EP3306045B1 - Abgasreinigungseinrichtung, antriebseinrichtung sowie verfahren zum betreiben einer antriebseinrichtung - Google Patents

Abgasreinigungseinrichtung, antriebseinrichtung sowie verfahren zum betreiben einer antriebseinrichtung Download PDF

Info

Publication number
EP3306045B1
EP3306045B1 EP17193734.5A EP17193734A EP3306045B1 EP 3306045 B1 EP3306045 B1 EP 3306045B1 EP 17193734 A EP17193734 A EP 17193734A EP 3306045 B1 EP3306045 B1 EP 3306045B1
Authority
EP
European Patent Office
Prior art keywords
waste gas
heat exchanger
filter body
gas filter
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17193734.5A
Other languages
English (en)
French (fr)
Other versions
EP3306045A1 (de
Inventor
Thomas Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP3306045A1 publication Critical patent/EP3306045A1/de
Application granted granted Critical
Publication of EP3306045B1 publication Critical patent/EP3306045B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/10Combinations of different methods of purification cooling and filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/024Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles

Definitions

  • the invention relates to a method for operating a drive device which has a waste-gas generating drive unit and an exhaust gas purification device for cleaning the exhaust gas generated by the drive unit, wherein the exhaust device via an exhaust filter, which has arranged in an exhaust filter housing, a plurality of flow channels forming exhaust filter body, and has an electric heater for heating the exhaust filter body before a start of operation of the drive unit and before a flow through the exhaust filter with exhaust gas and the exhaust filter body is enclosed by a housing wall of the exhaust filter housing.
  • the exhaust gas cleaning device is used for the purification of exhaust gas, which is generated by the exhaust gas generating drive unit, which is part of the drive device, during its operation.
  • the exhaust gas filter has the exhaust filter body, which exerts the actual filtering and / or catalytic effect on the exhaust gas or the pollutants contained therein.
  • the exhaust filter body consists for example of a honeycomb body, in which the plurality of flow channels is present.
  • the honeycomb body is preferably made of ceramic, for example cordierite. However, other materials may be used to make the honeycomb body.
  • the exhaust filter body may be provided with a catalytic coating in the case of an at least partial embodiment of the exhaust gas filter as exhaust gas catalytic converter.
  • this coating is in the form of a so-called washcoat, which has a high roughness, in particular a higher roughness than the exhaust filter body itself, to increase an effective surface.
  • at least one catalytically active element for example a noble metal, is incorporated in the coating.
  • platinum, rhodium and palladium is incorporated in the coating.
  • the exhaust gas catalyst can be configured, for example, as a three-way catalyst or as a four-way catalyst.
  • the exhaust gas filter may also be configured as a particle filter or at least have such a filter.
  • the particulate filter is, for example, a gasoline particulate filter or a diesel particulate filter.
  • the exhaust filter body is disposed in the exhaust filter housing.
  • the exhaust gas filter housing is used in particular for the flow guidance of the exhaust gas flow.
  • the exhaust filter housing has an exhaust gas inlet and an exhaust gas outlet. Exhaust gas can escape into the exhaust gas filter housing through the exhaust gas inlet. Subsequently, it flows through the exhaust filter housing and exits through the exhaust outlet from the exhaust filter housing.
  • the exhaust filter body In the flow path between the exhaust gas inlet and the exhaust gas outlet of the exhaust filter body is arranged in the exhaust filter housing, this is provided such that the exhaust gas passes through the exhaust filter body or its flow channels in the flow through the exhaust filter housing, ie on the flow path between the exhaust inlet and the exhaust gas outlet ,
  • the exhaust filter body is preferably arranged in the exhaust filter housing such that the entire exhaust gas entering the exhaust gas filter housing through the exhaust gas inlet flows through the exhaust filter body or its flow channels.
  • the exhaust filter body is for this purpose preferably enclosed by the housing wall of the exhaust filter housing.
  • the housing wall surrounds the exhaust filter body in the circumferential direction with respect to a longitudinal center axis of the exhaust filter body or a flow direction of the exhaust filter housing completely.
  • the housing wall preferably limits the exhaust gas inlet and / or via the exhaust gas outlet.
  • the exhaust gas inlet and the exhaust gas outlet are each formed as an edge-closed opening in the housing wall. The housing wall thus ensures a flow guidance of the exhaust gas flowing through the exhaust filter housing from the exhaust gas inlet to the exhaust gas outlet.
  • the exhaust filter has its highest conversion rates for the pollutants at a certain operating temperature. In particular, at temperatures below this operating temperature, the conversion rates are extremely low, so that the exhaust gases can flow through without conversion the exhaust gas filter, thus emerge together with the exhaust gas from the exhaust gas outlet of the exhaust gas filter.
  • the electric heater is provided. This serves to heat the exhaust filter body in order to bring it as quickly as possible to the operating temperature. This is preferably done before the start of operation of the exhaust-generating drive unit, ie before the exhaust gas filter is flowed through by exhaust gas.
  • the exhaust filter body is already brought to its operating temperature by means of the heater before the exhaust-generating drive unit is put into operation, that is, exhaust gas is generated.
  • the heating of the exhaust filter body by means of the electric heater is extremely energy consuming. This applies even more if the exhaust-generating drive unit is only operated temporarily, as would be the case, for example, in a hybrid drive device of a motor vehicle can. In this case, the exhaust filter body must be continuously heated during operation of the motor vehicle with switched off exhaust-generating drive unit, because the device can be started at any time.
  • JP H06 108822 A is from the prior art JP H04 175415 A such as JP 2002 336628 A1 known.
  • a heat exchanger is disposed on the side facing away from the exhaust filter body side of the housing wall, which is in heat transfer connection via the housing wall with the exhaust filter body, wherein the exhaust filter housing and the heat exchanger are at least partially surrounded by a heat insulation, and that in a first mode before the start of operation of the drive unit of the exhaust filter body is heated by the heater and a flow of coolant through the heat exchanger is interrupted until reaching a desired temperature through the exhaust filter, wherein after reaching the target temperature of the exhaust filter body by means of the heat exchanger heat and subsequently used to temper at least one other device in that the energy used for heating the exhaust filter body by means of the heating device is supplied to the at least one device when the drive unit is switched off approx.
  • the exhaust gas purification device therefore has the heat exchanger in addition to the exhaust gas filter. This is designed such that it serves to dissipate heat from the exhaust filter body. Accordingly, it is arranged such that it is in heat transfer communication with the exhaust filter body.
  • the heat transfer connection is above the housing wall.
  • the housing wall preferably consists of a thermally conductive material, in particular in a region of the housing wall, against which the exhaust filter body on the one hand and the heat exchanger on the other.
  • the housing wall consists of several sections, which consist of different materials.
  • the housing wall in a partial region, against which both the heat exchanger and the exhaust filter body is made of a material which has a higher thermal conductivity than a material, from which at least one further partial region consists of the housing wall, which is present away from the heat exchanger and the exhaust filter body , so is spaced from these.
  • a heat-conducting element can be, for example, a heat pipe, for example a heat pipe or a thermosyphon. If such a heat conduction device is provided, it goes without saying that the housing wall can be made of the same material throughout, that is, consist continuously of the same material.
