EP3305941B1 - Verfahren zur haftfesten aufbringung einer sol-gel-schicht auf eine metalloberfläche - Google Patents

Verfahren zur haftfesten aufbringung einer sol-gel-schicht auf eine metalloberfläche Download PDF

Info

Publication number
EP3305941B1
EP3305941B1 EP16002169.7A EP16002169A EP3305941B1 EP 3305941 B1 EP3305941 B1 EP 3305941B1 EP 16002169 A EP16002169 A EP 16002169A EP 3305941 B1 EP3305941 B1 EP 3305941B1
Authority
EP
European Patent Office
Prior art keywords
sol
gel
metal
metal surface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16002169.7A
Other languages
English (en)
French (fr)
Other versions
EP3305941A1 (de
Inventor
Siegfried Piesslinger-Schweiger
Olaf BÖHME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sepies GmbH
Original Assignee
Sepies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sepies GmbH filed Critical Sepies GmbH
Priority to ES16002169T priority Critical patent/ES2742948T3/es
Priority to EP16002169.7A priority patent/EP3305941B1/de
Publication of EP3305941A1 publication Critical patent/EP3305941A1/de
Application granted granted Critical
Publication of EP3305941B1 publication Critical patent/EP3305941B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a method of adhering a sol-gel layer to a metal surface.
  • Sol-gel coatings are non-metallic inorganic or hybrid polymeric materials from colloidal dispersions, the so-called sols.
  • the starting materials are also referred to as precursors. From them arise in solution in first basic reactions finest particles. Special processing of the brine can produce powders, fibers, layers or aerogels.
  • the hydrolysis of precursor molecules and the condensation between resulting reactive species are the major basic reactions of the sol-gel process. The processes involved and the properties of the precursor molecules have a decisive influence on the resulting material properties.
  • the adhesion of sol-gel coatings to metal surfaces will vary widely depending on the coated metal, depending on the metal to be coated and the pretreatment.
  • sol-gel coatings are applied to stainless steels, aluminum and titanium after pretreatment by degreasing on the already existing, naturally formed oxide layers. This usually gives good results with stainless steels and titanium, with the exception of mechanically polished surfaces.
  • the coating usually for pretreatment the coating additionally applied a thin, about 1 to 3 microns thick oxide layer by electrochemical oxidation (anodizing).
  • the aim of the invention is to provide a method for adherent application of a sol-gel layer on a metal surface. This is achieved by the claimed method.
  • EP 1 816 219 A1 is a method for heat treatment of steel strips by means of direct flame heating known.
  • the EP 1 975 128 A1 discloses a process for producing a titanium oxide coating on various substrates.
  • the EP 0 967 297 A1 relates to a process for producing articles provided with a coating of a silica film.
  • a metal surface may be a smooth surface of a metal.
  • a metal surface may also be a pretreated, such as a polished or a roughened surface of a metal.
  • a metal surface may also be a surface of a metal already present with a passivation layer, such as an oxide layer.
  • the oxide layer provided on this metal surface by the method according to the invention differs from any passivation layer already present in the form of an oxide layer on the metal surface.
  • the oxygen content in the atmosphere is 22-100 vol.%, Preferably 30-90 vol.%, More preferably 40-80 vol.%.
  • the treatment of the metal surfaces is preferably carried out in a period of 1 to 20 seconds.
  • the atmosphere contains no sulfur compounds. It is also preferred that the method not include an additional step of removing organic residues from the at least one metal surface.
  • the layer thickness of the oxide layer is preferably 10 nm to 200 nm, more preferably 20 nm to 100 nm.
  • a method of adhering a sol-gel layer to a metal surface comprises forming oxide layers on metal surfaces as described above.
  • the application of the sol-gel layer usually follows directly, without further process steps being provided.
  • the method comprises, on the correspondingly treated metal surface, applying a liquid sol on the at least one metal surface, preferably by dipping, flooding, spraying or brushing, and allowing the sol to react to a gel, preferably by evaporation of the solvent.
  • a liquid sol on the at least one metal surface preferably by dipping, flooding, spraying or brushing, and allowing the sol to react to a gel, preferably by evaporation of the solvent.
  • Step of curing the gel preferably at 160 ° C to 300 ° C for a period of 10 to 45 minutes.
  • the sol further preferably comprises one or more elements selected from the group consisting of Al, Ti, Zr, Mg, Ca and Zn.
  • the layer thickness of the oxide layer is preferably 100 nm to 2 ⁇ m, more preferably 200 nm to 1.8 ⁇ m, more preferably 300 nm to 1.7 ⁇ m, even more preferably 500 nm to 1.5 ⁇ m, and even more preferably 800 nm to 1 ⁇ m.
  • a material comprising a metal having at least one oxidized metal surface and a sol-gel layer can be produced thereon.
  • the layer thickness of the oxide layer is preferably 100 nm to 2 ⁇ m, more preferably 200 nm to 1.8 ⁇ m, more preferably 300 nm to 1.7 ⁇ m, even more preferably 500 nm to 1.5 ⁇ m, and even more preferably 800 nm to 1 ⁇ m.
  • the layer thickness of the sol-gel layer is preferably about 6 ⁇ m, more preferably about 0.5-5.0 ⁇ m, more preferably 1.0-5.0 ⁇ m, or 0.5-3.0 ⁇ m, and most preferably 1.0-4.0 ⁇ m.
  • the sol-gel layer has a uniform thickness with variations of less than 10% of the layer thickness.
  • the metal is preferably selected from carbon steel, Korten steel, metal with chrome plated surfaces, metal with high gloss polished surfaces, stainless steel and aluminum.
  • oxide layers can be different and depending on the conditions under which they originated.
  • structure and properties of the oxide layers have a strong influence on the adhesion of subsequently applied sol-gel layers.
  • the chemical stability and corrosion resistance of oxide layers is an important factor influencing the permanent adhesion of sol-gel layers to oxide layers as a primer.
  • Sol-gel layers are usually not completely free of pores. These pores allow corrosive media to penetrate and attack the oxide layer. The degradation of oxide layers with low corrosion resistance can lead to later detachment of the sol gel layers.
  • the step of forming an oxide layer on a metal surface comprises treating the metal surfaces at high temperatures in the range of preferably 800 ° C to 1200 ° C, more preferably 1000 ° C to 1200 ° C, in combination with a rich oxygen supply of over 22 vol .-%, ie an oxygen content higher than that of the earth's atmosphere, preferably from 22 to 100 vol%, more preferably from 30 to 90 vol%.
  • the appropriate temperature is chosen depending on the metal to be coated and its surface quality.
  • the oxygen content in the atmosphere is therefore 22-100 vol .-%, preferably 30-90 vol .-%.
  • the treatment is preferably carried out either by treatment with a gas flame (flaming), which has a marked excess of oxygen and thus has a strong oxidizing effect, or by treatment by means of an oxygen plasma.
  • a gas flame the other components that are used in the combustion in the flame and make up the atmosphere, fuels such as propane, butane, a propane / butane mixture, hydrogen, methane.
  • the duration of the treatment is 1 to 10 seconds. In this case, only a thin layer of material is heated on the surface, without the underlying metal undergoes significant changes.
  • the treatment of the metal surfaces is preferably carried out in a period of 1 to 10 seconds.
  • the oxygen-excess atmosphere does not contain sulfur compounds.
  • gases for flame treatment are gases which have no components of sulfur or sulfur compounds. These can lead to the formation of metal sulfides and impair the coatability.
  • oxide layers from atmospheric plasma are not suitable for pretreatment since the high nitrogen content of around 78% by volume in the natural atmosphere leads to the embroidering of the metal surfaces. Subsequently, no firmly adhering sol-gel layer can be applied to these surfaces.
  • Another advantage of the treatment according to the invention is that organic residues on surfaces to be coated, which may adversely affect the adhesion of the coatings, are also reliably eliminated. Therefore, in just one step, both the metal surface can be prepared with an oxide layer, as well as organic residues are removed, so that a simplified process is provided. Therefore, it is preferred that the method not include an additional step of removing organic residues from the at least one metal surface.
  • the method of the invention preferably comprises applying the liquid sol on the at least one metal surface by immersion, flooding, spraying or brushing, and reacting the sol to a gel by evaporation of the solvent and curing of the gel, preferably at 160 ° C to 300 ° C for a period of 10 to 45 minutes.
  • the sol further preferably comprises one or more elements selected from the group consisting of Al, Ti, Zr, Mg, Ca and Zn.
  • Sol-gel layers on surfaces treated according to the invention are distinguished by a significantly improved adhesive strength and homogeneity in comparison to sol-gel layers on conventionally pretreated surfaces.
  • test methods such as the Rockwell test, the cross cut test, the scratch hardness test, the pull-off test or the bending test are used.
  • VDI Guideline 3198 In the Rockwell test (VDI Guideline 3198) a diamond cone with a defined force is pressed into the layer surface. In the vicinity of the hardness impression, the layer is damaged, which can be seen in the microscope as a crack network or as a layer eruptions in the edge region of the impression.
  • the evaluation of the flaking around the impression can either be done according to the VDI Guideline 3198 by division into classes 1-6, or by digital image analysis of the chipped area shares, which gives a more objective and finely subdivided rating.
  • the adhesive strength is determined by making continuous cuts at right angles to each other down to the substrate so that a grid is formed.
  • the scratch hardness test used to evaluate the adhesion of organic layer systems, such as e.g. Paints and paints used on flat, smooth sample plates
  • the sample material is applied with a uniform layer thickness on flat test plates with the same surface finish.
  • the adhesive strength is determined by passing the sheets against a rounded pin or chisel that is loaded with weights until the paint layer detaches from the substrate.
  • the pull-off test determines the minimum tensile force needed to peel or tear off a single-coat or multi-layer finish perpendicular to the surface.
  • this method loads the coating with maximum tensile force.
  • a dolly is glued vertically to the coating.
