EP3305017B1 - Elektrische heizeinrichtung für mobile anwendungen - Google Patents

Elektrische heizeinrichtung für mobile anwendungen Download PDF

Info

Publication number
EP3305017B1
EP3305017B1 EP16732222.1A EP16732222A EP3305017B1 EP 3305017 B1 EP3305017 B1 EP 3305017B1 EP 16732222 A EP16732222 A EP 16732222A EP 3305017 B1 EP3305017 B1 EP 3305017B1
Authority
EP
European Patent Office
Prior art keywords
heating conductor
heating device
curve
electrical heating
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16732222.1A
Other languages
English (en)
French (fr)
Other versions
EP3305017A1 (de
Inventor
Christian Hainzlmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Webasto SE
Original Assignee
Webasto SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Webasto SE filed Critical Webasto SE
Publication of EP3305017A1 publication Critical patent/EP3305017A1/de
Application granted granted Critical
Publication of EP3305017B1 publication Critical patent/EP3305017B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/023Heaters of the type used for electrically heating the air blown in a vehicle compartment by the vehicle heating system

Definitions

  • the present invention relates to an electrical heating device for mobile applications, in particular such an electrical heating device which has a substrate and a heating conductor layer formed on the substrate which has at least one heating conductor track extending in a main plane.
  • a heating device for mobile applications is understood to mean a heating device that is designed and adapted accordingly for use in mobile applications. This means in particular that it is transportable (if necessary permanently installed in a vehicle or only housed in it for transport) and is not designed exclusively for permanent, stationary use, as is the case, for example, when heating a building.
  • the heating device can also be permanently installed in a vehicle (land vehicle, ship, etc.), in particular in a land vehicle. In particular, it can be designed for heating a vehicle interior, such as a land vehicle, watercraft or aircraft, and a partially open space such as can be found on ships, in particular yachts, for example.
  • the heating device can also be used temporarily in a stationary manner, for example in large tents, containers (for example construction containers), etc.
  • the electrical heating device for mobile applications can be used as a stationary or auxiliary heater for a land vehicle, such as be designed for a caravan, mobile home, bus, car, etc.
  • WO 2013/186106 A1 describes an electrical heating device for a motor vehicle with a heating resistor formed as a conductor track on a substrate.
  • the conductor track is bifilar and a widened insulation area is provided in the area of a conductor track deflection in the opposite direction.
  • the widened insulation area is intended to cause a current to flow through the full width of the conductor track as far as possible in order to avoid areas with particularly good flow locally on the inside and poorly perfused areas in the outer edge area of the conductor track.
  • an electrical heating device constructed in layers is known in which a heat conductor layer is formed on a substrate, it being possible for a dielectric layer to be provided between the substrate and the heat conductor layer.
  • the heating conductor layer defines a heating conductor track with at least one curved section in which a conductive overlay layer is additionally provided on and / or under the heating conductor layer.
  • the heat conductor layer can have a thickness that varies over the radius of the curve.
  • Another electrical heater is from the WO 2007/008075 A2 known, in which elongated heating conductor segments are electrically connected to one another via at least one curved heating conductor segment.
  • the at least one curved heating conductor segment is at least partially provided with a layer made of a material with high electrical conductivity.
  • the object of the present invention is to provide an improved electrical heating device for mobile applications in which a significantly more homogeneous temperature profile is achieved and at the same time the electrical heating device is kept as compact and inexpensive as possible.
  • the electrical heating device has a substrate and a heat conductor layer formed on the substrate.
  • the heating conductor layer has at least one heating conductor that extends in a main plane on the substrate.
  • the heating conductor track is structured in such a way that a multiplicity of track sections running next to one another and separated from one another by insulating interruptions is formed.
  • the heating conductor track has at least one curve section at which the heating conductor track is deflected in the main plane and the heating conductor track is designed in the curve section in such a way that it has a smaller thickness in the direction perpendicular to the main plane in the area of the inner curve than in the area of the Outer curve. In the curve section, the heating conductor track can in particular be deflected by at least 90 °.
  • the heating conductor track can preferably be deflected in the curved section by more than 120 °, more preferably by more than 150 °. Due to the lower thickness of the heating conductor in the area of the inner curve, in which the current path in the direction of extent of the heating conductor is shortened compared to the outer curve, the electrical resistance in the area of the inner curve is increased compared to the area of the outer curve. In this way it is avoided that the current flowing through the heating conductor primarily flows in the area of the inner curve and therefore very high current flows occur locally there, which lead to particularly strong local heating in the inner curve.
  • Such strong local heating would have a strong influence on the service life of the electrical heating device, since a premature failure of the heating conductor is to be expected, particularly in such areas of strong local heating.
  • a significantly more homogeneous temperature profile over the entire electrical heating device can be achieved in this way.
  • the smaller thickness in the area of the inner curve results in a significantly more homogeneous current distribution over the width of the heating conductor in the curve section, as a result of which a significant reduction in the maximum local temperatures that occur is achieved.
  • this embodiment has the advantage that no additional space is required in the main level, which would prevent the most efficient possible use of the available space.
  • the configuration according to the invention can also be provided in a very simple and cost-effective manner.
  • the present invention enables the achievable heating output per unit area to be increased, since the possible heating output is primarily determined by critical points at which local "hot spots" can develop.
  • the main plane on the substrate, in which the heating conductor extends does not necessarily have to be flat, but can also be arched or curved, for example.
  • the heating conductor track is structured in the curve section in such a way that the thickness increases in steps from the inner curve to the outer curve.
  • a step-like structuring of the heating conductor track can be implemented in a particularly simple and cost-effective manner, e.g. by partially removing the material of the heating conductor track, in particular e.g. by means of laser processing in which the laser is moved over the various areas in several passes in the area of the curve section.
  • the heating conductor track can particularly preferably have at least two different thickness levels (inside and outside), but particularly preferably, for example, more different thickness levels can be formed so that the thickness of the heating conductor track increases in several stages from the inner curve to the outer curve.
  • the thickness is also possible, for example, for the thickness to increase, for example, essentially continuously from the inner curve to the outer curve.
  • the heating conductor then has, for example, an essentially wedge-shaped cross-sectional profile.
  • the heat conductor layer is a layer deposited flatly on the substrate and then structured with material removal.
  • the heating conductor layer can preferably be applied to the substrate by a thermal spray process and then structured by laser processing. In principle, however, other processes, such as printing processes, casting processes or the like, are also conceivable for forming the heat conductor layer. Other methods of structuring are also possible, such as etching, mechanical ablation, ultrasound or the like.
  • the heating conductor layer is preferably made of an electrically conductive metallic material and is separated from the material of the substrate by an interposed, electrically insulating and thermally highly conductive intermediate layer.
  • the heating conductor layer can be formed from a nickel-chromium alloy, for example, and separated from the material of the substrate by an aluminum oxide layer.
  • the substrate itself can preferably have good thermal conductivity, in particular be made of a metal.
  • the respective heating conductor can preferably have a width of a few millimeters, in particular a width between 2.5 mm and 5 mm, and a thickness (in the direction perpendicular to the substrate) in the range from 5 ⁇ m to 30 ⁇ m, in particular in the range from 10 ⁇ m to 25 ⁇ m.
  • the smaller thickness in the area of the inner curve is formed by increased material removal compared to the area of the outer curve. This can be achieved, for example, in a particularly reliable and cost-effective manner by laser machining the heating conductor track in the curve section.
  • the heating conductor in the area of the outer curve can be left at its initial thickness, the thickness in the area of the inner curve can be greatly reduced by material removal and in an area in between
  • the thickness of the heating conductor in the area of the inner curve is at most 65% of the thickness of the heating conductor in the area of the outer curve, preferably at most 50%, more preferably at most 30%. In this way, the formation of hot spots can be suppressed particularly reliably.
  • the at least one curve section is a reversal point at which the heating conductor track is deflected in such a way that inner track sections with mutually opposite current flow directions run adjacent and parallel to one another.
  • the risk of the formation of "hot spots” that limit the service life of the electrical heating devices is particularly pronounced, so that the solution according to the invention has a particularly advantageous effect.
  • the distance between the adjacent inner track sections with mutually opposite current flow directions is designed to be locally widened in the region of the reversal point on the inside.
  • the reduced thickness in the area of the inner curve With such a local widening of the distance, the formation of "hot spots" can be suppressed particularly reliably.
  • the implementation of the reduced thickness in the area of the inner curve basically makes it possible to dispense with such a local widening of the distance or at least to reduce the extent of the widening of the distance, whereby an improved use of the surface of the substrate is achieved.
  • the at least one heating conductor extends in a bifilar pattern on the substrate.
  • the heating conductor track can to a large extent cover the surface provided by the substrate with small empty areas.
  • the bifilar arrangement makes it possible to minimize possible interference radiation from the electrical heating device.
  • track sections of the heating conductor track are arranged next to one another in such a way that track sections through which current flows or can flow in opposite directions are each arranged next to one another.
  • at least essentially all of the track sections of the heating conductor track provided for heating can be part of the bifilar arrangement. In this way you can the generated electromagnetic fields cancel each other out at least partially.
  • connection areas in particular for connecting to an electrical power supply can also be arranged in a non-bifilar manner.
  • the remaining areas of the heating conductor can preferably be arranged at least essentially bifilar.
  • the heating conductor has two curve sections designed as a reversal point.
  • the heating conductor track has exactly two such reversal points, an optimized bifilar arrangement can be implemented which has low electromagnetic radiation and has only a few areas in which an increased temperature occurs during operation.
  • each of the heating conductor tracks can preferably each have two reversal points.
  • the electrical heating device is designed as a high-voltage heater for an operating voltage in the range between 150 V and 900 V, preferably between 200 V and 600 V.
  • a design up to 1000 volts, for example, is also possible.
  • the electric heating device can be used particularly advantageously in an electric or hybrid vehicle, for example, without the need for complex voltage converters.
  • the heat conductor layer covers at least 80% of the substrate surface, preferably at least 85% of the substrate surface.
  • the available substrate surface is used very well and the individual web sections are nevertheless sufficiently isolated from one another.
  • the heat conductor layer can in particular cover less than 95% of the substrate surface.
  • an electrically insulating material is arranged in the insulating interruptions.
  • the electrically insulating material can preferably also cover the surface of the heating conductor track or heating conductor tracks facing away from the substrate.
  • the electrically insulating material can particularly preferably be deposited as a layer after the heating conductor track or the heating conductor tracks have been formed.
  • the electrically insulating material is preferably on the one hand very good electrical insulation, but on the other hand has very good thermal conductivity. Due to the electrically insulating material, the width of the insulating interruptions can be kept relatively small so that they are available standing surface of the substrate can be used efficiently for the heating conductor or heating conductor tracks.
  • the heating conductor track is designed in such a way that at least over a predominant portion of its length, two track sections with a rectified current flow direction run adjacent and parallel to one another.
  • the heating conductor track can in particular be designed in such a way that over at least 80% of the length two track sections with a rectified current flow direction run adjacent and parallel to one another.
