EP3306949B1 - Dispositif et procédé de transmission de son par conduction osseuse - Google Patents
Dispositif et procédé de transmission de son par conduction osseuse Download PDFInfo
- Publication number
- EP3306949B1 EP3306949B1 EP15859999.3A EP15859999A EP3306949B1 EP 3306949 B1 EP3306949 B1 EP 3306949B1 EP 15859999 A EP15859999 A EP 15859999A EP 3306949 B1 EP3306949 B1 EP 3306949B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- amplitude
- vibration
- vibration signal
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 19
- 210000000988 bone and bone Anatomy 0.000 title description 9
- 230000005236 sound signal Effects 0.000 claims description 71
- 238000001514 detection method Methods 0.000 claims description 69
- 238000006243 chemical reaction Methods 0.000 claims description 64
- 238000001914 filtration Methods 0.000 claims description 18
- 230000007613 environmental effect Effects 0.000 claims description 15
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000003625 skull Anatomy 0.000 description 3
- 210000003454 tympanic membrane Anatomy 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 210000000860 cochlear nerve Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 210000002985 organ of corti Anatomy 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2430/00—Signal processing covered by H04R, not provided for in its groups
- H04R2430/03—Synergistic effects of band splitting and sub-band processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2460/00—Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
- H04R2460/03—Aspects of the reduction of energy consumption in hearing devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2460/00—Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
- H04R2460/13—Hearing devices using bone conduction transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/60—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
- H04R25/604—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
- H04R25/606—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
Definitions
- the invention relates to the field of bone-conduction technology, in particular to a bone-conduction sound transmission device and bone-conduction sound transmission method.
- bone-conduction achieves sound transmission by converting a sound signal into mechanical vibration signals of different frequencies, and sound waves being transmitted through the skull, the bony labyrinth, the endolymphe, the spiral organ, the auditory nerve, and the auditory center of a human.
- bone-conduction omits many steps of transmitting sound waves, also, sound can be reproduced clearly in a noisy environment, and the sound waves will not affect other persons due to sound diffusion in the air.
- Document D1 discloses a system that supports equalization and power control of bone conduction elements.
- a bone conduction sensor is made in contact with the user, and used to obtain feedback signal relating to the output of the acoustic signal via the bone conduction element.
- the output of the acoustic signal may be adaptively controlled based on the processing of the feedback, so that the perceived volume of the user is in an acceptable range.
- Document D2 discloses an acoustic device including a member extending transversely of its thickness and capable of sustaining bending waves at least over an intendedly consequentially acoustically active area of the transverse extent of said member, the member having a distribution of resonant modes of its natural bending wave vibration at least over the area that is dependent on values of particular parameters of said members, including geometrical configuration and directional bending stiffness, which values have been selected to predetermine said distribution of natural resonant modes being consonant with required achievable acoustic action of said member for operation of said device over a desired operative acoustic frequency range.
- Document D3 discloses a wearable surround sound system, that includes: (a) a processor, adapted to receive input signals representative of requested audio signals to be heard by the user and in response to generate multiple output signals; and (b) multiple bone conduction speakers, coupled to the processor, adapted to convey the multiple output signals to at least one bone of a user; wherein the bone conduction speakers are arrayed so as to stimulate an encompassing sound perception of the user.
- An objective of the invention is to provide a bone-conduction sound transmission device and a bone-conduction sound transmission method, so as to mitigate or alleviate the problem of the larger sound distortion during the process of bone-conduction for the existing bone-conduction sound transmission device.
- an embodiment of the invention provides a bone-conduction sound transmission device as in claim 1.
- the signal conversion and emission module may comprise a vibration generation component for emitting the vibration signal, and the signal feedback module may apply the amplitude compensation signal to the vibration generation component.
- a bone-conduction sound transmission device according to claim 3 is also provided.
- the signal conversion and emission module may further comprise a first frequency division unit configured to perform frequency division for the digital audio signal such that the digital audio signal is divided into M sub-audio signals having different frequency bands, each sub-audio signal having a center frequency of f k , and M being a positive integer, k being a positive integer in the range of 1 to M, a multi-frequency signal conversion unit configured to convert the M sub-audio signals having different frequency bands and the center frequency of f k into M sub vibration signals, and a mixing unit for combining the M sub vibration signals into a complete vibration signal.
- a first frequency division unit configured to perform frequency division for the digital audio signal such that the digital audio signal is divided into M sub-audio signals having different frequency bands, each sub-audio signal having a center frequency of f k , and M being a positive integer, k being a positive integer in the range of 1 to M
- a multi-frequency signal conversion unit configured to convert the M sub-audio signals having different frequency bands and the center frequency of f k into M sub vibration signals
- the signal conversion and emission module may further comprise a first filtering unit for filtering the digital audio signal, and the first frequency division unit may be configured to perform frequency division for the filtered digital audio signal.
- the signal feedback module may further comprise a second frequency division unit, which may be configured to perform frequency division for the vibration signal detected by the signal detection module, so that the detected vibration signal is divided into M sub-detected vibration signals having different frequency bands in consistent with those of the divided digital audio signals, each sub-detected vibration signal having the center frequency of f k , M being a positive integer, k being a positive integer in the range of 1 to M; and a multiple-frequency signal feedback unit, which may be configured to calculate the amplitude attenuation coefficient for each of the M sub-detected vibration signals having the center frequency of f k , determine M amplitude compensation signals based on the calculated M amplitude attenuation coefficients, and compensate for the M sub vibration signals generated by the multi-frequency signal conversion unit with the M amplitude compensation signals.
- a second frequency division unit which may be configured to perform frequency division for the vibration signal detected by the signal detection module, so that the detected vibration signal is divided into M sub-detected vibration signals having different frequency bands in consistent with
- the signal feedback module may further comprise a second filtering unit for filtering the vibration signal detected by the signal detection module, and the second frequency division unit may be configured to perform frequency division for the filtered vibration signal.
