EP3316268A1 - Transformator mit beheiztem radiatorenglied - Google Patents

Transformator mit beheiztem radiatorenglied Download PDF

Info

Publication number
EP3316268A1
EP3316268A1 EP17193689.1A EP17193689A EP3316268A1 EP 3316268 A1 EP3316268 A1 EP 3316268A1 EP 17193689 A EP17193689 A EP 17193689A EP 3316268 A1 EP3316268 A1 EP 3316268A1
Authority
EP
European Patent Office
Prior art keywords
heat exchange
heat
boiler
heated
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17193689.1A
Other languages
English (en)
French (fr)
Other versions
EP3316268B1 (de
Inventor
Florian BACHINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Austria GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3316268A1 publication Critical patent/EP3316268A1/de
Application granted granted Critical
Publication of EP3316268B1 publication Critical patent/EP3316268B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling

Definitions

  • the invention relates to an electrical device for connection to a high-voltage network with a boiler, which is filled with an insulating fluid and in which a magnetizable core and at least one winding enclosing a portion of the core are arranged, and with a cooling system comprising at least one radiator, is disposed outside of the boiler and connected thereto for circulating the insulating fluid through the radiator, wherein the radiator has at least two heat exchange members connected in parallel.
  • the invention further relates to a method for cold starting an electrical device.
  • transformers have a boiler filled with insulating fluid, in which a magnetizable core is arranged.
  • the core forms a leg, which is arranged concentrically to a surrounding undervoltage and high-voltage winding.
  • the insulating fluid is used for electrical insulation of the lying at a high voltage potential during operation of the electrical device windings relative to the lying at ground potential boiler.
  • the insulating fluid provides the necessary cooling of the windings.
  • the insulating fluid heated by the windings is circulated via radiators mounted on the outside of the boiler.
  • the viscosity of the insulating fluid is temperature dependent and increases very sharply at decreasing temperatures. Due to the increased viscosity, at low outside temperatures, below -10 ° C, the circulation of the insulating fluid through the radiator (s) is impaired. This is particularly problematic after prolonged standstill of the electrical device, since the insulating fluid is then completely cooled. The high viscosity is to be considered in view of the reduced cooling capacity of the cooling system during cold start of the electrical device, since the windings can otherwise be overheated.
  • a transformer is started at idle or under reduced load. If the electrical equipment has active cooling, pumps for circulating the insulating fluid via the radiator can not be switched on until the insulating fluid in the boiler has exceeded a minimum temperature threshold. However, in some cases this temperature threshold is only reached after a few days.
  • ester oils as insulating fluids have improved environmental compatibility.
  • the disadvantage is that they can have such a high viscosity at temperatures in the range of below -10 that a cold start of the electrical device has become virtually impossible.
  • the object of the invention is therefore to provide an electrical device and a method of the type mentioned, with which a cold start can be inexpensively accelerated and performed at lower temperatures.
  • the invention solves this problem, starting from the electrical device mentioned above in that only one of the heat exchange members is as a heated heat exchange member in heat-conducting connection with a heat source which generates heat when starting the operation of the electrical device.
  • the invention solves the problem in that in an electrical device of the type mentioned only one of the heat exchange members is heated as a heated heat exchange member by means of a heat source.
  • an electrical appliance which utilizes the heat energy provided by a heat source to facilitate the cold start to selectively heat a single heat exchange member of a radiator.
  • the heated heat exchange member heats up so that, in the case of a cold start, the insulating fluid is initially conducted after a short time exclusively via the heated heat exchange member.
  • the circulation of the heated insulating fluid through the heated heat exchange member provides there for an additional increase in temperature. From the thus heated perennialaustauchglied the heat is transferred gradually to the other heat exchange members.
  • the heating of a single heat exchange member is sufficient to bring the heating of the electrical appliance in motion.
  • the additional effort in the manufacture of the electrical device or the implementation of the method according to the invention is therefore limited to a minimum. High additional costs are avoided according to the invention.
  • the invention allows the use of alternative insulating fluids in colder climates.
  • the cooling system may be a so-called active cooling system having pumps for circulating the insulating fluid over the radiator (s).
  • the cooling system can also be a passive cooling system, in which the movement of the insulating fluid is caused solely by thermal buoyancy.
  • the insulating fluid heated by the winding (s) increases due to its lower density relative to the heated fluid and is replaced by inflowing colder insulating fluid.
  • the difference in weight of the differently heated liquid columns in the winding channels or in the boiler on the one hand and the cooling system on the other hand generates a pressure difference, which serves as a driving force of the fluid circuit.
  • the circulation in the cooling system begins by heating the insulating fluid in the heated heat exchange member because the resistance in the form of a highly viscous insulating fluid is reduced to such an extent that the driving pressure differential drives the circulation.
  • heating quickly reaches a temperature level that allows the pumps to be switched on. The power required by the pump during cold startup is reduced.
  • the term heat exchange member is to be understood in the context of the invention, a hollow body through which the insulating fluid is passed. With its outside, the heat exchange member is in heat-conducting contact with the outside atmosphere, so that the heat of the heated insulating fluid can be discharged via the wall of the heat exchange member to the outside atmosphere.
  • the heat exchange member consists of a material with a high thermal conductivity, for example of a suitable metal. The heat exchange is further improved when the heat exchange member forms a large heat exchange surface.
  • the heat exchange member in other words the radiator member, for example, plate-shaped and has mutually parallel plates or panels. The panels can each delimit meandering flow channels through which the insulating fluid is passed.
  • each heat exchange member is tubular and has one or more mutually parallel tubular heat exchange elements.
  • Tubular elements also have a large surface area.
  • the radiators may be equipped in the invention with fans or fans, with which the cooling of the insulating fluid can be further improved.
  • the heat source is an electric heating source.
  • the electric heating source is connected to start a cooled electrical device to a power supply, so that there is a heating of the heated heat exchange member.
  • the insulating fluid is then passed substantially over the heated heat exchange member, whereby its temperature gradually increases further and is thus provided for radiating the heat to the remaining heat exchange members.
  • the electric heating source forms heating wires which rest against the heated heat exchange member.
  • Heating wires are inexpensive available on the market and easy to bring in contact with the heat exchanger member to be heated. This variant is therefore particularly inexpensive. Heating wires can also be easily retrofitted and even attached during operation.
  • the heat source is the boiler filled with insulating fluid, the boiler and / or the insulating fluid being heat-conductively connected to the heated heat exchanger member via at least one heat pipe.
  • a separate electric heating source has become superfluous.
  • the heating of the boiler which occurs when the operation is started under reduced load, is utilized in order to reduce the viscosity of the insulating fluid in the heated heat exchanger element.
  • the electrical device is started, for example, at idle, which essentially comes to a heating of the core.
