EP3316067B1 - Détecteur de contact pour véhicule robotique - Google Patents
Détecteur de contact pour véhicule robotique Download PDFInfo
- Publication number
- EP3316067B1 EP3316067B1 EP17198803.3A EP17198803A EP3316067B1 EP 3316067 B1 EP3316067 B1 EP 3316067B1 EP 17198803 A EP17198803 A EP 17198803A EP 3316067 B1 EP3316067 B1 EP 3316067B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chassis
- plate
- disposed
- vehicle
- attached
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 35
- 238000006073 displacement reaction Methods 0.000 claims description 21
- 230000008844 regulatory mechanism Effects 0.000 claims description 5
- 230000005484 gravity Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000005355 Hall effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 241001125877 Gobio gobio Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0227—Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
Definitions
- This invention relates to a utility vehicle, particularly to a utility vehicle equipped with a contact sensor for detecting contact with obstacles.
- a utility vehicle of this type is equipped with a contact sensor for detecting contact with obstacles by sensing displacement between a cover displaceably attached to a chassis and the chassis, and the applicant also previously proposed a contact sensor of this type in International Patent Publication No. WO 2017/109879 A1 .
- the sensor described in the reference comprises three shafts that lie parallel to gravity axis direction at spaced positions of a chassis and are attached to a cover (retaining shafts), a magnetic body (permanent magnet) accommodating bases of the shafts, and a magnetic sensor installed at a position apart from the magnetic body by a predetermined distance.
- guides constituted by multiple disks are provided near the middles of the respective shafts, and the shafts are passed through through-holes formed in the disks to restrict movement to horizontal direction.
- the utility vehicle contact sensor of the reference is disadvantageous because the provision of the three shafts increases the number of component parts and because the structure is made complicated by the need for guides for restricting movement to horizontal direction.
- a relative sliding movement is separately detected both at the front end and rear end body.
- a centrally located opening at the platform and a slidable pivoting member in the form of gudgeon pin receivable in the opening.
- the rear end is provided with a sleeve-like tubular supporting member and a dished recess on a plate member that extends in a direction parallel with a width direction which is perpendicular to the longitudinal line of the chassis.
- a robot device has an upper plate and a lower plate, wherein the upper plate is formed with an aperture whose periphery is surrounded by conducting segments, whereas the lower plate is provided with a contact member that passes through the aperture beyond the upper plate.
- the upper plate is disc-shaped so that the plate does not extend in a specific direction like the longitude line of the chassis.
- an object of this invention is to provide a utility vehicle equipped with a contact sensor to detect contact with an obstacle from displacement between a chassis and a cover, in which the number of constituent components is reduced to enable a simple structure.
- this invention provides a utility vehicle according to claim 1.
- the utility vehicle is equipped with driving wheels attached to a chassis to run about a working area, the vehicle having a contact sensor configured to detect contact with an obstacle from displacement between the chassis and a cover attached to the chassis.
- the contact sensor comprises: a plate that is attached to the cover and disposed in a space between the chassis and the cover and extends horizontally, the plate being attached to the chassis with elastic members; a detection element that is disposed between the plate and the chassis and generates an output indicating the displacement between the plate and the chassis; and a detector connected to the detection element to detect the contact with the obstacle based on the outputs of the detection element, whereby the elastic members comprise wires that loosely connect the plate to the chassis.
- FIG. 1 is a conceptual diagram showing an overview of a utility vehicle according to an embodiment of this invention
- FIG. 2 is a top view of the utility vehicle of FIG. 1
- FIG. 3 is a plan view of a working area in which the utility vehicle of FIG. 1 runs
- FIG. 4 is a plan view of a chassis and a plate of the utility vehicle
- FIG. 5 is a side view thereof.
- FIG. 1 designates a utility vehicle (hereinafter called “vehicle”).
- vehicle The vehicle 10 is actually implemented as a lawnmower.
- a body 12 of the vehicle 10 comprises a chassis (body frame) 12a and a cover 12b displaceably attached to the chassis 12a.