- the signal output module may comprise an environmental audio receiving unit for receiving an environmental audio signal and converting the environmental audio signal into the digital audio signal.
- another embodiment of the invention provides a bone-conduction sound transmission method according to claim 9.
- the attenuation of the sound signal in the process of bone-conduction may be compensated precisely, thus the amplitude-frequency response of the sound signal may be enhanced, and distortion of the sound signal during bone-conduction may be improved, therefore a sound of better quality can be provided for the user.
- the bone-conduction sound transmission device may comprise a signal output module 1 for providing a digital audio signal, a signal conversion and emission module 2 for converting the digital audio signal into a vibration signal and emitting the vibration signal, a signal detection module 3 for detecting the vibration signal for at least one position in the transmission path from the signal conversion and emission module 2 to a receiving end 5, and a signal feedback module 4 which may be configured to calculate an attenuation coefficient of the vibration signal at each of the positions, determine a compensation signal based on the attenuation coefficient and compensate for the vibration signal generated from the signal conversion and emission module with the compensation signal.
- the signal conversion and emission module 2 may receive the digital audio signal from the signal output module 1, and then convert this digital audio signal into the vibration signal.
- the signal output module 1 may comprise a digital audio signal generator.
- the signal conversion and emission module 2 may comprise a bone-conduction vibrator and a driving chip for driving the bone-conduction vibrator. Therefore, the digital audio signal can be delivered to the driving chip, enabling the driving chip to drive the bone-conduction vibrator such that the vibration can be created, the vibration then may be transmitted through the skeleton and skin of a user.
- the transmission path may comprise skeletons such as the skull transmitting the vibration signal, and said position may be any point on the skeletons acting as the transmission path.
- implementations of the bone-conduction sound transmission device is not limited to this, and they can be in the form of other structures, which will not be described in detail herein.
- the embodiment of the invention may compensate for the attenuation of sound signal in the process of bone conduction transmission, thus the distortion of sound signal during the bone conduction transmission can be improved, so that a sound having a better quality can be provided for the user at the receiving end 5.
- the signal conversion and emission module 2 typically may comprise a vibration generation component for emitting the vibration signal.
- the signal feedback module 4 may apply the compensation signal to the vibration generation component so as to compensate for the emitted vibration signal.
- the vibration generation component may for example be a component having a function similar to the diaphragm in the headset or the eardrum in the human ear. And specific implementations of the vibration generation component are not limited to these.
- the compensation signal may be in the form of a vibration signal for compensation.
- it can be an electrical signal converted from the vibration signal detected at respective positions.
- the compensation signal in the form of electrical signal may be sent to the signal conversion and emission module 2 by way of a wire, then the signal conversion and emission module 2 may adjust the amplitude of the emitted vibration signal based on the compensation signal in the form of electrical signal, thereby the distortion of vibration signal can be improved during its transmission.
- the signal detection module 3 may comprise a signal amplitude detection unit 31 for detecting an amplitude of the vibration signal for at least one position in the transmission path from the signal conversion and emission module 2 to the receiving end 5, the compensation signal may comprise an amplitude compensation signal, the signal feedback module 4 may be configured to calculate an amplitude attenuation coefficient of the vibration signal at each of the positions, and determine the amplitude compensation signal based on the amplitude attenuation coefficient.
- the amplitude-frequency response property of the vibration signal can be improved effectively, such that the user at the receiving end 5 may receive an acoustic signal having a better sound quality.
- the signal amplitude detection unit 31 may comprise at least one signal amplitude detection component corresponding to the position to be detected, which may be configured to detect the amplitude of the vibration signal transmitted to the corresponding position.
- the signal amplitude detection unit 31 comprises a first signal amplitude detection component 311 at a first position, a second signal amplitude detection component 312 at a second position, and a third signal amplitude detection component 313 at a third position.
- the first signal amplitude detection component 311, the second signal amplitude detection component 312, and the third signal amplitude detection component 313 may be used to detect amplitudes of the vibration signals transmitted to the first position, the second position and the third position, respectively.
- Each of the first signal amplitude detection component 311, the second signal amplitude detection component 312, and the third signal amplitude detection component 313 is connected to the signal feedback module 4, so that the detected amplitudes of the vibration signals at the first position, the second position and the third position can be delivered to the signal feedback module 4. Then the signal feedback module 4 may determine the amplitude attenuation coefficients of the vibration signals transmitted to respective positions based on the received amplitudes of the vibration signals for respective positions, and generate corresponding amplitude compensation signals based on the amplitude attenuation coefficients.
- U 0 denotes an initial amplitude of the vibration signal emitted from the signal conversion and emission module, and U i denotes the amplitude of the vibration signal transmitted to the i-th position.
- B i may be a non-linear function that depends on ⁇ i , for ⁇ i having a relatively small value, B i may be N1 times ⁇ i , while for ⁇ i having a relatively large value, B i may be N2 times ⁇ i , and N1 may be greater than N2.
- the amplitude attenuation coefficient ⁇ i for each position and thus the amplitude compensation signal B i for each position may be obtained.
- the number of the positions may be N, each position may be provided with a signal amplitude detection component for detecting the amplitude of the vibration signal transmitted to this position.
- the signal amplitude detection unit 31 may comprise N signal amplitude detection components.
- the distance between the j-th position and the signal conversion and emission module 2 may be greater than the distance between the (j-1)-th position and the signal conversion and emission module 2, j is a positive integer, and 1 ⁇ j ⁇ N.
- the amplitude U j for each position is compared to the amplitude U j -1 for the preceding position.
- the transmission path will be divided on a smaller, more intimate scale, the length of each sub-transmission path will be shorter, a better compensation effect therefore may be reached with such embodiment.
- the first position is provided the first signal amplitude detection component 311, the second position is provided with the second signal amplitude detection component 312, the third position is provided with the third signal amplitude detection component 313.