  • the heat exchanger is arranged on the side facing away from the exhaust filter body side of the housing wall.
  • the heat exchanger should not be directly flowed by exhaust gas and / or overflowed. Rather, the heat exchanger should be present outside exhaust-carrying areas of the exhaust filter housing. Accordingly, the heat exchanger ultimately serves the removal of heat from the exhaust filter body, but not the direct removal of heat from the exhaust gas. This is only provided indirectly via the exhaust filter body.
  • the heat removed by the heat exchanger the exhaust filter body heat can be supplied to any other device.
  • the heat exchanger is connected to a cooling circuit, which serves for the temperature control or cooling of a drive unit of the drive device.
  • the heat can be used for tempering a passenger compartment of the motor vehicle. This means that, on the one hand, the exhaust filter body is heated by means of the electric heater, but the energy used for this purpose is also used for other purposes, especially when the exhaust filter body has already reached its operating temperature.
  • the thermal mass of the exhaust gas filter or the exhaust gas purification device is increased by the heat exchanger, so that a cooling of the exhaust gas filter, in particular starting from its operating temperature, is delayed in comparison with conventional exhaust gas purification devices.
  • the heat exchanger for cooling the exhaust gas.
  • the exhaust gas by means of the heat exchanger, a certain amount of heat withdrawn, which is chosen such that downstream of the heat exchanger, the exhaust gas has a certain exhaust gas temperature or at least does not exceed. This can be provided, for example, if the exhaust gas downstream of the exhaust gas purification device flows through an exhaust pipe, which is in the range of an energy storage device for electrical energy, in particular a battery, such as a high-voltage battery, or passes through this / these. Even if the exhaust pipe passes through a tunnel, the described procedure can be used.
  • the heat exchanger has a plurality of heat transfer regions respectively adjacent to the housing wall, which have different inner dimensions from each other.
  • the exhaust filter housing or the housing wall is composed of several subregions.
  • these partial regions adjoin one another in the axial direction with respect to the longitudinal central axis of the exhaust filter body.
  • some of the sections may also be spaced apart from each other.
  • the portions of the exhaust filter housing may have different outer dimensions.
  • the heat exchanger is adapted to the exhaust gas filter housing or the subregions in shape and / or dimensions, in particular in such a way that it rests against it or against it from the outside. Accordingly, the heat exchanger on a plurality of different heat transfer areas, which have different inner dimensions. It may be provided that the heat exchanger has larger dimensions in the axial direction than the exhaust filter body. In particular, the heat exchanger extends in the downstream direction with respect to the direction of flow of the exhaust gas through the exhaust gas filter beyond the exhaust filter body. Alternatively, it can of course be provided that the heat exchanger on its downstream Side with the exhaust filter body is aligned or upstream of this ends.
  • a further embodiment of the invention provides that at least one of the heat exchanger regions has a cylindrical, in particular circular-cylindrical, inner peripheral surface and / or at least one further of the heat-exchanger regions has a conical inner circumferential surface.
  • the heat transfer areas can have any desired shape.
  • one of the heat exchanger regions is preferably cylindrical and another of the heat exchanger regions is conical. This also applies correspondingly to the subsections of the housing wall or of the exhaust gas filter housing to which the respective heat exchanger area rests.
  • the exhaust gas filter housing initially has a cylindrical subarea, to which a conical subarea adjoins, so that the throughflow cross section in the flow direction increases.
  • the conical portion is in turn followed by a cylindrical portion in which the exhaust filter body is present.
  • Downstream of the exhaust filter body is again a conical portion, in which the flow cross-section decreases in the flow direction.
  • a cylindrical section can follow this conical subregion.
  • the exhaust gas inlet and in the last-mentioned subarea of the exhaust gas outlet may be present.
  • the exhaust gas filter housing and the heat exchanger are encompassed at least partially by one, in particular at least on the one hand of the heat exchanger or on both sides of the heat exchanger to the housing wall, heat insulation.
  • the thermal insulation serves the thermal insulation of the exhaust gas purification device, so that as little heat of the exhaust filter body is lost, especially if it is not flowed through by exhaust gas.
  • the heat insulation surrounds the exhaust filter housing and / or the heat exchanger at least in regions, in particular in the circumferential direction with respect to the longitudinal central axis of the exhaust filter body completely.
  • the heat insulation is preferably applied to an outer peripheral surface of the exhaust filter housing and / or the heat exchanger.
  • the heat insulation extends in the flow direction at least on one side, but preferably on both sides, beyond the heat exchanger addition. This means that the thermal insulation rests continuously in the flow direction on the heat exchanger and rests on both sides of the heat exchanger to the exhaust filter housing. It may be provided here that the heat insulation extends in the flow direction from the exhaust gas inlet to the exhaust gas outlet of the exhaust gas filter housing.
  • a further preferred embodiment of the invention provides a cooling circuit for controlling the temperature of the drive unit, which is fluidically connected to the heat exchanger.
  • the cooling circuit of the temperature control of the drive unit so that it can also be referred to as tempering.
  • the cooling circuit is fluidically connected to the heat exchanger, so that in the cooling circuit circulating coolant is at least partially guided by the heat exchanger. In this way, the heat taken from the exhaust filter body heat can serve the tempering of the drive unit, in particular if this is currently not operated.
  • a development of the invention provides that the cooling circuit is fluidically connected directly or via a further heat exchanger to a passenger compartment heating.
  • the passenger compartment heating circuit serves to control the temperature of a passenger compartment of the motor vehicle. It can now be provided that the coolant used in the cooling circuit is supplied directly to the passenger compartment heating circuit. Alternatively, another heat exchanger can be present between the cooling circuit and the passenger compartment heating circuit, so that the cooling circuit and the passenger compartment heating circuit are fluidly decoupled from one another.
  • the exhaust filter body in a first mode, is heated by the heater, wherein a coolant flow is interrupted by the heat exchanger until the exhaust filter body has reached a target temperature and after reaching the sol temperature of the exhaust filter body is removed by means of the heat exchanger, the is used below for controlling the temperature of the at least one other device, in particular the drive unit, a passenger compartment and / or an energy storage.
  • the exhaust filter body In the context of the first operating mode, the exhaust filter body should first be brought to its operating temperature as quickly as possible. For this purpose, heat is supplied to the exhaust filter body by means of the heater.
  • the coolant flow can be released by the heat exchanger, so that the coolant flows through the heat exchanger. With the aid of the heat exchanger or the coolant, heat is subsequently taken from the exhaust filter body and supplied to at least one other device.
  • a further embodiment of the invention can provide that in a second operating mode, the heating device is deactivated, wherein the exhaust filter body heat is removed by means of the heat exchanger for tempering the at least one vehicle device.
  • the heater is disabled.
  • the exhaust filter body is supplied so far no or only by means of the exhaust heat. In any case, however, the exhaust filter body can be removed by means of the heat exchanger heat, which is subsequently used for controlling the temperature of the at least one vehicle device.