  • the respective two track sections can in particular be connected at their ends to a common connection section for connection to an electrical power supply.
  • This configuration enables a particularly favorable distribution of the current flowing in the electrical heating element and thus a particularly homogeneous distribution of the heating power.
  • this structuring can be formed in a cost-effective, simple manner and the available surface of the substrate can be used to good effect.
  • At least one further layer is formed on the heat conductor layer.
  • several layers can also be formed on the heat conductor layer.
  • an insulating layer can be formed on the heating conductor layer which also fills the insulating interruptions between the track sections of the heating conductor track.
  • a sensor layer for monitoring the function of the electrical heating device can preferably also be formed on the insulating layer.
  • a high degree of safety can be provided via the insulating layer in that current-carrying areas are additionally insulated.
  • the electrical heating device is a motor vehicle heating device.
  • the electrical heating device can in particular be designed to heat a fluid, such as air for an interior of the vehicle or a liquid in a fluid circuit of the vehicle.
  • FIG Fig. 1 An electrical heating device 1 for mobile applications according to an embodiment is shown schematically in FIG Fig. 1 shown.
  • the electric heating device 1 according to the embodiment is designed to heat a fluid in a vehicle.
  • the fluid can in particular be formed, for example, by air to be heated or by a liquid in a liquid circuit of the vehicle.
  • the electrical heating device 1 is designed in particular as a high-voltage heater for operation with an operating voltage in the range between 150 volts and 900 volts, in particular in the range between 200 volts and 600 volts. However, a design up to over 1000 volts is also possible, for example.
  • the electrical heating device 1 has a substrate 2, which can in particular be designed at the same time as a heat exchanger for transferring the released heating power to the fluid to be heated.
  • a substrate 2 can, for example, preferably be formed from a metallic material with a high heat transfer coefficient in a manner that is very cost-effective in terms of production technology, in particular, for example, from aluminum or an aluminum alloy.
  • an electrically insulating material with high thermal conductivity such as, for example, a corresponding ceramic.
  • an electrically insulating layer 3 which has a high thermal conductivity, is deposited on the substrate 2.
  • the electrically insulating layer 3 can, for example, preferably be formed in particular by aluminum oxide.
  • the electrically insulating layer 3 can be deposited on the substrate 2 in a thermal spraying process.
  • the electrically insulating layer 3 can also be formed, for example, by targeted oxidation of the surface of the substrate 2.
  • the electrically insulating layer 3 is designed to electrically insulate the substrate 2 from a heat conductor layer 4 described below, but to enable good heat transfer to the material of the substrate 2.
  • the electrical heating device 1 also has a heating conductor layer 4 deposited on the substrate 2 (or on the insulating layer 3 formed on the substrate 2).
  • the heating conductor layer 4 is formed from a metallic material and can, for example, in particular comprise a nickel-chromium alloy.
  • the heating conductor layer 4 can preferably be deposited in particular in a thermal spraying process. Alternatively, however, it is also possible, for example, to deposit the heating conductor layer 4, for example in a printing or casting process.
  • the heating conductor layer 4 is structured in such a way that at least one heating conductor track 5 is formed which is designed to release ohmic heat when an electrical voltage is applied between its opposite ends.
  • connections 9a, 9b for connecting the heating conductor tracks 5 to an electrical power supply are provided.
  • two such connections are electrically insulated from one another and are arranged next to one another on an edge of the substrate 2.
  • the first connection 9a is designed for making electrical contact with the heating conductor 5 and applying a first electrical potential
  • the second connection 9b designed for electrical contacting of the heating conductor 5 and applying a different, second potential. A desired potential difference can thus be applied to the heating conductor 5 via the two connections 9a, 9b.
  • the heating conductor 5 is structured in such a way that it extends in a bifilar pattern on the substrate 2.
  • the heating conductor track 5 is structured in such a way that it has a multiplicity of track sections 6 formed next to one another on the substrate 2, which track sections 6 are separated from one another by insulating interruptions 7 and are thus electrically insulated from one another.
  • the insulating interruptions 7 can preferably be formed in that the heating conductor layer 4 was first deposited flatly on the substrate 2 and then the material of the heating conductor layer 4 was deliberately removed in the area of the insulating interruptions 7, in particular, for example, by laser processing.
  • the respective current flow directions in the heating conductor 5 are shown schematically by arrows in order to make the structure of the heating conductor 5 more visible.
  • the insulating interruptions 7 formed between the respective track sections 6 have an at least substantially constant width over their longitudinal extent. In this way it is achieved that the track sections 6 of the heat conductor track 5 cover the surface of the substrate over a large area, so that the available area is used as optimally as possible for the formation of track sections 6 providing heating power.
  • the heating conductor track 5 thus has a large number of track sections 6 in such a way that track sections 6 through which current flows in the opposite direction run alongside one another over the majority of its extent. In this way, very low electromagnetic radiation from the electrical heating device 1 is achieved.
  • the heating conductor 5 is designed in such a way that the heating conductor 5 is also divided longitudinally over a predominant area of its longitudinal extension in such a way that two track sections 6 through which current flows in the same direction always run next to one another and these only in the immediate vicinity of the connections 9a and 9a 9b are each connected to one another. In this way, an advantageous division of the current flow in the plane of the substrate 2 is achieved.
  • the heating conductor track 5 has a plurality of curved sections 8 at which the heating conductor track 5 is deflected in the main plane predetermined by the substrate.
  • two of the curved sections 8 of the heating conductor 5 are designed as reversal points 10.
  • the heating conductor track 5 is deflected in the main plane over a total of essentially 180 ° in such a way that inner track sections 6a with opposite current flow directions run side by side and parallel to one another, separated only by an insulating interruption 7, as in particular in FIG Fig. 5 is shown schematically.
  • the heating conductor 5 in the exemplary embodiment is designed at least in the curve sections 8 formed as a reversal point 10 in such a way that they are in the The area of the inner curve 10a has a smaller thickness in the direction perpendicular to the main plane than in the area of the outer curve 10b.
  • the heating conductor 5 is of this type structured so that the thickness of the inner curve 10a to the outer curve 10b increases in a step-like manner, as in FIG Fig. 4 is shown schematically.
  • Such a step-like structuring in the direction transverse to the heating conductor 5 can be formed in a very simple and inexpensive manner, for example, that the heating conductor 5 from an initial thickness of the heating conductor layer 4, which is left in the area of the outer curve 11b, into the further in the direction of the inner curve 10a arranged areas is partially ablated by means of laser processing to a smaller thickness.
  • This can preferably take place, in particular, in the same work step in which the material of the heating conductor layer 4 is also removed to form the insulating interruptions 7.
  • the heating conductor track 5 to have a continuously changing thickness over its width rather than a stepped shape. This can be achieved, for example, by mechanical processing or removal with a variable laser, for example with a variable focus.
  • the heating conductor 5 can be structured in the curve section 8, for example, with two steps such that a total of three height levels are realized in the direction transverse to the heating conductor 5.
  • the thickness of the heating conductor 5 can preferably be considerably reduced in the area of the inner curve 10a compared to the area of the outer curve 10b.
  • the thickness of the heating conductor 5 in the area of the inner curve 10a can be, for example, at most 65% of the thickness of the heating conductor 5 in the area of the outer curve 10b, preferably at most 50%, more preferably at most 30%.
  • the heating conductor 5 in the area of the outer curve 10b can be, for example, approximately 25 ⁇ m thick, in the area of the inner curve only approximately 5 ⁇ m thick and in an area in between approximately 15 ⁇ m thick.
  • the temperature in the inner curve 10a can be reduced significantly by approx. 60 ° C. (in the specific example, for example, from approx. 240 ° C. to approx. 180 ° C.).
  • the reduction in the thickness of the heating conductor layer 4 in the area of the inner curve 10a leads to a more homogeneous distribution of the electric current over the width of the heating conductor track 5 due to the associated increase in the electrical resistance in the inner curve 10a "The associated risk of a reduction in the service life of the electrical heating device 1 is significantly reduced. Overall, higher heating outputs of the electrical heating device 1 are made possible in this way, since the achievable heating outputs are essentially limited by "hot spots”.
  • the further insulating layer 11 is formed on the heating conductor layer 4, ie on the correspondingly structured heating conductor tracks 5, which have been described above, and covers the top of the heating conductor layer 4 facing away from the substrate 2.
  • the further insulating layer 11 is designed in particular in such a way that it also fills the insulating interruptions 7 between the track sections 6 of the heating conductor tracks 5. In this way, particularly good insulation of the web sections 6 from one another is guaranteed.
  • the further insulating layer 11 can be deposited on the structured heating conductor tracks 5, for example after structuring the heating conductor layer 4. The deposition can take place, for example, again preferably by a thermal spraying process, a casting process or the like.
  • the further insulating layer 11 can again be formed by aluminum oxide, for example, in order to achieve good electrical insulation and, at the same time, good thermal conductivity.
  • one or more additional layers are applied to the additional insulating layer 11.
  • the local reduction in the thickness in the area of the inner curve 10a of a curve section 8 can in particular, for example, be implemented relatively locally over an area in the immediate vicinity or surroundings of the curve section 8, as in particular in FIG Fig. 5 is indicated schematically by dashed lines.
  • the additional structuring of the thickness of the heating conductor 5 is implemented, for example, only in the area to the right of the dashed lines and in the area to the left of the dashed lines, the heating conductor 5 has an essentially constant thickness over its width.
  • the described reduction in the thickness of the heating conductor 5 in the inner curve 10a of the curve section 8 makes it possible to suppress the tendency towards the formation of hot spots to such an extent that that a local widening of the distance between adjacent inner track sections 6a in the area of a reversal point 10 can be dispensed with. In this way, an improved area utilization of the surface of the substrate 2 is made possible.
  • a modification of the embodiment is described below with reference to FIG Fig. 6 described.
  • the electrical heating device 100 according to the modification differs from the previously described embodiment only in that the distance between the adjacent inner track sections 6a with mutually opposite current flow directions in the area of the reversal point 10 is locally widened on the inside. Since the further features of the modification correspond to the embodiment described above, only the differences from the embodiment are described below and the same reference symbols are used to designate the corresponding components.
  • the distance between the adjacent inner track sections 6a in the area of the reversal point 10 is locally widened in such a way that the deflection of the heating conductor at the reversal point 10 includes a substantially drop-shaped or matchhead-shaped area 12.
  • the enclosed area 12 in the illustrated embodiment is completely separated from the track sections 6a by the insulating interruption 7, it is also possible, for example, for this area 12 to be electrically conductively connected to one of the two track sections 6a, for example in an area slightly removed from the reversal point 10 is.
  • the local widening of the distance between the inner track sections 6a in the area of the reversal point 10 avoids an excessive distance difference between current paths in the area of the outer curve 10b and current paths in the area of the inner curve 10a at the reversal point 10. In this way, an excessive concentration of the current flow in the inner curve 10a in the region of the reversal point 10, which would lead to local overheating, is counteracted.
  • the implementation according to the modification counteracts excessive heating in the area of the reversal point 10 with two measures, on the one hand by reducing the layer thickness of the heating conductor track 5 in the area of the inner curve 10a compared to the outer curve 10b, and on the other hand by locally widening the distance between the neighboring ones inner track sections 6a in the region of the reversal point 10. In this way, an undesired local temperature increase can thus be counteracted particularly effectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Description