  • the heated winding provides for heating of the surrounding insulating fluid and conventional convection for heating the boiler housing.
  • the in the Boiler or the insulating fluid existing heat is transmitted by means of at least one heat pipe to the heated heat exchange member.
  • Heat pipes so-called “heat pipes”, essentially have a hermetically encapsulated housing in which a working medium, such as water, is in the liquid and gaseous phase.
  • a capillary structure is further arranged, for example. If the heat pipe is heated at its heat receiving end, the liquid present there evaporates and passes through the gas phase to the colder heat release end. This is where condensation starts, releasing heat. The condensed liquid working medium is transported via the inner capillary structure back to the heat receiving end of the heat pipe.
  • a heat pipe is thus a heat exchanger with which high heat flows can be transmitted at a low temperature difference.
  • the or each heat pipe is connected according to this development either with the insulating fluid within the boiler heat-conducting or with the boiler itself.
  • the heat of the insulating fluid or the boiler ensures evaporation of the working fluid within the heat pipe and for the transport of the gaseous working fluid to the colder end of the heat pipe, which emits due to the heat-conducting compound resulting in condensing condensation enthalpy to the heated heat exchange member.
  • each heat pipe with its heat-receiving end in contact with the outer wall of the boiler, wherein the heat-emitting end of the heat pipe is in contact with the heated heat exchange member.
  • the heat pipe is directly adjacent to the boiler and to the heated heat exchange member.
  • a plurality of heat pipes are provided in the context of this variant.
  • electrical equipment such as transformers or reactors, which are set up for connection to a high voltage network, subsequently equipped with externally mounted on the boiler heat pipes, so as the cold start behavior of the respective transformer or the respective throttle in the frame to improve the process of the invention.
  • each radiator has an upper inlet and a lower return, which are each connected to the boiler via the heat exchange members, wherein the heated heat exchange member has the smallest distance to the boiler.
  • the heat exchanger member with the smallest distance to the boiler is referred to in the context of the invention as the innermost heat exchange member. Due to the small distance, the innermost heat exchange member can be heated easily and inexpensively.
  • a plurality of heat pipes ie at least two heat pipes are provided, which extend in the region of the upper inlet and possibly also in the region of the lower return between the heated heat exchanger member and the boiler.
  • a natural flow only occurs in the heated heat exchange member when the temperature of the insulating fluid in the external radiator is lower than the temperature of the insulating fluid in the boiler. Excessive heating of the heated heat exchange member could therefore result in a reduced recirculation rate.
  • the heated heat exchange member is at least partially enclosed by a heat-damping layer. This thermal insulation simplifies and accelerates the heating of the insulating fluid in the heated heat exchange member.
  • the cooling system is a passive cooling system.
  • passive cooling systems do not have pumps, radiators or the like.
  • the cooling system is an active cooling system, in particular radiators or radiator batteries with fans or fans are used in the invention.
  • the electrical device in the invention comprises a cooling system which has a plurality of radiators, but only one radiator is equipped with a heated heat exchange member.
  • the heated heat exchange member accelerates the heating of the first radiator.
  • the heating radiates from this to the other radiators of the cooling system.
  • the heated heat exchange member is heated by means of an electric heating source. It is particularly useful if the electric heating source forms heating wires.
  • the heated heat exchange member is heated by means of at least one heat pipe through the warming during cold start boiler, each heat pipe between the boiler and the heated heat exchange member is arranged.
  • FIG. 1 shows an embodiment of a commercially available radiator 1 in a schematic side view.
  • the radiator 1 has an upper inlet 2, which is hydraulically connected to a return 4 via heat exchange or radiator members 3.
  • the inlet 2 and the return 4 each have a left-facing inlet or outlet opening, via which the radiator 1 after its assembly with the interior of an in FIG. 1 not shown boiler communicates.
  • the insulating fluid of the said boiler can then be circulated via the inlet 2, the heat exchanger members 3 and the return 4 via the radiator 1 with its heat exchanger members 3.
  • the heat exchange members 3 are made of a thermally conductive material, such as a metal, and are in thermal contact with the outside atmosphere. Is the insulating fluid passed over the heat exchange members, Thus, heat is released from the heated insulating fluid to the colder outside atmosphere.
  • FIG. 2 shows a heat exchange member 3 in an end view. It can be seen that the heat exchange members 3 are plate-shaped. In other words, the in FIG. 1 shown radiator 1 to a so-called plate radiator.
  • the plate-shaped heat exchange members 3 respectively delimit flow channels through which the insulating fluid circulated via the heat exchange members 3 is guided. Finally, the insulating fluid enters the collecting return line 4 and passes from there as a cooled insulating fluid back into the interior of the boiler.
  • FIG. 3 shows an embodiment of the electrical device 5 according to the invention, which is designed here as a transformer.
  • the transformer 5 has a boiler 6, which is filled with an insulating fluid 7.
  • a magnetizable core 8 and windings 9 are arranged, of which in the FIG. 3 however, only one winding is indicated schematically.
  • the windings 9 here comprise a so-called high-voltage winding and a so-called low-voltage winding, which are arranged concentrically to a leg 10 as the core 8.
  • the necessary connection cables for connecting the windings to a high-voltage network are likewise not shown figuratively for reasons of clarity.
  • the transformer 5 is equipped with an outside of the boiler 6 mounted cooling system 11, the only one radiator 1 according to here FIG. 1 includes. It can be seen that the inlet 2 and the return 4 open into the interior of the boiler 6. Since the inlet 2 and the return 4 are connected to each other via heat exchanger members 3, a circulation of the insulating fluid 7 is made possible via the radiator.
  • a heat exchange member 3, the smallest distance to the boiler. 6 has, so-called innermost radiator member 12 is connected via schematically indicated heat pipes 13 in heat-conducting connection with the outer wall of the boiler. 6
  • the insulating fluid 7 After a longer standstill of the electrical device 5, the insulating fluid 7 is completely cooled. In particular, at low outside temperatures, for example in the range of -10 to -50 degrees, the insulating fluid 7 has such a high viscosity, in other words so viscous that it is no longer circulated through the radiator 1 even after a long startup. For this reason, the heat pipes 13 are provided, with which an improved heat transfer between the boiler 6 and the innermost heat exchange member 12 is provided.
  • the high-voltage winding of the windings 9 are connected to the high-voltage network.
  • the undervoltage winding is applied to an appropriate resistor, so that the transformer 5 is not operated under full load.
  • a portion of the resulting heat is transferred by means of the heat pipes or heat pipes 13 to the heated heat exchange member 12, which is heated so including the insulating fluid 7 disposed therein.
  • the temperature of the heated heat exchange member 12 is thus higher than that of the outer heat exchange members 13.
  • the viscosity of the insulating fluid in the heated heat exchange member therefore decreases. Nevertheless, a temperature difference between the insulating fluid 7 within the boiler 6 and the insulating fluid within the heated heat exchange member 12, so that it comes to a pressure difference and thus to circulate the insulating fluid through the innermost heat exchange member 12 due to the different density of the insulating.
  • the load control during cold start can be arbitrary within the scope of the invention. Deviating from the above-mentioned reactions of the cold start, the electrical device according to the invention can also be started under full load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Central Heating Systems (AREA)