  • such a procedure is provided during the operation of the exhaust gas generating drive unit, so that the heat contained in the exhaust gas is used for controlling the temperature of the vehicle device.
  • it can also be provided to remove the heat from the exhaust filter body, although heat is neither supplied to it by means of the heating device nor via the exhaust gas.
  • the exhaust filter body is used as a heat storage. This is preferably carried out when the temperature of the exhaust filter body is greater than the target temperature.
  • the setpoint temperature may in this case correspond to the above-mentioned operating temperature.
  • the exhaust filter body is heated by means of the heater, so that its temperature increases in the direction of the setpoint temperature or operating temperature. If the exhaust filter body has reached its setpoint temperature, the heat supplied to the exhaust filter body by means of the heating device can, in addition to the temperature control of the drive assembly, the passenger compartment or the like are used.
  • a fluid can be present in the heat exchanger, which is circulated in the heat exchanger or within a closed coolant circuit associated with the heat exchanger.
  • a coolant for example, thermal oil is used. This can be active in the heat exchanger or the coolant circuit either, ie by means of a conveyor, or passively circulated. For passive circulation, for example, the thermosiphon effect is used.
  • the heat exchanger is fluidically connected via a further heat exchanger to the cooling circuit and / or the passenger compartment heating circuit.
  • Figure is a schematic partial sectional view of an exhaust gas purification device having an exhaust filter, a heat exchanger and a heat insulation.
  • the figure shows a schematic partial sectional view of an exhaust gas purification device 1.
  • This has an exhaust gas filter 2, which in turn has an exhaust filter body 3.
  • the exhaust filter body is arranged in an exhaust filter housing 4 and is enclosed by a housing wall 5 of the exhaust filter housing 4.
  • the housing wall 5 comprises the exhaust gas filter body 3 in the circumferential direction preferably completely.
  • the flow direction of the exhaust gas is indicated by the arrows 6.
  • an exhaust gas inlet 7 and an exhaust gas outlet 8 are formed in the exhaust filter housing 4, an exhaust gas inlet 7 and an exhaust gas outlet 8 are formed.
  • the exhaust gas flows through the exhaust gas inlet 7 into the exhaust gas filter housing 4 and out of the exhaust gas filter housing 4 through the exhaust gas outlet 8.
  • the exhaust gas filter body 3 is arranged, namely such that the entire exhaust gas flowing through the exhaust gas filter 2 passes through the exhaust gas filter body 3 or its flow channels.
  • the exhaust filter body 3 may be sealingly attached to the housing wall 5, for example via a fastening element 9.
  • the fastening element 9 consists for example of an elastic material.
  • a heat exchanger 10 is arranged on the exhaust filter body 3 side facing away from the housing wall 5.
  • the heat exchanger 10 is viewed in the flow direction of the exhaust gas at least partially in overlap with the exhaust filter body 3 before.
  • the heat exchanger 10 extends beyond the exhaust filter body 3 both upstream and downstream.
  • the heat exchanger 10 is particularly preferably located closer to the exhaust gas outlet 8 than to the exhaust gas inlet 7.
  • a reverse configuration may also be provided.
  • the heat exchanger 10 preferably has a plurality of fluid ports 12 and 13, wherein one of the fluid ports 12 and 13 serves as a fluid inlet and another of the fluid ports 12 and 13 as a fluid outlet.
  • the coolant can be supplied to the heat exchanger 10 through the fluid inlet and removed through the fluid outlet.
  • the heat exchanger is preferred 10 and its fluid space 11 associated with a cooling circuit for cooling a drive unit of a drive device, wherein the exhaust gas purification device 1 is part of the drive device.
  • At least one flow guiding element and / or at least one surface enlarging element can be arranged in the fluid space 11.
  • the at least one flow guide element is for example arranged and / or formed such that the fluid supplied through the fluid inlet is guided towards the fluid outlet.
  • the fluid inlet and the fluid outlet are spaced apart in the axial direction, in particular in the axial direction at opposite ends of the fluid space 11.
  • the flow guide element is now intended to guide the supplied fluid in a spiral shape in such a way that it is deflected by at least 180 ° in the circumferential direction on the way to the fluid outlet.
  • a deflection of at least 360 °, at least 720 °, at least 1080 °, at least 1440 ° or at least 1800 ° may be provided.
  • the flow guide element in the fluid space 11 forms a flow channel which starts at the fluid inlet and ends at the fluid outlet and has several turns in the circumferential direction, in particular at least 2, at least 3, at least 4 or at least 5.
  • the surface enlargement element is provided in the fluid space 11. This is attached to the housing wall 5 and passes through the fluid space 11 in the radial direction preferably only partially. Alternatively, of course, a complete penetration can be provided. In this case, the surface enlarging element is additionally designed as a flow guide element.
  • At least one of the exhaust gas flowing and / or overflowed Abgasleitelement is arranged downstream of the exhaust filter body 3 in the exhaust filter housing 4.
  • This is preferably designed such that it directs exhaust gas in the radial direction outwards in the direction of the housing wall 5. In this way, the exhaust gas, a comparatively large amount of heat can be withdrawn.
  • this is the exhaust gas guide of the surface enlargement.
  • the Abgasleitelement example of a thermally conductive material and is thermally conductive connected to the housing wall 5.
  • the exhaust gas guide element extends in each case starting from the housing wall 5, starting in the radial direction inwards.
  • both the exhaust filter housing 4 and the heat exchanger 10 are encompassed in each case at least partially by a heat insulation 14.
  • the heat insulation 14 extends both upstream and downstream beyond the heat exchanger 10 and is thus on both sides of the heat exchanger 10 to the housing wall 5 at.
  • the thermal insulation 14 extends from the exhaust gas inlet 7 to the exhaust gas outlet 8.
  • the heat exchanger 10 has different heat exchanger regions 15, 16 and 17. Each of these heat transfer areas 15, 16 and 17 is adapted to the exhaust filter housing 4 shape and dimension.
  • the heat transfer regions 15 and 17, for example, cylindrical, in particular circular-cylindrical configured, while the heat transfer region 16 is conical.
  • the exhaust gas purification device 1 With the aid of the exhaust gas purification device 1 described here, extremely efficient tempering of the exhaust gas filter 2 or of the exhaust gas filter body 3 is possible.
  • this is using a not shown here electrical heater supplied to the exhaust filter body 3 supplied heat after reaching an operating temperature through the exhaust filter body 3 at least one other device, in particular another vehicle device.
  • the exhaust filter body 3 is further heated by the heater.
  • the other vehicle device may be, for example, the drive unit, a passenger compartment and / or an energy store or a heat store.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Antriebseinrichtung, die ein abgaserzeugendes Antriebsaggregat und eine Abgasreinigungseinrichtung zur Reinigung des von dem Antriebsaggregat erzeugten Abgases aufweist, wobei die Abgaseinrichtung über einen Abgasfilter, der einen in einem Abgasfiltergehäuse angeordneten, eine Vielzahl von Strömungskanälen ausbildenden Abgasfilterkörper aufweist, und über eine elektrische Heizeinrichtung zur Beheizung des Abgasfilterkörpers vor einem Betriebsbeginn des Antriebsaggregats und vor einer Durchströmung des Abgasfilters mit Abgas verfügt und der Abgasfilterkörper von einer Gehäusewand des Abgasfiltergehäuses eingefasst ist.
  • Die Abgasreinigungseinrichtung dient der Reinigung von Abgas, welche von dem abgaserzeugenden Antriebsaggregat, welches Bestandteil der Antriebseinrichtung ist, während seines Betriebs erzeugt wird. Insbesondere ist dabei eine Umwandlung von in dem Abgas enthaltenen Schadstoffen in unschädliche oder zumindest unschädlichere Stoffe vorgesehen. Der Abgasfilter verfügt über den Abgasfilterkörper, welcher die eigentliche filternde und/oder katalytische Wirkung auf das Abgas beziehungsweise die in diesem enthaltenen Schadstoffe ausübt. Der Abgasfilterkörper besteht beispielsweise aus einem Wabenkörper, in dem die Vielzahl von Strömungskanälen vorliegt. Der Wabenkörper besteht bevorzugt aus Keramik, beispielsweise Cordierit. Auch andere Materialien können jedoch zur Herstellung des Wabenkörpers verwendet werden.
