EP3300818B1 - Method for sintering a dental structure and arrangement for sintering a dental structure - Google Patents

Method for sintering a dental structure and arrangement for sintering a dental structure Download PDF

Info

Publication number
EP3300818B1
EP3300818B1 EP17192129.9A EP17192129A EP3300818B1 EP 3300818 B1 EP3300818 B1 EP 3300818B1 EP 17192129 A EP17192129 A EP 17192129A EP 3300818 B1 EP3300818 B1 EP 3300818B1
Authority
EP
European Patent Office
Prior art keywords
sintering
oxygen
vacuum
dental
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17192129.9A
Other languages
German (de)
French (fr)
Other versions
EP3300818A1 (en
Inventor
Heinrich Steger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3300818A1 publication Critical patent/EP3300818A1/en
Application granted granted Critical
Publication of EP3300818B1 publication Critical patent/EP3300818B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/20Methods or devices for soldering, casting, moulding or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/04Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0043Supports specially adapted for dental prosthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F2003/1014Getter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/005Article surface comprising protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for sintering a dental construction.
  • the invention relates to an arrangement for sintering a dental construction with a sintering furnace, in which a closable heating chamber is formed and at least one dental construction arranged in the heating chamber during sintering.
  • Sintering has been used as an essential manufacturing step in the manufacture of dental prosthetic items for many decades. It serves above all to ensure that the components of the dental prosthetic item become so hard that the dental prosthetic items manufactured in this way withstand the high stresses to which a human dentition is exposed.
  • the dental industry dental technicians have been using sintering furnaces for many years, which are specially designed for sintering dental constructions.
  • An example of this is given in the EP 2 703 760 B1 out.
  • This shows in particular a vacuum container arranged in the boiler room, in which the dentures are arranged during sintering.
  • the EP 2 974 689 A1 shows an arrangement for sintering a dental workpiece in a housing in which a vacuum can be generated. The dental workpiece is suspended from a holding device.
  • the EP 2 792 332 B1 shows an arrangement with at least one workpiece to be sintered and with at least one support material.
  • the workpiece protrudes from the support material.
  • a protective gas is supplied to the workpiece through the support material.
  • the support material can be an oxygen-binding material, the support material having a higher affinity for oxygen than the workpiece.
  • Oxygen affinity is understood to mean the endeavor of a substance or a material to bind oxygen to itself, in particular through a chemical reaction.
  • This support material can be commercially available so-called sintered beads, e.g. B. from yttrium partially stabilized zirconia. Other ceramic support grains or mixtures thereof can also be used as the support material. An additional material can also be added to the ceramic support grains.
  • a material or a material mixture which has at least one chemical element or at least one chemical compound which has a higher affinity for oxygen than the material of the workpiece or as the material of the ceramic support grains is used as the additional material.
  • additional materials with high affinity for oxygen are e.g. B. metals or metal alloys.
  • Ceramic additional materials can also be used.
  • the additive can be in pellet or powder form.
  • the additional material may be e.g. B. cobalt, chromium, molybdenum, titanium or titanium alloys.
  • a disadvantage of the last-mentioned document is the high manufacturing outlay, since a protective gas in the form of argon and / or nitrogen must always be added. This means that the dental technician must always have a protective gas available for refilling. In addition, the constant use of protective gas is relatively expensive.
  • the invention further relates to a method in which the method for sintering a dental construction is additionally carried out using an oxygen-affine oxygen binding element, the sintering of the dental construction taking place at least temporarily in an air atmosphere, wherein the oxygen binding element consists essentially of titanium-containing metal or a titanium-containing metal alloy, wherein the proportion of titanium in the oxygen binding element is at least 80% and wherein the dental construction consists of a cobalt-chromium-molybdenum alloy.
  • the US 5,911,102 shows such a dental construction, which can also have cobalt, chromium and molybdenum, the dental construction consisting of a maximum of 60 percent by weight of chromium, cobalt and molybdenum.
  • the remaining component or the main component is titanium.
  • the oxygen binding element (“getter”) can consist of titanium or a titanium alloy.
  • the disadvantage here is that the titanium of the dental construction also largely binds the oxygen and the surface of the dental construction can thus be negatively influenced by oxidation.
  • the object of the present invention is therefore to create an improved method and an improved arrangement compared to the prior art.
  • the method and the arrangement should be less complex and negative influences on the surface of the dental construction during sintering should be prevented.
  • An air atmosphere can preferably be defined such that it has an oxygen volume fraction in a range from 20% to 22% and a nitrogen volume fraction in a range from 77% to 79%.
  • the oxygen binding element in the air atmosphere is bound by the oxygen binding element, as a result of which the oxygen does not or hardly oxidizes on the surface of the dental construction.
  • no complex shielding gas supply is necessary, but it becomes the normal one Ambient air is used as the atmosphere during sintering. The sintering is therefore free of inert gas.
  • the sintering of the dental construction begins in an air atmosphere.
  • an air atmosphere Particularly preferably, there is no active influence on the air atmosphere during the entire sintering process. Changes in the composition of the air atmosphere therefore only result from the sintering process itself and from the oxygen binding element.
  • an air atmosphere it is generally possible for an air atmosphere to be used for sintering which deviates from the air composition occurring on the earth's surface. Depending on the application, additional gas components can therefore be fed into the boiler room. However, it is preferably provided that the air atmosphere has an oxygen volume fraction of exactly 20.94% and a nitrogen volume fraction of exactly 78.08%. It is further provided that the air atmosphere has an argon volume fraction of 0.8 to 1%, preferably 0.93%. In addition, the air atmosphere has a volume fraction of trace gases (including carbon dioxide, neon, helium, methane, krypton, hydrogen, etc.) of less than 0.1%, preferably 0.04%. This air composition corresponds to dry air at sea level at 1,013.25 hPa. If the measurement of the air composition is carried out with humid air and at different sea level and other air pressure conditions, the volume proportions may differ slightly from the values given above.
  • trace gases including carbon dioxide, neon, helium, methane, krypton, hydrogen, etc.
  • the percentage distribution of the air atmosphere changes in such a way that the oxygen content decreases because the oxygen molecules are bound to the oxygen binding element.
  • the air atmosphere continues to have an oxygen volume fraction in a range of Has 20% to 22% and a nitrogen volume fraction in a range from 77% to 79%. It is assumed that these gases (oxygen and nitrogen) have the same coefficient of thermal expansion.
  • the sintering temperature can be, for example, in a range between 1,100 ° C and 1,500 ° C, preferably between 1,200 ° C and 1,250 ° C. With a sintering process totaling, for example, 5 to 10 hours, preferably 8 to 9 hours, the sintering temperature is reached after about 1 to 3 hours. The sintering temperature is held for 3 to 6 hours, preferably for 4.5 to 5.5 hours. This is followed by a cooling phase. Of course - especially with regard to the temperature profile - sintering processes that differ considerably can be carried out depending on the type and composition of the dental construction to be sintered.
  • the sintering is carried out in a lockable heating chamber of a sintering furnace.
  • Special sintering furnaces for sintering dental constructions have been used by dental technicians for many years.