- the distances from the signal conversion and emission module 2 to the first signal amplitude detection component 311, the second signal amplitude detection component 312 and the third signal amplitude detection component 313 are respectively denoted as L 1 , L 2 and L 3 .
- T 0 the time when the vibration signal is emitted from the signal conversion and emission module 2 is denoted as T 0
- T 1 , T 2 , T 3 respectively denotes the times at which the vibration signal reaches the first signal amplitude detection component 311, the second signal amplitude detection component 312 and the third signal amplitude detection component 313.
- T 1 , T 2 , T 3 is comprised in the time period of T 0 to T.
- U 0 denotes the initial amplitude of the vibration signal emitted from the signal conversion and emission module 2
- amplitudes of the vibration signals at the first position, second position and third position respectively detected by the first signal amplitude detection component 311, the second signal amplitude detection component 312 and the third signal amplitude detection component 313 are denoted as U 1 , U 2 , U 3 , respectively.
- Fig. 5 illustrates the curves of U 0 , U 1 , U 2 , U 3 over time before compensation.
- ⁇ 1 denotes the first amplitude attenuation coefficient
- ⁇ 2 denotes the second amplitude attenuation coefficient
- ⁇ 3 denotes the third amplitude attenuation coefficient.
- U 0 denotes the initial amplitude of the vibration signal emitted from the signal conversion and emission module 2
- U 1 denotes the amplitude of the vibration signal transmitted to the first position
- U 2 denotes the amplitude of the vibration signal transmitted to the second position
- U 3 denotes the amplitude of the vibration signal transmitted to the third position.
- B 1 denotes the first amplitude compensation signal, and may be a pulse signal, the value of which is more than one times as large as that of ⁇ 1 .
- B 2 denotes the second amplitude compensation signal, and may be a pulse signal, the value of which is more than one times as large as that of ⁇ 2 .
- B 3 denotes the third amplitude compensation signal, and may be a pulse signal, the value of which is more than one times as large as that of ⁇ 3 .
- the pulse signals may be generated by a conventional amplifier element such as a proportional amplifier.
- the first amplitude compensation signal B 1 may be provided approximately at the time of T 1
- the second amplitude compensation signal B 2 may be provided after the time interval of T 2 -T 1
- the third amplitude compensation signal B 3 may be provided after the time interval of T 3 -T 2 , so as to compensate for the signal attenuation at respective positions accurately.
- the signal feedback module 4 may provide the above compensation pulse signals B 1 , B 2 and B 3 on a cycle of T.
- Fig. 7 illustrates curves of U 1 , U 2 and U 3 over time after compensation. It can be seen that, each of the amplitudes of the vibration signals U 1 , U 2 and U 3 after compensation detected by the first signal amplitude detection component 311, the second signal amplitude detection component 312 and the third signal amplitude detection component 313 may be substantially kept at the level of U 0 . Therefore, distortion of acoustical signal may be improved effectively during the process of bone-conduction.
- the signal conversion and emission module 2 may further comprise a first frequency division unit 22 configured to perform frequency division for the digital audio signal such that the digital audio signal is divided into M sub-audio signals having different frequency bands, each sub-audio signal having a center frequency of f k , and M being a positive integer, k being a positive integer in the range of 1 to M; a multi-frequency signal conversion unit 23 configured to convert the M sub-audio signals having different frequency bands and the center frequency of f k into M sub vibration signals, and a mixing unit 24 for combining the M sub vibration signals into a complete vibration signal.
- a first frequency division unit 22 configured to perform frequency division for the digital audio signal such that the digital audio signal is divided into M sub-audio signals having different frequency bands, each sub-audio signal having a center frequency of f k , and M being a positive integer, k being a positive integer in the range of 1 to M
- a multi-frequency signal conversion unit 23 configured to convert the M sub-audio signals having different frequency bands and the center frequency of f k
- the first frequency division unit 22 receives the digital audio signal outputted from the signal output module 1, and performs frequency division for the digital audio signal to divide the digital audio signal into M sub-audio signals having different frequency bands. Thereafter, the first frequency division unit 22 delivers the M sub-audio signals having different frequency bands to the multi-frequency signal conversion unit 23.
- the multi-frequency signal conversion unit 23 may convert them into vibration signals, so as to obtain the M sub vibration signals to be emitted. Then, the multi-frequency signal conversion unit 23 delivers the M sub vibration signals to the mixing unit 24. Upon receiving the M sub vibration signals, the mixing unit 24 may combine the M sub vibration signals into a complete vibration signal and emit the complete vibration signal.
- the digital audio signal may be divided into several sub-audio signals having different frequency bands according to human auditory characteristics, then be processed and transmitted by means of the bone-conduction technology, in this way, the quality of the acoustical signal may be improved.
- the digital audio signal may be divided into three sub-audio signals having frequency bands of P 1 , P 2 and P 3 , the center frequencies of each of the three sub-audio signals are f 1 , f 2 , f 3 respectively.
- the signal conversion and emission module 2 may further comprise a first filtering unit 21 for filtering the digital audio signal to eliminate noise.
- the first frequency division unit 22 is configured to perform frequency division for the filtered digital audio signal.
- the first filtering unit 21 may receive the digital audio signal outputted from the signal output module 1, and filter the digital audio signal.
- the filtered digital audio signal is delivered to the first frequency division unit 22, which then may perform frequency division for the filtered digital audio signal.
- the signal feedback module 4 may further comprise a second frequency division unit 42, which may be configured to perform frequency division for the vibration signal detected by the signal detection module 3, so that the detected vibration signal is divided into M sub-detected vibration signals having different frequency bands in consistent with those of the divided digital audio signal, each sub-detected vibration signal having the center frequency of f k , M being a positive integer, k being a positive integer in the range of 1 to M.
- a second frequency division unit 42 which may be configured to perform frequency division for the vibration signal detected by the signal detection module 3, so that the detected vibration signal is divided into M sub-detected vibration signals having different frequency bands in consistent with those of the divided digital audio signal, each sub-detected vibration signal having the center frequency of f k , M being a positive integer, k being a positive integer in the range of 1 to M.