Abstract

Um ein elektrisches Gerät (5) zum Anschluss an ein Hochspannungsnetz mit einem Kessel (6), der mit einem Isolierfluid (7) befüllt ist und in dem ein magnetisierbarer Kern (8) und wenigstens eine einen Abschnitt (10) des Kerns (8) umschließende Wicklung (9) angeordnet sind, und einer Kühlanlange (11), die wenigstens einen Radiator (1) umfasst, der außerhalb des Kessels (6)angeordnet und mit diesem zum Umwälzen des Isolierfluids (7) über den Radiator (1) verbunden ist, wobei der Radiator (1) wenigstens zwei einander parallel geschaltete Wärmeaustauschglieder (3) aufweist, zu schaffen, mit dem ein Kaltstart beschleunigt und auch bei tieferen Temperaturen durchgeführt werden kann, wird vorgeschlagen, dass nur eines der Wärmeaustauschglieder (3) als beheiztes Wärmeaustauschglied (12) in wärmeleitender Verbindung mit einer Wärmequelle steht, die beim Starten des Betriebs des elektrischen Geräts (5) Wärme erzeugt.

Description

  • Die Erfindung betrifft ein elektrisches Gerät zum Anschluss an ein Hochspannungsnetz mit einem Kessel, der mit einem Isolierfluid befüllt ist und in dem ein magnetisierbarer Kern und wenigstens eine einen Abschnitt des Kerns umschließende Wicklung angeordnet sind, und mit einer Kühlanlange, die wenigstens einen Radiator umfasst, der außerhalb des Kessels angeordnet und mit diesem zum Umwälzen des Isolierfluids über den Radiator verbunden ist, wobei der Radiator wenigstens zwei einander parallel geschaltete Wärmeaustauschglieder aufweist.
  • Die Erfindung betrifft ferner ein Verfahren zum Kaltstarten eines elektrischen Geräts.
  • Ein solches Gerät und ein solches Verfahren sind dem Fachmann aus der Praxis bekannt. So weisen beispielsweise Transformatoren einen mit Isolierfluid befüllten Kessel auf, in dem ein magnetisierbarer Kern angeordnet ist. Der Kern bildet einen Schenkel aus, der konzentrisch zu einer diesen umschließenden Unterspannungs- und Oberspannungswicklung angeordnet ist. Das Isolierfluid dient zur elektrischen Isolierung der beim Betrieb des elektrischen Geräts auf einem Hochspannungspotential liegenden Wicklungen gegenüber dem auf Erdpotential liegenden Kessel. Darüber hinaus stellt das Isolierfluid die notwendige Kühlung der Wicklungen bereit. Hierzu wird das von den Wicklungen erwärmte Isolierfluid über außen an dem Kessel angebrachte Radiatoren umgewälzt.
  • Die Viskosität des Isolierfluids ist temperaturabhängig und steigt bei abfallenden Temperaturen sehr stark an. Aufgrund der erhöhten Viskosität ist bei tiefen Außentemperaturen, unter -10°C, die Zirkulation des Isolierfluids über den oder die Radiatoren beeinträchtigt. Dies ist insbesondere nach längerem Stillstand des elektrischen Geräts problematisch, da das Isolierfluid dann vollständig ausgekühlt ist. Die hohe Viskosität ist im Hinblick auf die reduzierte Kühlleistung der Kühlanlage beim Kaltstart des elektrischen Gerätes zu berücksichtigen, da die Wicklungen ansonsten überhitzt werden können.
  • So wird ein Transformator beispielsweise im Leerlauf oder unter reduzierter Last gestartet. Weist das elektrische Gerät eine aktive Kühlung auf, können Pumpen zum Umwälzen des Isolierfluids über den Radiator erst dann eingeschaltet werden, wenn das Isolierfluid im Kessel einen minimalen Temperaturschwellenwert überschritten hat. Dieser Temperaturschwellenwert wird in manchen Fällen jedoch erst nach einigen Tagen erreicht.
  • Darüber hinaus kommen zunehmend alternative Isolierfluide, wie Ester und Silikonöle in elektrischen Geräten der oben genannten Art zum Einsatz. Esteröle als Isolierfluide weisen zwar eine verbesserte Umweltverträglichkeit auf. Nachteilig ist jedoch, dass diese bei Temperaturen im Bereich von unter -10 eine so hohe Viskosität aufweisen können, dass ein Kaltstart des elektrischen Gerätes praktisch unmöglich geworden ist.
  • Aufgabe der Erfindung ist es daher, ein elektrisches Gerät und ein Verfahren der eingangs genannten Art bereitzustellen, mit dem ein Kaltstart kostengünstig beschleunigt und auch bei tieferen Temperaturen durchgeführt werden kann.
  • Die Erfindung löst diese Aufgabe ausgehend von dem eingangs genannten elektrischen Gerät dadurch, dass nur eines der Wärmeaustauschglieder als beheiztes Wärmeaustauschglied in wärmeleitender Verbindung mit einer Wärmequelle steht, die beim Starten des Betriebs des elektrischen Geräts Wärme erzeugt.
  • Ausgehend von dem eingangs genannten Verfahren löst die Erfindung die Aufgabe dadurch, dass bei einem elektrischen Gerät der eingangs genannten Art nur eines der Wärmeaustauschglieder als beheiztes Wärmeaustauschglied mit Hilfe einer Wärmequelle erwärmt wird.
  • Erfindungsgemäß ist ein elektrisches Gerät bereitgestellt, das zum Erleichtern des Kaltstarts die von einer Wärmequelle bereitgestellte Wärmeenergie nutzt, um ein einziges Wärmeaustauschglied eines Radiators gezielt zu beheizen. Durch dieses Beheizen erwärmt sich das beheizte Wärmeaustauschglied, so dass hier das Isolierfluid bei einem Kaltstart nach kurzer Zeit zunächst ausschließlich über das beheizte Wärmeaustauschglied geführt wird. Das Umwälzen des erwärmten Isolierfluids über das beheizte Wärmeaustauschglied sorgt dort für einen zusätzlichen Temperaturanstieg. Von dem so beheizten Wärmeaustauchglied überträgt sich die Wärme nach und nach auch auf die übrigen Wärmeaustauschglieder.