  • a tester is attached to the anvil and aligned to create a voltage perpendicular to the test area. The force is gradually increased and observed controlled until the coating surface goes off or a certain value is reached.
  • coated metal sheets with a defined radius are bent through a mandrel by 90 °, depending on the sheet thickness D (x times D). Detected is the starting radius from which the coating peels off in the bending area.
  • the multiplier serves as a parameter.
  • a second parameter is the value by how many degrees the sheet can be bent beyond 90 ° without the coating peeling off.
  • sol-gel layers By means of flame treatment or oxygen plasma, firmly adhering sol-gel layers can also be achieved on carbon steel, Korten steel and chrome-plated surfaces as well as on mechanically polished surfaces on stainless steel and aluminum.
  • a sol-gel layer is first applied in the form of a liquid sol having colloidal particles suspended therein, which subsequently converts to a gel and eventually forms a solid, hard lacquer layer. So if the "application of the sol-gel varnish” or the “hardening of the sol-gel varnish” is mentioned, the expert knows in which state the sol-gel system is located.
  • Sol-gel coatings usually consist of two reaction components, which are mixed in a fixed ratio shortly before processing. This mixture is last added as a third component, a dilution, usually an alcohol. Dilution sets the concentration of the reaction mixture and the viscosity of the final batch.
  • the sol-gel is preferably a silica sol based on silanes which are dissolved in solvents, wherein the silica sol preferably also contains one or more further sol-forming elements, preferably one or more elements from the group consisting of Al, Ti, Zr, Mg, Ca and Zn, these elements replacing the Si atoms in the colloidal structures.
  • Preferred sol-gel coatings / sol-gel coatings are in EP 2145980 described. Reference is made in particular to the in EP 2145980 described sol-gel coatings and the method for their use.
  • the hydrolyzable radicals OR ' are hydroxy, alkoxy and / or cycloalkoxy radicals. Suitable examples thereof include, for example, hydroxy, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, i-butoxy, t-butoxy, pentoxy, hexoxy, cyclopentyloxy, cyclohexyloxy, in particular Ethoxy, n-propoxy and isopropoxy are preferred.
  • the hydrolyzable radicals OR ' may be identical or different from one another.
  • the non-hydrolyzable radicals R " are alkyl and / or cycloalkyl radicals, suitable examples of which include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, i-butyl, t-butyl, pentyl, hexyl, cyclopentyl, cyclohexyl radicals, with particular preference being given to methyl, ethyl, n-propyl and isopropyl radicals
  • the nonhydrolyzable radicals R " may likewise be identical or different from one another.
  • a preferred sol-gel layer may include the starting materials TEOS (tetraethoxyorthosilane) and MTES (methyltriethoxysilane) and / or DMDES (dimethyldiethoxysilane).
  • the starting compounds are partially hydrolyzed to the corresponding hydroxy compounds (such as orthosilicic acid, trihydroxyalkylsilane, etc.), which can be promoted by the addition of a catalyst such as acid. Due to the high tendency for condensation of these hydroxy compounds, these can now condense with elimination of water to form smaller siloxane networks.
  • the sol already contains colloidal particles containing siloxane bonds. Siloxane bonds are bonds of the form ⁇ Si-O-Si ⁇ , where " ⁇ " symbolizes any three independent bonds with other elements, in particular OH, OR 'and R ", thus forming a three-dimensional crosslinked structure in the colloidal particles Where OR 'and R "have the same meaning as above.
  • the application of the sol-gel lacquer can be done in any way, such as by immersion, flooding, spraying or brushing. Preferably, however, it is done by spraying, since this allows precise control of the amount applied per unit area.
  • a sol-gel layer may have a layer thickness of up to about 6 ⁇ m, or about 0.5-5.0 ⁇ m, preferably 1.0-5.0 ⁇ m, or 0.5-3.0 ⁇ m and most preferably 1.0-4.0 microns.
  • the sol-gel layer has a uniform thickness with variations of preferably less than 10% of the layer thickness.
  • the viscosity of the sol-gel varnish can be adjusted by a person skilled in the art. It is known that the sol, with a correspondingly high dilution in its solvent, is sufficiently low-viscosity to penetrate into any pores of a surface which may be present. It is known that the sol, with a correspondingly high dilution in its solvent, is sufficiently low-viscosity to be applied by spraying, spraying, rolling or brushing.
  • Suitable solvents for the sol are water and especially alcohols such as methanol, ethanol, n-propanol or isopropanol, with ethanol and isopropanol being preferred because of their physical properties and the low toxicity of their vapors.
  • the applied sol is allowed to react to a gel.
  • This reaction converts the liquid sol into a solid gel layer, in which the colloidal particles of the sol crosslink with each other and with not yet hydrolyzed and condensed starting compounds by further hydrolysis and condensation. This can be done, for example, by evaporation of the alcoholic solvent during drying.
  • the sol-gel coatings can be baked become, thereby forming a glass-ceramic structure that is firmly adhering, resistant to aging and insensitive to environmental influences.
  • the baking of the coating can be carried out by a person skilled in the art according to the usual procedure.
  • the gel-coated surfaces will undergo thermal curing, e.g. 250 ° C subjected. This occurs at elevated temperatures, with the gel transforming into a colorless, transparent, glassy layer.
  • the silica sol constituents convert into an even more highly crosslinked silica which, depending on the composition of the underlying sol, may contain other constituents such as aluminum oxide, titanium oxide or zirconium oxide. These layers are hard, closed and resistant to many of the chemicals that a surface may come into contact under ordinary circumstances, and to temperatures up to about 500 ° C.
  • the coated surface is exposed in the subsequent curing of the gel temperatures of 160 ° C to 300 ° C, more preferably from 160 ° C to 250 ° C and more preferably from 160 ° C to 220 ° C.
  • This curing should be for a period of at least 10 minutes, preferably 20 to 45 minutes, for example 30 minutes.
  • the curing is preferably carried out at temperatures between 180 ° C and 250 ° C, for example at 200 ° C, but also temperatures below 180 ° C are suitable for this purpose.
  • the gel transforms into a hard, colorless and transparent, vitreous lacquer that tightly seals the surface, has no cracks and gives the surface high hardness and wear resistance.
  • the processes of gel formation and the curing of the gel can merge into one another, since, for example, gelation by drying and evaporation of the solvent can at least partly also take place at the beginning of the treatment for hardening. Also, such a method in which the processes of gelation and curing of the gel merge into one another, is encompassed by the invention.
  • the invention also relates to a treated surface Korten steel containing a colorless, transparent, coating on a surface of the Korten steel, the surface treatment being by a process according to the present invention Invention is performed.
  • the Korten steel according to the invention differs structurally from known Korten steels, which is recognizable by the color and the properties, such as stability against corrosion.
  • the invention also provides a metal comprising an oxidized metal surface produced by a method as described above.
  • the layer thickness of the oxide layer is preferably 100 nm to 2 ⁇ m, more preferably 200 nm to 1.8 ⁇ m, more preferably 300 nm to 1.7 ⁇ m, even more preferably 500 nm to 1.5 ⁇ m, and even more preferably 800 nm to 1 ⁇ m.
  • the invention also provides a material comprising a metal having at least one oxidized metal surface and a sol-gel layer thereon, wherein the material has been produced according to a method described above.
  • the layer thickness of the oxide layer is preferably 100 nm to 2 ⁇ m, more preferably 200 nm to 1.8 ⁇ m, more preferably 300 nm to 1.7 ⁇ m, even more preferably 500 nm to 1.5 ⁇ m, and even more preferably 800 nm to 1 ⁇ m.
  • the layer thickness of the sol-gel layer is preferably about 6 ⁇ m, more preferably about 0.5-5.0 ⁇ m, more preferably 1.0-5.0 ⁇ m, or 0.5-3.0 ⁇ m, and most preferably 1.0-4.0 ⁇ m.
  • the sol-gel layer has a uniform thickness with variations of less than 10% of the layer thickness.
  • the metal is preferably selected from carbon steel, Korten steel, metal with chrome plated surfaces, metal with high gloss polished surfaces, stainless steel and aluminum.
  • a stainless steel sheet of size DIN A5 of 1 mm thickness of material 1.4301 with a mechanically mirror-polished surface was cleaned in a dipping degreasing, rinsed with water, dried in air and spray-coated with a sol-gel layer. Subsequently, the surface was cured for 30 minutes at a temperature of 250 ° C in air.
  • the coating After cooling, the coating could be rubbed in places with the thumb. In a bending test at 90 ° with a bending radius of 5 times the sheet thickness, the coating completely dissolved in the area of deformation.
  • Example 1 A stainless steel sheet according to that in Example 1 was degreased like this and dried. Subsequently, the surface was exposed to an oxygen-rich (blue) gas flame for a period of 3 seconds and, after cooling, spray-coated with a sol-gel layer. Subsequently, the surface was cured for 30 minutes at a temperature of 250 ° C.
  • the coating was firmly adherent and could not be rubbed off with the thumb.
  • the coating showed no separation or cracking in the area of deformation.
  • the layer was wiped off the surface of the surface with a finger.
  • the coating completely dissolved in the bending area.
  • a sheet of Korten steel as in the example was cleaned in a Tauchentfettung, rinsed with water and dried. It was then flashed for 5 seconds with an oxygen-rich (blue) gas flame. After cooling The coating was firmly adherent and could not be rubbed with the thumb. In a bending test by 180 ° with a radius of 5 times the sheet thickness, the coating did not peel off and showed no delamination or cracks in the bending area. In a subsequent salt spray test over a period of 400 hours, the surface showed no corrosion.
  • a sheet of Korten steel was oxidized by pretreatment in a solution of 15% hydrogen peroxide, and then a sol-gel coating was applied by spraying and baked at 250 ° C for 30 minutes.
  • Example 4 The layer could not be rubbed off with a finger and passed the bending test with a radius of 5 times sheet thickness by 90 °, without peeling off. In a subsequent salt spray test, the surface showed significant corrosion after just 40 hours.
  • the high corrosion resistance of the surface in Example 4 compared to Example 5 shows the influence of the quality of the oxide layer produced by the method according to the invention in Example 4 as the basis of the coating.