- the signal feedback module 4 may further comprise a multiple-frequency signal feedback unit 43, which may be configured to calculate the attenuation coefficient for each of the M sub-detected vibration signals having the center frequency of f k , determine M compensation signals based on the calculated M attenuation coefficients, and compensate for the M sub vibration signals generated by the multi-frequency signal conversion unit 23 with the M compensation signals.
- a multiple-frequency signal feedback unit 43 which may be configured to calculate the attenuation coefficient for each of the M sub-detected vibration signals having the center frequency of f k , determine M compensation signals based on the calculated M attenuation coefficients, and compensate for the M sub vibration signals generated by the multi-frequency signal conversion unit 23 with the M compensation signals.
- the signal detection module 3 may deliver the detected vibration signal to the signal feedback module 4.
- the second frequency division unit 42 receives the detected vibration signal, and divides it into M sub-detected vibration signals having different frequency bands in consistent with those of the divided digital audio signal, which then will be delivered to the multiple-frequency signal feedback unit 43.
- the multiple-frequency signal feedback unit 43 After receiving the M sub-detected vibration signals, the multiple-frequency signal feedback unit 43 calculates M attenuation coefficients that correspond to the M sub-detected vibration signals, and determine M compensation signals based on the M attenuation coefficients. Then the M compensation signals may be respectively provided to the M sub vibration signals generated by the multi-frequency signal conversion unit 23, such that the sub vibration signals may be compensated and the signal distortion can be mitigated.
- the detected vibration signal may be divided into three sub-detected vibration signals having frequency bands of P1, P2 and P3, which are in consistent with those of the divide digital audio signal.
- the center frequencies of the three sub-detected vibration signals are f 1 , f 2 , f 3 respectively, such that the frequency bands of the sub-detected vibration signals are in consistent with those of the sub vibration signals.
- the multiple-frequency signal feedback unit 43 calculates attenuation coefficients and compensation signals for the sub-detected vibration signals having the center frequencies of f 1 , f 2 , f 3 , then the calculated three compensation signals are used to compensate for the three sub vibration signals generated by the multi-frequency signal conversion unit 23, thereby the accuracy of the compensation may be assured.
- the signal feedback module 4 may further comprise a second filtering unit 41 for filtering the vibration signal detected by the signal detection module 3 to eliminate noise.
- the second frequency division unit 42 may be configured to perform frequency division for the filtered vibration signal.
- the second filtering unit 41 may receive the vibration signal detected by the signal detection module 3, and filter the detected vibration signal.
- the filtered vibration signal is delivered to the second frequency division unit 42, which then may perform frequency division for the filtered vibration signal.
- the first frequency division unit 22 in the signal conversion and emission module 2 performs frequency division for the digital audio signals to obtain three sub-audio signals relating to three frequency bands and having center frequencies of f1, f2, and f3.
- the multi-frequency signal conversion unit 23 converts the three sub-audio signals into three sub vibration signals having center frequencies of f1, f2, and f3 respectively.
- the mixing unit 24 combines the three sub vibration signals relating to three frequency bands into a complete vibration signal.
- the signal detection module 3 detects the vibration signal transmitted to the first position, second position and third position.
- the second frequency division unit 42 of the signal feedback module 4 divides the detected vibration signal into three sub-detected vibration signals of different frequency bands respectively having center frequencies of f1, f2, and f3.
- the sub vibration signal corresponding to the sub-detected vibration signal having the center frequency of f1 is emitted from the signal conversion and emission module 2 at the time of T 0 , and transmitted to the first signal amplitude detection component 311 on the first position at the time of T 11 , transmitted to the second signal amplitude detection component 312 on the second position at the time of T 12 , then transmitted to the third signal amplitude detection component 313 on the third position at the time of T 13 .
- the whole transmission cycle of this sub vibration signal from the signal conversion and emission module 2 to the human's ear is a time period of T.
- the initial amplitude of the sub vibration signal corresponding to the sub-detected vibration signal having the center frequency of f 1 emitted from the signal conversion and emission module 2 is U 10 , and U 11 , U 12 , U 13 respectively denotes corresponding amplitudes of this signal when transmitted to the first, second and third positions.
- the initial amplitude of the sub vibration signal corresponding to the sub-detected vibration signal having the center frequency of f 2 emitted from the signal conversion and emission module 2 is U 20
- U 21 , U 22 , U 23 may respectively denote the amplitudes of this signal when transmitted to the first, second and third positions.
- the initial amplitude of the sub vibration signal corresponding to the sub-detected vibration signal having the center frequency of f 3 emitted from the signal conversion and emission module 2 is U 30
- U 31 , U 32 , U 33 may respectively denote the amplitudes of this signal when transmitted to the first, second and third positions.
- the signal feedback module 4 may calculate amplitude attenuation coefficients ⁇ 11 , ⁇ 11 , ⁇ 13 of the sub vibration signal corresponding to the sub-detected vibration signal having the center frequency of f 1 transmitted to the first, second and third position respectively.
- ⁇ 11 ( U 10 - U 11 )/ U 10
- ⁇ 12 ( U 11 - U 12 )/ U 11
- ⁇ 13 ( U 12 - U 13 )/ U 12 .
- an amplitude compensation signal B 11 approximately provided at the time of T 11 , an amplitude compensation signal B 12 provided after a time period of T 12 -T 11 , an amplitude compensation signal B 13 provided after a time period of T 13 -T 12 are determined based on the calculated amplitude attenuation coefficients ⁇ 11 , ⁇ 12 , ⁇ 11 .
- B 11 f ( ⁇ 11 ), so that B 11 is a pulse signal, the value of which is more than one times as large as that of ⁇ 11 .
- B 12 f ( ⁇ 12 ) so that B 12 is a pulse signal, the value of which is more than one times as large as that of ⁇ 11 .