  • Im Rahmen der Erfindung ist das Beheizen eines einzigen Wärmeaustauschgliedes ausreichend, um die Erwärmung des elektrischen Gerätes in Gang zu bringen. Der Zusatzaufwand bei der Herstellung des elektrischen Geräts oder der Durchführung des erfindungsgemäßen Verfahrens ist daher auf ein Minimum begrenzt. Hohe Zusatzkosten sind erfindungsgemäß vermieden. Darüber hinaus ermöglicht die Erfindung den Einsatz alternativer Isolierfluide in kälteren Klimagebieten.
  • Die Ausführung der Kühlanlage ist im Rahmen der Erfindung grundsätzlich beliebig. So kann die Kühlanlage eine sogenannte aktive Kühlanlage sein, die Pumpen zum Umwälzen des Isolierfluids über den oder die Radiatoren aufweist. Abweichend davon kann die Kühlanlage auch eine passive Kühlanlage sein, bei der die Bewegung des Isolierfluids ausschließlich durch thermischen Auftrieb hervorgerufen wird. Das von der oder den Wicklungen erwärmte Isolierfluid steigt aufgrund seiner geringeren Dichte gegenüber dem erwärmten Fluid auf und wird durch nachströmendes kälteres Isolierfluid ersetzt. Der Gewichtsunterschied der unterschiedlich stark erwärmten Flüssigkeitssäulen in den Wicklungskanälen oder im Kessel einerseits und der Kühlanlage andererseits erzeugt eine Druckdifferenz, welche als antreibende Kraft des Fluidkreislaufs dient.
  • Bei einer passiven Kühlanlage basierend auf einer natürlichen Strömung des Isolierfluids beginnt die Zirkulation in der Kühlanlage durch die Erwärmung des Isolierfluids im beheizten Wärmeaustauschglied, da sich der Widerstand in Gestalt eines hoch viskosen Isolierfluids so weit reduziert, dass die antreibende Druckdifferenz den Kreislauf in Schwung bringt.
  • Im Fall einer gepumpten Ölströmung wird durch das Heizen schneller ein Temperaturniveau erreicht, das ein Einschalten der Pumpen erlaubt. Der von der Pumpe beim Kaltstart benötigte Strom wird reduziert.
  • Unter dem Begriff Wärmeaustauschglied ist im Rahmen der Erfindung ein Hohlkörper zu verstehen, durch den hindurch das Isolierfluid geführt wird. Mit seiner Außenseite steht das Wärmeaustauschglied in wärmeleitendem Kontakt mit der Außenatmosphäre, so dass die Wärme des erwärmten Isolierfluids über die Wandung des Wärmeaustauschglieds an die Außenatmosphäre abgegeben werden kann. Zur Verbesserung des Wärmeübergangs besteht das Wärmeaustauschglied aus einem Material mit einer hohen Wärmeleitfähigkeit, beispielsweise aus einem zweckmäßigen Metall. Der Wärmeaustausch ist weiter verbessert, wenn das Wärmeaustauschglied eine große Wärmeaustauschfläche ausbildet. So ist das Wärmeaustauschglied, also mit anderen Worten das Radiatorglied, beispielsweise plattenförmig ausgestaltet und weist parallel zueinander angeordnete Platten oder Panels auf. Die Panels können jeweils mäanderförmig verlaufende Strömungskanäle begrenzen, über die das Isolierfluid geführt wird.
  • Abweichend davon ist jedes Wärmeaustauschglied rohrförmig ausgebildet und verfügt über ein oder mehrere einander parallel geschaltete rohrförmige Wärmeaustauschelemente. Rohrförmige Elemente weisen ebenfalls eine große Oberfläche auf.
  • Die Radiatoren können im Rahmen der Erfindung mit Ventilatoren oder Lüftern ausgerüstet sein, mit denen die Kühlung des Isolierfluids weiter verbessert werden kann.
  • Gemäß einer vorteilhaften Variante der Erfindung ist die Wärmequelle eine elektrische Heizquelle. Die elektrische Heizquelle wird zum Starten des abgekühlten elektrischen Geräts an eine Stromversorgung angeschlossen, so dass es zu einer Erwärmung des beheizten Wärmeaustauschglieds kommt. Wie bereits ausgeführt wurde, wird das Isolierfluid dann im Wesentlichen über das beheizte Wärmeaustauschglied geführt, wodurch dessen Temperatur allmählich weiter ansteigt und auf diese Weise für ein Abstrahlen der Wärme auf die restlichen Wärmeaustauschglieder gesorgt ist.
  • Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung bildet die elektrische Heizquelle Heizdrähte aus, die an dem beheizten Wärmeaustauschglied anliegen. Heizdrähte sind kostengünstig am Markt erhältlich und einfach in Kontakt mit dem zu beheizenden Wärmeaustauschglied zu bringen. Diese Variante ist daher besonders kostengünstig. Heizdrähte lassen sich auch leicht nachträglich und sogar während des Betriebs anbringen.
  • Bei einer hiervon abweichenden Variante der Erfindung ist die Wärmequelle der mit Isolierfluid befüllte Kessel, wobei der Kessel und/oder das Isolierfluid über wenigstens ein Wärmerohr mit dem beheizten Wärmeaustauschglied wärmeleitend verbunden sind/ist. Gemäß dieser Variante der Erfindung ist eine separate elektrische Heizquelle überflüssig geworden. Vielmehr wird die beim Starten des Betriebs unter reduzierter Last entstehende Erwärmung des Kessels ausgenutzt, um die Viskosität des Isolierfluids im beheizten Wärmeaustauschglied zu reduzieren. So wird das elektrische Gerät beispielsweise im Leerlauf gestartet, wobei es im Wesentlichen zu einer Erwärmung des Kerns kommt. Die erwärmte Wicklung sorgt für eine Erwärmung des diese umgebenden Isolierfluids und übliche Konvektion für eine Erwärmung des Kesselgehäuses. Die in dem Kessel oder dem Isolierfluid vorhandene Wärme wird mittels wenigstens eines Wärmerohres auf das beheizte Wärmeaustauschglied übertragen.
  • Wärmerohre, so genannte "Heat Pipes", weisen im Wesentlichen ein hermetisch gekapseltes Gehäuse auf, in dem sich ein Arbeitsmedium, wie beispielsweise Wasser, in flüssiger und gasförmiger Phase befindet. In dem Wärmerohr ist beispielsweise ferner eine Kapillarstruktur angeordnet. Wird das Wärmerohr an seinem Wärmeaufnahmeende erwärmt, verdampft die dort vorhandene Flüssigkeit und gelangt über die Gasphase zu dem kälteren Wärmeabgabeende. Hier setzt ein Kondensationsvorgang ein, wobei Wärme freigesetzt wird. Das kondensierte flüssige Arbeitsmedium wird über die innere Kapillarstruktur wieder zurück zu dem Wärmeaufnahmeende des Wärmerohres transportiert.