  • Der Abgasfilterkörper kann - im Falle einer zumindest teilweisen Ausgestaltung des Abgasfilters als Abgaskatalysator - mit einer katalytischen Beschichtung versehen sein. Beispielsweise liegt diese Beschichtung in Form eines sogenannten Wash Coats vor, welcher zur Vergrößerung einer effektiven Oberfläche eine hohe Rauheit, insbesondere eine höhere Rauheit als der Abgasfilterkörper selbst, aufweist. Bevorzugt ist in der Beschichtung wenigstens ein katalytisch wirksames Element, beispielsweise ein Edelmetall, eingelagert. Beispielsweise kommen hier eines oder mehrere der folgenden Edelmetalle zum Einsatz: Platin, Rhodium und Palladium. Der Abgaskatalysator kann beispielsweise als Dreiwegekatalysator oder als Vierwegekatalysator ausgestaltet sein. Alternativ oder zusätzlich kann der Abgasfilter jedoch auch als Partikelfilter ausgestaltet sein oder zumindest einen solchen aufweisen. Der Partikelfilter ist zum Beispiel ein Ottopartikelfilter oder ein Dieselpartikelfilter.
  • Der Abgasfilterkörper ist in dem Abgasfiltergehäuse angeordnet. Das Abgasfiltergehäuse dient insbesondere der Strömungsführung der Abgasströmung. Insoweit weist das Abgasfiltergehäuse einen Abgaseinlass und einen Abgasauslass auf. Durch den Abgaseinlass kann Abgas in das Abgasfiltergehäuse austreten. Nachfolgend durchströmt es das Abgasfiltergehäuse und tritt durch den Abgasauslass aus dem Abgasfiltergehäuse aus. In dem Strömungsweg zwischen dem Abgaseinlass und dem Abgasauslass ist der Abgasfilterkörper in dem Abgasfiltergehäuse angeordnet, Dies ist dabei derart vorgesehen, dass das Abgas bei der Durchströmung des Abgasfiltergehäuses, also auf dem Strömungsweg zwischen dem Abgaseinlass und dem Abgasauslass, durch den Abgasfilterkörper beziehungsweise dessen Strömungskanäle hindurchtritt. Bevorzugt ist dabei der Abgasfilterkörper derart in dem Abgasfiltergehäuse angeordnet, dass das gesamte durch den Abgaseinlass in das Abgasfiltergehäuse eintretende Abgas den Abgasfilterkörper beziehungsweise seine Strömungskanäle durchströmt.
  • Der Abgasfilterkörper ist hierzu vorzugsweise von der Gehäusewand des Abgasfiltergehäuses eingefasst. Beispielsweise umgreift die Gehäusewand den Abgasfilterkörper in Umfangsrichtung bezüglich einer Längsmittelachse des Abgasfilterkörpers beziehungsweise einer Durchströmungsrichtung des Abgasfiltergehäuses vollständig. Bevorzugt begrenzt die Gehäusewand den Abgaseinlass und/oder über den Abgasauslass. Besonders bevorzugt sind der Abgaseinlass und der Abgasauslass jeweils als randgeschlossene Öffnung in der Gehäusewand ausgebildet. Die Gehäusewand sorgt insoweit für eine Strömungsführung des das Abgasfiltergehäuse durchströmenden Abgases von dem Abgaseinlass bis hin zu dem Abgasauslass.
  • Der Abgasfilter weist seine höchsten Umwandlungsraten für die Schadstoffe bei einer bestimmten Betriebstemperatur auf. Insbesondere bei Temperaturen unterhalb dieser Betriebstemperatur sind die Umwandlungsraten äußerst niedrig, sodass die Abgase ohne Umwandlung den Abgasfilter durchströmen können, also zusammen mit dem Abgas aus dem Abgasauslass des Abgasfilters austreten. Um dies zu vermeiden, ist die elektrische Heizeinrichtung vorgesehen. Diese dient der Beheizung des Abgasfilterkörpers, um diesen möglichst rasch auf die Betriebstemperatur zu bringen. Bevorzugt erfolgt dies bereits vor einem Betriebsbeginn des abgaserzeugenden Antriebsaggregats, also bevor der Abgasfilter von Abgas durchströmt wird. Besonders bevorzugt wird der Abgasfilterkörper mittels der Heizeinrichtung bereits auf seine Betriebstemperatur gebracht, bevor das abgaserzeugende Antriebsaggregat in Betrieb genommen wird, also Abgas erzeugt wird.
  • Das Beheizen des Abgasfilterkörpers mittels der elektrischen Heizeinrichtung ist äußerst energieaufwendig. Dies gilt umso mehr, wenn das abgaserzeugende Antriebsaggregat lediglich temporär betrieben wird, wie es beispielsweise bei einer Hybridantriebseinrichtung eines Kraftfahrzeugs der Fall sein kann. In diesem Fall muss der Abgasfilterkörper während eines Betriebs des Kraftfahrzeugs bei abgeschaltetem abgaserzeugendem Antriebsaggregat durchgehend beheizt werden, weil die Einrichtung jederzeit gestartet werden kann.
  • Aus dem Stand der Technik sind beispielsweise die Druckschriften JP H06 108822 A , JP H04 175415 A sowie JP 2002 336628 A1 bekannt.
  • Es ist Aufgabe der Erfindung, eine Abgasreinigungseinrichtung vorzuschlagen, welche gegenüber bekannten Abgasreinigungseinrichtungen Vorteile aufweist, insbesondere trotz vorsehen der elektrischen Heizeinrichtung zur Beheizung des Abgasfilterkörpers einen energieeffizienten Betrieb der Abgasreinigungseinrichtung ermöglicht.
  • Dies wird erfindungsgemäß mit einer Abgasreinigungseinrichtung mit den Merkmalen des Anspruchs 1 erreicht. Dabei ist vorgesehen, dass auf der dem Abgasfilterkörper abgewandten Seite der Gehäusewand ein Wärmeübertrager angeordnet ist, der über die Gehäusewand mit dem Abgasfilterkörper in Wärmeübertragungsverbindung steht, wobei das Abgasfiltergehäuse und der Wärmeübertrager wenigstens bereichsweise von einer Wärmeisolierung umgriffen sind, und dass in einer ersten Betriebsart vor dem Betriebsbeginn des Antriebsaggregats der Abgasfilterkörper mittels der Heizeinrichtung beheizt und ein Kühlmittelstrom durch den Wärmeübertrager bis zum Erreichen einer Solltemperatur durch den Abgasfilter unterbrochen wird, wobei nach dem Erreichen der Solltemperatur dem Abgasfilterkörper mittels des Wärmeübertragers Wärme entnommen und nachfolgend zum Temperieren wenigstens einer anderen Einrichtung verwendet wird, sodass die zum Beheizen des Abgasfilterkörpers mittels der Heizeinrichtung verwendete Energie bei abgeschaltetem Antriebsaggregat der wenigstens einen Einrichtung zugeführt wird.
  • Die Abgasreinigungseinrichtung weist also zusätzlich zu dem Abgasfilter den Wärmeübertrager auf. Dieser ist derart ausgestaltet, dass er dem Abführen von Wärme von dem Abgasfilterkörper dient. Entsprechend ist er derart angeordnet, dass er mit dem Abgasfilterkörper in Wärmeübertragungsverbindung steht. Die Wärmeübertragungsverbindung liegt über die Gehäusewand vor. Hierzu besteht die Gehäusewand vorzugsweise aus einem wärmeleitenden Material, insbesondere in einem Bereich der Gehäusewand, an welchem der Abgasfilterkörper einerseits und der Wärmeübertrager andererseits anliegen.
  • Hierbei kann es auch vorgesehen sein, dass die Gehäusewand aus mehreren Teilabschnitten besteht, welche aus unterschiedlichen Materialien bestehen. Beispielsweise besteht die Gehäusewand in einem Teilbereich, an welchem sowohl der Wärmeübertrager als auch der Abgasfilterkörper anliegt, aus einem Material, welches eine höhere Wärmeleitfähigkeit aufweist als ein Material, aus welchem wenigstens ein weiterer Teilbereich die Gehäusewand besteht, der abseits des Wärmeübertragers und des Abgasfilterkörpers vorliegt, also von diesen beabstandet ist.
  • Zusätzlich oder alternativ kann es vorgesehen sein, in der Gehäusewand wenigstens ein Wärmeleitelement anzuordnen, über welches der Abgasfilterkörper in Wärmeübertragungsverbindung mit dem Wärmeübertrager steht. Ein solches Wärmeleitelement kann beispielsweise ein Wärmerohr, beispielsweise eine Heatpipe oder ein Thermosiphon, sein. Ist eine derartige Wärmeleiteinrichtung vorgesehen, so kann selbstverständlich die Gehäusewand durchgehend materialeinheitlich sein, also durchgängig aus demselben Material bestehen.
  • Der Wärmeübertrager ist auf der dem Abgasfilterkörper abgewandten Seite der Gehäusewand angeordnet. Insbesondere soll der Wärmeübertrager nicht direkt von Abgas angeströmt und/oder überströmt sein. Vielmehr soll der Wärmeübertrager außerhalb von abgasführenden Bereichen des Abgasfiltergehäuses vorliegen. Entsprechend dient der Wärmeübertrager schlussendlich dem Abführen von Wärme von dem Abgasfilterkörper, nicht jedoch dem direkten Entnehmen von Wärme aus dem Abgas. Dies ist lediglich mittelbar über den Abgasfilterkörper vorgesehen.
  • Die mittels des Wärmeübertragers dem Abgasfilterkörper entnommene Wärme kann einer beliebigen anderen Einrichtung zugeführt werden. Beispielsweise ist der Wärmeübertrager an einen Kühlkreislauf angeschlossen, welcher der Temperierung beziehungsweise Kühlung eines Antriebsaggregats der Antriebseinrichtung dient. Zusätzlich oder alternativ kann die Wärme zum Temperieren eines Fahrgastraums des Kraftfahrzeugs herangezogen werden. Das bedeutet, dass zwar einerseits der Abgasfilterkörper mittels der elektrischen Heizeinrichtung beheizt wird, die hierzu verwendete Energie jedoch auch für andere Zwecke eingesetzt, insbesondere wenn der Abgasfilterkörper bereits seine Betriebstemperatur erreicht hat.