Description

    Hintergrund der Erfindung
  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche.
  • Sol-Gel Beschichtungen sind nichtmetallische anorganische oder hybridpolymere Materialien aus kolloidalen Dispersionen, den sogenannten Solen. Die Ausgangsmaterialien werden auch als Präkursoren bezeichnet. Aus ihnen entstehen in Lösung in ersten Grundreaktionen feinste Teilchen. Durch eine spezielle Weiterverarbeitung der Sole lassen sich Pulver, Fasern, Schichten oder Aerogele erzeugen. Die Hydrolyse von Präkursor-Molekülen und die Kondensation zwischen dabei entstehenden reaktiven Spezies, sind die wesentlichen Grundreaktionen des Sol-Gel-Prozesses. Die dabei ablaufenden Vorgänge und die Eigenschaften der Präkursor-Moleküle haben einen entscheidenden Einfluss auf die resultierenden Materialeigenschaften.
  • Die Haftfestigkeit von Sol-Gel Beschichtungen auf Metalloberflächen weist je nach dem beschichteten Metall eine breite Streuung auf, in Abhängigkeit von dem zu beschichtenden Metall und der Vorbehandlung.
  • Umfangreiche Untersuchungen haben ergeben, dass eine gute Haftung auf Metalloberflächen nur dann erzielt wird, wenn die zu beschichtende Metalloberfläche eine homogene Schicht von Metalloxiden aufweist. Auf metallischen Oberflächen ohne Oxidschicht sind keine haftfesten Sol-Gel Beschichtungen zu erzielen. Auf Grund dieser Erfahrung werden nach dem Stand der Technik bevorzugt Metalle beschichtet, die bereits mit dem Sauerstoff aus der Umgebung Oxidschichten bilden wie Aluminium, Nichtrostende Stähle und Titan.
  • Stand der Technik
  • In der Regel werden Sol-Gel-Beschichtungen auf Nichtrostende Stähle, Aluminium und Titan nach einer Vorbehandlung durch Entfetten auf die bereits vorhandenen, natürlich gebildeten Oxidschichten aufgebracht. Dies führt bei Nichtrostenden Stählen und Titan in der Regel zu guten Ergebnissen mit Ausnahme von mechanisch auf Hochglanz polierten Oberflächen. Bei Aluminium wird meist zur Vorbehandlung vor
    der Beschichtung zusätzlich eine dünne, ca. 1 bis 3 µm dicke Oxidschicht durch elektrochemische Oxidation (Eloxieren) aufgebracht.
  • Auf Kohlenstoffstählen und Korten-Stahl ist eine haftfeste Beschichtung nicht möglich, weil die natürlich gebildeten Oxidschichten keine ausreichend Anbindung der Beschichtung ermöglichen und selbst nicht korrosionsbeständig sind. Dies führt zu schlechter Haftung von Sol-Gel Schichten und zur Ablösung der Schichten durch Unterrostung.
  • Auf mechanisch auf Hochglanz polierten Oberflächen auf Edelstahl und Aluminium ist in der Regel keine ausreichende Haftfestigkeit zu erzielen. Offensichtlich führt die hohe mechanische Belastung und Verformung des Werkstoffs in Verbindung mit der Einwirkung von Poliermitteln zur Ausbildung von Oxidschichten mit schlechten Voraussetzungen für eine qualitativ hochwertige, homogene und fest haftende Sol-Gel-Beschichtung.
  • Ziel der Erfindung ist es, ein Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche bereitzustellen. Dies wird durch das anspruchsgemäße Verfahren erreicht.
  • Aus der EP 1 816 219 A1 ist ein Verfahren zur Wärmebehandlung von Stahlbändern mittels direkter Flammenbeheizung bekannt.
  • Die EP 1 975 128 A1 offenbart ein Verfahren zur Herstellung eines Titanoxid-Überzugs auf verschiedenen Substraten.
  • Die EP 0 967 297 A1 betrifft ein Verfahren zur Herstellung von Gegenständen, die mit einem Überzug aus einem Silica-Film versehen sind.
  • Kurze Beschreibung der Erfindung
  • Die vorliegende Erfindung betrifft ein Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche, umfassend: Erzeugen einer Oxidschicht auf einer Metalloberfläche durch Behandeln der Metalloberfläche bei einer Temperatur von 600°C bis 1500°C in einer Atmosphäre mit einem Sauerstoffgehalt bei 22-100 Vol.-% oder mittels Sauerstoffplasma, Aufbringen eines flüssigen Sols auf der Metalloberfläche, wobei das Sol in einem Lösemittel gelöste Silane der Formel Si(OR')4-nR"n mit n = 0,1 oder 2 umfasst, wobei jedes OR' unabhängig voneinander einen Hydroxy-, Alkoxy- und/oder Cycloalkoxyrest darstellt und jedes R", wenn vorhanden, unabhängig voneinander einen Alkyl- und/oder Cycloalkylrest darstellt, Reagieren lassen des Sols zu einem Gel durch Verdunsten des Lösemittels, und Härten des Gels.
  • Eine Metalloberfläche kann eine glatte Oberfläche eines Metalls sein. Eine Metalloberfläche kann auch eine vorbehandelte, wie z.B. eine polierte oder eine aufgeraute Oberfläche eines Metalls sein. Eine Metalloberfläche kann auch eine bereits mit einer Passivierungsschicht, wie z.B. einer Oxidschicht vorhandene Oberfläche eines Metalls sein. Die auf dieser Metalloberfläche durch das erfindungsgemäße Verfahren bereitgestellte Oxidschicht unterscheidet sich von einer eventuell bereits vorhandenen Passivierungsschicht in Form einer Oxidschicht auf der Metalloberfläche.
  • Der Sauerstoffgehalt in der Atmosphäre liegt bei 22-100 Vol.-%, bevorzugt bei 30-90 Vol.-%, stärker bevorzugt bei 40-80 Vol.-%.
  • Die Behandlung der Metalloberflächen erfolgt bevorzugt in einem Zeitraum von 1 bis 20 Sekunden.
  • Es ist besonders bevorzugt, dass die Atmosphäre keine Schwefel-Verbindungen enthält. Auch ist bevorzugt, dass das Verfahren keinen zusätzlichen Schritt des Entfernens von organischen Rückständen von der mindestens einen Metalloberfläche umfasst.
  • Die Schichtdicke der Oxidschicht beträgt bevorzugt 10 nm bis 200 nm, stärker bevorzugt 20 nm bis 100 nm.
  • Die besonderen Ergebnisse des erfindungsgemäßen Verfahrens lassen sich vermutlich dadurch erklären, dass bei der kurzzeitigen Behandlung der Metalloberfläche bei Temperaturen oberhalb von 1000°C sich durch Umwandlung chemisch sehr beständige Oxide von Eisen und Aluminium bilden. So kann sich Aluminiumoxid α-Al2 O3 oberhalb von 1000°C bilden und damit oberhalb der Schmelztemperatur des Aluminiums. Bei Temperaturen oberhalb von 1000°C kann sich auch α-Fe2O3 bilden, das ebenfalls chemisch sehr stabil ist. Beide Oxidformen werden durch Hydrolyse oder durch Säuren kaum angegriffen. Die sehr kurze Behandlungszeit des erfindungsgemäßen Verfahrens vermeidet darüber hinaus eine kritische Erwärmung der tiefer (darunter) liegenden Metalloberflächen.
  • Ein Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche umfasst das Herstellen von Oxidschichten auf Metalloberflächen wie oben beschrieben. Der Auftrag der Sol-Gel-Schicht schließt sich üblicherweise direkt an, ohne dass weitere Verfahrensschritte vorgesehen sind. Des Weiteren umfasst das Verfahren, auf der entsprechend behandelten Metalloberfläche, das Aufbringen eines flüssigen Sols auf der mindestens einen Metalloberfläche, bevorzugt durch Eintauchen, Fluten, Aufsprühen oder Aufstreichen, und das Reagieren lassen des Sols zu einem Gel, bevorzugt durch Verdunsten des Lösemittels. Optional kann zusätzlich ein
  • Schritt des Härtens des Gels, bevorzugt bei 160°C bis 300°C für eine Dauer von 10 bis 45 Minuten erfolgen.
  • Das Sol umfasst in einem Lösemittel gelöste Silane der Formel Si(OR')4-nR"n mit n = 0,1 oder 2 umfasst, wobei jedes OR' unabhängig voneinander einen Hydroxy-, Alkoxy- und/oder Cycloalkoxyrest darstellt und jedes R", wenn vorhanden, unabhängig voneinander einen Alkyl- und/oder Cycloalkylrest darstellt.
  • Das Sol umfasst des Weiteren bevorzugt ein oder mehrere Elemente aus der Gruppe bestehend aus Al, Ti, Zr, Mg, Ca und Zn.
  • Die Schichtdicke der Oxidschicht beträgt bevorzugt 100 nm bis 2 µm, stärker bevorzugt 200 nm bis 1,8 µm, stärker bevorzugt 300 nm bis 1,7 µm, noch stärker bevorzugt 500 nm bis 1,5 µm und noch stärker bevorzugt um 800 nm bis 1 µm.
  • Durch das erfindungsgemäße Verfahren lässt sich ein Werkstoff umfassend ein Metall mit mindestens einer oxidierten Metalloberfläche und einer Sol-Gel Schicht darauf herstellen.