  • Ein Wärmerohr ist somit ein Wärmeübertrager, mit dem hohe Wärmeströme bei einer geringen Temperaturdifferenz übertragen werden können. Das oder jedes Wärmerohr ist gemäß dieser Weiterentwicklung entweder mit dem Isolierfluid innerhalb des Kessels wärmeleitend verbunden oder aber mit dem Kessel selber. Die Wärme des Isolierfluids oder des Kessels sorgt für ein Verdampfen des Arbeitsmediums innerhalb des Wärmerohres und für den Transport des gasförmigen Arbeitsmediums zum kälteren Ende des Wärmerohres, das aufgrund der wärmeleitenden Verbindung die beim Kondensieren entstehende Kondensationsenthalpie an das beheizte Wärmeaustauschglied abgibt.
  • Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung ist jedes Wärmerohr mit seinem Wärmeaufnahmeende in Kontakt mit der Außenwand des Kessels, wobei das Wärmeabgabeende des Wärmerohres in Kontakt mit dem beheizten Wärmeaustauschglied steht. Mit anderen Worten liegt das Wärmerohr am Kessel und an dem beheizten Wärmeaustauschglied direkt an. Bei einer Anordnung eines Wärmerohres außen am Kessel muss die Ölverträglichkeit des Wärmerohres nicht geprüft werden. Darüber hinaus ist auch eine Gefährdung des elektrischen Geräts in Folge einer Beschädigung des Wärmerohrs ausgeschlossen.
  • Vorteilhafterweise sind mehrere Wärmerohre im Rahmen dieser Variante vorgesehen. Darüber hinaus ist es möglich, auch bereits fertiggestellte elektrische Geräte, wie beispielsweise Transformatoren oder Drosseln, die zum Anschluss an ein Hochspannungsnetz eingerichtet sind, nachträglich mit außen am Kessel angebrachten Wärmerohren zu bestücken, um so das Kaltstartverhalten des jeweiligen Transformators oder der jeweiligen Drossel im Rahmen des erfindungsgemäßen Verfahrens zu verbessern.
  • Zweckmäßigerweise weist jeder Radiator einen oberen Zulauf und einen unteren Rücklauf auf, die jeweils mit dem Kessel über die Wärmeaustauschglieder miteinander verbunden sind, wobei das beheizte Wärmeaustauschglied den geringsten Abstand zum Kessel aufweist. Das Wärmeaustauschglied mit dem geringsten Abstand zum Kessel wird im Rahmen der Erfindung auch als innerstes Wärmeaustauschglied bezeichnet. Aufgrund des geringen Abstands kann das innerste Wärmeaustauschglied einfach und kostengünstig erwärmt werden.
  • Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung sind mehrere Wärmerohre, also wenigstens zwei Wärmerohre vorgesehen, die sich im Bereich des oberen Zulaufs und gegebenenfalls auch im Bereich des unteren Rücklaufs zwischen dem beheizten Wärmeaustauschglied und dem Kessel erstrecken. Für den Start des elektrischen Geräts ist es vorteilhaft, die Wärmezufuhr über das gesamte Wärmeaustauschglied zu verteilen. Zwar stellt sich im Stationärbetrieb im beheizten Wärmeaustauschglied nur dann eine natürliche Strömung ein, wenn die Temperatur des Isolierfluids im externen Radiator niedriger ist als die Temperatur des Isolierfluids im Kessel. Eine zu starke Erwärmung des beheizten Wärmeaustauschglieds könnte daher zu einer verringerten Umwälzgeschwindigkeit führen. Es wurde jedoch erkannt, dass trotz der guten Wärmeübertragung der Wärmerohre sich bei Normalbetrieb eine ausreichende Temperaturdifferenz zwischen dem Isolierfluid im Kessel und im beheizten Wärmeaustauschglied einstellt.
  • Im Rahmen der Erfindung ist es zweckmäßig, mehrere Wärmerohre im oberen Bereich, also im Bereich des Zulaufs des Radiators vorzusehen, da der Kessel in diesem Bereich die höheren Temperaturen aufweist.
  • Gemäß einer weiteren Ausgestaltung der Erfindung ist das beheizte Wärmeaustauschglied zumindest abschnittsweise von einer Wärmedämpfschicht umschlossen. Durch diese Wärmedämmung vereinfacht und beschleunigt sich das Aufheizen des Isolierfluids im beheizten Wärmeaustauschglied.
  • Zweckmäßigerweise ist die Kühlanlage eine passive Kühlanlage. Wie bereits ausgeführt, weisen passive Kühlanlagen keine Pumpen, Radiatoren oder dergleichen auf.
  • Abweichend hiervon ist die Kühlanlage jedoch eine aktive Kühlanlage, wobei insbesondere Radiatoren oder Radiatorbatterien mit Lüftern oder Ventilatoren im Rahmen der Erfindung eingesetzt werden.
  • Vorzugsweise weist das elektrische Gerät im Rahmen der Erfindung eine Kühlanlage auf, die über mehrere Radiatoren verfügt, wobei jedoch nur ein Radiator mit einem beheizten Wärmeaustauschglied bestückt ist. Das beheizte Wärmeaustauschglied beschleunigt die Erwärmung des ersten Radiators. Von diesem strahlt die Erwärmung jedoch auf die anderen Radiatoren der Kühlanlage ab.
  • Bei einer vorteilhaften Variante des erfindungsgemäßen Verfahrens wird das beheizte Wärmeaustauschglied mit Hilfe einer elektrischen Heizquelle erwärmt. Hierbei ist es besonders zweckmäßig, wenn die elektrische Heizquelle Heizdrähte ausbildet.
  • Gemäß einer bevorzugten Variante des erfindungsgemäßen Verfahrens wird das beheizte Wärmeaustauschglied mittels wenigstens eines Wärmerohres durch den beim Kaltstarten sich erwärmenden Kessel erwärmt, wobei jedes Wärmerohr zwischen dem Kessel und dem beheizten Wärmeaustauschglied angeordnet wird.
  • Weitere Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleichwirkende Bauteile mit gleichen Bezugszeichen versehen sind und wobei
  • Figur 1
    einen handelsüblichen Radiator in einer Seitenansicht,
    Figur 2
    ein Wärmeaustauschglied des Radiators gemäß Figur 1 in einer Draufsicht und
    Figur 3
    ein Ausführungsbeispiel des erfindungsgemäßen elektrischen Geräts in einer schematischen Seitenansicht zeigen.