  • the sintering pressure in the boiler room is less than 1,030 hPa. Normal pressure prevails in the boiler room during sintering. This normal pressure of 1,013.25 hPa at sea level predominates at the beginning of the sintering process. During heating and sintering, the air pressure in the boiler room can fluctuate within certain limits without deliberate interference.
  • a negative pressure of more than 300 hPa or a vacuum preferably a rough vacuum between 300 and 1 hPa or a fine vacuum between 1 and 0.001 hPa, is generated in the boiler room, the sintering being carried out under negative pressure or in a vacuum is carried out. Even finer vacuums can be created. That in The vacuum generated in the boiler room can already be present at the start of the sintering process. The vacuum can also be maintained only temporarily, that is to say for a specific period or at different periods. The vacuum or negative pressure is preferably maintained during the entire sintering process. In general, there is still air in each of the vacuums mentioned, only the concentration of the air is reduced.
  • the oxygen affinity of the oxygen binding element is greater than the oxygen affinity of the dental construction.
  • the oxygen binding element consists essentially of metal or a metal alloy.
  • the metal content should be at least 85%, preferably at least 95%.
  • the oxygen binding element contains titanium, the proportion of titanium in the oxygen binding element being at least 80%, preferably at least 95%.
  • titanium with a purity of at least 98.5% is used.
  • the titanium used has a melting temperature of approx. 1,700 ° C and a boiling temperature of approx. 3,260 ° C. Depending on the alloy composition, properties such as melting or boiling temperature also vary.
  • the oxygen binding element can be powdery, granular, solid or in some other form. It is important that the surface of the oxygen binding element is relatively large relative to its volume. It is therefore preferably provided that the oxygen binding element is sponge-shaped.
  • Dental constructions can be in the form of bridges, abutments, crowns, individual constructions, bars, etc. There is no limit to the final shape.
  • the dental construction essentially consists of a cobalt-chromium alloy.
  • the cobalt-chromium alloy preferably has a proportion of 50 to 70 percent by weight of cobalt and a proportion of 20 to 31 percent by weight of chromium.
  • the cobalt-chromium alloy consists of at least 80 percent by weight of cobalt and chromium and very preferably at least 90 percent by weight of cobalt and chromium.
  • the cobalt-chromium alloy can also have at least one or more proportions selected from the group consisting of molybdenum (Mo), manganese (Mn), silicon (Si), tungsten (W), iron (Fe), nickel (Ni ), Aluminum (Al), titanium (Ti), phosphorus (P), boron (B), cadmium (Cd), beryllium (Be), carbon (C), sulfur (S), oxygen (O) and nitrogen (N ). It is provided according to the invention that the cobalt-chromium alloy has a proportion of at least 3 percent by weight of molybdenum, the proportion of molybdenum preferably being between 5 and 8 percent by weight.
  • the dental construction can be machined out of a molded blank, preferably milled out, as it is in the WO 2015/154872 A1 is described.
  • the materials listed in this document therefore form the dental construction.
  • Standards that can be used for the composition of cobalt-chromium alloys include ISO 5832-12 or ASTM F1537.
  • a titanium-based alloy were used for the dental construction, not only would the titanium-based oxygen binding element attract oxygen, but also the dental construction itself, whereby the Dental structure would oxidize during sintering.
  • an alloy is used for the dental construction, which consists of at least 95 percent by weight of cobalt, chromium and molybdenum, and, on the other hand, an oxygen binding element is used, which consists of at least 95 percent by weight of titanium.
  • the arrangement for sintering a dental construction has a sintering furnace in which a closable heating space is formed, the heating space during sintering being at least temporarily filled with an air atmosphere which preferably has an oxygen volume fraction in a range from 20% to 22% and has a nitrogen volume fraction in a range from 77% to 79%.
  • at least one dental construction and one oxygen-binding oxygen binding element are arranged in the boiler room during sintering.
  • the boiler room is formed either directly in a housing of the sintering furnace or in a vacuum container projecting into the housing.
  • the boiler room is the area that is heated and directly houses the dental construction to be sintered. Several different dental constructions can also be sintered at the same time.
  • the at least one oxygen binding element is stored in a container, preferably arranged in a lateral area of the boiler room.
  • the oxygen binding element is not in direct contact with the dental construction.
  • the oxygen binding element is therefore arranged at a distance from the dental construction.
  • At least one holding device arranged in the heating space is provided for holding the dental construction. It is preferably provided that the dental construction is suspended from the holding device in the boiler room. Smaller jobs in particular can also simply be parked in the boiler room.
  • the arrangement preferably also has a vacuum or vacuum generating device with which the vacuum or vacuum, preferably a rough vacuum or a fine vacuum, can be generated in the boiler room.
  • a vacuum pump can be used with which a pressure of less than 1 mbar (corresponds to 1 hPa) can be generated in the boiler room.
  • Fig. 1 shows a sintering furnace 3 in a cross section.
  • This sintering furnace 3 has a furnace space R which can be closed by the door 7 and a housing 8.
  • a preferably tubular vacuum container 9 projects into the furnace chamber R.
  • the vacuum container 9 is connected to the door 7 of the sintering furnace 3.
  • a vacuum or vacuum generating device 6 which is only shown schematically, a vacuum or a vacuum can be generated in the vacuum container 9.
  • An air atmosphere L is present in the vacuum container 9.
  • Two dental constructions 1 are suspended from a holding device 5 arranged in the vacuum container 9.
  • the containers 4 arranged laterally next to the dental constructions 1 there are oxygen-affine oxygen binding elements 2. If the sintering takes place with the dental construction 1 arranged in the vacuum container 9, that area of the vacuum container 9 which protrudes from the furnace space R can be separated from the inside with a separating device 10 shown in broken lines so that not too much heat is lost in the left-sided, unused space. As an alternative to the variant shown, it can also be provided that the vacuum container 9 remains in the furnace chamber R and only one closure device of the vacuum container 9 has to be opened in order to insert and remove the dental construction 1.
  • the dental constructions 1 are arranged directly in the furnace space R filled with an air atmosphere L, which at the same time forms the heating space H.
  • the furnace space R or the heating space H is heated by means of a heating device (not shown in more detail).
  • the Fig. 3a shows the holding device 5 together with the suspended dental structures 1 in a longitudinal section, the Fig. 3b in a cross section and the Fig. 3c in a perspective view.
  • the containers 4 are held on the side supports 12 of the holding device 5 via guides 11 designed as recesses.
  • the oxygen binding elements 2 placed in the container 4 are not shown here.
  • a base plate 13 with a trough-shaped depression is arranged between the two side supports 12.
  • the side supports 12 are connected via a holding bracket 14.
  • suspension elements 17 are held by pins.
  • the dental constructions 1 are in turn held on suspension elements 17.
  • the dental construction 1 shown on the right-hand side is designed as a circular bridge construction, while the dental construction 1 shown on the left-hand side is designed as a smaller bridge element through which five teeth (see Fig. 3b ) are reproduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Preparations (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Sintern einer Dentalkonstruktion. Zudem betrifft die Erfindung eine Anordnung zum Sintern einer Dentalkonstruktion mit einem Sinterofen, in welchem ein verschließbarer Heizraum ausgebildet ist und zumindest einer beim Sintern im Heizraum angeordneten Dentalkonstruktion.The present invention relates to a method for sintering a dental construction. In addition, the invention relates to an arrangement for sintering a dental construction with a sintering furnace, in which a closable heating chamber is formed and at least one dental construction arranged in the heating chamber during sintering.