- the vehicle 10 is equipped with two front wheels 14 of relatively small diameter fixed by stays 12c to left and right sides of the chassis 12a toward its front end in the forward-rearward direction, and with left and right rear wheels 16 of relatively large diameter directly attached to the chassis 12a toward its rear end.
- a blade 20 (work unit, specifically a rotary blade) for lawn mowing work is attached near the middle of the chassis 12a of the vehicle 10, and an electric motor (prime mover; hereinafter called “work motor”) 22 is installed above it.
- the blade 20 is connected to the work motor 22 and driven to rotate by the work motor 22.
- a blade height regulation mechanism 24 manually operable by a user is connected to the blade 20.
- the blade height regulation mechanism 24 is equipped with a handle 24a (shown in FIGs. 4 and 5 ) operable by the user, and the user can regulate height of the blade 20 above ground surface GR by manually rotating the handle 24a.
- driving motors 26L and 26R Two electric motors (prime movers; hereinafter called “driving motors") 26L and 26R are attached to the chassis 12a of the vehicle 10 rearward of the blade 20.
- the driving motors 26L and 26R are connected to the left and right rear wheels 16 to be rotated normally (rotate to move forward) or reversely (rotate to move backward) independently on the left and right, with the front wheels 14 as non-driven wheels and the rear wheels 16 as driven wheels.
- the blade 20, work motor 22, driving motors 26 and so on are covered by the cover 12b.
- the vehicle 10 is of such weight and size as to be portable by the user.
- the vehicle 10 has a total length (forward-rearward direction length) of about 71 cm, total width about 55 cm, and height about 30 cm.
- An onboard charging unit 30 and an onboard battery 32 connected thereto are housed at the rear of the utility vehicle 10, and a pair of battery charging terminals 34 are attached to the chassis 12a so as to project forward from a front end position.
- the battery charging terminals 34 are connected to the onboard charging unit 30.
- the work motor 22 and driving motors 26 are connected to the onboard battery 32 and are powered by the onboard battery 32.
- Left and right magnetic sensors 36L and 36R are installed toward the front end of the body 12 of the vehicle 10 and a single magnetic sensor 36C is installed toward the rear end.
- the magnetic sensors 36 generates outputs indicating magnetic field strength.
- a contact sensor 40 is attached to the body 12 to detect displacement between the cover 12b and the chassis 12a caused by contact of the vehicle 10 with an obstacle or foreign object.
- the contact sensor 40 is explained in detail below.
- a housing box installed near the middle of the chassis 12a houses a printed circuit board 42 carrying an electronic control unit (hereinafter called "ECU") 44, which comprises a computer equipped with a processor (CPU), I/O, memory (ROM, EEPROM and RAM) and other components.
- ECU electronice control unit
- the printed circuit board 42 is provided thereon, in the vicinity of the ECU 44, with an angular velocity sensor 46 that generates an output indicating angular velocity (yaw rate) around a center-of-gravity z-axis (gravity axis) of the vehicle 10, an acceleration sensor 50 that generates an output indicating acceleration acting on the vehicle 10 in orthogonal three-axis (x, y and z) directions, an orientation sensor 52 that generates an output indicating absolute orientation (direction) in response to terrestrial magnetism, and a GPS sensor 54 that receives radio waves from GPS satellites and generates an output indicting current position of the vehicle 10.
- an angular velocity sensor 46 that generates an output indicating angular velocity (yaw rate) around a center-of-gravity z-axis (gravity axis) of the vehicle 10
- an acceleration sensor 50 that generates an output indicating acceleration acting on the vehicle 10 in orthogonal three-axis (x, y and z) directions
- an orientation sensor 52 that
- Wheel speed sensors 56 installed near the left and right rear wheels 16 of the vehicle 10 generate outputs indicating wheel speeds of the left and right rear wheels 16, and a lift sensor 60 installed between the chassis 12a and the cover 12b detects lifting of the cover 12b off the chassis 12a, by the user, for example.
- a current sensor 62 installed on the onboard battery 32 generates an output indicating consumption of onboard battery 32 current.
- the vehicle 10 is equipped with a main switch 64 for instructing start of work operation and an emergency stop switch 66 for instructing emergency stop, both of which are operable by the user.