  • Figur 1 zeigt ein Ausführungsbeispiel eines handelsüblichen Radiators 1 in einer schematischen Seitenansicht. Es ist erkennbar, dass der Radiator 1 einen oberen Zulauf 2 aufweist, der über Wärmeaustausch- oder Radiatorglieder 3 hydraulisch mit einem Rücklauf 4 verbunden ist. Der Zulauf 2 und der Rücklauf 4 weisen jeweils eine nach links weisende Eingangs- bzw. Ausgangsöffnung auf, über die der Radiator 1 nach seiner Montage mit dem Innenraum eines in Figur 1 nicht dargestellten Kessels kommuniziert. Das Isolierfluid des besagten Kessels kann dann über den Zulauf 2 die Wärmeaustauschglieder 3 und den Rücklauf 4 über den Radiator 1 mit seinen Wärmeaustauschgliedern 3 umgewälzt werden. Die Wärmeaustauschglieder 3 sind aus einem wärmeleitfähigen Material, wie einem Metall, gefertigt und stehen in Wärmekontakt mit der Außenatmosphäre. Wird das Isolierfluid über die Wärmeaustauschglieder geführt, wird somit Wärme von dem erhitzten Isolierfluid an die kältere Außenatmosphäre abgegeben.
  • Figur 2 zeigt ein Wärmeaustauschglied 3 in einer Stirnansicht. Es ist erkennbar, dass die Wärmeaustauschglieder 3 plattenförmig ausgebildet sind. Mit anderen Worten handelt es sich bei dem in Figur 1 gezeigten Radiator 1 um einen so genannten Plattenradiator. Die plattenförmigen Wärmeaustauschglieder 3 begrenzen jeweils Strömungskanäle, durch die das über die Wärmeaustauschglieder 3 umgewälzte Isolierfluid geführt wird. Schließlich gelangt das Isolierfluid in die sammelnde Rückleitung 4 und gelangt von dort als abgekühltes Isolierfluid wieder in den Innenraum des Kessels.
  • Figur 3 zeigt ein Ausführungsbeispiel des erfindungsgemäßen elektrischen Geräts 5, das hier als Transformator ausgeführt ist. Der Transformator 5 weist einen Kessel 6 auf, der mit einem Isolierfluid 7 befüllt ist. Darüber hinaus sind in dem Kessel 6 ein magnetisierbarer Kern 8 und Wicklungen 9 angeordnet, von denen in der Figur 3 jedoch nur eine Wicklung schematisch angedeutet ist. Die Wicklungen 9 umfassen jedoch hier eine so genannte Oberspannungswicklung und eine so genannte Unterspannungswicklung, die konzentrisch zu einem Schenkel 10 als Kern 8 angeordnet sind. Die Funktionsweise eines solchen Transformators ist dem Fachmann jedoch bekannt, so dass an dieser Stelle hierauf nicht genauer eingegangen wird. Die notwendigen Anschlussleitungen zum Anschluss der Wicklungen an ein Hochspannungsnetz sind ebenfalls aus Gründen der Übersicht figürlich nicht dargestellt.
  • Der Transformator 5 ist mit einer außen an dem Kessel 6 angebrachten Kühlanlage 11 bestückt, die hier lediglich einen Radiator 1 gemäß Figur 1 umfasst. Es ist erkennbar, dass der Zulauf 2 und der Rücklauf 4 in den Innenraum des Kessels 6 münden. Da der Zulauf 2 und der Rücklauf 4 über Wärmeaustauschglieder 3 miteinander verbunden sind, ist ein Umwälzen des Isolierfluids 7 über den Radiator ermöglicht. Ein Wärmeaustauschglied 3, das den geringsten Abstand zum Kessel 6 aufweist, das so genannte innerste Radiatorglied 12, steht über schematisch angedeutete Wärmerohre 13 in wärmeleitender Verbindung mit der Außenwand des Kessels 6.
  • Nach einem längeren Stillstand des elektrischen Geräts 5 ist das Isolierfluid 7 vollständig abgekühlt. Insbesondere bei niedrigen Außentemperaturen, beispielsweise im Bereich von -10 bis -50 Grad, weist das Isolierfluid 7 eine so hohe Viskosität auf, ist mit anderen Worten so zähflüssig, dass es auch nach einem längeren Startvorgang nicht mehr über den Radiator 1 umgewälzt wird. Aus diesem Grunde sind die Wärmerohre 13 vorgesehen, mit denen eine verbesserte Wärmeübertragung zwischen dem Kessel 6 und dem innersten Wärmeaustauschglied 12 bereitgestellt ist. Somit kann im Rahmen der Erfindung die Oberspannungswicklung der Wicklungen 9 an das Hochspannungsnetz angeschlossen werden. Die Unterspannungswicklung wird hingegen an einen hierfür zweckmäßigen Widerstand angelegt, so dass der Transformator 5 nicht unter Volllast betrieben wird. Hierbei kommt es zu einem allmählichen Erwärmen des Isolierfluids 7 und somit der Außenwand des Kessels 6. Ein Teil der hierbei entstehenden Wärme wird mittels der Wärmerohre oder Heat Pipes 13 auf das beheizte Wärmeaustauschglied 12 übertragen, das so einschließlich des darin angeordneten Isolierfluids 7 erwärmt wird. Die Temperatur des beheizten Wärmeaustauschgliedes 12 ist somit höher als die der weiter außen liegenden Wärmeaustauschglieder 13. Die Viskosität des Isolierfluids in dem beheizten Wärmeaustauschglied nimmt daher ab. Trotzdem stellt sich ein Temperaturunterschied zwischen dem Isolierfluid 7 innerhalb des Kessels 6 und dem Isolierfluid innerhalb des beheizten Wärmeaustauschglieds 12 ein, so dass es aufgrund der unterschiedlichen Dichte des Isolierfluids 7 zu einem Druckunterschied und somit zu einem Umwälzen des Isolierfluids über das innerste Wärmeaustauschglied 12 kommt. Hierbei gelangt fortwährend wärmeres Isolierfluid über die Zuleitung 2 zum beheizten Wärmeaustauschglied 12, wobei eine allmähliche Erwärmung der weiteren außer liegenden Wärmeaustauschglieder 3 erfolgt. Schließlich wird das Isolierfluid 7 auch über die weiter außen liegenden Wärmeaustauschglieder 3 umgewälzt. Der Transformator kann anschließend unter Volllast betrieben werden.
  • Abschließend sei angemerkt, dass die Lastregelung beim Kaltstart im Rahmen der Erfindung beliebig sein kann. Abweichend von den oben genannten Umsetzungen des Kaltstarts kann das erfindungsgemäße elektrische Gerät auch unter Volllast gestartet werden.