Das Sintern wird bei der Herstellung von Zahnersatzteilen bereits seit vielen Jahrzehnten als ein wesentlicher Herstellungsschritt eingesetzt. Es dient vor allem dazu, dass die Bestandteile des Zahnersatzteils so hart werden, dass die derart hergestellten Zahnersatzteile den hohen Beanspruchungen, denen ein menschliches Gebiss ausgesetzt ist, standhalten.Sintering has been used as an essential manufacturing step in the manufacture of dental prosthetic items for many decades. It serves above all to ensure that the components of the dental prosthetic item become so hard that the dental prosthetic items manufactured in this way withstand the high stresses to which a human dentition is exposed.

Im Bereich der Dentalindustrie werden von Zahntechnikern bereits seit vielen Jahren Sinteröfen eingesetzt, welche speziell für das Sintern von Dentalkonstruktionen ausgelegt sind. Ein Beispiel dafür geht aus der EP 2 703 760 B1 hervor. Diese zeigt im Speziellen einen im Heizraum angeordneten Vakuumbehälter, in welchem der Zahnersatz beim Sintern angeordnet ist. Auch die EP 2 974 689 A1 zeigt eine Anordnung zum Sintern eines Dentalwerkstücks in einem Gehäuse, in welchem ein Vakuum erzeugbar ist. Das Dentalwerkstück ist dabei an einer Haltevorrichtung aufgehängt.In the dental industry, dental technicians have been using sintering furnaces for many years, which are specially designed for sintering dental constructions. An example of this is given in the EP 2 703 760 B1 out. This shows in particular a vacuum container arranged in the boiler room, in which the dentures are arranged during sintering. Also the EP 2 974 689 A1 shows an arrangement for sintering a dental workpiece in a housing in which a vacuum can be generated. The dental workpiece is suspended from a holding device.

Wenn beim Sintern in den genannten Sinteröfen Dentalkonstruktionen mit einem Metallanteil verwendet werden, kann es durch die Reaktion mit im Heizraum vorhandenem Sauerstoff zu einer Oxidation kommen. Dadurch wird die Oberflächenbeschaffenheit der hergestellten Dentalkonstruktion negativ beeinflusst. Zudem wird die Herstellung verzögert, da ein zusätzlicher Schritt zur Reinigung der oxidierten Oberfläche notwendig ist.If dental constructions with a metal component are used in the sintering furnaces mentioned during sintering, the reaction with oxygen present in the boiler room can lead to oxidation. This has a negative impact on the surface quality of the manufactured dental construction. In addition, the production is delayed because an additional step for cleaning the oxidized surface is necessary.