  • Zudem wird durch den Wärmeübertrager die thermische Masse des Abgasfilters beziehungsweise der Abgasreinigungseinrichtung vergrößert, sodass ein Auskühlen des Abgasfilters, insbesondere ausgehend von seiner Betriebstemperatur, im Vergleich mit herkömmlichen Abgasreinigungseinrichtungen verzögert ist. Auch ist es möglich, den Wärmeübertrager zum Kühlen des Abgases zu verwenden. Beispielsweise wird dem Abgas mittels des Wärmeübertragers eine bestimmte Wärmemenge entzogen, die derart gewählt ist, dass stromabwärts des Wärmeübertragers das Abgas eine bestimmte Abgastemperatur aufweist oder diese zumindest nicht überschreitet. Dies kann beispielsweise vorgesehen sein, wenn das Abgas stromabwärts der Abgasreinigungseinrichtung eine Abgasleitung durchströmt, die im Bereich eines Energiespeichers für elektrische Energie, insbesondere einer Batterie, beispielsweise einer Hochvoltbatterie, vorliegt oder durch diesen/diese verläuft. Auch wenn die Abgasleitung durch einen Tunnel verläuft, kann die beschriebene Vorgehensweise angewandt werden.
  • Im Rahmen einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass in axialer Richtung bezüglich einer Längsmittelachse des Abgasfilterkörpers gesehen der Wärmeübertrager mehrere jeweils an der Gehäusewand anliegende Wärmeübertragerbereiche aufweist, die voneinander verschiedene Innenabmessungen aufweisen. Beispielsweise setzt sich das Abgasfiltergehäuse beziehungsweise die Gehäusewand aus mehreren Teilbereichen zusammen. Vorzugsweise grenzen diese Teilbereiche in axialer Richtung bezüglich der Längsmittelachse des Abgasfilterkörpers gesehen aneinander an. Selbstverständlich können einige der Teilbereiche auch voneinander beabstandet angeordnet sein. Die Teilbereiche des Abgasfiltergehäuses können voneinander verschiedene Außenabmessungen aufweisen.
  • Der Wärmeübertrager ist an das Abgasfiltergehäuse beziehungsweise die Teilbereiche form- und/oder abmessungsangepasst, insbesondere derart, dass er von außen an ihm beziehungsweise ihnen anliegt. Entsprechend weist der Wärmeübertrager mehrere voneinander verschiedene Wärmeübertragerbereiche auf, welche über voneinander abweichende Innenabmessungen verfügen. Es kann dabei vorgesehen sein, dass der Wärmeübertrager in axialer Richtung größere Abmessungen aufweist als der Abgasfilterkörper. Insbesondere erstreckt sich der Wärmeübertrager in stromabwärtige Richtung bezüglich der Durchströmungsrichtung des Abgases durch den Abgasfilter über den Abgasfilterkörper hinaus. Alternativ kann es selbstverständlich vorgesehen sein, dass der Wärmeübertrager auf seiner stromabwärts gelegenen Seite mit dem Abgasfilterkörper fluchtet beziehungsweise stromaufwärts von diesem endet.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass zumindest einer der Wärmeübertragerbereiche eine zylindrische, insbesondere kreiszylindrische, Innenumfangsfläche und/oder zumindest ein weiterer der Wärmeübertragerbereiche eine konische Innenumfangsfläche aufweist. Grundsätzlich können die Wärmeübertagebereiche eine beliebige Form aufweisen. Bevorzugt ist jedoch einer der Wärmeübertragerbereiche zylindrisch und ein anderer der Wärmeübertragerbereiche konisch. Dies gilt entsprechend auch für die Teilabschnitte der Gehäusewand beziehungsweise des Abgasfiltergehäuses, an welchen der jeweilige Wärmeübertragerbereich anliegt.
  • Beispielsweise ist es vorgesehen, dass das Abgasfiltergehäuse in Durchströmungsrichtung des Abgases gesehen zunächst einen zylindrischen Teilbereich aufweist, an welchen sich ein konischer Teilbereich anschließt, sodass sich der Durchströmungsquerschnitt in Strömungsrichtung vergrößert. An den konischen Teilbereich schließt sich wiederum ein zylindrischer Teilbereich an, in welchem der Abgasfilterkörper vorliegt. Stromabwärts des Abgasfilterkörpers liegt erneut ein konischer Teilbereich vor, in welchem sich der Durchströmungsquerschnitt in Strömungsrichtung verkleinert. An diesen konischen Teilbereich kann sich wiederum ein zylindrischer Teilbereich anschließen. In dem zuerst genannten Teilbereich kann der Abgaseinlass und in dem zuletzt genannten Teilbereich der Abgasauslass vorliegen.
  • Gemäß der Erfindung ist vorgesehen, dass das Abgasfiltergehäuse und der Wärmeübertrager wenigstens bereichsweise von einer, insbesondere wenigstens einerseits des Wärmeübertragers oder beiderseits des Wärmeübertragers an der Gehäusewand anliegenden, Wärmeisolierung umgriffen sind. Die Wärmeisolierung dient der thermischen Isolierung der Abgasreinigungseinrichtung, sodass möglichst wenig Wärme des Abgasfilterkörpers verloren geht, insbesondere falls er nicht von Abgas durchströmt ist. Die Wärmeisolierung umgreift das Abgasfiltergehäuse und/oder den Wärmeübertrager wenigstens bereichsweise, insbesondere in Umfangsrichtung bezüglich der Längsmittelachse des Abgasfilterkörpers vollständig. Bevorzugt liegt die Wärmeisolierung hierbei an einer Außenumfangsfläche des Abgasfiltergehäuses und/oder des Wärmeübertragers an.
  • Weiter bevorzugt erstreckt sich die Wärmeisolierung in Strömungsrichtung wenigstens einseitig, bevorzugt jedoch beidseitig, über den Wärmeübertrager hinaus. Das bedeutet, dass die Wärmeisolierung in Strömungsrichtung durchgehend an dem Wärmeübertrager anliegt und beidseitig des Wärmeübertragers an dem Abgasfiltergehäuse anliegt. Es kann hierbei vorgesehen sein, dass sich die Wärmeisolierung in Strömungsrichtung von dem Abgaseinlass bis hin zu dem Abgasauslass des Abgasfiltergehäuses erstreckt.
  • Eine weitere bevorzugte Ausgestaltung der Erfindung sieht einen Kühlkreislauf zur Temperierung des Antriebsaggregats vor, der strömungstechnisch an den Wärmeübertrager angeschlossen ist. Allgemein ausgedrückt dient der Kühlkreislauf der Temperierung des Antriebsaggregats, sodass er auch als Temperierkreislauf bezeichnet werden kann. Der Kühlkreislauf ist strömungstechnisch an den Wärmeübertrager angeschlossen, sodass in dem Kühlkreislauf zirkulierendes Kühlmittel zumindest zweitweise auch durch den Wärmeübertrager geführt wird. Auf diese Art und Weise kann die dem Abgasfilterkörper entnommene Wärme dem temperieren des Antriebsaggregats dienen, insbesondere falls dieses momentan nicht betrieben wird.
  • Eine Weiterbildung der Erfindung sieht vor, dass der Kühlkreislauf strömungstechnisch direkt oder über einen weiteren Wärmeübertrager an einen Fahrgastraumheizkreislauf angeschlossen ist. Der Fahrgastraumheizkreislauf dient der Temperierung eines Fahrgastraums des Kraftfahrzeugs. Es kann nun vorgesehen sein, dass das in dem Kühlkreislauf verwendete Kühlmittel unmittelbar dem Fahrgastraumheizkreislauf zugeführt wird. Alternativ kann zwischen dem Kühlkreislauf und dem Fahrgastraumheizkreislauf ein weiterer Wärmeübertrager vorliegen, sodass der Kühlkreislauf und der Fahrgastraumheizkreislauf fluidtechnisch voneinander entkoppelt sind.
  • Gemäß der Erfindung ist vorgesehen, dass in einer ersten Betriebsart der Abgasfilterkörper mittels der Heizeinrichtung beheizt wird, wobei ein Kühlmittelstrom durch den Wärmeübertrager unterbrochen wird bis der Abgasfilterkörper eine Solltemperatur erreicht hat und nach dem Erreichen der Soltemperatur dem Abgasfilterkörper mittels des Wärmeübertragers Wärme entnommen wird, die nachfolgend zum Temperieren der wenigstens einen anderen Einrichtung, insbesondere des Antriebsaggregats, eines Fahrgastraums und/oder eines Energiespeichers, verwendet wird. Im Rahmen der ersten Betriebsart soll insoweit der Abgasfilterkörper zunächst möglichst rasch auf seine Betriebstemperatur gebracht werden. Hierzu wird dem Abgasfilterkörper Wärme mittels der Heizeinrichtung zugeführt.
  • Hat der Abgasfilterkörper seine Solltemperatur erreicht, ist die Temperatur des Abgasfilterkörpers also größer oder gleich der Solltemperatur, so kann der Kühlmittelstrom durch den Wärmeübertrager freigegeben werden, sodass das Kühlmittel den Wärmeübertrager durchströmt. Mithilfe des Wärmeübertragers beziehungsweise dem Kühlmittel wird nachfolgend dem Abgasfilterkörper Wärme entnommen und der wenigstens einen anderen Einrichtung zugeführt.
  • Schließlich kann eine weitere Ausgestaltung der Erfindung vorsehen, dass in einer zweiten Betriebsart die Heizeinrichtung deaktiviert wird, wobei dem Abgasfilterkörper mittels des Wärmeübertragers Wärme zum Temperieren der wenigstens einen Fahrzeugeinrichtung entnommen wird. In der zweiten Betriebsart ist die Heizeinrichtung deaktiviert. Dem Abgasfilterkörper wird insoweit keine oder lediglich mittels des Abgases Wärme zugeführt. In jedem Fall kann dem Abgasfilterkörper jedoch mittels des Wärmeübertragers Wärme entnommen werden, die nachfolgend zum Temperieren der wenigstens einen Fahrzeugeinrichtung herangezogen wird.