  • Die Schichtdicke der Oxidschicht beträgt bevorzugt 100 nm bis 2 µm, stärker bevorzugt 200 nm bis 1,8 µm, stärker bevorzugt 300 nm bis 1,7 µm, noch stärker bevorzugt 500 nm bis 1,5 µm und noch stärker bevorzugt um 800 nm bis 1 µm.
  • Die Schichtdicke der Sol-Gel-Schicht beträgt bevorzugt etwa 6 µm, stärker bevorzugt etwa 0,5-5,0 µm, stärker bevorzugt 1,0-5,0 µm, oder 0,5-3,0 µm und am meisten bevorzugt 1,0-4,0 µm aufweisen. Bevorzugt weist die Sol-Gel-Schicht eine gleichmäßige Dicke mit Schwankungen von weniger als 10% der Schichtdicke auf.
  • Das Metall ist bevorzugt ausgewählt aus Kohlenstoffstahl, Korten-Stahl, Metall mit verchromten Oberflächen, Metall mit mechanisch auf Hochglanz polierten Oberflächen, Edelstahl und Aluminium.
  • Detaillierte Beschreibung der Erfindung
  • Es hat sich im Rahmen dieser Untersuchungen gezeigt, dass die Qualität von Oxidschichten unterschiedlich sein kann und abhängig von den Bedingungen unter denen sie entstanden sind. Außerdem hat sich gezeigt, dass Struktur und Eigenschaften der Oxidschichten einen starken Einfluss auf die Haftfestigkeit nachträglich aufgebrachter Sol-Gel Schichten haben. Die chemische Stabilität und Korrosionsbeständigkeit von Oxidschichten ist ein wesentlicher Einflussfaktor für die dauerhafte Haftung von Sol-Gel Schichten auf Oxidschichten als Haftgrund. Sol-Gel Schichten sind meist nicht vollständig frei von Poren. Durch diese Poren können korrosive Medien eindringen und die Oxidschicht angreifen. Der Abbau von Oxidschichten mit geringer Korrosionsbeständigkeit kann zur späteren Ablösung der Sol Gel Schichten führen.
  • Es hat sich gezeigt, dass die Bedingungen, unter denen Oxidschichten entstanden sind, zu erkennbaren Unterschieden in deren Struktur und Eigenschaften führen können. Dies hat einen direkten Einfluss auf die Haftfestigkeit von später aufgebrachten Sol-Gel Schichten.
  • Umfangreiche Untersuchungen zu den Parametern bei der Bildung von Oxidschichten auf Metalloberflächen und die daraus resultierenden Eigenschaften und deren Einfluss auf die Haftfestigkeit von Sol-Gel-Schichten haben gezeigt, dass die Temperatur und der Sauerstoffgehalt der Atmosphäre während der Bildung der Oxidschichten wesentlichen Einfluss auf die Haftfestigkeit von nachträglich aufgebrachten Sol-Gel Schichten haben. Diese überraschende und neue Erkenntnis führte in der Folge zur Entwicklung der Verfahren, die der gegenständlichen Erfindung zu Grunde liegen.
  • Die nach dem Stand der Technik bekannten und angewandten Verfahren zur Vorbehandlung von Metalloberflächen vor der Sol-Gel Beschichtung werden bei Temperaturen unter 100 °C angewendet und bestehen aus nasschemischen Prozessen.
  • Der Verfahrensschritt des Erzeugens einer Oxidschicht auf einer Metalloberfläche umfasst eine Behandlung der Metalloberflächen mit hohen Temperaturen im Bereich von bevorzugt 800°C bis 1200°C, insbesondere bevorzugt von 1000°C bis 1200°C, in Verbindung mit einem reichen Sauerstoffangebot von über 22 Vol.-%, d.h. einem Sauerstoffgehalt höher als dem der Erdatmosphäre, bevorzugt von 22-100 Vol.-%, stärker bevorzugt von 30-90 Vol.-%. Die geeignete Temperatur wird je nach dem zu beschichtenden Metall und dessen Oberflächenqualität gewählt.
  • Der Sauerstoffgehalt in der Atmosphäre liegt daher bei 22-100 Vol.-%, bevorzugt bei 30-90 Vol.-%.
  • Die Behandlung erfolgt bevorzugt entweder durch Behandeln mit einer Gasflamme (Beflammen), die einen deutlichen Überschuss an Sauerstoff aufweist und damit stark oxidierend wirkt, oder durch Behandeln mittels einem Sauerstoffplasma. Im Falle einer Gasflamme sind die übrigen Komponenten die in der Verbrennung in der Flamme verwendet werden und die Atmosphäre ausmachen, Brennstoffe wie Propan, Butan, ein Propan/Butan Gemisch, Wasserstoff, Methan.
  • In der Regel beträgt die Dauer der Behandlung 1 bis 10 Sekunden. Dabei wird lediglich eine dünne Werkstoffschicht an der Oberfläche erhitzt, ohne dass das darunter liegende Metall wesentliche Veränderungen erfährt. Die Behandlung der Metalloberflächen erfolgt bevorzugt in einem Zeitraum von 1 bis 10 Sekunden.
  • Es ist besonders bevorzugt, dass die Atmosphäre mit einem Sauerstoffüberschuss keine Schwefel-Verbindungen enthält. Geeignete Gase zur Beflammung sind Gase, die keine Bestandteile an Schwefel oder Schwefelverbindungen aufweisen. Diese können zur Bildung von Metallsulfiden führen und die Beschichtbarkeit beeinträchtigen.
  • Oxidschichten aus Atmosphärenplasma sind hingegen nicht zur Vorbehandlung geeignet, da der hohe Gehalt an Stickstoff von um die 78 Vol.-% in der natürlichen Atmosphäre zum Aufsticken der Metalloberflächen führt. Auf diesen Oberflächen kann anschließend keine fest haftende Sol-Gel Schicht aufgebracht werden.
  • Die bei der hohen Temperatur unter Sauerstoffüberschuss entstehenden Oxide führen zu einer deutlich verbesserten Haftfestigkeit und Homogenität von darauf aufgebrachten Sol-Gel Schichten. Es können in der Folge auch einige Metalle mit haftfesten und hochwertigen Sol-Gel Schichten versehen werden, auf denen dies zuvor nicht möglich war, wie z.B. Kohlenstoffstähle, Korten-Stahl und verchromten Oberflächen sowie auf mechanisch auf Hochglanz polierten Oberflächen auf Edelstahl und Aluminium.
  • Ein weiterer Vorteil der erfindungsgemäßen Behandlung besteht darin, dass organische Rückstände auf zu beschichtenden Oberflächen, welche die Haftung der Beschichtungen nachteilig beeinflussen können, ebenfalls zuverlässig beseitigt werden. Daher können in nur einem Schritt sowohl die Metalloberfläche mit einer Oxidschicht vorbereitet werden, als auch organische Rückstände entfernt werden, so dass ein vereinfachtes Verfahren bereitgestellt wird. Daher ist bevorzugt, dass das Verfahren keinen zusätzlichen Schritt des Entfernens von organischen Rückständen von der mindestens einen Metalloberfläche umfasst.
  • Das erfindungsgemäße Verfahren umfasst bevorzugt das Aufbringen des flüssigen Sols auf der mindestens einen Metalloberfläche durch Eintauchen, Fluten, Aufsprühen oder Aufstreichen, und das Reagieren lassen des Sols zu einem Gel durch Verdunsten des Lösemittels und Härten des Gels, bevorzugt bei 160°C bis 300°C für eine Dauer von 10 bis 45 Minuten.
  • Das Sol umfasst in einem Lösemittel gelöste Silane der Formel Si(OR')4-nR"n mit n = 0,1 oder 2 umfasst, wobei jedes OR' unabhängig voneinander einen Hydroxy-, Alkoxy- und/oder Cycloalkoxyrest darstellt und jedes R", wenn vorhanden, unabhängig voneinander einen Alkyl- und/oder Cycloalkylrest darstellt.
  • Das Sol umfasst des Weiteren bevorzugt ein oder mehrere Elemente aus der Gruppe bestehend aus Al, Ti, Zr, Mg, Ca und Zn.
  • Sol-Gel Schichten auf erfindungsgemäß behandelten Oberflächen zeichnen sich durch eine deutlich verbesserte Haftfestigkeit und Homogenität aus im Vergleich zu Sol-Gel Schichten auf konventionell vorbehandelten Oberflächen.
  • Zur Ermittlung der Haftfestigkeit werden Testverfahren wie der Rockwell-Test, die Gitterschnittprüfung, die Ritzhärteprüfung, der Pull-Off-Test oder der Biegetest angewandt.
  • Beim Rockwell-Test (VDI Richtlinie 3198) wird ein Diamantkegel mit definierter Kraft in die Schichtoberfläche eingedrückt. In der Umgebung des Härte-Eindruckes ist die Schicht geschädigt, was sich im Mikroskop als Rissnetzwerk bzw. als Schichtausbrüche im Randbereich des Eindruckes erkennen lässt. Die Auswertung der Abplatzungen um den Eindruck herum kann entweder nach der VDI Richtlinie 3198 durch Einteilung in Haftklassen 1-6 geschehen, oder durch digitale Bildauswertung der abgeplatzten Flächenanteile, welches eine objektivere und feiner unterteilte Bewertung ergibt.