- B 13 f ( ⁇ 13 ) , so that B 13 is a pulse signal, the value of which is more than one times as large as that of ⁇ 13 .
- the above pulse signal for compensation may be provided by means of a conventional amplifier (e.g., a proportional amplifier), such that each of the amplitudes of the vibration signals detected by the first signal amplitude detection component 311, the second signal amplitude detection component 312 and the third signal amplitude detection component 313 is substantially U 10 .
- a conventional amplifier e.g., a proportional amplifier
- the signal feedback module 4 may calculate the amplitude attenuation coefficients of the sub vibration signal corresponding to the sub-detected vibration signal having the center frequency of f 2 transmitted to the first, second and third position as ⁇ 21 , ⁇ 22 , ⁇ 23 , respectively, and the corresponding amplitude compensation signals are B 21 , B 22 , B 23 respectively.
- the amplitude attenuation coefficients of the sub vibration signal corresponding to the sub-detected vibration signal having the center frequency of f 3 transmitted to the first, second and third position are ⁇ 31 , ⁇ 32 , ⁇ 33 , respectively, and the corresponding amplitude compensation signals are B 31 , B 32 , B 33 respectively.
- the signal feedback module 4 may provide the amplitude compensation signals B 11 , B 12 , B 13 corresponding to the frequency band with the center frequency of f 1 , the amplitude compensation signals B 21 , B 22 , B 23 corresponding to the frequency band with the center frequency of f2 and the amplitude compensation signals B 31 , B 32 , B 33 corresponding to the frequency band with the center frequency of f 3 on a cycle of T.
- the above amplitude compensation signals may be respectively used to compensate for the sub vibration signals corresponding to different frequency bands generated by the multi-frequency signal conversion unit 23 in the signal conversion and emission module 2.
- the signal output module 1 may comprise environmental audio receiving unit 11 for receiving an environmental audio signal and converting the environmental audio signal into the digital audio signal.
- the environmental audio receiving unit 11 may deliver the converted digital audio signal to the signal conversion and emission module 2.
- the bone-conduction sound transmission device provided by the embodiments of the invention may enhance the hearing effect of the human's ear for the environmental sound.
- Such device may be used in the headset, and also in the hearing-aid device.
- advantages of a low distortion of the sound signal, a good amplitude-frequency response and a good quality of the sound may be achieved by the bone-conduction sound transmission device provided by the embodiments of the invention.
- Another embodiment of the invention provides a bone-conduction sound transmission method.
- the method may comprise the following steps: providing a digital audio signal; converting the digital audio signal into a vibration signal and emitting the vibration signal; detecting the vibration signal for at least one position in a transmission path from an emission end to a receiving end; calculating an attenuation coefficient of the vibration signal at each of the positions; determining a compensation signal based on the attenuation coefficient, and compensating for the vibration signal with the compensation signal.
- Attenuation of the sound signal during the process of bone-conduction may be compensated on the basis of calculating the attenuation coefficient of the vibration signal at each of the positions, therefore, the sound distortion in the process of bone-conduction may be improved, so that a sound of better quality may be provided to the user at the receiving end.
- the emission end mentioned herein may be the signal conversion and emission module 2 in the bone-conduction sound transmission device provided by the above embodiments.
- the step of detecting the vibration signal for at least one position in a transmission path from an emission end to a receiving end may comprise detecting the amplitude of the vibration signal for at least one position in the transmission path from the emission end to the receiving end.
- the step of calculating an attenuation coefficient of the vibration signal at each of the positions may comprise calculating an amplitude attenuation coefficient of the vibration signal at each of the positions.
- the compensation signal may comprise an amplitude compensation signal, and the step of determining a compensation signal based on the attenuation coefficient may comprise determining the amplitude compensation signal based on the amplitude attenuation coefficient.
- U 0 denotes an initial amplitude of the vibration signal emitted from the emission end
- U i denotes the amplitude of the vibration signal transmitted to the i-th position.
- B i denotes the amplitude compensation signal for the i-th position
- f ( ⁇ i ) may be a piecewise function, so that B i is in the form of a pulse signal, the value of which is more than one times as large as that of ⁇ i .
- the amplitude attenuation coefficient ⁇ i for each position and thus the amplitude compensation signal B i for each position may be obtained.
- the number of the positions may be N, among the N positions, a distance between the j-th position and the emission end may be greater than a distance between the (j-1)-th position and the emission end , j is a positive integer, and 1 ⁇ j ⁇ N.
- the amplitude U j for each position is compared to the amplitude U j -1 for the preceding position.
- the transmission path will be divided on a smaller, more intimate scale, the length of each sub-transmission path will be shorter, a better compensation effect therefore may be achived with such embodiment.
- the step of converting the digital audio signal into a vibration signal may comprise performing frequency division for the digital audio signal, such that the digital audio signal is divided into M sub-audio signals having different frequency bands, each sub-audio signal having a center frequency of f k , and M being a positive integer, k being a positive integer in the range of 1 to M; and converting the M sub-audio signals having different frequency bands and the center frequency of f k into M sub vibration signals, then combining the M sub vibration signals into a complete vibration signal.
- the digital audio signal may be divided into several sub-audio signals having different frequency bands according to human auditory characteristics, then be processed and transmitted by means of the bone-conduction technology, in this way, the quality of the acoustical signal may be improved.
- the method may further comprise filtering the digital audio signal before performing frequency division for the digital audio signal, so that the noise may be eliminated.
- the method may further comprise, before calculating the attenuation coefficient of the vibration signal at each of the positions, performing frequency division for the detected vibration signal, so that the detected vibration signal is divided into M sub-detected vibration signals having different frequency bands in consistent with those of the divided digital audio signal, each sub-detected vibration signal having the center frequency of f k , M being a positive integer, k being a positive integer in the range of 1 to M.
- the method may further comprise, after performing frequency division for the detected vibration signal, calculating the attenuation coefficient for each of the M sub-detected vibration signals having the center frequency of f k , so as to determine M compensation signals based on the calculated M attenuation coefficients, and compensate for the M sub vibration signals with the M compensation signals.