- the top of the cover 12b has a large cutaway in which a keyboard, touch panel or other input device 68 is installed for input of instructions and the like by the user, and a display 70 is installed near the input device 68.
- the input device 68 and the display 70 are connected to the ECU 44, and the display 70 displays working modes and other various information in accordance with commands sent from the ECU 44.
- the outputs of the magnetic sensors 36, contact sensor 40, angular velocity sensor 46 and other sensors, and the outputs of the main switch 64 and other switches are sent to the ECU 44. Based on these outputs, the ECU 44 applies power from the onboard battery 32 to the driving motors 26 and outputs control values to control navigation of the vehicle 10 by controlling operation of the driving motors 26.
- the ECU 44 detects (recognizes) a working area AR from the outputs of the magnetic sensors 36 and accordingly applies power to the work motor 22 so as to service the working area AR.
- the working area AR is delineated by a boundary wire (electrical wire) 72 laid around its periphery (boundary).
- a charging station 74 for charging the onboard battery 32 of the vehicle 10 is installed in the working area AR.
- the vehicle 10 is exemplified as a utility vehicle that runs, more specifically autonomously runs or navigates while detecting magnetic field of the boundary wire 72 laid around the working area AR.
- FIG. 4 is a plan view of the chassis 12a of the vehicle 10 shown in FIG. 1
- FIG. 5 is a side view thereof.
- a plate 80 is provided above the chassis 12a in the gravity axis direction.
- the plate 80 is attached to the cover 12b by detachable locking members (not shown).
- the plate 80 is constituted by at least one flat plate disposed in a space 12s formed between the cover 12b and the chassis 12a to extend horizontally, more specifically orthogonal to gravity axis direction.
- FIGs. 6 to 8 are explanatory diagrams schematically illustrating the plate 80 and chassis 12a.
- gravity axis direction means direction of gravity axis (vertical axis direction; z-axis direction) in an orthogonal coordinate system when, as shown in FIG. 1 , the vehicle 10 with attached contact sensor 40 is resting on ground surface GR.
- the plate 80 exhibits the shape of a semicircular section and a rectangular section integrally joined, with much of the semicircular section center region being cut away to form a hole 80a that allows the handle 24a of the blade height regulation mechanism 24 to project through.
- the plate 80 is made of iron or other magnetic material.
- the chassis 12a and cover 12b are made of synthetic resin material.
- the plate 80 can be made of resin material with embedded magnetic material.
- the chassis 12a is disposed with projections 12a1 at locations spaced apart each other. More specifically, as seen in FIG. 3 , the projections 12a1 (specifically six) are disposed at locations around the periphery of the plate 80.
- a detection element 82 specifically a plurality (more specifically six) of detection elements 82 are disposed between the plate 80 and the chassis 12a at positons spaced apart from each other, more exactly, as shown in FIG. 6 to 8 , the detection elements 82 are disposed on the projections 12alof the chassis 12a that faces the plate 80, and a plurality (specifically six) of detectors 84 are provided on the chassis 12a to be electrically connected to each of the detection elements 82.
- the multiple detection elements 82 are installed at positions spaced apart symmetrically relative to a longitudinal line 12CL of the body 12.
- the detection elements 82 are electromagneto transducers, e.g., Hall effect elements, that generate outputs proportional to physical displacement between the plate 80 and the chassis 12a.
- the detectors 84 detect presence / absence of contact with buildings, paving stones, animals, people and other obstacles based on outputs of the detection elements 82 indicating the physical displacement.
- the outputs of the detection elements 82 are A/D converted from analog values to digital values by the detectors 84 and the A/D-converted values are sent to the ECU 44, which compares change per unit time with a threshold value and determines that contact or the like with an obstacle occurred and outputs an ON signal when the threshold value is exceeded.
- the detection will again be explained below.
- the plate 80 is attached to the chassis 12a through a plurality (specifically three) of coil springs (elastic members) 86. And the plate 80 attached to the chassis 12a via the coil springs 86 is urged toward the chassis 12a by the coil springs 86.
