casting core with high resolution region
CN102198487B (en) * 2010-04-20 2013-01-09 机械科学研究总院先进制造技术研究中心 Fitting-structure-based dieless assembly molding method
CN102873276A (en) * 2012-10-24 2013-01-16 山东理工大学 Technology for producing casting core
CN103317102A (en) * 2013-06-27 2013-09-25 常州午阳柴油机水箱制造有限公司 Core making process for core shooter and device thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3946776B1 (en) * 2019-03-25 2023-06-07 Safran Moulding device

Also Published As

Publication number Publication date
CN107848021A (en) 2018-03-27
US20190030592A1 (en) 2019-01-31
CN107848021B (en) 2019-12-06
WO2017009708A1 (en) 2017-01-19
DE102015111418A1 (en) 2017-01-19
EP3322547A1 (en) 2018-05-23
US10710150B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
DE3009656C2 (en) Method for manufacturing a camshaft
EP2483012B1 (en) Flaskless mould
DE60115964T2 (en) FORM AND METHOD FOR PRODUCING A COMPRESSED BRAKE PAD WITH COOLING OPENINGS
EP3056297B1 (en) Use of a feeder insert and method of preparing a casting mould with vertical mould splitting
DE2145168A1 (en) Casting core
EP3166740B1 (en) Core and mehtod for the production of a core
EP3322547B1 (en) Method for producing a casting core, and a casting core
EP2340901B1 (en) Method for making a cast component
DE102013214534B4 (en) Casting device and casting process
EP2636467B1 (en) Device for manufacturing a cylinder crank case in V design
DE102015217452A1 (en) Method for producing a cast metallic bearing housing
DE102004028947A1 (en) Method for producing stator packs for long-stator linear motors of magnetic levitation railways
EP2248615B1 (en) Temperable tool and use of the same
DE102017106775A1 (en) Casting core and process for its production
EP1741531A1 (en) Mould for the production of a ceramic heat shield elements
DE2754231C1 (en) Process for the production of hollow castings, in particular hollow blades for gas turbine jet engines
DE102018205583A1 (en) Casting device and method for its use
DE833093C (en) Process for the production of molded mass core parts with protrusions and compression mold
DE19934761C1 (en) Glow plug compound ceramic body manufacturing method has cold formed components fitted together within mould sleeve transferred to heated steel carrier plate compressed between heated press plates
DE1173618B (en) Process for the production of hollow foundry cores from fast-hardening sands as well as a core molding device for carrying out the process
DE102006035937A1 (en) - Shaping tool with a punch as active tool part, a clamp, and a mold where the active tool part can be a shell (sic) useful in vehicle construction is cheaper and quicker to produce than previous tools
DE112020007413T5 (en) Mold with heat sink
DE102022106807A1 (en) Risers and riser systems for molds
WO2015085986A1 (en) Method for the production of casting molds, casting mold produced according thereto, apparatus for carrying out said method, method for producing cast parts, cast parts produced according thereto, and device for producing cast parts
AT410910B (en) Casting of a static steel roller, in a vertical mold, uses insulating segments around the upper journal to delay the cooling of added top-up molten steel without increasing the journal dimensions

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20180731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1092833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016003311

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016003311

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190714

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190714

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1092833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230725

Year of fee payment: 8