  • Die vorliegende Erfindung betrifft eine elektrische Heizeinrichtung für mobile Anwendungen, insbesondere eine solche elektrische Heizeinrichtung, die ein Substrat und eine auf dem Substrat ausgebildete Heizleiterschicht aufweist, die zumindest eine sich in einer Hauptebene erstreckende Heizleiterbahn aufweist.
  • Es ist bekannt, für mobile Anwendungen, wie z.B. in einem Kraftfahrzeug, elektrische Heizeinrichtungen zu verwenden. Insbesondere mit einer zunehmenden Verbreitung von elektrisch angetriebenen Fahrzeugen, besteht ein zunehmender Bedarf, geeignete elektrische Heizeinrichtungen bereitzustellen. In der Vergangenheit kamen als elektrische Heizeinrichtungen für derartige mobile Anwendungen überwiegend sogenannte PTC-Heizelemente zum Einsatz, die mit den relativ niedrigen Versorgungsspannungen betrieben wurden, die in dem Bordnetz eines herkömmlichen Kraftfahrzeugs mit einem Verbrennungsmotor vorhanden sind. Insbesondere bei modernen Fahrzeugen, die vollständig oder teilweise elektrisch angetrieben werden, besteht der Bedarf, die Fahrzeuge auch elektrisch mit den Versorgungsspannungen betreiben zu können, die in einem bei diesen realisierten Hochvolt-Bordnetz vorliegen, wie z.B. einer Spannung in dem Bereich zwischen 150 Volt und 900 Volt, gegebenenfalls sogar bis über 1000 Volt.
  • Unter einer Heizeinrichtung für mobile Anwendungen wird im vorliegenden Kontext eine Heizeinrichtung verstanden, die für den Einsatz in mobilen Anwendungen ausgelegt und dementsprechend angepasst ist. Dies bedeutet insbesondere, dass sie transportabel ist (ggf. in einem Fahrzeug fest eingebaut oder lediglich für den Transport darin untergebracht) und nicht ausschließlich für einen dauerhaften, stationären Einsatz, wie es beispielsweise bei der Beheizung eines Gebäudes der Fall ist, ausgelegt ist. Dabei kann die Heizeinrichtung auch fest in einem Fahrzeug (Landfahrzeug, Schiff, etc.), insbesondere in einem Landfahrzeug, installiert sein. Insbesondere kann sie zur Beheizung eines Fahrzeug-Innenraums, wie beispielsweise eines Land-, Wasser- oder Luftfahrzeugs, sowie eines teiloffenen Raumes, wie er beispielsweise auf Schiffen, insbesondere Yachten, aufzufinden ist, ausgelegt sein. Die Heizeinrichtung kann auch vorübergehend stationär eingesetzt werden, wie beispielsweise in großen Zelten, Containern (zum Beispiel Baucontainern), etc. Insbesondere kann die elektrische Heizeinrichtung für mobile Anwendungen als Stand- oder Zuheizer für ein Landfahrzeug, wie beispielsweise für einen Wohnwagen, ein Wohnmobil, einen Bus, einen Pkw, etc., ausgelegt sein.
  • WO 2013/186106 A1 beschreibt eine elektrische Heizeinrichtung für ein Kraftfahrzeug mit einem als Leiterbahn auf einem Substrat ausgebildeten Heizwiderstand. Die Leiterbahn ist bifilar ausgebildet und im Bereich einer Leiterbahnumlenkung in die Gegenrichtung ist ein verbreiterter Isolationsbereich vorgesehen. Der verbreiterte Isolationsbereich soll bewirken, dass sich ein Stromfluss möglichst durch die volle Breite der Leiterbahn einstellt, um zu vermeiden, dass sich lokal innenliegend besonders gut durchströmte Bereiche und im außenliegenden Randbereich der Leiterbahn schlecht durchströmte Bereiche ausbilden können. Obwohl mit der beschriebenen Heizeinrichtung bereits einigermaßen zufriedenstellende Eigenschaften erzielt wurden, hat sich herausgestellt, dass sich im Vergleich zum Rest der elektrischen Heizeinrichtung im Bereich der Leiterbahnumlenkung immer noch stark erhöhte Temperaturen einstellen. Aus der WO 2008/011507 A1 ist eine lagenweise aufgebaute, elektrische Heizeinrichtung bekannt, bei welcher auf einem Substrat eine Heizleiterschicht ausgebildet ist, wobei zwischen Substrat und Heizleiterschicht eine dielektrische Schicht vorgesehen sein kann. Die Heizleiterschicht definiert eine Heizleiterbahn mit mindestens einem Kurvenabschnitt, in dem zusätzlich eine leitfähige Überlagerungsschicht auf und/oder unter der Heizleiterschicht vorgesehen ist. Die Heizleiterschicht kann dabei eine über den Kurvenradius variierende Dicke aufweisen. Eine weitere elektrische Heizeinrichtung ist aus der WO 2007/008075 A2 bekannt, bei der längliche Heizleitersegmente über mindestens ein gekrümmtes Heizleitersegment elektrisch miteinander verbunden sind. Das mindestens eine gekrümmte Heizleitersegment ist zumindest teilweise mit einer Lage aus einem Material mit hoher elektrischer Leitfähigkeit versehen.
  • Es ist Aufgabe der vorliegenden Erfindung, eine verbesserte elektrische Heizeinrichtung für mobile Anwendungen bereitzustellen, bei der ein wesentlich homogeneres Temperaturprofil erreicht wird und gleichzeitig die elektrische Heizeinrichtung möglichst kompakt und kostengünstig gehalten wird.
  • Die Aufgabe wird durch eine elektrische Heizeinrichtung für mobile Anwendungen gemäß Anspruch 1 gelöst. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
  • Die elektrische Heizeinrichtung weist ein Substrat und eine auf dem Substrat ausgebildete Heizleiterschicht auf. Die Heizleiterschicht weist zumindest eine Heizleiterbahn auf, die sich in einer Hauptebene auf dem Substrat erstreckt. Die Heizleiterbahn ist derart strukturiert, dass eine Vielzahl nebeneinander verlaufender, durch Isolierunterbrechungen voneinander getrennter Bahnabschnitte ausgebildet ist. Die Heizleiterbahn weist zumindest einen Kurvenabschnitt auf, an dem die Heizleiterbahn in der Hauptebene umgelenkt ist und die Heizleiterbahn ist in dem Kurvenabschnitt derart ausgebildet, dass sie in dem Bereich der Innenkurve eine geringere Dicke in der Richtung senkrecht zu der Hauptebene aufweist als in dem Bereich der Außenkurve. In dem Kurvenabschnitt kann die Heizleiterbahn insbesondere um zumindest 90° umgelenkt sein. Bevorzugt kann die Heizleiterbahn in dem Kurvenabschnitt um mehr als 120° umgelenkt sein, mehr bevorzugt um mehr als 150°. Durch die geringere Dicke der Heizleiterbahn im Bereich der Innenkurve, in der der Strompfad in der Erstreckungsrichtung der Heizleiterbahn gegenüber der Außenkurve verkürzt ist, ist der elektrische Widerstand im Bereich der Innenkurve gegenüber dem Bereich der Außenkurve erhöht. In dieser Weise wird vermieden, dass der durch die Heizleiterbahn fließende Strom vornehmlich im Bereich der Innenkurve fließt und sich daher dort lokal sehr hohe Stromflüsse einstellen, die zu einer besonders starken lokalen Erwärmung in der Innenkurve führen. Derartige starke lokale Erwärmungen ("Hot-Spots") würden die Lebensdauer der elektrischen Heizeinrichtung stark beeinflussen, da insbesondere in derartigen Bereichen starker lokaler Erwärmungen ein vorzeitiges Versagen der Heizleiterbahn zu erwarten ist. Ferner kann in dieser Weise ein wesentlich homogeneres Temperaturprofil über die gesamte elektrische Heizeinrichtung erzielt werden. Die geringere Dicke im Bereich der Innenkurve bewirkt eine deutlich homogenere Stromverteilung über die Breite der Heizleiterbahn in dem Kurvenabschnitt, wodurch eine deutliche Absenkung der maximal auftretenden lokalen Temperaturen erreicht wird. Ferner hat diese Ausgestaltung den Vorteil, dass kein zusätzlicher Platz in der Hauptebene benötigt wird, was einer möglichst effizienten Ausnutzung des zur Verfügung stehenden Platzes entgegenstehen würde. Die erfindungsgemäße Ausgestaltung lässt sich ferner in sehr einfacher Weise und kostengünstig bereitstellen. Bei vorgegebenem Verlauf der Heizleiterbahn ermöglicht die vorliegende Erfindung eine Erhöhung der erreichbaren Heizleistung pro Flächeneinheit, da die mögliche Heizleistung vornehmlich durch kritische Stellen, an denen sich lokale "Hot-Spots" ausbilden können, bestimmt wird. Je stärker die Heizleiterbahn an dem Kurvenabschnitt umgelenkt wird, desto größer ist der mit der erfindungsgemäßen Lösung erzielte Effekt. Folglich wirkt sich die erfindungsgemäße Lösung dann besonders stark aus, wenn die angegebene verringerte Dicke der Innenkurve gegenüber der Außenkurve im Bereich eines Umkehrpunktes realisiert wird, an dem die Heizleiterbahn um zumindest annähernd 180° umgelenkt ist. Es ist zu beachten, dass die Hauptebene auf dem Substrat, in der sich die Heizleiterbahn erstreckt, nicht zwingend flach sein muss, sondern z.B. auch gewölbt oder gekrümmt ausgebildet sein kann.
  • Gemäß einer Weiterbildung ist die Heizleiterbahn in dem Kurvenabschnitt derart strukturiert, dass die Dicke von der Innenkurve zu der Außenkurve stufenförmig zunimmt. Eine solche stufenartige Strukturierung der Heizleiterbahn lässt sich in besonders einfacher und kostengünstiger Weise realisieren, z.B. durch einen partiellen Abtrag des Materials der Heizleiterbahn, insbesondere z.B. mittels Laserbearbeitung, bei der der Laser im Bereich des Kurvenabschnittes in mehreren Durchgängen über die verschiedenen Bereiche gefahren wird. Die Heizleiterbahn kann in dem Kurvenabschnitt insbesondere bevorzugt zumindest zwei verschiedene Dickenniveaus (innen und außen) aufweisen, besonders bevorzugt können aber z.B. auch mehr verschiedene Dickenniveaus ausgebildet sein, sodass die Dicke der Heizleiterbahn von der Innenkurve zu der Außenkurve in mehreren Stufen zunimmt. Obwohl eine solche gestufte Veränderung der Dicke bevorzugt ist, ist es z.B. aber auch möglich, dass die Dicke z.B. im Wesentlichen kontinuierlich von der Innenkurve zu der Außenkurve zunimmt. In diesem Fall weist die Heizleiterbahn dann z.B. ein im Wesentlichen keilförmiges Querschnittprofil auf.