- the attenuation coefficient for each of the M sub-detected vibration signals may be calculated, and the corresponding M compensation signals may be determined, which then may be provided to the M sub vibration signals for compensation, the accuracy of the compensation may be effectively assured.
- the method may further comprise filtering the detected vibration signal prior to performing frequency division for the detected vibration signal, so that the noise may be eliminated.
- the step of providing a digital audio signal may comprise receiving an environmental audio signal, and converting the environmental audio signal into the digital audio signal.
- the embodiment of the invention may enhance the hearing effect of the human's ear for the environmental sound.
- Method of the embodiment may be used in the headset, and also in the hearing-aid device.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
Claims (9)
- Dispositif de transmission de son par conduction osseuse, comprenant,
un module de sortie de signal (1) pour fournir un signal audio numérique ;
un module de conversion et d'émission de signal (2), pour convertir le signal audio numérique en un signal de vibrations et émettre le signal de vibrations ;
un module de détection de signal (3), pour détecter le signal de vibrations pour une pluralité de positions dans le trajet de transmission depuis le module de conversion et d'émission de signal (2) jusqu'à une extrémité de réception, le module de détection de signal (3) comprenant une unité de détection d'amplitude de signal (31) pour détecter une amplitude du signal de vibrations pour chacune des positions dans le trajet de transmission, dans lequel le dispositif de transmission de son par conduction osseuse comprend en outre un module de retour de signal (4) qui est conçu pour calculer un coefficient d'atténuation d'amplitude du signal de vibrations à chacune des positions, déterminer un signal de compensation d'amplitude sur la base du coefficient d'atténuation d'amplitude et compenser le signal de vibrations généré depuis le module de conversion et d'émission de signal (2) avec le signal de compensation d'amplitude, dans lequel le signal de compensation d'amplitude est une fonction du coefficient d'atténuation d'amplitude, dans lequel l'unité de détection d'amplitude de signal (31) comprend une pluralité de composants de détection d'amplitude de signal (311, 312, 313), chaque composant de détection d'amplitude de signal correspondant à la position à détecter, qui est conçue pour détecter l'amplitude du signal de vibrations transmis à la position correspondante,
dans lequel le nombre des positions est N, chaque position étant associée au composant de détection d'amplitude de signal correspondant pour détecter l'amplitude du signal de vibrations transmis à cette position,
dans lequel le module de retour de signal (4) calcule le coefficient d'atténuation d'amplitude pour le signal de vibrations à chacune des positions selon l'équation suivante (1),
dans lequel U0 désigne une amplitude initiale du signal de vibrations émis depuis le module de conversion et d'émission de signal (2), et Ui désigne l'amplitude du signal de vibrations transmis à la i-ème position ;
dans lequel le module de retour de signal (4) détermine en outre le signal de compensation d'amplitude pour chaque position selon l'équation suivante (2), - Dispositif de transmission de son par conduction osseuse selon la revendication 1, dans lequel le module de conversion et d'émission de signal (2) comprend un composant de génération de vibrations pour émettre le signal de vibrations, le module de retour de signal (4) applique le signal de compensation d'amplitude au composant de génération de vibrations.
- Dispositif de transmission de son par conduction osseuse, comprenant :un module de sortie de signal (1) pour fournir un signal audio numérique ;un module de conversion et d'émission de signal (2), pour convertir le signal audio numérique en un signal de vibrations et émettre le signal de vibrations ;un module de détection de signal (3), pour détecter le signal de vibrations pour une pluralité de positions dans le trajet de transmission depuis le module de conversion et d'émission de signal (2) jusqu'à une extrémité de réception, le module de détection de signal (3) comprenant une unité de détection d'amplitude de signal (31) pour détecter une amplitude du signal de vibrations pour chacune des positions dans le trajet de transmission, dans lequel le dispositif de transmission de son par conduction osseuse comprend en outre un module de retour de signal (4) qui est conçu pour calculer un coefficient d'atténuation d'amplitude du signal de vibrations à chacune des positions, déterminer un signal de compensation d'amplitude sur la base du coefficient d'atténuation d'amplitude et compenser le signal de vibrations généré depuis le module de conversion et d'émission de signal (2) avec le signal de compensation d'amplitude, dans lequel le signal de compensation d'amplitude est une fonction du coefficient d'atténuation d'amplitude,dans lequel l'unité de détection d'amplitude de signal (31) comprend une pluralité de composants de détection d'amplitude de signal (311, 312, 313), chaque composant de détection d'amplitude de signal correspondant à la position à détecter, qui est conçue pour détecter l'amplitude du signal de vibrations transmis à la position correspondante,dans lequel le nombre des positions est N, chaque position étant associée au composant de détection d'amplitude de signal correspondant pour détecter l'amplitude du signal de vibrations transmis à cette position,dans lequel, parmi les N positions, une distance entre la j-ème position et le module de conversion et d'émission de signal (2) est supérieure à une distance entre la (j-1)-ème position et le module de conversion et d'émission de signal (2), dans lequel j est un entier positif, et 1<j≤N,dans lequel le module de retour de signal (4) calcule le coefficient d'atténuation d'amplitude pour le signal de vibrations à chaque position selon l'équation suivante (3),dans lequel αi désigne le coefficient d'atténuation d'amplitude du signal de vibrations transmis à la j-ème position, Uj désigne l'amplitude du signal de vibrations transmis à la j-ème position, une amplitude initiale du signal de vibrations émis depuis le module de conversion et d'émission de signal est U0 si j=1;dans lequel le module de retour de signal (4) détermine en outre le signal de compensation d'amplitude pour chaque position selon l'équation suivante (4),dans lequel Bj désigne le signal de compensation d'amplitude pour la j-ème position, f(αj ) est une fonction par morceaux, de sorte que Bj est sous la forme d'un signal d'impulsion, dont la valeur est plusieurs fois aussi grande que celle de αj .