Claims (13)

  1. Elektrisches Gerät (5) zum Anschluss an ein Hochspannungsnetz mit
    - einem Kessel (6), der mit einem Isolierfluid (7) befüllt ist und in dem ein magnetisierbarer Kern (8) und wenigstens eine einen Abschnitt (10) des Kerns (8) umschließende Wicklung (9) angeordnet sind, und
    - einer Kühlanlange (11), die wenigstens einen Radiator (1) umfasst, der außerhalb des Kessels (6)angeordnet und mit diesem zum Umwälzen des Isolierfluids (7) über den Radiator (1) verbunden ist, wobei der Radiator (1) wenigstens zwei einander parallel geschaltete Wärmeaustauschglieder (3) aufweist,
    dadurch gekennzeichnet, dass nur eines der Wärmeaustauschglieder (3) als beheiztes Wärmeaustauschglied (12) in wärmeleitender Verbindung mit einer Wärmequelle steht, die beim Starten des Betriebs des elektrischen Geräts (5) Wärme erzeugt.
  2. Elektrisches Gerät (5) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Wärmequelle eine elektrische Heizquelle ist.
  3. Elektrisches Gerät (5) nach Anspruch 2,
    dadurch gekennzeichnet, dass die elektrische Heizquelle Heizdrähte aufweist, die an dem beheizten Wärmeaustauschglied anliegen.
  4. Elektrisches Gerät (5) nach Anspruch 1,
    dadurch gekennzeichnet, dass die Wärmequelle der mit Isolierfluid befüllte Kessel (6) ist, wobei der Kessel (6) und/oder das Isolierfluid (7) über wenigstens ein Wärmerohr (13) mit dem beheizten Wärmeaustauschglied (12) wärmeleitend verbunden ist.
  5. Elektrisches Gerät (5) nach dem der vorhergehenden Anspruch,
    dadurch gekennzeichnet, dass sich jedes Wärmerohr (13) mit einem Wärmeaufnahmeende eine Außenwand des Kessels und mit einem Wärmeabgabeende das beheizte Wärmeaustauschglied (12) kontaktiert.
  6. Elektrisches Gerät (5) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass jeder Radiator (1) einen oberen Zulauf (2) und einen unteren Rücklauf (4) aufweist, die jeweils mit dem Kessel (6) und über die Wärmeaustauschglieder (3) miteinander verbunden sind, wobei das beheizte Wärmeaustauschglied (12) den geringsten Abstand zum Kessel (6) aufweist.
  7. Elektrisches Gerät (5) nach Anspruch 6,
    dadurch gekennzeichnet, dass Wärmerohre (13) sich sowohl im Bereich der oberen Zuleitung (2) als auch im Bereich der unteren Rückleitung (4) zwischen dem beheizten Wärmeaustauschglied (12) und dem Kessel (6) erstrecken.
  8. Elektrisches Gerät (5) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass das beheizte Wärmeaustauschglied (12) zumindest abschnittsweise von einer Wärmedämmschicht umschlossen ist.
  9. Elektrisches Gerät (5) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Kühlanlage eine passive Kühlanlage ist.
  10. Elektrisches Gerät (5) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Kühlanlage mehrere Radiatoren aufweist, wobei jedoch nur ein Radiator ein beheiztes Wärmeaustauschglied aufweist.
  11. Verfahren zum Kaltstarten eines elektrischen Geräts, das einen einem Kessel (6), der mit einem Isolierfluid (7) befüllt ist und in dem ein magnetisierbarer Kern (8) und wenigstens eine einen Abschnitt (10) des Kerns (8) umschließende Wicklung (9) angeordnet sind, und eine Kühlanlange (11) aufweist, die wenigstens einen Radiator (1) umfasst, der außerhalb des Kessels (6)angeordnet und mit diesem zum Umwälzen des Isolierfluids (7) über den Radiator (1) verbunden ist, wobei der Radiator (1) wenigstens zwei einander parallel geschaltete Wärmeaustauschglieder (3) aufweist, bei dem nur eines der Wärmeaustauschglieder (3) als beheiztes Wärmeaustauschglied (12) mit Hilfe einer Wärmequelle erwärmt wird.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet, dass das beheizte Wärmeaustauschglied (12) mit Hilfe einer elektrischen Heizquelle erwärmt wird.
  13. Verfahren nach Anspruch 11 oder 12,
    dadurch gekennzeichnet, dass das beheizte Wärmeaustauschglied (12) mittels wenigstens eines Wärmerohres (13) durch den beim Kaltstarten sich erwärmenden Kessel (6) erwärmt wird, wobei jedes Wärmerohr (13) zwischen dem Kessel (6) und dem beheizten Wärmeaustauschglied (12) angeordnet wird.
EP17193689.1A 2016-10-26 2017-09-28 Transformator mit beheiztem radiatorenglied Active EP3316268B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016221080.7A DE102016221080A1 (de) 2016-10-26 2016-10-26 Transformator mit beheiztem Radiatorenglied