- the multiple coil springs 86 are disposed at spaced positions around the perimeter of the plate 80, specifically at multiple laterally symmetrical positions relative to the longitudinal line 12CL of the body 12, and still more specifically a total of three are disposed in the gravity axis direction, namely one coil spring 86a on the longitudinal line 12CL nearly over the front wheels 14 and two springs 86b and 86c nearly over the rear wheels 16.
- each coil spring 86 is fastened to the plate 80 through a fastener 861 and another end thereof is fastened to the chassis 12a through a hook 862 (shown in FIG. 5 ).
- a plurality (specifically four) of wires (elastic members) 90 exhibiting flexibility to be bendable / stretchable are disposed near the three coil springs 86 to loosely connect the plate 80 to the chassis 12a.
- the four wires 90 are disposed at spaced positions around the perimeter of the plate 80, at multiple laterally symmetrical positions relative to the longitudinal line 12CL of the body 12, and more specifically a total of four are disposed, namely two wires 90a and 90b on left and right of the coil spring 86 on the front wheel 14 side and two wirers 90c and 90d near the coil springs 86b and 86c on the rear wheel 16 side.
- each wire 90 is fastened to the plate 80 through a fastener 901 and another end thereof is fastened to the chassis 12a through a hook (not shown).
- the plate 80 is constantly pressed (urged) toward the chassis 12a, in particular toward the detection elements 82 mounted thereon, by the force of the coil springs 86.
- the wires 90a, 90b, 90c and 90d are in bent condition.
- the cover 12b is displaced by the vehicle 10 having struck an obstacle, thereby producing a force that acts to displace the plate 80 rearward by distance d , as indicated by imaginary lines in FIG. 7 .
- the detection elements 82 of the contact sensor 40 generate outputs proportional to physical displacement between the plate 80 and chassis 12a, whereupon the detectors 84 (and ECU 44) detect (determine) occurrence of contact with the obstacle and output an ON signal when the detected force exceeds the threshold value (not shown).
- both the wires 90a and 90b on the front wheels 14 side and the wirers 90c and 90d on the rear wheels 16 side extend, as seen in FIG. 8 , so that displacement of the cover 12b (and plate 80) from the chassis 12a is restricted to within the extension limit of the wires 90.
- the lifting of the cover 12b is detected (determined) not by the contact sensor 40 but instead by the lift sensor 60 (and ECU 44).
- the embodiment is configured to have a utility vehicle (10) equipped with driving wheels (16) attached to a chassis (12a) to run about a working area (AR), the vehicle having a contact sensor (40) configured to detect contact with an obstacle from displacement between the chassis (12a) and a cover (12b) (displaceably) attached to the chassis (12a), characterized in that the contact sensor (40) comprises: a plate (80) that is attached to the cover (12b) and disposed in a space formed between the chassis (12a) and the cover (12b) and extends horizontally, more specifically in a direction orthogonal to gravity axis direction, the plate (80) being attached to the chassis (12a) with elastic members (86); a detection element (82) that is disposed between the plate (80) and the chassis (12a) and generates an output indicating (proportional to) the displacement between the plate (80) and the chassis (12a); and a detector (84) connected to the detection element (82) to detect the contact with the obstacle based on the outputs of the detection
- the plate 80 extending orthogonal to gravity axis direction is installed instead of shafts, and the detection elements 82 are provided between the plate 80 and the chassis 12a to generate outputs indicating displacement between the two, which configuration makes guides for restricting movement of the plate 80 in horizontal direction unnecessary, thereby enabling structural simplification.
- the detection element (82) comprises a plurality of detection elements (82) that are disposed between the plate (80) and the chassis (12a) at positions spaced apart from each other.
- the chassis (12a) is disposed with a projection (12a1) and the detection element (82) is disposed on the projection (12a1).
- the chassis (12a) is disposed with projections (12a1) and the detection elements (82) are disposed on the projections (12a1) at positions spaced part with each other.
- the elastic members (86) are coil springs (86) that are disposed around perimeter of the plate and urges the plate (80) toward the chassis (12a).
- the elastic members (86) comprise wires (90) that loosely connect the plate (80) to the chassis (12a).