  • Beispielsweise ist eine derartige Vorgehensweise während des Betreibens des abgaserzeugenden Antriebsaggregats vorgesehen, sodass die in dem Abgas enthaltene Wärme zum Temperieren der Fahrzeugeinrichtung verwendet wird. Es kann jedoch auch vorgesehen sein, dem Abgasfilterkörper die Wärme zu entnehmen, obwohl ihm weder mittels der Heizeinrichtung noch über das Abgas Wärme zugeführt wird. In diesem Fall wird beispielsweise der Abgasfilterkörper als Wärmespeicher verwendet. Bevorzugt wird dies durchgeführt, wenn die Temperatur des Abgasfilterkörpers größer ist als die Solltemperatur. Die Solltemperatur kann hierbei der vorstehend erwähnten Betriebstemperatur entsprechen.
  • Bevorzugt ist es vorgesehen, die erste Betriebsart durchzuführen, wenn erkannt wird, dass sich ein Fahrer dem Kraftfahrzeug nähert. Dies wird insbesondere aufgrund einer Annäherung eines Fahrzeugschlüssels an das Kraftfahrzeug erkannt. Entsprechend wird der Abgasfilterkörper mithilfe der Heizeinrichtung beheizt, sodass sich seine Temperatur in Richtung der Solltemperatur beziehungsweise Betriebstemperatur erhöht. Hat der Abgasfilterkörper seine Solltemperatur erreicht, kann die mittels der Heizeinrichtung dem Abgasfilterkörper zugeführte Wärme zusätzlich zum Temperieren des Antriebsaggregats, des Fahrgastraums oder dergleichen herangezogen werden.
  • Beispielsweise kann in den Wärmeübertrager ein Fluid vorliegen, welches in dem Wärmeübertrager oder innerhalb eines dem Wärmeübertrager zugeordneten geschlossenen Kühlmittelkreislauf umgewälzt wird. Als Kühlmittel kommt beispielsweise Thermoöl zum Einsatz. Dieses kann in dem Wärmeübertrager beziehungsweise dem Kühlmittelkreislauf entweder aktiv, also mittels einer Fördereinrichtung, oder passiv umgewälzt werden. Für das passive Umwälzen wird beispielsweise der Thermosiphoneffekt herangezogen. Bei einer derartigen Ausgestaltung des Wärmeübertragers ist der Wärmeübertrager strömungstechnisch über einen weiteren Wärmeübertrager an den Kühlkreislauf und/oder den Fahrgastraumheizkreislauf angeschlossen.
  • Die Erfindung wird nachfolgend anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert, ohne dass eine Beschränkung der Erfindung erfolgt. Dabei zeigt die einzige
  • Figur eine schematische Teilschnittdarstellung einer Abgasreinigungseinrichtung, die einen Abgasfilter, einen Wärmeübertrager sowie eine Wärmeisolierung aufweist.
  • Die Figur zeigt eine schematische teilgeschnittene Darstellung einer Abgasreinigungseinrichtung 1. Dies verfügt über einen Abgasfilter 2, der wiederum einen Abgasfilterkörper 3 aufweist. In dem Abgasfilterkörper 3 ist eine Vielzahl von hier nicht im Einzelnen dargestellten Strömungskanälen ausgebildet. Der Abgasfilterkörper ist in einem Abgasfiltergehäuse 4 angeordnet und wird dabei von einer Gehäusewand 5 des Abgasfiltergehäuses 4 eingefasst. Bezüglich einer Strömungsrichtung von die Abgasreinigungseinrichtung 1 durchströmendem Abgases umfasst die Gehäusewand 5 den Abgasfilterkörper 3 in Umfangsrichtung vorzugsweise vollständig. Die Strömungsrichtung des Abgases ist durch die Pfeile 6 angedeutet.
  • In dem Abgasfiltergehäuse 4 sind ein Abgaseinlass 7 sowie ein Abgasauslass 8 ausgebildet. Das Abgas strömt durch den Abgaseinlass 7 in das Abgasfiltergehäuse 4 ein und durch den Abgasauslass 8 aus dem Abgasfiltergehäuse 4 aus. In Strömungsrichtung des Abgases zwischen dem Abgaseinlass 7 und dem Abgasauslass 8 ist der Abgasfilterkörper 3 angeordnet, nämlich derart, dass das gesamte den Abgasfilter 2 durchströmende Abgas den Abgasfilterkörper 3 beziehungsweise dessen Strömungskanäle durchtritt. Um dies zu erreichen, kann der Abgasfilterkörper 3 beispielsweise über ein Befestigungselement 9 an der Gehäusewand 5 dichtend befestigt sein. Das Befestigungselement 9 besteht beispielsweise aus einem elastischen Material.
  • Auf der dem Abgasfilterkörper 3 abgewandten Seite der Gehäusewand 5 ist ein Wärmeübertrager 10 angeordnet. Ein Fluidraum 11 des Wärmeübertragers 10, in welchem ein Kühlmittel vorliegt, wird beispielsweise zumindest bereichsweise von der Gehäusewand 5 mit ausgebildet. Der Wärmeübertrager 10 liegt in Strömungsrichtung des Abgases gesehen wenigstens teilweise in Überdeckung mit dem Abgasfilterkörper 3 vor. Insbesondere erstreckt sich der Wärmeübertrager 10 sowohl stromaufwärts als auch stromabwärts über den Abgasfilterkörper 3 hinaus. Besonders bevorzugt lieg der Wärmeübertrager 10 dabei näher an dem Abgasauslass 8 als an dem Abgaseinlass 7. Auch eine umgekehrte Ausgestaltung kann jedoch vorgesehen sein.
  • Der Wärmeübertrager 10 weist vorzugsweise mehrere Fluidanschlüsse 12 und 13 auf, wobei einer der Fluidanschlüsse 12 und 13 als Fluideinlass und ein anderer der Fluidanschlüsse 12 und 13 als Fluidauslass dient. Durch den Fluideinlass kann dem Wärmeübertrager 10 das Kühlmittel zugeführt und durch den Fluidauslass entnommen werden. Bevorzugt ist der Wärmeübertrager 10 beziehungsweise sein Fluidraum 11 einem Kühlkreislauf zur Kühlung eines Antriebaggregats einer Antriebseinrichtung zugeordnet, wobei die Abgasreinigungseinrichtung 1 Bestandteil der Antriebseinrichtung ist.
  • In dem Fluidraum 11 können wenigstens ein Strömungsführungselement und/oder wenigstens ein Oberflächenvergrößerungselement angeordnet sein. Das wenigstens eine Strömungsführungselement ist beispielsweise derart angeordnet und/oder ausgebildet, dass das durch den Fluideinlass zugeführte Fluid hin zu dem Fluidauslass geführt wird. Beispielsweise sind der Fluideinlass und der Fluidauslass in axialer Richtung voneinander beabstandet, insbesondere in axialer Richtung an gegenüberliegenden Enden des Fluidraums 11 angeordnet. Beispielsweise soll das Strömungsführungselement nun das zugeführte Fluid derart spiralförmig leiten, dass es auf dem Weg hin zu dem Fluidauslass in Umfangsrichtung wenigstens um 180° umgelenkt wird. Auch eine Umlenkung um wenigstens 360°, wenigstens 720°, wenigstens 1080°, wenigstens 1440° oder wenigstens 1800° kann vorgesehen sein. Beispielsweise bildet das Strömungsführungselement in dem Fluidraum 11 einen Strömungskanal aus, der an dem Fluideinlass beginnt und an dem Fluidauslass endet und in Umfangsrichtung gesehen mehrere Windungen aufweist, insbesondere mindestens 2, mindestens 3, mindestens 4 oder mindestens 5.
  • Zusätzlich oder alternativ ist das Oberflächenvergrößerungselement in dem Fluidraum 11 vorgesehen. Dieses ist an der Gehäusewand 5 befestigt und durchgreift den Fluidraum 11 in radialer Richtung bevorzugt lediglich teilweise. Alternativ kann selbstverständlich auch ein vollständiges Durchgreifen vorgesehen sein. In diesem Fall ist das Oberflächenvergrößerungselement zusätzlich als Strömungsführungselement ausgebildet.
  • Weiterhin kann es vorgesehen sein, dass stromabwärts des Abgasfilterkörpers 3 in dem Abgasfiltergehäuse 4 wenigstens ein von dem Abgas angeströmtes und/oder überströmtes Abgasleitelement angeordnet ist. Dieses ist vorzugsweise derart ausgestaltet, dass es Abgas in radialer Richtung nach außen in Richtung der Gehäusewand 5 lenkt. Auf diese Art und Weise kann dem Abgas eine vergleichsweise große Wärmemenge entzogen werden. Zusätzlich oder alternativ dies das Abgasleitelement der Oberflächenvergrößerung. In diesem Fall besteht das Abgasleitelement beispielsweise aus einem wärmeleitenden Material und ist wärmeleitend mit der Gehäusewand 5 verbunden. Das Abgasleitelement erstreckt sich in jedem Fall ausgehend von der Gehäusewand 5 ausgehend in radialer Richtung nach innen.
  • Es ist erkennbar, dass sowohl das Abgasfiltergehäuse 4 als auch der Wärmeübertrager 10 jeweils zumindest bereichsweise von einer Wärmeisolierung 14 umgriffen ist. Insbesondere erstreckt sich die Wärmeisolierung 14 sowohl stromaufwärts als auch stromabwärts über den Wärmeübertrager 10 hinaus und liegt somit beidseitig des Wärmeübertragers 10 an der Gehäusewand 5 an. Beispielsweise erstreckt sich die Wärmeisolierung 14 von dem Abgaseinlass 7 bis hin zu dem Abgasauslass 8.
  • Weiter ist erkennbar, dass der Wärmeübertrager 10 unterschiedliche Wärmeübertragerbereiche 15, 16 und 17 aufweist. Jeder dieser Wärmeübertragerbereiche 15, 16 und 17 ist an das Abgasfiltergehäuse 4 form- und Abmessungsangepasst. Hierbei sind die Wärmeübertragerbereiche 15 und 17 beispielsweise zylindrisch, insbesondere kreiszylindrisch ausgestaltet, während der Wärmeübertragerbereich 16 konisch ist.
  • Mithilfe der hier beschriebenen Abgasreinigungseinrichtung 1 ist ein äußerst effizientes Temperieren des Abgasfilters 2 beziehungsweise des Abgasfilterkörpers 3 möglich. Insbesondere wird die dabei mithilfe einer hier nicht dargestellten elektrischen Heizeinrichtung dem Abgasfilterkörper 3 zugeführte Wärme nach dem Erreichen einer Betriebstemperatur durch den Abgasfilterkörper 3 wenigstens einer anderen Einrichtung, insbesondere einer anderen Fahrzeugeinrichtung zugeführt. Dabei wird der Abgasfilterkörper 3 weiterhin mittels der Heizeinrichtung beheizt. Die andere Fahrzeugeinrichtung kann beispielsweise das Antriebsaggregat, ein Fahrgastraum und/oder ein Energiespeicher beziehungsweise ein Wärmespeicher sein.