  • Gemäß der vorliegenden Erfindung ist die Heizleiterschicht eine flächig auf dem Substrat abgeschiedene und anschließend unter Materialabtrag strukturierte Schicht. In diesem Fall ist eine besonders kostengünstige Herstellung der Heizleiterbahn bzw. der Heizleiterbahnen ermöglicht. Die Heizleiterschicht kann bevorzugt durch ein thermisches Spritzverfahren auf dem Substrat aufgebracht und anschließend durch Laserbearbeitung strukturiert sein. Grundsätzlich sind aber auch andere Verfahren, wie z.B. Druckverfahren, Gießverfahren oder ähnliches zur Ausbildung der Heizleiterschicht denkbar. Ebenso sind andere Verfahren zur Strukturierung möglich, wie z.B. Ätzen, mechanisches Abtragen, Ultraschall oder Ähnliches. Die Heizleiterschicht ist bevorzugt aus einem elektrisch leitfähigen metallischen Material gefertigt und über eine zwischengelagerte, elektrisch isolierende und thermisch gut leitfähige Zwischenschicht von dem Material des Substrates getrennt. Insbesondere kann die Heizleiterschicht z.B. aus einer Nickel-Chrom-Legierung gebildet sein und über eine Aluminiumoxidschicht von dem Material des Substrates getrennt sein. Das Substrat selbst kann bevorzugt eine gute thermische Leitfähigkeit aufweisen, insbesondere aus einem Metall gefertigt sein. Die jeweilige Heizleiterbahn kann bevorzugt eine Breite von einigen Millimetern aufweisen, insbesondere eine Breite zwischen 2,5 mm und 5 mm, und eine Dicke (in der Richtung senkrecht zum Substrat) im Bereich von 5 µm bis 30 µm, insbesondere im Bereich von 10 µm bis 25 µm.
  • Gemäß der vorliegenden Erfindung ist die geringere Dicke im Bereich der Innenkurve durch einen erhöhten Materialabtrag gegenüber dem Bereich der Außenkurve gebildet. Dies kann z.B. in besonders zuverlässiger und kostengünstiger Weise durch eine Laserbearbeitung der Heizleiterbahn in dem Kurvenabschnitt erreicht werden. Z.B. kann die Heizleiterbahn in dem Bereich der Außenkurve auf ihrer anfänglichen Dicke belassen werden, die Dicke in dem Bereich der Innenkurve durch Materialabtrag stark verringert werden und in einem dazwischen liegenden
  • Bereich in der Breitenrichtung der Heizleiterbahn ein geringerer Materialabtrag erfolgen, sodass dort eine dazwischenliegende Dicke erreicht wird.
  • Gemäß einer Weiterbildung beträgt die Dicke der Heizleiterbahn im Bereich der Innenkurve höchstens 65% der Dicke der Heizleiterbahn im Bereich der Außenkurve, bevorzugt höchstens 50%, mehr bevorzugt höchstens 30%. In dieser Weise lässt sich die Ausbildung von Hot-Spots besonders zuverlässig unterdrücken.
  • Gemäß einer Weiterbildung ist der zumindest eine Kurvenabschnitt ein Umkehrpunkt, an dem die Heizleiterbahn derart umgelenkt ist, dass innenliegende Bahnabschnitte mit zueinander entgegengesetzten Stromflussrichtungen benachbart und parallel zueinander verlaufen. Insbesondere an einem solchen Umkehrpunkt ist die Gefahr der Ausbildung von die Lebensdauer der elektrischen Heizeinrichtungen begrenzenden "Hot-Spots" besonders ausgeprägt, sodass sich die erfindungsgemäße Lösung besonders vorteilhaft auswirkt.
  • Gemäß einer Weiterbildung ist der Abstand zwischen den benachbarten innenliegenden Bahnabschnitten mit zueinander entgegengesetzten Stromflussrichtungen im Bereich des Umkehrpunktes auf der Innenseite lokal verbreitert ausgebildet. Durch die Kombination der verringerten Dicke im Bereich der Innenkurve mit einer solchen lokalen Verbreiterung des Abstandes kann die Ausbildung von "Hot-Spots" besonders zuverlässig unterdrückt werden. Es ist jedoch zu beachten, dass es die Realisierung der verringerten Dicke im Bereich der Innenkurve grundsätzlich ermöglicht, auf eine solche lokale Verbreiterung des Abstandes zu verzichten oder zumindest das Ausmaß der Abstandsverbreiterung zu reduzieren, wodurch eine verbesserte Flächennutzung der Oberfläche des Substrates erreicht wird.
  • Gemäß einer Weiterbildung erstreckt sich die zumindest eine Heizleiterbahn in einem bifilaren Muster auf dem Substrat. Durch die bifilare Anordnung kann die Heizleiterbahn die durch das Substrat bereitgestellte Oberfläche mit geringen Leerflächen in hohem Maße überdecken. Ferner ermöglicht es die bifilare Anordnung, mögliche Störstrahlungen durch die elektrische Heizeinrichtung zu minimieren. Bei der bifilaren Anordnung liegen Bahnabschnitte der Heizleiterbahn derart nebeneinander angeordnet vor, dass gegenläufig von Strom durchflossene bzw. durchfließbare Bahnabschnitte jeweils nebeneinander verlaufend angeordnet sind. Bevorzugt können dabei zumindest im Wesentlichen sämtliche zum Erwärmen vorgesehene Bahnabschnitte der Heizleiterbahn Teil der bifilaren Anordnung sein. In dieser Weise können sich die erzeugten elektromagnetischen Felder zumindest teilweise gegenseitig aufheben. Es ist jedoch zu beachten, dass insbesondere Anschlussbereiche zum Verbinden mit einer elektrischen Leistungsversorgung auch nicht-bifilar angeordnet sein können. Die restlichen Bereiche der Heizleiterbahn können bevorzugt zumindest im Wesentlichen bifilar angeordnet sein.
  • Gemäß einer Weiterbildung weist die Heizleiterbahn zwei als Umkehrpunkt ausgebildete Kurvenabschnitte auf. Insbesondere wenn die Heizleiterbahn genau zwei solcher Umkehrpunkte aufweist, kann eine optimierte bifilare Anordnung realisiert werden, die eine geringe elektromagnetische Abstrahlung aufweist und dabei nur wenige Bereiche aufweist, in denen im Betrieb eine erhöhte Temperatur auftritt. In dem Fall einer Mehrzahl von auf dem Substrat ausgebildeten Heizleiterbahnen kann bevorzugt jede der Heizleiterbahnen jeweils zwei Umkehrpunkte aufweisen.
  • Gemäß einer Weiterbildung ist die elektrische Heizeinrichtung als Hochvolt-Heizung für eine Betriebsspannung im Bereich zwischen 150 V und 900 V, bevorzugt zwischen 200 V und 600 V ausgelegt. Es ist jedoch z.B. auch eine Auslegung bis über 1000 Volt möglich. In diesem Fall kann die elektrische Heizvorrichtung besonders vorteilhaft z.B. in einem Elektro- oder Hybridfahrzeug zum Einsatz kommen, ohne dass aufwändige Spannungswandler erforderlich sind.
  • Gemäß einer Weiterbildung bedeckt die Heizleiterschicht zumindest 80 % der Substratoberfläche, bevorzugt zumindest 85 % der Substratoberfläche. In diesem Fall ist eine sehr gute Ausnutzung der zur Verfügung stehenden Substratoberfläche gegeben und es ist trotzdem noch eine ausreichende Isolierung der einzelnen Bahnabschnitte gegeneinander ermöglicht. Die Heizleiterschicht kann insbesondere weniger als 95 % der Substratoberfläche bedecken.
  • Gemäß einer Weiterbildung ist in den Isolierunterbrechungen ein elektrisch isolierendes Material angeordnet. Das elektrisch isolierende Material kann bevorzugt neben den Isolierunterbrechungen auch die von dem Substrat abgewandte Oberfläche der Heizleiterbahn bzw. Heizleiterbahnen bedecken. Das elektrisch isolierende Material kann insbesondere bevorzugt nach dem Ausbilden der Heizleiterbahn bzw. der Heizleiterbahnen als Schicht abgeschieden sein. Das elektrisch isolierende Material ist bevorzugt einerseits elektrisch sehr gut isolierend, andererseits aber thermisch sehr gut leitend. Durch das elektrisch isolierende Material kann die Breite der Isolierunterbrechungen relativ klein gehalten werden, sodass die zur Verfügung stehende Oberfläche des Substrats effizient für die Heizleiterbahn bzw. Heizleiterbahnen ausgenutzt werden kann.
  • Gemäß einer Weiterbildung ist die Heizleiterbahn derart ausgebildet, dass zumindest über einen überwiegenden Anteil ihrer Länge jeweils zwei Bahnabschnitte mit gleichgerichteter Stromflussrichtung benachbart und parallel zueinander verlaufen. Die Heizleiterbahn kann insbesondere derart ausgebildet sein, dass über zumindest 80 % der Länge jeweils zwei Bahnabschnitte mit gleichgerichteter Stromflussrichtung benachbart und parallel zueinander verlaufen. Die jeweils zwei Bahnabschnitte können an ihren Enden insbesondere jeweils zu einem gemeinsamen Anschlussabschnitt zur Verbindung mit einer elektrischen Leistungsversorgung verbunden sein. Diese Ausgestaltung ermöglicht eine besonders günstige Verteilung des in dem elektrischen Heizelements fließenden Stroms und somit eine besonders homogene Verteilung der Heizleistung. Ferner kann diese Strukturierung in kostengünstig einfacher Weise gebildet und dabei die zur Verfügung stehende Oberfläche des Substrats gut ausgenutzt werden.
  • Gemäß einer Weiterbildung ist auf der Heizleiterschicht zumindest eine weitere Schicht ausgebildet. Es können insbesondere auch mehrere Schichten auf der Heizleiterschicht ausgebildet sein. Bevorzugt kann auf der Heizleiterschicht eine Isolierschicht ausgebildet sein, die auch die Isolierunterbrechungen zwischen den Bahnabschnitten der Heizleiterbahn füllt. Auf der Isolierschicht kann bevorzugt z.B. auch noch eine Sensorschicht zur Überwachung der Funktion der elektrischen Heizeinrichtung ausgebildet sein. Über die Isolierschicht kann ein hohes Maß an Sicherheit bereitgestellt werden, indem stromführende Bereiche zusätzlich isoliert sind.