- the wires (90) are disposed at locations near to the coil springs (86).
- the plate (80) is cut away to form a hole (80a) that allows a blade height regulation mechanism (24) that adjust height of a blade (20) to project therethrough, and the coil springs (86) are disposed around the perimeter of the hole (80a) of the plate.
- displacement limit of the plate 80 can be reliably restricted.
- the fact that the wires 90 extend under action of external force ensures that horizontal and/or vertical movement of the plate 80 (i.e., movement range of the cover 12b) is restricted to within extension limit of the wires 90, whereby damage to other elastic members and/or components by large displacement of the body 12 and plate 80 can be prevented.
- the vehicle 10 is exemplified as a utility vehicle that runs, more specifically autonomously runs or navigates while detecting magnetic field of the boundary wire 72 laid around the working area AR, the vehicle 10 is not limited to this type of utility vehicle.
- vehicle 10 was described as a lawn-mowing vehicle, this invention is not limited to such an application and can also be applied to other utility vehicles capable of driving.
- electromagneto transducers e.g., Hall effect elements
- the detection elements 82 can be of any type insofar as capable of generating outputs proportional to physical displacement between the plate 80 and chassis 12a.
- the plate 80 was described as constituted of a single member, but it can instead be constituted as one comprising two or more plates.
- the elastic members for attaching the plate 80 to the chassis 12a are constituted by the coil springs 86 and the wires 90, but the elastic members are not limited to these types and can be of any type insofar as capable of urging the plate 80 toward the chassis 12a and preventing displacement of the plate 80 beyond a displacement limit.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Guiding Agricultural Machines (AREA)
Claims (7)
- Véhicule utilitaire (10) équipé de roues motrices (16) attachées à un châssis (12a) pour tourner autour d'une zone de travail (AR), le véhicule ayant un capteur de contact (40) configuré pour détecter un contact avec un obstacle à partir d'un déplacement entre le châssis (12a) et une enveloppe (12b) attachée au châssis (12a),
dans lequel le capteur de contact (40) comprend :une plaque (80) qui est attachée à l'enveloppe (12b) et disposée dans un espace formé entre le châssis (12a) et l'enveloppe (12b) et s'étend horizontalement, la plaque (80) étant attachée au châssis (12a) avec des organes élastiques (86) ;un élément de détection (82) qui est disposé entre la plaque (80) et le châssis (12a) et génère une sortie indiquant le déplacement entre la plaque (80) et le châssis (12a) ; etun détecteur (84) relié à l'élément de détection (82) pour détecter le contact avec l'obstacle sur la base des sorties de l'élément de détection (82),caractérisé en ce que les organes élastiques (86) comprennent des fils (90) qui relient la plaque (80) au châssis (12a) de manière lâche. - Véhicule selon la revendication 1, dans lequel l'élément de détection (82) comprend une pluralité d'éléments de détection (82) qui sont disposés entre la plaque (80) et le châssis (12a) à des positions espacées l'une de l'autre.
- Véhicule selon la revendication 1 ou 2, dans lequel les organes élastiques (86) sont des ressorts hélicoïdaux (86) qui sont disposés autour d'un périmètre de la plaque et poussent la plaque (80) vers le châssis (12a).
- Véhicule selon la revendication 1, dans lequel les fils (90) sont disposés à des emplacements proches des ressorts hélicoïdaux (86).
- Véhicule selon l'une quelconque des revendications 1 à 4, dans lequel le châssis (12a) est agencé avec une saillie (12a1) et l'élément de détection (82) est disposé sur la saillie (12a1).
- Véhicule selon l'une quelconque des revendications 2 à 4, dans lequel le châssis (12a) est agencé avec des saillies (12a1) et les éléments de détection (82) sont disposés sur les saillies (12a1) à des positions espacées l'une de l'autre.