  • Bei der Gitterschnittprüfung wird die Haftfestigkeit ermittelt, indem bis auf den Untergrund durchgehende Schnitte im rechten Winkel zueinander ausgeführt werden, so dass ein Gitter entsteht. Bei der Ritzhärteprüfung, die zur Beurteilung der Haftfestigkeit von organischen Schichtsystemen, wie z.B. Lacke und Anstrichstoffen, auf ebenen, glatten Probenplatten dient, wird das Probenmaterial mit einheitlicher Schichtdicke auf ebene Prüfbleche mit gleicher Oberflächenbeschaffenheit aufgetragen. Nach dem Trocknen wird die Haftfestigkeit bestimmt, indem die Bleche gegen einen abgerundeten Stift oder Meißel geführt werden, der mit Gewichten belastet wird, bis sich die Lackschicht vom Untergrund löst. Beim Pull-Off Test wird die minimale Zugkraft bestimmt, die nötig ist, um eine Einschicht- oder eine Mehrschicht-Lackierung senkrecht zur Oberfläche abzuziehen oder abzureißen. Im Gegensatz zur Scherkraftbelastung der Ritzhärteprüfung wird mit dieser Methode die Beschichtung mit maximaler Zugkraft belastet. Für den Test wird zunächst ein Gegenhalter (Dolly) senkrecht auf die Beschichtung geklebt. Nachdem der Kleber ausgehärtet ist, wird ein Testgerät an den Gegenhalter angeschlossen und ausgerichtet, um eine Spannung senkrecht zur Testfläche zu erzeugen. Die Kraft wird schrittweise erhöht und beobachtet kontrolliert, bis die Beschichtungsfläche abgeht oder ein bestimmter Wert erreicht wird.
  • Bei dem Biegetest werden beschichtete Bleche mit einem definierten Radius abhängig von der Blechdicke D (x mal D) über einen Dorn um 90° gebogen. Festgestellt wird, ab welchem Radius sich die Beschichtung im Biegebereich ablöst. Der Multiplikator dient als Kenngröße. Eine zweite Kenngröße ist der Wert, um wie viele Grade sich das Blech über die 90° hinaus biegen lässt, ohne dass die Beschichtung sich ablöst.
  • Mittels Beflammen oder Sauerstoffplasma können fest haftende Sol-Gel Schichten auch auf Kohlenstoffstahl, Korten-Stahl und verchromten Oberflächen erzielt werden sowie auf mechanisch auf Hochglanz polierten Oberflächen auf Edelstahl und Aluminium.
  • Es versteht sich für den Fachmann, dass eine Sol-Gel Schicht zunächst in Form eines flüssigen Sols mit darin schwebenden kolloidalen Partikeln aufgebracht wird, das sich anschließend in ein Gel umwandelt und schließlich eine feste, harte Lackschicht bildet. Wenn also vom "Auftragen des Sol-Gel-Lacks" bzw. dem "Härten des Sol-Gel-Lacks" die Rede ist, weiß der Fachmann, in welchem Zustand sich das Sol-Gel-System dabei befindet.
  • Sol-Gel-Beschichtungen bestehen in der Regel aus zwei Reaktionskomponenten, die kurz vor der Verarbeitung in einem festen Verhältnis zueinander gemischt werden. Dieser Mischung wird zuletzt als dritte Komponente eine Verdünnung, meist ein Alkohol, zugemischt. Durch die Verdünnung werden die Konzentration der Reaktionsmischung und die Viskosität des fertigen Ansatzes eingestellt. Das Sol-Gel ist bevorzugt ein Kieselsol, basierend auf Silanen, die in Lösemittel gelöst werden, wobei das Kieselsol bevorzugt zudem ein oder mehrere weitere Sol-bildende Elemente enthält, bevorzugt ein oder mehrere Elemente aus der Gruppe bestehend aus Al, Ti, Zr, Mg, Ca und Zn, wobei diese Elemente die Si-Atome in den kolloidalen Strukturen ersetzen. Bevorzugte Sol-Gel-Beschichtungen/Sol-Gel-Lacke sind in EP 2145980 beschrieben. Hiermit wird insbesondere Bezug genommen auf die in EP 2145980 beschriebenen Sol-Gel-Beschichtungen sowie das Verfahren zu deren Anwendung.
  • Die Ausgangsverbindungen zur Bildung der Sole und schließlich des Sol-Gel-Lacks sind hydrolysierbare Silane der Formel SiR4, wobei die 4 Reste R 2-4 hydrolysierbare Reste OR' und 0-2 nicht-hydrolysierbare Reste R" umfassen. Diese Ausgangs-Silane können also auch als Si(OR')4-nR"n mit n = 0,1 oder 2 dargestellt werden. Wenn zusätzliche Sol-bildende Elemente, wie sie eben beschrieben wurden, eingesetzt werden, sind entsprechende Verbindungen gemäß den Wertigkeiten der Elemente als Ausgangsverbindungen zu wählen, etwa AlR3, usw.
  • Die hydrolysierbaren Reste OR' sind Hydroxy-, Alkoxy- und/oder Cycloalkoxyreste. Geeignete Beispiele hierfür umfassen etwa Hydroxy-, Methoxy-, Ethoxy-, n-Propoxy-, Isopropoxy-, n-Butoxy-, i-Butoxy-, t-Butoxy-, Pentoxy-, Hexoxy-, Cyclopentyloxy-, Cyclohexyloxyreste, wobei insbesondere Ethoxy-, n-Propoxy- und Isopropoxyreste bevorzugt werden. Die hydrolysierbaren Reste OR' können gleich oder verschieden voneinander sein.
  • Die nicht-hydrolysierbaren Reste R", so sie vorhanden sind, sind Alkyl- und/oder Cycloalkylreste. Geeignete Beispiele hierfür umfassen etwa Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, i-Butyl-, t-Butyl-, Pentyl-, Hexyl-, Cyclopentyl-, Cyclohexylreste, wobei insbesondere Methyl-, Ethyl-, n-Propyl- und Isopropylreste bevorzugt werden. Die nicht-hydrolysierbaren Reste R" können ebenfalls gleich oder verschieden voneinander sein.
  • Die Ausgangsverbindungen der Sole können aus einer einzigen Art von Silan bestehen, häufig werden sie aber Gemische aus mehreren Silanen (und gegebenenfalls zusätzlichen Sol-bildenden Ausgangsverbindungen anderer Elemente) umfassen. Bevorzugt ist, dass zumindest eine der Komponenten der Ausgangsverbindungen ein Silan der Formel Si(OR')4-nR''n mit n = 0 ist, also Si(OR')4. Beispielsweise kann eine bevorzugte Sol-Gel-Schicht die Ausgangsmaterialien TEOS (Tetraethoxyorthosilan) und MTES (Methyltriethoxysilan) und/oder DMDES (Dimethyldiethoxysilan) umfassen.
  • Daneben können natürlich auch andere, auf dem Gebiet der Sol-Gel-Systeme übliche Zusatzstoffe eingesetzt werden, beispielsweise zusätzliche Netzwerkbildner, wie etwa Acryloxypropyltrimethoxysilan bzw. Methacryloxypropyltrimethoxysilan, die für weitere organische Vernetzungen sorgen können, insbesondere wenn ein nicht unerheblicher Teil der Ausgangsverbindungen sogenannte netzwerkwandelnde Verbindungen der Formel Si(OR')4-nR"n mit n = 1 oder 2 sind.
  • Im Sol sind die Ausgangsverbindungen zum Teil zu den entsprechenden Hydroxyverbindungen (etwa Orthokieselsäure, Trihydroxyalkylsilan, usw.) hydrolysiert, was durch die Zugabe eines Katalysators, etwa von Säure, begünstigt werden kann. Aufgrund der hohen Neigung zur Kondensation dieser Hydroxyverbindungen können diese nun unter Abspaltung von Wasser zu kleineren Siloxannetzwerken kondensieren. In dem Sol liegen bereits kolloidale Partikel vor, die Siloxan-Bindungen enthalten. Siloxan-Bindungen sind Bindungen der Form ≡Si-O-Si≡, wobei "≡" drei voneinander unabhängige beliebige Bindungen mit anderen Elementen, insbesondere mit OH, OR' und R", symbolisiert, wodurch eine dreidimensionale vernetzte Struktur in den kolloidalen Partikeln entsteht. Dabei haben OR' und R" dieselbe Bedeutung wie oben.
  • Das Auftragen des Sol-Gel-Lacks kann dabei auf jede beliebige Art und Weise erfolgen, etwa durch Eintauchen, Fluten, Aufsprühen oder Aufstreichen. Vorzugsweise erfolgt er jedoch durch Aufsprühen, da dies eine genaue Kontrolle der pro Flächeneinheit aufgebrachten Menge ermöglicht.
  • Dabei kann die Menge nach Bedarf eingestellt werden. Beispielsweise kann ein Sol-Gel-Schicht eine Schichtdicke von bis zu etwa 6 µm aufweisen, oder von etwa 0,5-5,0 µm, bevorzugt 1,0-5,0 µm, oder 0,5-3,0 µm und am meisten bevorzugt 1,0-4,0 µm aufweisen. Bevorzugt weist die Sol-Gel-Schicht eine gleichmäßige Dicke mit Schwankungen von bevorzugt weniger als 10% der Schichtdicke auf.
  • Die Viskosität des Sol-Gel-Lacks kann vom Fachmann eingestellt werden. Es ist bekannt, dass das Sol bei entsprechend hoher Verdünnung in seinem Lösemittel ausreichend dünnflüssig ist, um in die eventuell vorhandenen Poren einer Oberfläche einzudringen. Es ist bekannt, dass das Sol bei entsprechend hoher Verdünnung in seinem Lösemittel ausreichend dünnflüssig ist, um durch Spritzen, Sprühen, Walzen oder Streichen aufgebracht zu werden.
  • Geeignete Lösemittel für das Sol sind Wasser und vor allem Alkohole wie Methanol, Ethanol, n-Propanol oder Isopropanol, wobei Ethanol und Isopropanol aufgrund ihrer physikalischen Eigenschaften und der geringen Toxizität ihrer Dämpfe bevorzugt werden.