  • Gemäß einer Weiterbildung ist die elektrische Heizeinrichtung eine Kraftfahrzeug-Heizeinrichtung. Die elektrische Heizeinrichtung kann dabei insbesondere zum Beheizen eines Fluids, wie z.B. Luft für einen Innenraum des Fahrzeugs oder einer Flüssigkeit in einem Flüssigkeitskreislauf des Fahrzeugs ausgebildet sein.
  • Weitere Vorteile und Weiterbildungen ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beigefügten Zeichnungen.
  • Fig. 1
    ist eine schematische Darstellung einer elektrischen Heizeinrichtung gemäß der Ausführungsform.
    Fig. 2
    ist eine schematische Darstellung eines Details von Fig. 1.
    Fig. 3
    zeigt schematisch die Anordnung einer Heizleiterschicht auf einem Substrat bei der Ausführungsform.
    Fig. 4
    ist eine schematische Darstellung eines Querschnitts eines Bahnabschnitts der Heizleiterbahn in einem Kurvenabschnitt.
    Fig. 5
    ist eine schematische, stark vergrößerte Darstellung eines als Umkehrpunkt ausgebildeten Kurvenabschnitts.
    Fig. 6
    ist eine Fig. 2 entsprechende Darstellung eines Details bei einer Abwandlung der Ausführungsform.
    AUSFÜHRUNGSFORM
  • Eine Ausführungsform wird im Folgenden unter Bezugnahme auf die Zeichnungen eingehender beschrieben.
  • Eine elektrische Heizeinrichtung 1 für mobile Anwendungen gemäß einer Ausführungsform ist schematisch in Fig. 1 dargestellt. Die elektrische Heizeinrichtung 1 gemäß der Ausführungsform ist dazu ausgelegt, in einem Fahrzeug ein Fluid zu beheizen. Das Fluid kann dabei insbesondere z.B. durch zu beheizende Luft oder durch eine Flüssigkeit in einem Flüssigkeitskreislauf des Fahrzeugs gebildet sein. Die elektrische Heizeinrichtung 1 ist dabei insbesondere als eine Hochvolt-Heizung für einen Betrieb mit einer Betriebsspannung im Bereich zwischen 150 Volt und 900 Volt, insbesondere im Bereich zwischen 200 Volt und 600 Volt ausgelegt. Es ist jedoch z.B. auch eine Auslegung bis über 1000 Volt möglich.
  • Die elektrische Heizeinrichtung 1 weist ein Substrat 2 auf, das insbesondere gleichzeitig als ein Wärmetauscher zum Übertragen der freigesetzten Heizleistung auf das zu erwärmende Fluid ausgebildet sein kann. Insbesondere kann z.B. eine (nicht dargestellte) Unterseite mit einer Mehrzahl von Wärmetauscherrippen oder Kanälen versehen sein, über die das zu erwärmende Fluid geleitet wird. Das Substrat 2 kann z.B. bevorzugt in herstellungstechnisch sehr kostengünstiger Weise aus einem metallischen Material mit einem hohen Wärmeübertragungskoeffizienten gebildet sein, insbesondere z.B. aus Aluminium oder einer Aluminiumlegierung. Grundsätzlich ist es aber z.B. auch möglich, dass Substrat 2 z.B. aus einem elektrisch isolierenden Material mit hoher thermischer Leitfähigkeit zu fertigen, wie insbesondere z.B. einer entsprechenden Keramik.
  • Bei dem konkreten Ausführungsbeispiel, bei dem das Substrat 2 aus einem elektrisch leitfähigen Material gebildet ist, ist auf dem Substrat 2 eine elektrisch isolierende Schicht 3 abgeschieden, die eine hohe thermische Leitfähigkeit aufweist. Die elektrisch isolierende Schicht 3 kann dabei z.B. bevorzugt insbesondere durch Aluminiumoxid gebildet sein. Z.B. kann die elektrisch isolierende Schicht 3 in einem thermischen Spritzverfahren auf dem Substrat 2 abgeschieden sein. Insbesondere in dem Fall, dass das Substrat z.B. aus Aluminium ausgebildet ist, kann die elektrisch isolierende Schicht 3 z.B. auch durch gezieltes Oxidieren der Oberfläche des Substrates 2 gebildet werden. Die elektrisch isolierende Schicht 3 ist dazu ausgebildet, das Substrat 2 elektrisch gegenüber einer im Folgenden beschriebenen Heizleiterschicht 4 zu isolieren, dabei aber eine gute Wärmeübertragung auf das Material des Substrates 2 zu ermöglichen.
  • Die elektrische Heizeinrichtung 1 weist ferner eine auf dem Substrat 2 (bzw. auf der auf dem Substrat 2 ausgebildeten isolierenden Schicht 3) abgeschiedene Heizleiterschicht 4 auf. Die Heizleiterschicht 4 ist aus einem metallischen Material gebildet und kann z.B. insbesondere eine Nickel-Chrom-Legierung aufweisen. Die Heizleiterschicht 4 kann bevorzugt insbesondere in einem thermischen Spritzverfahren abgeschieden sein. Alternativ ist es aber z.B. auch möglich, die Heizleiterschicht 4 z.B. in einem Druck- oder Gießverfahren abzuscheiden.
  • Wie insbesondere in den Fig. 1 und Fig. 2 zu sehen ist, ist die Heizleiterschicht 4 derart strukturiert, dass zumindest eine Heizleiterbahn 5 ausgebildet ist, die dazu ausgelegt ist, ohmsche Wärme freizusetzen, wenn zwischen ihren entgegengesetzten Enden eine elektrische Spannung angelegt wird.
  • An einem Randbereich der elektrischen Heizeinrichtung 1 sind Anschlüsse 9a, 9b zum Verbinden der Heizleiterbahnen 5 mit einer elektrischen Leistungsversorgung vorgesehen. Bei der konkret dargestellten Ausführungsform sind zwei solche Anschlüsse elektrisch voneinander isoliert, nebeneinander an einem Rand des Substrates 2 angeordnet. Dabei ist bei der konkreten Ausführungsform der erste Anschluss 9a zum elektrischen Kontaktieren der Heizleiterbahn 5 und Anlegen eines ersten elektrischen Potentials ausgebildet und der zweite Anschluss 9b zum elektrischen Kontaktieren der Heizleiterbahn 5 und Anlegen eines anderen, zweiten Potentials ausgebildet. Über die beiden Anschlüsse 9a, 9b kann somit eine gewünschte Potentialdifferenz an die Heizleiterbahn 5 angelegt werden.
  • Die Heizleiterbahn 5 ist derart strukturiert, dass sie sich in einem bifilaren Muster auf dem Substrat 2 erstreckt. Die Heizleiterbahn 5 ist derart strukturiert, dass sie eine Vielzahl nebeneinander auf dem Substrat 2 ausgebildeter Bahnabschnitte 6 aufweist, die durch Isolierunterbrechungen 7 voneinander getrennt und somit gegeneinander elektrisch isoliert sind. Z.B. können die Isolierunterbrechungen 7 bevorzugt dadurch ausgebildet sein, dass die Heizleiterschicht 4 zunächst flächig auf dem Substrat 2 abgeschieden wurde und im Bereich der Isolierunterbrechungen 7 anschließend das Material der Heizleiterschicht 4 gezielt abgetragen wurde, insbesondere z.B. durch Laserbearbeitung. In der vergrößerten Darstellung in Fig. 2 sind die jeweiligen Stromflussrichtungen in der Heizleiterbahn 5 schematisch durch Pfeile dargestellt, um die Struktur der Heizleiterbahn 5 besser ersichtlich zu machen.
  • Wie in den Fig. 1 und Fig. 2 schematisch dargestellt ist, weisen die zwischen den jeweiligen Bahnabschnitten 6 ausgebildeten Isolierunterbrechungen 7 über ihre Längserstreckung eine zumindest im Wesentlichen gleichbleibende Breite auf. In dieser Weise ist erreicht, dass die Bahnabschnitte 6 der Heizleiterbahn 5 die Oberfläche des Substrates großflächig überdecken, sodass die zur Verfügung stehende Fläche möglichst optimal zur Ausbildung von Heizleistung bereitstellenden Bahnabschnitten 6 ausgenutzt ist.
  • Wie anhand der schematisch dargestellten Pfeile in den Figuren gut zu erkennen ist, weist die Heizleiterbahn 5 somit eine Vielzahl von Bahnabschnitten 6 derart auf, dass über den überwiegenden Teil von deren Erstreckung immer in entgegengesetzter Richtung von Strom durchflossene Bahnabschnitte 6 nebeneinander verlaufen. In dieser Weise wird eine sehr geringe elektromagnetische Abstrahlung der elektrischen Heizeinrichtung 1 erreicht. Wie ferner in Fig. 1 ersichtlich ist, ist die Heizleiterbahn 5 derart ausgebildet, dass die Heizleiterbahn 5 über einen überwiegenden Bereich ihrer Längserstreckung auch derart längs unterteilt ist, dass immer zwei in derselben Richtung von Strom durchflossene Bahnabschnitte 6 nebeneinander verlaufen und diese nur in unmittelbarer Nähe zu den Anschlüssen 9a und 9b jeweils miteinander verbunden sind. In dieser Weise wird eine vorteilhafte Aufteilung des Stromflusses in der Ebene des Substrates 2 erreicht.
  • Aufgrund der beschriebenen Anordnung, bei der die Bahnabschnitte 6 in einem großflächigen Muster auf dem Substrat 2 ausgebildet sind, weist die Heizleiterbahn 5 eine Mehrzahl von Kurvenabschnitten 8 auf, an denen die Heizleiterbahn 5 in der durch das Substrat vorgegebenen Hauptebene umgelenkt ist. Bei der bifilaren Anordnung der Heizleiterbahn 5 bei dem Ausführungsbeispiel, bei der auch eine möglichst hohe Flächenabdeckung des Substrates erstrebt wird, sind bei der Heizleiterbahn 5 zwei der Kurvenabschnitte 8 als Umkehrpunkte 10 ausgebildet. An diesen Umkehrpunkten 10 ist die Heizleiterbahn 5 in der Hauptebene über insgesamt im Wesentlichen 180° derart umgelenkt, dass innenliegende Bahnabschnitte 6a mit entgegengesetzter Stromflussrichtung nur durch eine Isolierunterbrechung 7 getrennt nebeneinander und parallel zueinander verlaufen, wie insbesondere in Fig. 5 schematisch dargestellt ist.
  • Die Ausgestaltung der Heizleiterbahn 5 im Bereich eines solchen als Umkehrpunkt 10 ausgebildeten Kurvenabschnittes 8 wird im Folgenden eingehender beschrieben. Insbesondere in einem solchen als Umkehrpunkt 10 ausgebildeten Kurvenabschnitt 8 der Heizleiterbahn 5 stellt es ohne spezielle Gegenmaßnahmen, die noch eingehender beschrieben werden, ein Problem dar, dass sich der fließende elektrische Strom überwiegend den Weg des geringsten elektrischen Widerstandes sucht. Im Bereich der Innenkurve 10a tritt dabei ohne Gegenmaßnahmen ein erhöhter Stromfluss auf und im Bereich der Außenkurve 10b stellt sich ein wesentlich geringerer Stromfluss ein. Eine solche inhomogene Stromverteilung über den Querschnitt der Heizleiterbahn 5 führt zu einer starken lokalen Erhitzung in dem stärker von elektrischem Strom durchflossenen Bereich der Heizleiterbahn 5, sodass dort das Risiko von "Hot-Spots" existiert, die aufgrund einer sehr starken Erhitzung die Lebensdauer der elektrischen Heizeinrichtung 1 negativ beeinflussen können. Ein ähnliches Problem tritt in schwächerer Form auch an den anderen Kurvenabschnitten 8 auf, an denen die Heizleiterbahn 5 stark umgelenkt wird. Auch dort besteht das Risiko eines erhöhten Stromflusses im Bereich der Innenkurve.