- Véhicule selon l'une quelconque des revendications 3 à 6, dans lequel la plaque (80) est découpée pour former un trou (80a) qui permet à un mécanisme de régulation de hauteur de lame (24) qui ajuste une hauteur d'une lame (20) de faire saillie au travers, et les ressorts hélicoïdaux (86) sont disposés autour du périmètre du trou (80a) de la plaque.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213426A JP6710145B2 (ja) | 2016-10-31 | 2016-10-31 | 自律走行車両 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3316067A1 EP3316067A1 (fr) | 2018-05-02 |
EP3316067B1 true EP3316067B1 (fr) | 2020-09-09 |
Family
ID=60191172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17198803.3A Active EP3316067B1 (fr) | 2016-10-31 | 2017-10-27 | Détecteur de contact pour véhicule robotique |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3316067B1 (fr) |
JP (1) | JP6710145B2 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111201847B (zh) * | 2020-01-10 | 2021-07-30 | 兰州理工大学 | 一种除草避障机器人 |
CN115899460A (zh) * | 2022-11-02 | 2023-04-04 | 安徽工程大学 | 一种智能探测车辆 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3201208B2 (ja) * | 1995-03-23 | 2001-08-20 | ミノルタ株式会社 | 自律走行車 |
AUPR154400A0 (en) * | 2000-11-17 | 2000-12-14 | Duplex Cleaning Machines Pty. Limited | Robot machine |
GB2494442B (en) * | 2011-09-09 | 2013-12-25 | Dyson Technology Ltd | Autonomous vacuum cleaner |
EP2816885A4 (fr) * | 2012-02-22 | 2015-10-14 | Husqvarna Ab | Tondeuse à gazon robotisée avec détecteur à levier de commande |
DE202012102637U1 (de) * | 2012-07-17 | 2013-10-21 | Al-Ko Kober Se | Selbstfahrendes Bodenbearbeitungsgerät |
EP2692220B1 (fr) * | 2012-08-03 | 2016-04-27 | Robert Bosch GmbH | Capteur d'obstruction directionnelle |
CN108366532B (zh) * | 2015-12-24 | 2021-01-08 | 本田技研工业株式会社 | 自动行驶式割草机 |
-
2016
- 2016-10-31 JP JP2016213426A patent/JP6710145B2/ja not_active Expired - Fee Related
-
2017
- 2017-10-27 EP EP17198803.3A patent/EP3316067B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP6710145B2 (ja) | 2020-06-17 |
EP3316067A1 (fr) | 2018-05-02 |
JP2018073187A (ja) | 2018-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3315000B1 (fr) | Véhicule robotique comprenant une jupe suspendue pour detecter les contacts | |
EP3470311B1 (fr) | Véhicule à déplacement autonome | |
EP3545747B1 (fr) | Véhicule de travail | |
EP3533311B1 (fr) | Système de robot mobile | |
EP3073602A1 (fr) | Station de charge et guide de station de charge pour navigation autonome d'un véhicule utilitaire | |
EP3227169A2 (fr) | Véhicule robotique à transmission intégrale avec frein de direction | |
US11009869B2 (en) | Autonomously navigating vehicle | |
EP2437130A1 (fr) | Appareil de contrôle pour véhicule à fonctionnement autonome | |
EP3316067B1 (fr) | Détecteur de contact pour véhicule robotique | |
US10440879B2 (en) | Robotic work tool | |
US11934190B2 (en) | Low-profile robotic platform | |
US10874051B2 (en) | Utility vehicle with noise inhibition | |
US20210270338A1 (en) | Suspension for outdoor robotic tools | |
CN103676946A (zh) | 自动行走设备及其状态信息管理方法 | |
US12110059B2 (en) | Autonomously navigating vehicle | |
CN213092166U (zh) | 周界信号模块、停靠站及自主作业系统 | |
CN213179665U (zh) | 一种标靶机构及打靶训练机器人 | |
CN213960784U (zh) | 磁铁固定结构、碰撞传感器和园林工具 | |
CN113934199A (zh) | 周界信号模块、停靠站及自主作业系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171027 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190306 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200422 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1312390 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017023191 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201210 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1312390 Country of ref document: AT Kind code of ref document: T Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210111 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210109 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017023191 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201027 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210610 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602017023191 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201109 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201027 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200923 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602017023191 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G05D0001020000 Ipc: G05D0001430000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230830 Year of fee payment: 7 |