  • Daraufhin lässt man das aufgetragene Sol zu einem Gel reagieren. Diese Reaktion überführt das flüssige Sol in eine feste Gelschicht, in der sich die kolloidalen Partikel des Sols durch weitere Hydrolyse und Kondensation miteinander und mit noch nicht hydrolysierten und kondensierten Ausgangsverbindungen vernetzen. Dies kann beispielsweise durch Verdunsten des alkoholischen Lösemittels beim Trocknen geschehen.
  • Nach dem Trocknen der Oberflächen können die Sol-Gel-Beschichtungen eingebrannt werden, wodurch sich eine glaskeramische Struktur bildet, die fest haftet, alterungsbeständig und unempfindlich gegen Umwelteinflüsse ist. Das Einbrennen der Beschichtung kann vom Fachmann nach üblicher Vorgehensweise durchgeführt werden.
  • Beispielsweise werden die mit dem Gel beschichteten Oberflächen einer thermischen Härtung, bei z.B. 250°C unterzogen. Dies geschieht bei erhöhten Temperaturen, wobei sich das Gel in eine farblose, transparente, glasartige Schicht umwandelt. Die Kieselsol-Bestandteile wandeln sich dabei in ein noch stärker vernetztes Siliziumdioxid um, das je nach Zusammensetzung des zugrundeliegenden Sols weitere Bestandteile wie etwa Aluminiumoxid, Titanoxid oder Zirkoniumoxid enthalten kann. Diese Schichten sind hart, geschlossen und beständig gegen viele der Chemikalien, mit denen eine Oberfläche unter gewöhnlichen Umständen in Berührung kommen kann, sowie gegen Temperaturen bis etwa 500°C.
  • Gemäß einer bevorzugten Ausführungsform wird die beschichtete Oberfläche bei der anschließenden Härtung des Gels Temperaturen von 160°C bis 300°C, besonders bevorzugt von 160°C bis 250°C und weiter bevorzugt von 160°C bis 220°C ausgesetzt. Diese Härtung sollte für eine Dauer von mindestens 10 Minuten, vorzugsweise 20 bis 45 Minuten, beispielsweise 30 Minuten lang erfolgen. Die Härtung wird vorzugsweise bei Temperaturen zwischen 180°C und 250°C, beispielsweise bei 200°C, durchgeführt, aber auch Temperaturen unterhalb von 180°C eignen sich hierfür. Dabei wandelt sich das Gel in einen harten, farblosen und transparenten, glasartigen Lack um, der die Oberfläche dicht versiegelt, seinerseits keine Risse aufweist und der Oberfläche eine hohe Härte und Verschleißbeständigkeit verleiht.
  • Die Prozesse der Gelbildung und der Härtung des Gels können dabei ineinander übergehen, da etwa eine Gelbildung durch Trocknen und Verdunsten des Lösemittels zumindest teilweise auch noch zu Beginn der Behandlung zur Härtung erfolgen kann. Auch ein solches Verfahren, bei dem die Prozesse der Gelbildung und der Härtung des Gels ineinander übergehen, ist von der Erfindung umfasst.
  • Es können jedoch auch andere herkömmliche Härtungsverfahren durchgeführt werden.
  • Die Erfindung betrifft auch einen Korten-Stahl mit behandelter Oberfläche, enthaltend eine farblose, transparente, Beschichtung auf einer Oberfläche des Korten-Stahls, wobei die Oberflächenbehandlung nach einem Verfahren gemäß der vorliegenden Erfindung durchgeführt wird. Der erfindungsgemäße Korten-Stahl unterscheidet sich strukturell von bekannten Korten-Stählen, was an der Farbe und den Eigenschaften, wie Stabilität gegen Korrosion, erkennbar ist.
  • Als Sol-Gel-Beschichtung/Sol-Gel-Lack können z. B. POLIANT oder POLISEAL von POLIGRAT verwendet werden.
  • Gegenstand der Erfindung ist auch ein Metall umfassend eine oxidierte Metalloberfläche, die mit einem oben beschriebenen Verfahren hergestellt wurde.
  • Die Schichtdicke der Oxidschicht beträgt bevorzugt 100 nm bis 2 µm, stärker bevorzugt 200 nm bis 1,8 µm, stärker bevorzugt 300 nm bis 1,7 µm, noch stärker bevorzugt 500 nm bis 1,5 µm und noch stärker bevorzugt um 800 nm bis 1 µm. Gegenstand der Erfindung ist auch ein Werkstoff umfassend ein Metall mit mindestens einer oxidierten Metalloberfläche und einer Sol-Gel Schicht darauf, wobei der Werkstoff gemäß einem oben beschriebenen Verfahren hergestellt wurde.
  • Die Schichtdicke der Oxidschicht beträgt bevorzugt 100 nm bis 2 µm, stärker bevorzugt 200 nm bis 1,8 µm, stärker bevorzugt 300 nm bis 1,7 µm, noch stärker bevorzugt 500 nm bis 1,5 µm und noch stärker bevorzugt um 800 nm bis 1 µm.
  • Die Schichtdicke der Sol-Gel-Schicht beträgt bevorzugt etwa 6 µm, stärker bevorzugt etwa 0,5-5,0 µm, stärker bevorzugt 1,0-5,0 µm, oder 0,5-3,0 µm und am meisten bevorzugt 1,0-4,0 µm aufweisen. Bevorzugt weist die Sol-Gel-Schicht eine gleichmäßige Dicke mit Schwankungen von weniger als 10% der Schichtdicke auf.
  • Das Metall ist bevorzugt ausgewählt aus Kohlenstoffstahl, Korten-Stahl, Metall mit verchromten Oberflächen, Metall mit mechanisch auf Hochglanz polierten Oberflächen, Edelstahl und Aluminium.
  • Beispiele: Beispiel 1 (Vergleichsbeispiel)
  • Ein Edelstahlblech der Größe DIN A5 von 1 mm Dicke aus Werkstoff 1.4301 mit mechanisch auf Spiegelglanz polierter Oberfläche wurde in einer Tauchentfettung gereinigt, mit Wasser gespült, an Luft getrocknet und im Spritzverfahren mit einer Sol-Gel Schicht beschichtet. Anschließend wurde die Oberfläche für eine Dauer von 30 Minuten bei einer Temperatur von 250 °C an Luft gehärtet.
  • Nach dem Abkühlen konnte die Beschichtung stellenweise mit dem Daumen abgerieben werden. Bei einem Biegeversuch um 90° mit einem Biegeradius von 5 mal die Blechdicke löste sich die Beschichtung im Bereich der Verformung vollständig ab.
  • Beispiel 2:
  • Ein Edelstahlblech gemäß dem in Beispiel 1 wurde wie dieses entfettet und getrocknet. Anschließend wurde die Oberfläche mit einer Dauer von 3 Sekunden mit einer sauerstoffreichen (blauen) Gasflamme beflammt und nach dem Abkühlen im Spritzverfahren mit einer Sol-Gel Schicht beschichtet. Anschließend wurde die Oberfläche für die Dauer von 30 Minuten bei einer Temperatur von 250 °C gehärtet.
  • Nach dem Abkühlen war die Beschichtung fest haftend und konnte nicht mit dem Daumen abgerieben werde. Bei einem Biegeversuch um 180° mit einem Biegeradius von 5 mal Blechdicke zeigte die Beschichtung im Bereich der Verformung keine Ablösung oder Rissbildung.
  • Beispiel 3: (Vergleichsbeispiel)
  • Ein Blech aus Korten-Stahl der Größe DIN A5 mit 1 mm Dicke und mit stellenweisen leichten Anrostungen wurde in einer Tauchentfettung gereinigt, mit Wasser gespült und es wurde ohne weitere Vorbehandlung im Spritzverfahren eine Sol-Gel Beschichtung aufgebracht. Diese wurde anschließend für die Dauer von 30 Minuten bei 250°C an Luft gehärtet.
  • Nach dem Abkühlen ließ sich die Schicht von der Oberfläche von der Oberfläche mit dem Finger abwischen. Bei einem Biegeversuch um 90° mit einem Radius von 5 x D löste sich die Beschichtung im Biegebereich vollständig ab.
  • Beispiel 4:
  • Ein Blech aus Korten-Stahl wie im Beispiel wurde in einer Tauchentfettung gereinigt, mit Wasser gespült und getrocknet. Anschließend wurde es für die Dauer von 5 Sekunden mit einer sauerstoffreichen (blauen) Gasflamme beflammt. Nach dem Abkühlen war die Beschichtung fest haftend und ließ sich nicht mit dem Daumen abreiben. Bei einem Biegeversuch um 180° mit einem Radius von 5 mal Blechdicke löste sich die Beschichtung nicht ab und zeigte im Biegebereich keine Ablösungen oder Risse. In einem anschließenden Salzsprühtest über die Dauer von 400 Stunden zeigte die Oberfläche keine Korrosion.
  • Beispiel 5: (Vergleichsbeispiel)
  • Ein Blech aus Korten-Stahl wurde mittels einer Vorbehandlung in einer Lösung mit 15% Wasserstoffperoxid oxidiert und anschließend wurde im Spritzverfahren eine Sol-Gel-Beschichtung aufgebracht und bei 250°C für die Dauer von 30 Minuten eingebrannt.
  • Die Schicht ließ sich nicht mit dem Finger abreiben und bestand den Biegeversuch mit einem Radius von 5 mal Blechstärke um 90°, ohne sich abzulösen. In einem anschließenden Salzsprühtest zeigte die Oberfläche bereits nach 40 Stunden deutliche Korrosion. Die hohe Korrosionsbeständigkeit der Oberfläche in Beispiel 4 im Vergleich zu Beispiel 5 zeigt den Einfluss der Qualität der durch das erfindungsgemäße Verfahren in Beispiel 4 erzeugten Oxidschicht als Basis der Beschichtung.