  • Um das Problem der Ausbildung unerwünschter "Hot-Spots" insbesondere im Bereich von Kurvenabschnitten 8 der Heizleiterbahn 5 zu lösen bzw. zumindest abzumildern, ist die Heizleiterbahn 5 bei dem Ausführungsbeispiel zumindest bei den als Umkehrpunkt 10 ausgebildeten Kurvenabschnitten 8 derart ausgebildet, dass sie in dem Bereich der Innenkurve 10a eine geringere Dicke in der Richtung senkrecht zu der Hauptebene aufweist als in dem Bereich der Außenkurve 10b. Bei dem konkreten Ausführungsbeispiel ist die Heizleiterbahn 5 dabei derart strukturiert, dass deren Dicke von der Innenkurve 10a zu der Außenkurve 10b stufenförmig zunimmt, wie in Fig. 4 schematisch dargestellt ist. Eine solche stufenartige Strukturierung in der Richtung quer zur Heizleiterbahn 5 kann in sehr einfacher und kostengünstiger Weise z.B. dadurch ausgebildet werden, dass die Heizleiterbahn 5 von einer Ausgangsdicke der Heizleiterschicht 4, die im Bereich der Außenkurve 11b belassen wird, in den weiter in Richtung der Innenkurve 10a angeordneten Bereichen mittels einer Laserbearbeitung bis auf eine geringere Dicke teilweise abgetragen wird. Bevorzugt kann dies insbesondere in demselben Arbeitsschritt erfolgen, in dem das Material der Heizleiterschicht 4 auch zur Ausbildung der Isolierunterbrechungen 7 abgetragen wird. Es ist aber z.B. auch eine nicht stufenförmige, sondern kontinuierlich veränderte Dicke der Heizleiterbahn 5 über ihre Breite möglich. Dies kann z.B. durch eine mechanische Bearbeitung oder einen Abtrag mit einem veränderlichen Laser, z.B. mit einem veränderlichen Fokus, erzielt werden.
  • Wie in Fig. 4 schematisch dargestellt ist, kann die Heizleiterbahn 5 in dem Kurvenabschnitt 8 z.B. mit zwei Stufen derart strukturiert sein, dass insgesamt in der Richtung quer zur Heizleiterbahn 5 drei Höhenniveaus realisiert sind. Es ist z.B. aber auch möglich, z.B. nur zwei unterschiedliche Höhenniveaus oder mehr als drei Höhenniveaus auszubilden. Die Dicke der Heizleiterbahn 5 kann dabei bevorzugt im Bereich der Innenkurve 10a erheblich im Vergleich zu dem Bereich der Außenkurve 10b reduziert sein. Insbesondere kann die Dicke der Heizleiterbahn 5 im Bereich der Innenkurve 10a z.B. höchstens 65% der Dicke der Heizleiterbahn 5 im Bereich der Außenkurve 10b betragen, bevorzugt höchstens 50%, mehr bevorzugt höchstens 30%. In einem nicht beschränkenden Beispiel kann die Heizleiterbahn 5 im Bereich der Außenkurve 10b z.B. ca. 25 µm dick sein, in dem Bereich der Innenkurve nur ca. 5 µm dick und in einem dazwischen liegenden Bereich ca. 15 µm dick. Bei einem derartigen Beispiel wurde z.B. festgestellt, dass die Temperatur in der Innenkurve 10a signifikant um ca. 60 °C verringert werden kann (bei dem konkreten Beispiel z.B. von ca. 240 °C auf ca. 180 °C). Die Verringerung der Dicke der Heizleiterschicht 4 in dem Bereich der Innenkurve 10a führt aufgrund der damit einhergehenden Erhöhung des elektrischen Widerstandes in der Innenkurve 10a zu einer homogeneren Verteilung des elektrischen Stroms über die Breite der Heizleiterbahn 5. In dieser Weise wird das durch "Hot-Spots" bedingte Risiko einer Verringerung der Lebensdauer der elektrischen Heizeinrichtung 1 signifikant reduziert. Insgesamt werden in dieser Weise auch höhere Heizleistungen der elektrischen Heizeinrichtung 1 ermöglicht, da die erzielbaren Heizleistungen im Wesentlichen durch "Hot-Spots" begrenzt werden.
  • Obwohl insbesondere im Bereich von als Umkehrpunkt 10 ausgebildeten Kurvenabschnitten 8 der erzielbare Effekt besonders ausgeprägt ist, ist es z.B. auch möglich in anderen Kurvenabschnitten 8, die keine derartigen Umkehrpunkte 10 sind, die Dicke der Heizleiterschicht 4 im Bereich der Innenkurve zu verringern, um eine homogenere Stromverteilung über die Breite der Heizleiterbahn 5 zu erzielen.
  • Wie in Fig. 3 schematisch dargestellt ist, ist auf der Heizleiterschicht 4, d.h. auf den entsprechend strukturierten Heizleiterbahnen 5, die zuvor beschrieben wurden, zumindest eine weitere Isolierschicht 11 ausgebildet, die die von dem Substrat 2 abgewandte Oberseite der Heizleiterschicht 4 bedeckt. Bei der Ausführungsform ist die weitere Isolierschicht 11 insbesondere derart ausgebildet, dass sie auch die Isolierunterbrechungen 7 zwischen den Bahnabschnitten 6 der Heizleiterbahnen 5 ausfüllt. In dieser Weise ist eine besonders gute Isolierung der Bahnabschnitte 6 untereinander gewährleistet. Die weitere Isolierschicht 11 kann z.B. nach dem Strukturieren der Heizleiterschicht 4 auf den strukturierten Heizleiterbahnen 5 abgeschieden werden. Das Abscheiden kann dabei z.B. wiederum bevorzugt durch ein thermisches Spritzverfahren, ein Gießverfahren oder Ähnliches erfolgen. Insbesondere kann die weitere Isolierschicht 11 z.B. wiederum durch Aluminiumoxid gebildet werden, um eine gute elektrische Isolierung und gleichzeitig eine gute thermische Leitfähigkeit zu erzielen.
  • Bevorzugt kann es z.B. auch noch vorgesehen werden, auf der weiteren Isolierschicht 11 noch eine oder mehrere weitere Schichten aufzubringen. Insbesondere kann es z.B. vorteilhaft sein, zumindest noch eine Sensorschicht zum Überwachen der Funktion der elektrischen Heizeinrichtung 1 auszubilden.
  • Die lokale Verringerung der Dicke im Bereich der Innenkurve 10a eines Kurvenabschnittes 8 kann insbesondere z.B. relativ lokal über einen Bereich in der unmittelbaren Nähe bzw. Umgebung des Kurvenabschnittes 8 ausgebildet sein, wie insbesondere in Fig. 5 schematisch durch gestrichelte Linien angedeutet ist. Bei der in Fig. 5 schematisch dargestellten Ausgestaltung ist die zusätzliche Strukturierung der Dicke der Heizleiterbahn 5 z.B. nur in dem Bereich rechts der gestrichelten Linien realisiert und in dem Bereich links der gestrichelten Linien weist die Heizleiterbahn 5 eine über ihre Breite im Wesentlichen konstante Dicke auf.
  • Die beschriebene Verringerung der Dicke der Heizleiterbahn 5 in der Innenkurve 10a des Kurvenabschnittes 8 ermöglicht es, die Neigung zur Bildung von Hot-Spots so stark zu unterdrücken, dass auf eine lokale Verbreiterung des Abstandes zwischen benachbarten innenliegenden Bahnabschnitten 6a im Bereich eines Umkehrpunktes 10 verzichtet werden kann. In dieser Weise wird eine verbesserte Flächenausnutzung der Oberfläche des Substrats 2 ermöglicht.
  • ABWANDLUNG
  • Eine Abwandlung der Ausführungsform wird im Folgenden unter Bezugnahme auf Fig. 6 beschrieben. Die elektrische Heizeinrichtung 100 gemäß der Abwandlung unterscheidet sich nur darin von der zuvor beschriebenen Ausführungsform, dass der Abstand zwischen den benachbarten innenliegenden Bahnabschnitten 6a mit zueinander entgegengesetzten Stromflussrichtungen im Bereich des Umkehrpunktes 10 auf der Innenseite lokal verbreitert ausgebildet ist. Da die weiteren Merkmale der Abwandlung mit der zuvor beschriebenen Ausführungsform übereinstimmen, werden im Folgenden nur die Unterschiede zu der Ausführungsform beschrieben und zur Bezeichnung der entsprechenden Komponenten dieselben Bezugszeichen verwendet.
  • Wie in Fig. 6 zu sehen ist, ist der Abstand zwischen den benachbarten innenliegenden Bahnabschnitten 6a im Bereich des Umkehrpunktes 10 derart lokal verbreitert ausgebildet, dass die die Umlenkung der Heizleiterbahn an dem Umkehrpunkt 10 einen im Wesentlichen tropfenförmigen oder Streichholzkopf-förmigen Bereich 12 einschließt. Obwohl der eingeschlossene Bereich 12 bei dem dargestellten Ausführungsbeispiel vollkommen durch die Isolierunterbrechung 7 von den Bahnabschnitten 6a getrennt ist, ist es z.B. auch möglich, dass dieser Bereich 12 z.B. in einem von dem Umkehrpunkt 10 etwas entfernten Bereich mit einem der beiden Bahnabschnitte 6a elektrisch leitend verbunden ist. Durch die lokale Verbreiterung des Abstandes zwischen den innenliegenden Bahnabschnitten 6a im Bereich des Umkehrpunktes 10 wird ein übermäßiger Streckenunterschied zwischen Strompfaden im Bereich der Außenkurve 10b und Strompfaden im Bereich der Innenkurve 10a an dem Umkehrpunkt 10 vermieden. In dieser Weise wird zusätzlich einer zu starken Konzentration des Stromflusses in der Innenkurve 10a im Bereich des Umkehrpunktes 10 entgegengewirkt, die zu einer lokalen Überhitzung führen würde.
  • Die Realisierung gemäß der Abwandlung wirkt einer überhöhten Erhitzung in dem Bereich des Umkehrpunktes 10 somit mit zwei Maßnahmen entgegen, einerseits mit der Verringerung der Schichtdicke der Heizleiterbahn 5 im Bereich der Innenkurve 10a gegenüber der Außenkurve 10b, andererseits mit der lokalen Verbreiterung des Abstandes zwischen den benachbarten innenliegenden Bahnabschnitten 6a im Bereich des Umkehrpunktes 10. In dieser Weise kann einer unerwünschten lokalen Temperaturerhöhung somit besonders effektiv entgegengewirkt werden.