Die EP 2 792 332 B1 zeigt eine Anordnung mit zumindest einem zu sinternden Werkstück und mit zumindest einem Stützmaterial. Das Werkstück steht über das Stützmaterial über. Zudem wird ein Schutzgas durch das Stützmaterial hindurch dem Werkstück zugeführt. Das Stützmaterial kann ein Sauerstoff an sich bindendes Material sein, wobei das Stützmaterial eine höhere Sauerstoffaffinität aufweist als das Werkstück. Unter Sauerstoffaffinität wird dabei das Bestreben eines Stoffes bzw. eines Materials verstanden, Sauerstoff, insbesondere durch chemische Reaktion, an sich zu binden. Bei diesem Stützmaterial kann es sich um im Handel erhältliche sogenannte Sinterperlen, z. B. aus mit Yttrium teilstabilisiertem Zirkoniumdioxid handeln. Auch andere keramische Stützkörner oder Mischungen daraus können als Stützmaterial zum Einsatz kommen. Den keramischen Stützkörnern kann auch ein Zusatzmaterial beigemengt werden kann. Dabei wird als Zusatzmaterial ein Material oder eine Materialmischung verwendet, welche zumindest ein chemisches Element oder zumindest eine chemische Verbindung aufweist, welche eine höhere Sauerstoffaffinität als das Material des Werkstücks bzw. als das Material der keramischen Stützkörner aufweist. Solche Zusatzmaterialien mit hoher Sauerstoffaffinität sind z. B. Metalle oder Metalllegierungen. Es kommen aber auch keramische Zusatzmaterialien in Frage. Der Zusatz kann in Pellets oder Pulverform vorliegen. Beim Zusatzmaterial kann es sich z. B. um Kobalt, Chrom, Molybdän, Titan oder Titanlegierungen handeln.The EP 2 792 332 B1 shows an arrangement with at least one workpiece to be sintered and with at least one support material. The workpiece protrudes from the support material. In addition, a protective gas is supplied to the workpiece through the support material. The support material can be an oxygen-binding material, the support material having a higher affinity for oxygen than the workpiece. Oxygen affinity is understood to mean the endeavor of a substance or a material to bind oxygen to itself, in particular through a chemical reaction. This support material can be commercially available so-called sintered beads, e.g. B. from yttrium partially stabilized zirconia. Other ceramic support grains or mixtures thereof can also be used as the support material. An additional material can also be added to the ceramic support grains. A material or a material mixture which has at least one chemical element or at least one chemical compound which has a higher affinity for oxygen than the material of the workpiece or as the material of the ceramic support grains is used as the additional material. Such additional materials with high affinity for oxygen are e.g. B. metals or metal alloys. Ceramic additional materials can also be used. The additive can be in pellet or powder form. The additional material may be e.g. B. cobalt, chromium, molybdenum, titanium or titanium alloys.

Nachteilig bei der letztgenannten Schrift ist der hohe Herstellungsaufwand, da immer ein Schutzgas in Form von Argon und/oder Stickstoff zugeführt werden muss. Somit muss der Zahntechniker immer ein Schutzgas zum Nachfüllen vorrätig haben. Zudem ist die ständige Verwendung von Schutzgas relativ teuer.A disadvantage of the last-mentioned document is the high manufacturing outlay, since a protective gas in the form of argon and / or nitrogen must always be added. This means that the dental technician must always have a protective gas available for refilling. In addition, the constant use of protective gas is relatively expensive.

Weiters betrifft die Erfindung ein Verfahren, bei dem zusätzlich das Verfahren zum Sintern einer Dentalkonstruktion unter Verwendung eines sauerstoffaffinen Sauerstoffbindeelements durchgeführt wird, wobei das Sintern der Dentalkonstruktion zumindest zeitweise in einer Luftatmosphäre stattfindet, wobei das Sauerstoffbindeelement im Wesentlichen aus Titan enthaltendem Metall oder aus einer Titan enthaltenden Metalllegierung besteht, wobei der Anteil an Titan am Sauerstoffbindeelement zumindest 80 % beträgt und wobei die Dentalkonstruktion aus einer Kobalt-Chrom-Molybdän-Legierung besteht.The invention further relates to a method in which the method for sintering a dental construction is additionally carried out using an oxygen-affine oxygen binding element, the sintering of the dental construction taking place at least temporarily in an air atmosphere, wherein the oxygen binding element consists essentially of titanium-containing metal or a titanium-containing metal alloy, wherein the proportion of titanium in the oxygen binding element is at least 80% and wherein the dental construction consists of a cobalt-chromium-molybdenum alloy.

Die US 5,911,102 zeigt eine solche Dentalkonstruktion, welche auch Kobalt, Chrom und Molybdän aufweisen kann, wobei die Dentalkonstruktion zu maximal 60 Gewichtsprozent aus Chrom, Kobalt und Molybdän besteht. Der restliche Bestandteil bzw. der Hauptbestandteil ist Titan. Das Sauerstoffbindeelement ("getter") kann aus Titan oder einer Titanlegierung bestehen. Nachteilig hierbei ist, dass auch das Titan der Dentalkonstruktion zu einem großen Teil den Sauerstoff bindet und somit die Oberfläche der Dentalkonstruktion durch Oxidieren negativ beeinflusst werden kann.The US 5,911,102 shows such a dental construction, which can also have cobalt, chromium and molybdenum, the dental construction consisting of a maximum of 60 percent by weight of chromium, cobalt and molybdenum. The remaining component or the main component is titanium. The oxygen binding element ("getter") can consist of titanium or a titanium alloy. The disadvantage here is that the titanium of the dental construction also largely binds the oxygen and the surface of the dental construction can thus be negatively influenced by oxidation.

Die Aufgabe der vorliegenden Erfindung besteht daher darin, ein gegenüber dem Stand der Technik verbessertes Verfahren und eine verbesserte Anordnung zu schaffen. Insbesondere sollen das Verfahren und die Anordnung weniger aufwändig sein und negative Beeinflussungen der Oberfläche der Dentalkonstruktion beim Sintern verhindert werden.The object of the present invention is therefore to create an improved method and an improved arrangement compared to the prior art. In particular, the method and the arrangement should be less complex and negative influences on the surface of the dental construction during sintering should be prevented.

Dies wird durch ein Verfahren mit den Merkmalen von Anspruch 1 erreicht. Die erfindungsgemäße Aufgabe wird auch durch eine Anordnung mit den Merkmalen von Anspruch 10 gelöst.This is achieved by a method with the features of claim 1. The object of the invention is also achieved by an arrangement with the features of claim 10.