Publications (2)

Publication Number Publication Date
EP3316268A1 true EP3316268A1 (de) 2018-05-02
EP3316268B1 EP3316268B1 (de) 2021-05-26

Family

ID=59974309

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17193689.1A Active EP3316268B1 (de) 2016-10-26 2017-09-28 Transformator mit beheiztem radiatorenglied

Country Status (4)

Country Link
US (1) US10707007B2 (de)
EP (1) EP3316268B1 (de)
CA (1) CA2982530C (de)
DE (1) DE102016221080A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA123321C2 (uk) * 2016-02-19 2021-03-17 Пресіжн Плентінг Елелсі Сільськогосподарські системи, способи і пристрої регулювання глибини борозни
US10130009B2 (en) * 2017-03-15 2018-11-13 American Superconductor Corporation Natural convection cooling for power electronics systems having discrete power dissipation components
EP3767651A1 (de) * 2019-07-17 2021-01-20 Siemens Aktiengesellschaft Verfahren zum betreiben eines kühlsystems eines transformators

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE317410C (de) * 1918-02-09 1919-12-18 Siemens Schuckertwerke Gmbh Einrichtung zum kühlen des öles in ölkessein für elektrische apparate
DE549192C (de) * 1928-12-16 1932-04-25 Aeg Verfahren zur UEbertragung der Waerme von OEl auf Wasser bei wassergekuehlten elektrischen Apparaten mit OElfuellung
DE19816650A1 (de) * 1998-04-15 1999-10-21 Jeannette Bastian Für niedrige Umgebungstemperaturen besonders geeignete Anordnung temperaturabhängig von Isolierflüssigkeit abwechselnd durchströmter Kühlkanäle samt Alternierung bewirkender Vorrichtung für elektrische Transformatoren mit Thermosiphon-Kühlung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1597469A (en) * 1977-12-14 1981-09-09 Jackson P A Cooling of a shelter containing a heat source
US4195686A (en) * 1978-06-29 1980-04-01 General Electric Company Heat exchanger air deflectors
US4321421A (en) * 1979-03-07 1982-03-23 General Electric Company Vaporization cooled transformer having a high voltage
AU2009200007A1 (en) * 2008-01-10 2009-07-30 Chk Gridsense Pty Ltd A transformer and a method of monitoring an operation property of the transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE317410C (de) * 1918-02-09 1919-12-18 Siemens Schuckertwerke Gmbh Einrichtung zum kühlen des öles in ölkessein für elektrische apparate
DE549192C (de) * 1928-12-16 1932-04-25 Aeg Verfahren zur UEbertragung der Waerme von OEl auf Wasser bei wassergekuehlten elektrischen Apparaten mit OElfuellung
DE19816650A1 (de) * 1998-04-15 1999-10-21 Jeannette Bastian Für niedrige Umgebungstemperaturen besonders geeignete Anordnung temperaturabhängig von Isolierflüssigkeit abwechselnd durchströmter Kühlkanäle samt Alternierung bewirkender Vorrichtung für elektrische Transformatoren mit Thermosiphon-Kühlung

Also Published As

Publication number Publication date
US10707007B2 (en) 2020-07-07
US20180114626A1 (en) 2018-04-26
DE102016221080A1 (de) 2018-04-26
EP3316268B1 (de) 2021-05-26
CA2982530A1 (en) 2018-04-26
CA2982530C (en) 2021-01-12

Similar Documents

Publication Publication Date Title
DE102006040853B3 (de) Einrichtung der Thermoelektrik mit einem thermoelektrischen Generator und Mitteln zur Temperaturbegrenzung an dem Generator
DE60029621T2 (de) Vorrichtung und verfahren zur kühlung von leistungstransformatoren
DE20020347U1 (de) Strukturelle Anordnung eines einfachen Flüssigkeitsheizrohres
EP2034252B1 (de) Erdsondenwärmekreislauf
EP3316268A1 (de) Transformator mit beheiztem radiatorenglied
WO2019025182A1 (de) Energiespeicher zum speichern von elektrischer energie als wärme und verfahren hierzu
DE102012102959A1 (de) Umgossene Heat-Pipe
EP2504575B1 (de) Windkraftanlage und Verfahren zur Temperaturregulierung mindestens einer Komponente einer Windkraftanlage
DE102011013684A1 (de) Elektrisches Bauteil mit wenigstens einer in einer Vergussmasse angeordneten elektrischen Verlustleistungsquelle und einer Kühleinrichtung
DE102019111184A1 (de) Kaltwärmenetz mit zwischengeschaltetem Latentwärmespeicher
WO2018224345A1 (de) Entwärmung einer flüssigkeitsgekühlten ladekabel- und steckerkombination
DE102009052559A1 (de) Vorrichtung und Verfahren zur Wärmespeicherung und Wärmebereitstellung
EP1637825A2 (de) Zwischenwärmetauscher und Wärmepumpen und Kälteanlagen
EP3767651A1 (de) Verfahren zum betreiben eines kühlsystems eines transformators
DE102008057495A1 (de) Wärmespeicheranordnung
DE102007044634B4 (de) Hochtemperatur-Polymer-Elektrolyt-Membran-Brennstoffzelle (HT-PEMFC) einschließlich Vorrichtungen zu deren Kühlung
WO2024002855A1 (de) Zweiverbindungssystem für wärmepumpen und erdwärmekollektoren
DE2433790A1 (de) Heizvorrichtung, insbesondere heizstab
EP3704724A1 (de) Elektrisches gerät mit innerer umwälzeinrichtung
DE102021207803A1 (de) Energieversorgungsanordnung aufweisend eine Elektronikschaltung als Wärmequelle und einen Wärmeübertrager
EP3701554A1 (de) Wärmegedämmtes radiatorenglied
DE102016220265A1 (de) Wärme ableitende Anordnung und Verfahren zur Herstellung
DE102018127928A1 (de) Wärmetransporteinheit
DE102010008114B4 (de) Heizungsanlage mit Wärmepumpe
DE202012003480U1 (de) Erdwärmesonde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 27/02 20060101AFI20201124BHEP

Ipc: H01F 27/12 20060101ALI20201124BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210113

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY AUSTRIA GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1397047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010449

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010449

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220301

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210928

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210928

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1397047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230926

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240924

Year of fee payment: 8