Claims (13)

  1. Elektrische Heizeinrichtung (1) für mobile Anwendungen, mit:
    einem Substrat (2) und
    einer auf dem Substrat (2) ausgebildeten Heizleiterschicht (4),
    wobei die Heizleiterschicht (4) zumindest eine Heizleiterbahn (5) aufweist, die sich in einer Hauptebene auf dem Substrat (2) erstreckt,
    wobei die Heizleiterbahn (5) derart strukturiert ist, dass eine Vielzahl nebeneinander verlaufender, durch Isolierunterbrechungen (7) voneinander getrennter Bahnabschnitte (6) ausgebildet ist,
    wobei die Heizleiterbahn zumindest einen Kurvenabschnitt (8) aufweist, an dem die Heizleiterbahn (5) in der Hauptebene umgelenkt ist,
    dadurch gekennzeichnet, dass die Heizleiterbahn (5) in dem Kurvenabschnitt (8) derart ausgebildet ist, dass sie in dem Bereich der Innenkurve (10a) eine geringere Dicke in der Richtung senkrecht zu der Hauptebene aufweist als in dem Bereich der Außenkurve (10b), dass die Heizleiterschicht (4) eine flächig auf dem Substrat (2) abgeschiedene und anschließend unter Materialabtrag strukturierte Schicht ist,
    und dass die geringere Dicke im Bereich der Innenkurve (10a) durch einen erhöhten Materialabtrag gegenüber dem Bereich der Außenkurve (10b) gebildet ist.
  2. Elektrische Heizeinrichtung nach Anspruch 1, wobei die Heizleiterbahn (5) in dem Kurvenabschnitt (8) derart strukturiert ist, dass die Dicke von der Innenkurve (10a) zu der Außenkurve (10b) stufenförmig zunimmt.
  3. Elektrische Heizeinrichtung nach Anspruch 1 oder 2, wobei die Dicke der Heizleiterbahn (5) im Bereich der Innenkurve (10a) höchstens 65% der Dicke der Heizleiterbahn (5) im Bereich der Außenkurve (10b) beträgt, bevorzugt höchstens 50%, mehr bevorzugt höchstens 30%.
  4. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei der zumindest eine Kurvenabschnitt (8) ein Umkehrpunkt (10) ist, an dem die Heizleiterbahn (5) derart umgelenkt ist, dass innenliegende Bahnabschnitte (6a) mit zueinander entgegengesetzten Stromflussrichtungen benachbart und parallel zueinander verlaufen.
  5. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei der Abstand zwischen den benachbarten innenliegenden Bahnabschnitten (6a) mit zueinander entgegengesetzten Stromflussrichtungen im Bereich des Umkehrpunktes (10) auf der Innenseite lokal verbreitert ausgebildet ist.
  6. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei sich die zumindest eine Heizleiterbahn (5) in einem bifilaren Muster auf dem Substrat (2) erstreckt.
  7. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei die Heizleiterbahn (5) zwei als Umkehrpunkt (10) ausgebildete Kurvenabschnitte (8) aufweist.
  8. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei die elektrische Heizeinrichtung (1) als Hochvolt-Heizung für eine Betriebsspannung im Bereich zwischen 150 V und 650 V, bevorzugt zwischen 200 V und 600 V ausgelegt ist.
  9. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei die Heizleiterschicht (4) zumindest 80 % der Substratoberfläche bedeckt, bevorzugt zumindest 85 % der Substratoberfläche.
  10. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei in den Isolierunterbrechungen (7) ein elektrisch isolierendes Material angeordnet ist.
  11. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei die Heizleiterbahn (5) derart ausgebildet ist, dass zumindest über einen überwiegenden Anteil ihrer Länge jeweils zwei Bahnabschnitte (6) mit gleichgerichteter Stromflussrichtung benachbart und parallel zueinander verlaufen.
  12. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei auf der Heizleiterschicht (4) zumindest eine weitere Schicht (11) ausgebildet ist.
  13. Elektrische Heizeinrichtung nach einem der vorangehenden Ansprüche, wobei die elektrische Heizeinrichtung (1) eine Kraftfahrzeug-Heizeinrichtung ist.
EP16732222.1A 2015-05-30 2016-05-29 Elektrische heizeinrichtung für mobile anwendungen Active EP3305017B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015108582.8A DE102015108582A1 (de) 2015-05-30 2015-05-30 Elektrische Heizeinrichtung für mobile Anwendungen
PCT/DE2016/100248 WO2016192715A1 (de) 2015-05-30 2016-05-29 Elektrische heizeinrichtung für mobile anwendungen