Eine Luftatmosphäre kann bevorzugt so definiert werden, dass sie einen Sauerstoff-Volumenanteil in einem Bereich von 20 % bis 22 % und einen Stickstoff-Volumenanteil in einem Bereich von 77 % bis 79 % aufweist. Einerseits wird somit durch das Sauerstoffbindeelement der in der Luftatmosphäre vorhandene Sauerstoff gebunden, wodurch der Sauerstoff nicht oder kaum an der Oberfläche der Dentalkonstruktion oxidiert. Andererseits ist keine aufwändige Schutzgaszufuhr notwendig, sondern es wird die normale Umgebungsluft als Atmosphäre beim Sintern verwendet. Das Sintern erfolgt demnach schutzgasfrei.An air atmosphere can preferably be defined such that it has an oxygen volume fraction in a range from 20% to 22% and a nitrogen volume fraction in a range from 77% to 79%. On the one hand, the oxygen binding element in the air atmosphere is bound by the oxygen binding element, as a result of which the oxygen does not or hardly oxidizes on the surface of the dental construction. On the other hand, no complex shielding gas supply is necessary, but it becomes the normal one Ambient air is used as the atmosphere during sintering. The sintering is therefore free of inert gas.

Bevorzugt ist vorgesehen, dass das Sintern der Dentalkonstruktion in einer Luftatmosphäre beginnt. Besonders bevorzugt erfolgt auch während des gesamten Sintervorganges keine aktive Beeinflussung der Luftatmosphäre. Veränderungen der Zusammensetzung der Luftatmosphäre ergeben sich daher nur durch den Sintervorgang selbst und durch das Sauerstoffbindeelement.It is preferably provided that the sintering of the dental construction begins in an air atmosphere. Particularly preferably, there is no active influence on the air atmosphere during the entire sintering process. Changes in the composition of the air atmosphere therefore only result from the sintering process itself and from the oxygen binding element.

Es ist generell möglich, dass zum Sintern eine Luftatmosphäre verwendet wird, welche von der auf der Erdoberfläche vorkommenden Luftzusammensetzung abweicht. Es können also je nach Anwendung gezielt zusätzliche Gasanteile in den Heizraum zugeführt werden. Bevorzugt ist allerdings vorgesehen, dass die Luftatmosphäre einen Sauerstoff-Volumenanteil von genau 20,94 % und einen Stickstoff-Volumenanteil von genau 78,08 % aufweist. Weiters ist vorgesehen, dass die Luftatmosphäre einen Argon-Volumenanteil von 0,8 bis 1 %, vorzugsweise von 0,93 %, aufweist. Zudem weist die Luftatmosphäre einen Volumenanteil an Spurengasen (u. a. Kohlenstoffdioxid, Neon, Helium, Methan, Krypton, Wasserstoff, usw.) von unter 0,1 %, vorzugsweise von 0,04 %, auf. Diese Luftzusammensetzung entspricht trockener Luft auf Meereshöhe bei 1.013,25 hPa. Wenn die Messung der Luftzusammensetzung bei feuchterer Luft und bei anderer Meereshöhe und anderen Luftdruckverhältnissen erfolgt, können sich die Volumenanteile geringfügig von den oben angegebenen Werten unterscheiden.It is generally possible for an air atmosphere to be used for sintering which deviates from the air composition occurring on the earth's surface. Depending on the application, additional gas components can therefore be fed into the boiler room. However, it is preferably provided that the air atmosphere has an oxygen volume fraction of exactly 20.94% and a nitrogen volume fraction of exactly 78.08%. It is further provided that the air atmosphere has an argon volume fraction of 0.8 to 1%, preferably 0.93%. In addition, the air atmosphere has a volume fraction of trace gases (including carbon dioxide, neon, helium, methane, krypton, hydrogen, etc.) of less than 0.1%, preferably 0.04%. This air composition corresponds to dry air at sea level at 1,013.25 hPa. If the measurement of the air composition is carried out with humid air and at different sea level and other air pressure conditions, the volume proportions may differ slightly from the values given above.

Während des gesamten Sintervorgangs ändert sich die Prozentverteilung der Luftatmosphäre dahingehend, dass sich der Sauerstoffanteil verringert, da die Sauerstoffmoleküle am Sauerstoffbindeelement gebunden werden. Somit liegt die Luftatmosphäre im Heizraum vor allem zu Beginn der Sinterung vor. Es ist aber auch vorgesehen, dass in einer Heizphase bei Erreichen von zumindest 80 %, vorzugsweise bei zumindest 90 %, der Sintertemperatur die Luftatmosphäre weiterhin einen Sauerstoff-Volumenanteil in einem Bereich von 20 % bis 22 % und einen Stickstoff-Volumenanteil in einem Bereich von 77 % bis 79 % aufweist. Dabei wird davon ausgegangen, dass diese Gase (Sauerstoff und Stickstoff) denselben Temperaturausdehnungskoeffizienten haben. Die Sintertemperatur kann beispielsweise in einem Bereich zwischen 1.100° C und 1.500° C, vorzugsweise zwischen 1.200° C und 1.250° C, liegen. Bei einem Sintervorgang von insgesamt beispielsweise 5 bis 10 Stunden, vorzugsweise von 8 bis 9 Stunden, wird die Sintertemperatur nach ca. 1 bis 3 Stunden erreicht. Die Sintertemperatur wird für 3 bis 6 Stunden, vorzugsweise für 4,5 bis 5,5 Stunden, gehalten. Anschließend folgt eine Abkühlphase. Natürlich können sich - vor allem hinsichtlich des Temperaturverlaufs - relativ stark unterscheidende Sintervorgänge je nach Art und Zusammensetzung der zu sinternden Dentalkonstruktion durchgeführt werden.During the entire sintering process, the percentage distribution of the air atmosphere changes in such a way that the oxygen content decreases because the oxygen molecules are bound to the oxygen binding element. This means that the air atmosphere in the boiler room is especially present at the start of sintering. However, it is also provided that in a heating phase when the sintering temperature has reached at least 80%, preferably at least 90%, the air atmosphere continues to have an oxygen volume fraction in a range of Has 20% to 22% and a nitrogen volume fraction in a range from 77% to 79%. It is assumed that these gases (oxygen and nitrogen) have the same coefficient of thermal expansion. The sintering temperature can be, for example, in a range between 1,100 ° C and 1,500 ° C, preferably between 1,200 ° C and 1,250 ° C. With a sintering process totaling, for example, 5 to 10 hours, preferably 8 to 9 hours, the sintering temperature is reached after about 1 to 3 hours. The sintering temperature is held for 3 to 6 hours, preferably for 4.5 to 5.5 hours. This is followed by a cooling phase. Of course - especially with regard to the temperature profile - sintering processes that differ considerably can be carried out depending on the type and composition of the dental construction to be sintered.