- Dispositif de transmission de son par conduction osseuse selon l'une quelconque des revendications 1 à 3, dans lequel le module de conversion et d'émission de signal (2) comprend en outre :une première unité de répartition en fréquence (22), conçue pour effectuer une répartition en fréquence pour le signal audio numérique de sorte que le signal audio numérique est divisé en M signaux infrasonores ayant des bandes de fréquences différentes, chaque signal infrasonore ayant une fréquence centrale de fk, et M étant un entier positif, k étant un entier positif dans la plage de 1 à M ;une unité de conversion de signal multi-fréquence (23), conçue pour convertir les M signaux infrasonores ayant des bandes de fréquences différentes et la fréquence centrale de fk en M sous-signaux de vibrations, etune unité de mélange (24) pour combiner les M sous-signaux de vibrations en un signal de vibrations complet.
- Dispositif de transmission de son par conduction osseuse selon la revendication 4, dans lequel le module de conversion et d'émission de signal (2) comprend en outre une première unité de filtrage (21) pour filtrer le signal audio numérique, la première unité de répartition en fréquence (22) est conçue pour effectuer une répartition en fréquence pour le signal audio numérique filtré.
- Dispositif de transmission de son par conduction osseuse selon la revendication 4, dans lequel le module de retour de signal (4) comprend en outre :une seconde unité de répartition en fréquence (42), qui est conçue pour effectuer une répartition en fréquence pour le signal de vibrations détecté par le module de détection de signal (3), de sorte que le signal de vibrations détecté est divisé en M signaux de vibrations sous-détectés ayant des plages de fréquences différentes conformes à celles des signaux audio numériques divisés, chaque signal de vibrations sous-détecté ayant la fréquence centrale de fk, M étant un entier positif, k étant un entier positif dans la plage de 1 à M ;et une unité de retour de signal à fréquences multiples (43), qui est conçue pour calculer le coefficient d'atténuation d'amplitude pour chacun des M signaux de vibrations sous-détectés ayant la fréquence centrale de fk, déterminer M signaux de compensation d'amplitude sur la base des M coefficients d'atténuation d'amplitude calculés, et compenser les M sous-signaux de vibrations générés par l'unité de conversion de signal multi-fréquence (23) avec les M signaux de compensation d'amplitude.
- Dispositif de transmission de son par conduction osseuse selon la revendication 6, dans lequel le module de retour de signal (4) comprend en outre une seconde unité de filtrage (41) pour filtrer le signal de vibrations détecté par le module de détection de signal (3), et la seconde unité de répartition en fréquence (42) est conçue pour effectuer une répartition en fréquence pour le signal de vibrations filtré.
- Dispositif de transmission de son par conduction osseuse selon l'une quelconque des revendications 1 à 3, dans lequel le module de sortie de signal (1) comprend une unité de réception audio environnementale (11) pour recevoir un signal audio environnemental et convertir le signal audio environnemental en signal audio numérique.
- Procédé de transmission de son par conduction osseuse, comprenant les étapes :de fourniture d'un signal audio numérique ;de conversion du signal audio numérique en un signal de vibrations, et d'émission du signal de vibrations ;de détection d'une amplitude du signal de vibrations pour une pluralité de positions dans un trajet de transmission depuis une extrémité d'émission jusqu'à une extrémité de réception ;de calcul d'un coefficient d'atténuation d'amplitude du signal de vibrations à chacune des positions ;de détermination d'un signal de compensation d'amplitude sur la base du coefficient d'atténuation d'amplitude, etde compensation du signal de vibrations avec le signal de compensation d'amplitude,dans lequel le signal de compensation d'amplitude est une fonction du coefficient d'atténuation d'amplitude, dans lequel l'étape de calcul d'un coefficient d'atténuation d'amplitude du signal de vibrations à chacune des positions comprend :de calcul du coefficient d'atténuation d'amplitude pour le signal de vibrations à chaque position selon l'équation suivante (1),dans lequel αi désigne le coefficient d'atténuation d'amplitude du signal de vibrations transmis à la i-ème position, et i est un entier positif, dont la valeur maximale correspond au nombre des positions, dans lequel U0 désigne une amplitude initiale du signal de vibrations émis depuis l'extrémité d'émission, et Ui désigne l'amplitude du signal de vibrations transmis à la i-ème position ;dans lequel l'étape de détermination du signal de compensation d'amplitude sur la base du coefficient d'atténuation d'amplitude comprend la détermination du signal de compensation d'amplitude pour chaque position selon l'équation suivante (2),dans lequel Bi désigne le signal de compensation d'amplitude pour la i-ème position, f(αi ) est une fonction par morceaux, de sorte que Bi est sous la forme d'un signal d'impulsion, dont la valeur est plusieurs fois aussi grande que celle de αi .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510290409.6A CN104936096B (zh) | 2015-05-29 | 2015-05-29 | 骨导声音传播装置和方法 |
PCT/CN2015/092672 WO2016192277A1 (fr) | 2015-05-29 | 2015-10-23 | Dispositif et procédé de transmission de son par conduction osseuse |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3306949A1 EP3306949A1 (fr) | 2018-04-11 |
EP3306949A4 EP3306949A4 (fr) | 2019-01-09 |
EP3306949B1 true EP3306949B1 (fr) | 2021-03-17 |
Family