Claims (6)

  1. Verfahren zum Betreiben einer Antriebseinrichtung, die ein abgaserzeugendes Antriebsaggregat und eine Abgasreinigungseinrichtung (1) zur Reinigung des von dem Antriebsaggregat erzeugten Abgases aufweist, wobei die Abgasreinigungseinrichtung (1) über einen Abgasfilter (2), der einen in einem Abgasfiltergehäuse (4) angeordneten, eine Vielzahl von Strömungskanälen ausbildenden Abgasfilterkörper (3) aufweist, und über eine elektrische Heizeinrichtung zur Beheizung des Abgasfilterkörpers (3) vor einem Betriebsbeginn des Antriebsaggregats und vor einer Durchströmung des Abgasfilters (2) mit Abgas verfügt und der Abgasfilterkörper (3) von einer Gehäusewand (5) des Abgasfiltergehäuses (4) eingefasst ist, dadurch gekennzeichnet, dass auf der dem Abgasfilterkörper (3) abgewandten Seite der Gehäusewand (5) ein Wärmeübertrager (10) angeordnet ist, der über die Gehäusewand (5) mit dem Abgasfilterkörper (3) in Wärmeübertragungsverbindung steht, wobei das Abgasfiltergehäuse (4) und der Wärmeübertrager (10) wenigstens bereichsweise von einer Wärmeisolierung (14) umgriffen sind, und dass in einer ersten Betriebsart vor dem Betriebsbeginn des Antriebsaggregats der Abgasfilterkörper (3) mittels der Heizeinrichtung beheizt und ein Kühlmittelstrom durch den Wärmeübertrager (10) bis zum Erreichen einer Solltemperatur durch den Abgasfilterkörper (3) unterbrochen wird, wobei nach dem Erreichen der Solltemperatur dem Abgasfilterkörper (3) mittels des Wärmeübertragers (10) Wärme entnommen und nachfolgend zum Temperieren wenigstens einer anderen Einrichtung verwendet wird, sodass die zum Beheizen des Abgasfilterkörpers (3) mittels der Heizeinrichtung verwendete Energie bei abgeschaltetem Antriebsaggregat der wenigstens einen anderen Einrichtung zugeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in axialer Richtung bezüglich einer Längsmittelachse des Abgasfilterkörpers (3) gesehen der Wärmeübertrager (10) mehrere jeweils an der Gehäusewand (5) anliegende Wärmeübertragerbereiche (15,16,17) aufweist, die voneinander verschiedene Innenabmessungen aufweisen.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zumindest einer der Wärmeübertragerbereiche (15,16,17) eine zylindrische, insbesondere kreiszylindrische, Innenumfangsfläche und/oder zumindest ein weiterer der Wärmeübertragerbereiche (15,16,17) eine konische Innenumfangsfläche aufweist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Kühlkreislauf zur Temperierung des Antriebsaggregats, der strömungstechnisch an den Wärmeübertrager (10) angeschlossen ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kühlkreislauf strömungstechnisch direkt oder über einen weiteren Wärmeübertrager an einen Fahrgastraumheizkreislauf angeschlossen ist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einer zweiten Betriebsart die Heizeinrichtung deaktiviert wird, wobei dem Abgasfilterkörper (3) mittels des Wärmeübertragers (10) Wärme zum Temperieren der wenigstens einen anderen Einrichtung entnommen wird.
EP17193734.5A 2016-10-06 2017-09-28 Abgasreinigungseinrichtung, antriebseinrichtung sowie verfahren zum betreiben einer antriebseinrichtung Active EP3306045B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016219389.9A DE102016219389A1 (de) 2016-10-06 2016-10-06 Abgasreinigungseinrichtung, Antriebseinrichtung sowie Verfahren zum Betreiben einer Antriebseinrichtung