Grundsätzlich ist bevorzugt vorgesehen, dass das Sintern in einem verschließbaren Heizraum eines Sinterofens durchgeführt wird. Spezielle Sinteröfen zum Sintern von Dentalkonstruktionen werden bereits seit vielen Jahren von Zahntechnikern eingesetzt.In principle, it is preferably provided that the sintering is carried out in a lockable heating chamber of a sintering furnace. Special sintering furnaces for sintering dental constructions have been used by dental technicians for many years.

Prinzipiell soll nicht ausgeschlossen werden, dass während des Sinterns zumindest zeitweise ein Überdruck herrscht. Gemäß einer ersten Variante kann aber vorgesehen sein, dass im Heizraum beim Sintern Druck von weniger als 1.030 hPa herrscht. Bevorzugt herrscht im Heizraum beim Sintern Normaldruck. Dieser Normaldruck von 1.013,25 hPa auf Meereshöhe herrscht vor allem zu Beginn des Sintervorgangs. Während des Aufheizens und Sinterns kann der Luftdruck im Heizraum ohne absichtliche Beeinflussung innerhalb gewisser Grenzen schwanken.In principle, it should not be excluded that there is at least occasional overpressure during sintering. According to a first variant, however, it can be provided that the sintering pressure in the boiler room is less than 1,030 hPa. Normal pressure prevails in the boiler room during sintering. This normal pressure of 1,013.25 hPa at sea level predominates at the beginning of the sintering process. During heating and sintering, the air pressure in the boiler room can fluctuate within certain limits without deliberate interference.

Gemäß einer zweiten Variante kann vorgesehen sein, dass im Heizraum ein Unterdruck von mehr als 300 hPa oder ein Vakuum, vorzugsweise ein Grobvakuum zwischen 300 und 1 hPa oder ein Feinvakuum zwischen 1 und 0,001 hPa, erzeugt wird, wobei das Sintern bei Unterdruck oder im Vakuum durchgeführt wird. Es können auch noch feinere Vakua erzeugt werden. Das im Heizraum erzeugte Vakuum kann bereits zu Beginn des Sintervorgangs vorliegen. Das Vakuum kann auch nur zeitweise, also für einen bestimmten Zeitraum oder zu verschiedenen Zeiträumen aufrecht sein. Bevorzugt ist das Vakuum bzw. der Unterdruck während des gesamten Sintervorgangs aufrecht. Generell befindet sich in jedem der genannten Vakua immer noch Luft, lediglich die Konzentration der Luft wird geringer. Das heißt, auch im Vakuum entspricht die Prozentverteilung der Volumenanteile von Sauerstoff, Stickstoff, Argon usw. immer noch der einer Luftatmosphäre. In einem Vakuum ist lediglich die Gesamtzahl der Moleküle im Heizraum geringer. Im Speziellen befinden sich bei Normaldruck in etwa 2,7x1019 (27 Trillionen) Moleküle in jedem cm3 Luft. In einem Grobvakuum sind 1019 (10 Trillionen) bis 1016 (10 Billiarden) Moleküle in jedem cm3 vorhanden, während in einem Feinvakuum immer noch 1016 (10 Billiarden) bis 1013 (10 Billionen) Moleküle in jedem cm3 vorhanden sind.According to a second variant, it can be provided that a negative pressure of more than 300 hPa or a vacuum, preferably a rough vacuum between 300 and 1 hPa or a fine vacuum between 1 and 0.001 hPa, is generated in the boiler room, the sintering being carried out under negative pressure or in a vacuum is carried out. Even finer vacuums can be created. That in The vacuum generated in the boiler room can already be present at the start of the sintering process. The vacuum can also be maintained only temporarily, that is to say for a specific period or at different periods. The vacuum or negative pressure is preferably maintained during the entire sintering process. In general, there is still air in each of the vacuums mentioned, only the concentration of the air is reduced. This means that even in a vacuum, the percentage distribution of the volume fractions of oxygen, nitrogen, argon etc. still corresponds to that of an air atmosphere. In a vacuum, only the total number of molecules in the boiler room is lower. Specifically, at normal pressure there are about 2.7x10 19 (27 trillion) molecules in every cm 3 of air. In a rough vacuum there are 10 19 (10 trillion) to 10 16 (10 trillion) molecules in every cm 3 , while in a fine vacuum there are still 10 16 (10 trillion) to 10 13 (10 trillion) molecules in every cm 3 ,

Um eine Oxidation an der Oberfläche der Dentalkonstruktion zu verhindern, ist vorgesehen, dass die Sauerstoffaffinität des Sauerstoffbindeelements größer ist als die Sauerstoffaffinität der Dentalkonstruktion.In order to prevent oxidation on the surface of the dental construction, it is provided that the oxygen affinity of the oxygen binding element is greater than the oxygen affinity of the dental construction.

Erfindungsgemäß ist vorgesehen, dass das Sauerstoffbindeelement im Wesentlichen aus Metall oder aus einer Metalllegierung besteht. Der Metallanteil sollte dabei zumindest 85 %, vorzugsweise zumindest 95 %, betragen. Hierzu ist erfindungsgemäß vorgesehen, dass das Sauerstoffbindeelement Titan enthält, wobei der Anteil an Titan am Sauerstoffbindeelement zumindest 80 %, vorzugsweise zumindest 95 %, beträgt. Im Speziellen wird Titan mit einer Reinheit von mindestens 98,5 % verwendet. Das verwendete Titan hat eine Schmelzetemperatur von ca. 1.700° C und eine Siedetemperatur von ca. 3.260° C. Je nach Legierungszusammensetzung variieren dann auch Eigenschaften wie Schmelz- oder Siedetemperatur.According to the invention, it is provided that the oxygen binding element consists essentially of metal or a metal alloy. The metal content should be at least 85%, preferably at least 95%. For this purpose, it is provided according to the invention that the oxygen binding element contains titanium, the proportion of titanium in the oxygen binding element being at least 80%, preferably at least 95%. In particular, titanium with a purity of at least 98.5% is used. The titanium used has a melting temperature of approx. 1,700 ° C and a boiling temperature of approx. 3,260 ° C. Depending on the alloy composition, properties such as melting or boiling temperature also vary.