ID=54123006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15859999.3A Active EP3306949B1 (fr) | 2015-05-29 | 2015-10-23 | Dispositif et procédé de transmission de son par conduction osseuse |
Country Status (4)
Country | Link |
---|---|
US (1) | US9986334B2 (fr) |
EP (1) | EP3306949B1 (fr) |
CN (1) | CN104936096B (fr) |
WO (1) | WO2016192277A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104936096B (zh) * | 2015-05-29 | 2018-07-17 | 京东方科技集团股份有限公司 | 骨导声音传播装置和方法 |
CN105721973B (zh) * | 2016-01-26 | 2019-04-05 | 王泽玲 | 一种骨传导耳机及其音频处理方法 |
CN110958538A (zh) * | 2019-12-05 | 2020-04-03 | 瑞声科技(南京)有限公司 | 用于智能头戴式穿戴设备的音频系统及音频处理方法 |
KR102696599B1 (ko) * | 2020-04-30 | 2024-08-21 | 썬전 샥 컴퍼니, 리미티드 | 음성출력장치, 가상음원을 조절하는 방법 및 음량을 조절하는 방법 |
CN116473754B (zh) * | 2023-04-27 | 2024-03-08 | 广东蕾特恩科技发展有限公司 | 一种用于美容仪的骨传导装置及控制方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100419334B1 (ko) * | 1995-09-02 | 2004-05-31 | 뉴 트랜스듀서스 리미티드 | 음향장치 |
US20050141730A1 (en) * | 2001-12-21 | 2005-06-30 | Rti Tech Pte Ltd. | Vibration-based talk-through method and apparatus |
US7670278B2 (en) * | 2006-01-02 | 2010-03-02 | Oticon A/S | Hearing aid system |
WO2007107985A2 (fr) * | 2006-03-22 | 2007-09-27 | David Weisman | Procede et systeme de propagation du son par conduction osseuse |
KR100935769B1 (ko) | 2008-05-02 | 2010-01-06 | 소리젠 주식회사 | 피드백 제어를 갖는 주파수 특성 보상형 능동형 소음 제어장치 및 방법 |
KR101782050B1 (ko) | 2010-09-17 | 2017-09-28 | 삼성전자주식회사 | 비등간격으로 배치된 마이크로폰을 이용한 음질 향상 장치 및 방법 |
CN203039850U (zh) * | 2012-11-08 | 2013-07-03 | 长春芬达电子有限公司 | 骨导型耳机 |
US9596534B2 (en) * | 2013-06-11 | 2017-03-14 | Dsp Group Ltd. | Equalization and power control of bone conduction elements |
CN204721589U (zh) * | 2015-05-29 | 2015-10-21 | 京东方科技集团股份有限公司 | 骨导声音传播装置 |
CN104936096B (zh) * | 2015-05-29 | 2018-07-17 | 京东方科技集团股份有限公司 | 骨导声音传播装置和方法 |
-
2015
- 2015-05-29 CN CN201510290409.6A patent/CN104936096B/zh active Active
- 2015-10-23 WO PCT/CN2015/092672 patent/WO2016192277A1/fr active Application Filing
- 2015-10-23 US US15/037,643 patent/US9986334B2/en active Active
- 2015-10-23 EP EP15859999.3A patent/EP3306949B1/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2016192277A1 (fr) | 2016-12-08 |
EP3306949A4 (fr) | 2019-01-09 |
CN104936096A (zh) | 2015-09-23 |
CN104936096B (zh) | 2018-07-17 |
EP3306949A1 (fr) | 2018-04-11 |
US9986334B2 (en) | 2018-05-29 |
US20170127183A1 (en) | 2017-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3306949B1 (fr) | Dispositif et procédé de transmission de son par conduction osseuse | |
DK2180726T4 (en) | Direction determination using bineural hearing aids. | |
CN107925832B (zh) | 听力装置及其操作方法 | |
US20240179459A1 (en) | Sound-output device | |
EP2393309B1 (fr) | Dispositif et procédé d'application d'un signal de vibration sur un os du crane humain | |
EP3229489B1 (fr) | Prothèse auditive comportant un système de microphone directionnel | |
JP6198765B2 (ja) | 短縮された待ち時間で風雑音を低減した伝送信号を発生する方法 | |
EP2974379B1 (fr) | Ajustement d'un système de prothèse auditive bilatérale | |
CN204721589U (zh) | 骨导声音传播装置 | |
CN103155409A (zh) | 用于向用户提供听力辅助的方法与系统 | |
KR101931916B1 (ko) | 회절 및 골전도 음을 제공하는 보청기 | |
US9232326B2 (en) | Method for determining a compression characteristic, method for determining a knee point and method for adjusting a hearing aid | |
US9020172B2 (en) | Methods, systems, and devices for detecting feedback | |
KR20140044699A (ko) | 사용자 참여에 의한 보청기 피팅장치 | |
US8634566B2 (en) | Method for loudness-based adjustment of the amplification of a hearing aid and associated hearing aid | |
EP3432594A1 (fr) | Dispositif audio avec haut-parleur mems | |
RU2797339C1 (ru) | Устройство вывода звука | |
EP4440145A1 (fr) | Système auditif comprenant au moins un dispositif auditif | |
Seok et al. | Development of a subminiature parametric transducer for hearing rehabilitation | |
KR20220142758A (ko) | 능동소음제어가 가능한 골전도 방식의 음향출력장치 | |
JP6183102B2 (ja) | 音波信号出力装置 | |
KR101152224B1 (ko) | 청취 공간 기반의 지향성 음원 제어 방법 및 장치 | |
JP2000069596A (ja) | 耳栓型電気音響変換装置 | |
CN110415676A (zh) | 次声波生成方法、可穿戴设备、电子设备及存储介质 | |
LITTLER | HEARING AIDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160520 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20181211 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04R 3/04 20060101AFI20181205BHEP Ipc: H04R 25/00 20060101ALN20181205BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200103 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602015067092 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04R0003000000 Ipc: H04R0003040000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04R 3/04 20060101AFI20200921BHEP Ipc: H04R 25/00 20060101ALN20200921BHEP |
|
INTG | Intention to grant announced |
Effective date: 20201009 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015067092 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1373377 Country of ref document: AT Kind code of ref document: T Effective date: 20210415 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210618 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1373377 Country of ref document: AT Kind code of ref document: T Effective date: 20210317 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210717 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210719 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015067092 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
26N | No opposition filed |
Effective date: 20211220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210717 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211023 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211023 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231018 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210317 |