Publications (2)

Publication Number Publication Date
EP3306045A1 EP3306045A1 (de) 2018-04-11
EP3306045B1 true EP3306045B1 (de) 2019-07-10

Family

ID=59997169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17193734.5A Active EP3306045B1 (de) 2016-10-06 2017-09-28 Abgasreinigungseinrichtung, antriebseinrichtung sowie verfahren zum betreiben einer antriebseinrichtung

Country Status (2)

Country Link
EP (1) EP3306045B1 (de)
DE (1) DE102016219389A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106368A1 (fr) * 2020-01-19 2021-07-23 Psa Automobiles Sa Pot catalytique de vehicule destine a reduire les emissions de polluants

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2432285A1 (de) * 1974-07-05 1976-01-22 Eberspaecher J Abgaskatalysator
US4359863A (en) * 1980-12-22 1982-11-23 Texaco Inc. Exhaust gas torch apparatus
JPH04175415A (ja) * 1990-11-07 1992-06-23 Toyota Motor Corp 排気浄化装置
JPH06108822A (ja) * 1992-09-28 1994-04-19 Mitsubishi Motors Corp パティキュレート補集システム
JP2002336628A (ja) * 2001-05-17 2002-11-26 Mitsubishi Heavy Ind Ltd 排ガス中の浮遊微粒子除去装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3306045A1 (de) 2018-04-11
DE102016219389A1 (de) 2018-04-12

Similar Documents

Publication Publication Date Title
EP3212907B1 (de) Wabenkörper mit elektrischer heizvorrichtung
DE102009030963B4 (de) Einrichtung und Verfahren zum Kühlen eines Abgases
DE102009054252B4 (de) Vorrichtung und Verfahren zum Kühlen eines Abgases
EP3899219B1 (de) Verfahren zum betreiben einer antriebseinrichtung sowie entsprechende antriebseinrichtung
EP2697486B1 (de) Vorrichtung mit einem wärmetauscher für einen thermoelektrischen generator eines kraftfahrzeugs
WO2011006978A1 (de) Thermoelektrische vorrichtung mit rohrbündeln
EP3500737B1 (de) Komponente eines abgassystems und verfahren zur abgasnachbehandlung
EP3247889B1 (de) Abgasreinigungskomponente zur reinigung der abgase einer verbrennungskraftmaschine
DE10004545A1 (de) Verbund aus Wabenkörper und Wärmespeicher und Verfahren zu dessen Betrieb
EP3056847A1 (de) Vorrichtung und verfahren zur temperierung eines körpers
DE102020208061A1 (de) Wärmetauscher
EP3306045B1 (de) Abgasreinigungseinrichtung, antriebseinrichtung sowie verfahren zum betreiben einer antriebseinrichtung
DE102015013864B4 (de) Vorrichtung zur Behandlung von Abgasen einer Verbrennungskraftmaschine
EP3406869B1 (de) Abgasanlage für ein kraftfahrzeug sowie entsprechendes kraftfahrzeug
EP3635320B1 (de) Vorrichtung zur wärmerückgewinnung aus einem heizfluid
DE102014115063A1 (de) Tragstruktur, Vorrichtung zur Behandlung von Abgasen und Verfahren zu deren Herstellung
DE102020116485A1 (de) Abgasanlagenbauteil mit schraubenförmiger heizeinrichtung
DE102018208718B4 (de) Verfahren zum Betreiben eines elektrisch beheizbaren Katalysators
DE102005017725A1 (de) Wabenkörper mit Doppelmantelrohr
DE102022103212A1 (de) Heizelement und Abgasstrang mit einem derartigen Element
DE10000568C2 (de) Thermisch isolierte Abgasreinigungsanlage
DE102015007974B3 (de) Antriebseinrichtung sowie Verfahren zum Betreiben einer Antriebseinrichtung
DE102013225767A1 (de) Landwirtschaftliches Arbeitsfahrzeug
DE102021123743A1 (de) Abgasnachbehandlungseinrichtung für eine Antriebseinrichtung sowie eine entsprechende Antriebseinrichtung und ein Verfahren zu ihrem Betreiben
EP2853706B1 (de) Kühlelement und Abgasanlage, umfassend ein Kühlelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181011

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190514

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1153793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001735

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191011

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001735

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170928

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220930

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1153793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220928