Publications (2)

Publication Number Publication Date
EP3305017A1 EP3305017A1 (de) 2018-04-11
EP3305017B1 true EP3305017B1 (de) 2021-07-14

Family

ID=56235518

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16732222.1A Active EP3305017B1 (de) 2015-05-30 2016-05-29 Elektrische heizeinrichtung für mobile anwendungen

Country Status (3)

Country Link
EP (1) EP3305017B1 (de)
DE (1) DE102015108582A1 (de)
WO (1) WO2016192715A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219960A1 (de) * 2017-11-09 2019-05-09 Continental Automotive Gmbh Elektrische Fahrzeug-Heizvorrichtung
DE102018100635A1 (de) * 2018-01-12 2019-07-18 Webasto SE Wärmetauscher und Verfahren zum Herstellen eines solchen Wärmetauschers
DE102019106797B4 (de) * 2019-03-18 2021-04-01 Webasto SE Verfahren zur Herstellung unterschiedlicher elektrischer Leitfähigkeiten innerhalb einer Leiterbahn, Verwendung des Verfahrens sowie Leiterbahn
DE102019127753A1 (de) * 2019-10-15 2021-04-15 Türk + Hillinger GmbH Verfahren zur Herstellung eines elektrischen Heizelements für elektrische Heizvorrichtungen und/oder Lastwiderstände

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1029484C2 (nl) * 2005-07-11 2007-01-12 Ferro Techniek Holding Bv Verwarmingselement voor toepassing in een inrichting voor het verwarmen van vloeistoffen.
CA2658123C (en) * 2006-07-20 2013-05-21 Watlow Electric Manufacturing Company Layered heater system having conductive overlays
DE102012209936A1 (de) 2012-06-13 2013-12-19 Webasto Ag Elektrische Heizeinrichtung für ein Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3305017A1 (de) 2018-04-11
DE102015108582A1 (de) 2016-12-01
WO2016192715A1 (de) 2016-12-08

Similar Documents

Publication Publication Date Title
EP3305016B1 (de) Elektrische heizeinrichtung für mobile anwendungen
EP3305017B1 (de) Elektrische heizeinrichtung für mobile anwendungen
EP2676524B1 (de) Transparente scheibe mit elektrischer heizschicht, sowie herstellungsverfahren hierfür
WO2013186106A1 (de) Elektrische heizeinrichtung für ein kraftfahrzeug
EP3165761B1 (de) Windenergieanlagenrotorblatt mit einer elektrischen heizeinrichtung
EP3243361B1 (de) Transparente scheibe mit elektrischer heizschicht, sowie herstellungsverfahren hierfür
EP2791482B1 (de) Stützstift für einen elektrisch beheizbaren wabenkörper
EP3524034A1 (de) Elektrische heizeinrichtung für mobile anwendungen
EP3494294B1 (de) Elektrisch beheizbarer wabenkörper zur abgasbehandlung mit einer mehrzahl von heizelementen
EP3417210B1 (de) Öl-wasser-wärmetauscher, insbesondere für den verbrennungsmotor eines kraftfahrzeuges
WO2019197648A1 (de) Elektrische heizeinrichtung für mobile anwendungen
DE102019128467A1 (de) Elektrische Heizeinrichtung, insbesondere für mobile Anwendungen
EP3417673B1 (de) Wärmetauschersystem
EP3494296B1 (de) Wabenkörper
WO2024160815A1 (de) Elektrische heizeinrichtung für mobile anwendungen und verfahren zum herstellen einer solchen heizeinrichtung
WO2006131096A1 (de) Piezoelektrisches bauelement mit isolationsabsicherung
EP3375250A1 (de) Vorrichtung für ein heizgerät für ein fahrzeug
EP2401892A1 (de) Elektrische heizung
DE102009017368A1 (de) Heiz- und/oder Kühleinrichtung für ein Bauteil, insbesondere eines Kraftwagens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013416

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1411686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013416

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

26N No opposition filed

Effective date: 20220419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220529

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220529

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1411686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 8

Ref country code: FR

Payment date: 20230517

Year of fee payment: 8

Ref country code: DE

Payment date: 20230519

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230522

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714