Claims (5)

  1. Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche, umfassend:
    - Erzeugen einer Oxidschicht auf einer Metalloberfläche durch Behandeln der Metalloberfläche bei einer Temperatur von 600°C bis 1500°C in einer Atmosphäre mit einem Sauerstoffgehalt bei 22-100 Vol.-% oder mittels Sauerstoffplasma,
    - Aufbringen eines flüssigen Sols auf die Metalloberfläche, wobei das Sol in einem Lösemittel gelöste Silane der Formel Si(OR')4-nR"n mit n = 0,1 oder 2 umfasst, wobei jedes OR' unabhängig voneinander einen Hydroxy-, Alkoxy- und/oder Cycloalkoxyrest darstellt und jedes R", wenn vorhanden, unabhängig voneinander einen Alkyl- und/oder Cycloalkylrest darstellt,
    - Reagieren lassen des Sols zu einem Gel durch Verdunsten des Lösemittels, und Härten des Gels.
  2. Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche nach Anspruch 1, wobei der Sauerstoffgehalt in der Atmosphäre bei 30-90 Vol.-%, liegt.
  3. Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche nach Anspruch 2, wobei der Sauerstoffgehalt in der Atmosphäre bei 40-80 Vol.-%, liegt.
  4. Verfahren zur haftfesten Aufbringung einer Sol-Gel-Schicht auf einer Metalloberfläche nach einem der Ansprüche 1 bis 3, wobei die Behandlung der Metalloberflächen in einem Zeitraum von 1 bis 10 Sekunden erfolgt.
  5. Verfahren zur haftfesten Aufbringung eine Sol-Gel-Schicht auf einer Metalloberfläche nach irgendeinem der vorherigen Ansprüche, wobei das Metall ausgewählt ist aus Kohlenstoffstahl, Korten-Stahl, Metall mit verchromten Oberflächen, Metall mit mechanisch auf Hochglanz polierten Oberflächen, Edelstahl und Aluminium.
EP16002169.7A 2016-10-07 2016-10-07 Verfahren zur haftfesten aufbringung einer sol-gel-schicht auf eine metalloberfläche Active EP3305941B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES16002169T ES2742948T3 (es) 2016-10-07 2016-10-07 Procedimiento para la aplicación con resistencia adhesiva de una capa de sol-gel sobre una superficie metálica
EP16002169.7A EP3305941B1 (de) 2016-10-07 2016-10-07 Verfahren zur haftfesten aufbringung einer sol-gel-schicht auf eine metalloberfläche