Generell kann das Sauerstoffbindeelement pulverförmig, granulatförmig, massiv oder in einer anderen Form ausgebildet sein. Wichtig ist, dass die Oberfläche des Sauerstoffbindeelements relativ zu dessen Volumen relativ groß ist. Bevorzugt ist deshalb vorgesehen, dass das Sauerstoffbindeelement schwammförmig ausgebildet ist.In general, the oxygen binding element can be powdery, granular, solid or in some other form. It is important that the surface of the oxygen binding element is relatively large relative to its volume. It is therefore preferably provided that the oxygen binding element is sponge-shaped.

Dentalkonstruktionen können in Form von Brücken, Abutments, Kronen, Einzelkonstruktionen, Stegen, usw. ausgebildet sein. Es ist keine Limitierung auf die endgültige Form gegeben.Dental constructions can be in the form of bridges, abutments, crowns, individual constructions, bars, etc. There is no limit to the final shape.

Hinsichtlich der Dentalkonstruktion ist erfindungsgemäß vorgesehen, dass diese im Wesentlichen aus einer Kobalt-Chrom-Legierung besteht. Vorzugsweise weist die Kobalt-Chrom-Legierung einen Anteil von 50 bis 70 Gewichtsprozent an Kobalt und einen Anteil von 20 bis 31 Gewichtungsprozent an Chrom auf. Die Kobalt-Chrom-Legierung besteht erfindungsgemäß zumindest zu 80 Gewichtsprozent aus Kobalt und Chrom und ganz bevorzugt zu zumindest 90 Gewichtsprozent aus Kobalt und Chrom. Zusätzlich kann die Kobalt-Chrom-Legierung noch zumindest einen oder mehrere Anteile aufweisen, die ausgewählt sind aus der Gruppe Molybdän (Mo), Mangan (Mn), Silizium (Si), Wolfram (W), Eisen (Fe), Nickel (Ni), Aluminium (Al), Titan (Ti), Phosphor (P), Bor (B), Cadmium (Cd), Beryllium (Be), Carbon (C), Schwefel (S), Sauerstoff (O) und Stickstoff (N). Erfindungsgemäß ist vorgesehen, dass die Kobalt-Chrom-Legierung einen Anteil von zumindest 3 Gewichtsprozent an Molybdän aufweist, wobei der Anteil an Molybdän bevorzugt zwischen 5 und 8 Gewichtsprozent liegt. Beispielsweise kann die Dentalkonstruktion aus einem Formrohling herausgearbeitet, vorzugsweise herausgefräst, sein, wie er in der WO 2015/154872 A1 beschrieben ist. Somit bilden die in dieser Schrift angeführt Materialien die Dentalkonstruktion. Normen, welche für die Zusammensetzung von Kobalt-Chrom-Legierungen herangezogen werden können, sind unter anderem die ISO 5832-12 oder auch ASTM F1537.With regard to the dental construction, it is provided according to the invention that it essentially consists of a cobalt-chromium alloy. The cobalt-chromium alloy preferably has a proportion of 50 to 70 percent by weight of cobalt and a proportion of 20 to 31 percent by weight of chromium. According to the invention, the cobalt-chromium alloy consists of at least 80 percent by weight of cobalt and chromium and very preferably at least 90 percent by weight of cobalt and chromium. In addition, the cobalt-chromium alloy can also have at least one or more proportions selected from the group consisting of molybdenum (Mo), manganese (Mn), silicon (Si), tungsten (W), iron (Fe), nickel (Ni ), Aluminum (Al), titanium (Ti), phosphorus (P), boron (B), cadmium (Cd), beryllium (Be), carbon (C), sulfur (S), oxygen (O) and nitrogen (N ). It is provided according to the invention that the cobalt-chromium alloy has a proportion of at least 3 percent by weight of molybdenum, the proportion of molybdenum preferably being between 5 and 8 percent by weight. For example, the dental construction can be machined out of a molded blank, preferably milled out, as it is in the WO 2015/154872 A1 is described. The materials listed in this document therefore form the dental construction. Standards that can be used for the composition of cobalt-chromium alloys include ISO 5832-12 or ASTM F1537.

Wenn eine titanbasierte Legierung für die Dentalkonstruktion verwendet werden würde, so würde nicht nur das titanbasierte Sauerstoffbindeelement Sauerstoff anziehen, sondern auch die Dentalkonstruktion selbst, wodurch die Dentalkonstruktion beim Sintern oxidieren würde. Um dies zu vermeiden ist deshalb besonders bevorzugt vorgesehen, dass einerseits eine Legierung für die Dentalkonstruktion verwendet wird, welche zu zumindest 95 Gewichtsprozent aus Kobalt, Chrom und Molybdän besteht, und andererseits ein Sauerstoffbindeelement verwendet wird, welches zu zumindest 95 Gewichtsprozent aus Titan besteht. Bei dieser Kombination ergibt sich ein besonderer Synergieeffekt dahingehend, dass das Titan des Sauerstoffbindeelements einen Großteil des Sauerstoffs der Luftatmosphäre bindet und die Oberfläche der Dentalkonstruktion nicht bzw. kaum oxidiert.If a titanium-based alloy were used for the dental construction, not only would the titanium-based oxygen binding element attract oxygen, but also the dental construction itself, whereby the Dental structure would oxidize during sintering. To avoid this, it is therefore particularly preferred that, on the one hand, an alloy is used for the dental construction, which consists of at least 95 percent by weight of cobalt, chromium and molybdenum, and, on the other hand, an oxygen binding element is used, which consists of at least 95 percent by weight of titanium. This combination results in a special synergy effect in that the titanium of the oxygen binding element binds a large part of the oxygen in the air atmosphere and does not or hardly oxidizes the surface of the dental construction.