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16002169.7A EP3305941B1 (de) 2016-10-07 2016-10-07 Verfahren zur haftfesten aufbringung einer sol-gel-schicht auf eine metalloberfläche

Publications (2)

Publication Number Publication Date
EP3305941A1 EP3305941A1 (de) 2018-04-11
EP3305941B1 true EP3305941B1 (de) 2019-07-03

Family

ID=57120985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16002169.7A Active EP3305941B1 (de) 2016-10-07 2016-10-07 Verfahren zur haftfesten aufbringung einer sol-gel-schicht auf eine metalloberfläche

Country Status (2)

Country Link
EP (1) EP3305941B1 (de)
ES (1) ES2742948T3 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1351499A (en) * 1997-12-04 1999-06-16 Nippon Sheet Glass Co. Ltd. Process for the production of articles covered with silica-base coats
DE19937186C1 (de) * 1999-08-06 2000-09-07 Mannesmann Sachs Ag Oxidationsbehandlung für Eisen enthaltende Metallteile, um diese mit einer Eisenoxid enthaltenden Oberflächenschicht zu versehen sowie behandeltes Metallteil
US20100226850A1 (en) * 2006-01-20 2010-09-09 Osaka Titanium Technologies C., Ltd Method for producing titanium oxide
DE102006005063A1 (de) * 2006-02-03 2007-08-09 Linde Ag Verfahren zur Wärmebehandlung von Stahlbändern
EP2145980A1 (de) 2008-07-07 2010-01-20 Poligrat Gmbh Farbige Edelstahloberfläche und Verfahren zum Färben von Edelstahl
DE102010037254B4 (de) * 2010-08-31 2012-05-24 Thyssenkrupp Steel Europe Ag Verfahren zum Schmelztauchbeschichten eines Stahlflachprodukts
EP2848715B1 (de) * 2013-09-13 2018-10-31 ThyssenKrupp Steel Europe AG Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3305941A1 (de) 2018-04-11
ES2742948T3 (es) 2020-02-17

Similar Documents

Publication Publication Date Title
DE69823847T2 (de) Verfahren zur verhinderung der korrosion von metallen unter verwendung von silanen
EP1809714B1 (de) Verfahren zur beschichtung von metallischen oberflächen
EP1599615B1 (de) Verfahren zur beschichtung von metallischen oberflächen mit einer silan-reichen zusammensetzung
DE10320779A1 (de) Korrosionsschutz auf Metallen
EP0153973A1 (de) Verfahren zum Behandeln von Metalloberflächen
EP3019563A1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichtete gegenstände
WO2007095927A2 (de) Korrosionsbeständiges substrat und verfahren zu dessen herstellung
EP2931936B1 (de) Verfahren zur behandlung der oberfläche eines metallischen substrats
EP2145980A1 (de) Farbige Edelstahloberfläche und Verfahren zum Färben von Edelstahl
WO2014095643A1 (de) Mehrstufiges verfahren zur beschichtung von stahl vor einer warmumformung
EP3008226B1 (de) Verfahren zur oberflächenbehandlung von corten-stahl
EP2591143B1 (de) Verfahren zur beschichtung von formkörpern sowie beschichteter formkörper
WO2004044071A2 (de) Beschichtungsverfahren
DE19955880A1 (de) Plasmabeschichtung von Metallen bei Atmosphärendruck
EP3305941B1 (de) Verfahren zur haftfesten aufbringung einer sol-gel-schicht auf eine metalloberfläche
EP1444381B1 (de) Verfahren zur herstellung von dunklen schutzschichten auf flacherzeugnissen aus titanzink
DE10155613A1 (de) Verfahren zur Beschichtung von Oberflächen unter Verwendung von hybriden Polymermaterialien
EP1457267A1 (de) Verfahren zur Herstellung umgeformter Aluminium-Blechteile mit dekorativer Oberfläche
EP1457266B1 (de) Verfahren zur Herstellung umgeformter Aluminium-Blechteile mit dekorativer Oberfläche
EP3332050B1 (de) Abrieb- und haftfeste sol-gel-beschichtung auf aluminium und verfahren zur herstellung einer solchen beschichtung
EP3054033B1 (de) Verfahren zur Herstellung farbiger Oberflächen auf Aluminium und Zink
WO2006027007A1 (de) Verfahren zur herstellung umgeformter aluminium-blechteile mit dekorativer oberfläche
EP3312302B1 (de) Verfahren zur herstellung einer glasschicht auf einem substrat
DE10158865A1 (de) Verfahren zur Beschichtung von Oberflächen
DE2609968B2 (de) Verfahren zum kontinuierlichen stellenweisen oder einseitigen Aufbringen von Zink oder Aluminium auf Stahlband durch Schmelztauchbehandlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180913

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190123

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 28/04 20060101ALI20190131BHEP

Ipc: C23C 8/36 20060101ALI20190131BHEP

Ipc: C23C 18/04 20060101AFI20190131BHEP

Ipc: C23C 18/12 20060101ALI20190131BHEP

Ipc: C23C 8/14 20060101ALI20190131BHEP

Ipc: C23C 8/80 20060101ALI20190131BHEP

Ipc: C23C 8/42 20060101ALI20190131BHEP

Ipc: C23C 8/12 20060101ALI20190131BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190312

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1151086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005315

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191022

Year of fee payment: 4

Ref country code: IE

Payment date: 20191021

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2742948

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191024

Year of fee payment: 4

Ref country code: IT

Payment date: 20191031

Year of fee payment: 4

Ref country code: ES

Payment date: 20191120

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191015

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005315

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191007

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161007

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201007

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1151086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221027

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101