Die erfindungsgemäße Aufgabe wird auch durch eine Anordnung mit den Merkmalen von Anspruch 10 gelöst. Demnach weist die Anordnung zum Sintern einer dentalen Konstruktion einen Sinterofen auf, in welchem ein verschließbarer Heizraum ausgebildet ist, wobei der Heizraum beim Sintern zumindest zeitweise mit einer Luftatmosphäre gefüllt ist, welche vorzugsweise einen Sauerstoff-Volumenanteil in einem Bereich von 20 % bis 22 % und einen Stickstoff-Volumenanteil in einem Bereich von 77 % bis 79 % aufweist. Zudem sind zumindest eine Dentalkonstruktion und ein sauerstoffaffines Sauerstoffbindeelement beim Sintern im Heizraum angeordnet. Bevorzugt herrscht beim Sintern im Heizraum ein Luftdruck von unter 1.030 hPa, vorzugsweise Normaldruck, Unterdruck oder ein Vakuum.The object of the invention is also achieved by an arrangement with the features of claim 10. Accordingly, the arrangement for sintering a dental construction has a sintering furnace in which a closable heating space is formed, the heating space during sintering being at least temporarily filled with an air atmosphere which preferably has an oxygen volume fraction in a range from 20% to 22% and has a nitrogen volume fraction in a range from 77% to 79%. In addition, at least one dental construction and one oxygen-binding oxygen binding element are arranged in the boiler room during sintering. When sintering in the boiler room, there is preferably an air pressure of less than 1,030 hPa, preferably normal pressure, negative pressure or a vacuum.

Bezüglich des Heizraums ist bevorzugt vorgesehen, dass der Heizraum entweder direkt in einem Gehäuse des Sinterofens oder in einem in das Gehäuse ragenden Vakuumbehälter ausgebildet ist. Der Heizraum ist also jener Bereich, der beheizt wird und direkt die zu sinternde Dentalkonstruktion beherbergt. Es können auch mehrere unterschiedliche Dentalkonstruktionen zeitgleich gesintert werden.With regard to the boiler room, it is preferably provided that the boiler room is formed either directly in a housing of the sintering furnace or in a vacuum container projecting into the housing. The boiler room is the area that is heated and directly houses the dental construction to be sintered. Several different dental constructions can also be sintered at the same time.

Gemäß einem bevorzugten Ausführungsbeispiel ist dazu vorgesehen, dass das zumindest eine Sauerstoffbindeelement in einem, vorzugsweise in einem seitlichen Bereich des Heizraums angeordneten, Behälter abgelegt ist.According to a preferred embodiment, it is provided that the at least one oxygen binding element is stored in a container, preferably arranged in a lateral area of the boiler room.

Bevorzugt ist darauf zu achten, dass das Sauerstoffbindeelement nicht in direkten Kontakt mit der Dentalkonstruktion steht. Das Sauerstoffbindeelement ist also beabstandet zur Dentalkonstruktion angeordnet.It is preferable to ensure that the oxygen binding element is not in direct contact with the dental construction. The oxygen binding element is therefore arranged at a distance from the dental construction.

Um einen Verzug des zu sinternden Materials zu vermeiden, ist bevorzugt vorgesehen, dass zumindest eine im Heizraum angeordnete Haltevorrichtung zum Halten der Dentalkonstruktion vorgesehen ist. Dabei ist bevorzugt vorgesehen, dass die Dentalkonstruktion an der Haltevorrichtung im Heizraum aufgehängt ist. Vor allem kleinere Arbeiten können aber auch einfach im Heizraum stehen bzw. abgestellt werden.In order to avoid warping of the material to be sintered, it is preferably provided that at least one holding device arranged in the heating space is provided for holding the dental construction. It is preferably provided that the dental construction is suspended from the holding device in the boiler room. Smaller jobs in particular can also simply be parked in the boiler room.

Bevorzugt weist die Anordnung weiters eine Unterdruck- oder Vakuumerzeugungsvorrichtung auf, mit der im Heizraum der Unterdruck oder das Vakuum, vorzugsweise ein Grobvakuum oder ein Feinvakuum, erzeugbar ist. Im Speziellen kann eine Vakuumpumpe eingesetzt werden, mit der ein Druck von unter 1 mbar (entspricht 1 hPa) im Heizraum erzeugt werden kann.The arrangement preferably also has a vacuum or vacuum generating device with which the vacuum or vacuum, preferably a rough vacuum or a fine vacuum, can be generated in the boiler room. In particular, a vacuum pump can be used with which a pressure of less than 1 mbar (corresponds to 1 hPa) can be generated in the boiler room.

Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der Figurenbeschreibung unter Bezugnahme auf die in den Zeichnungen dargestellten Ausführungsbeispiele im Folgenden näher erläutert. Darin zeigen:

Fig. 1
in einem Querschnitt einen Sinterofen mit in einem Vakuumbehälter angeordneter Dentalkonstruktion,
Fig. 2
in einem Querschnitt einen Sinterofen mit direkt im Heizraum angeordneter Dentalkonstruktion und
Fig. 3a-3c
verschieden Ansichten einer Haltevorrichtung samt daran aufgehängten Dentalkonstruktionen.
Further details and advantages of the present invention are explained in more detail below with reference to the description of the figures and with reference to the exemplary embodiments illustrated in the drawings. In it show:
Fig. 1
in a cross section a sintering furnace with a dental construction arranged in a vacuum container,
Fig. 2
in a cross section a sintering furnace with a dental construction arranged directly in the boiler room and
3a-3c
different views of a holding device including dental constructions suspended from it.

Fig. 1 zeigt einen Sinterofen 3 in einem Querschnitt. Dieser Sinterofen 3 weist einen durch die Tür 7 verschließbaren Ofenraum R und ein Gehäuse 8 auf. Ein vorzugsweise rohrförmiger Vakuumbehälter 9 ragt in den Ofenraum R. Durch Beheizen des Ofenraums R ist auch der im Vakuumbehälter 9 ausgebildete Heizraum H beheizbar. Der Vakuumbehälter 9 ist mit der Tür 7 des Sinterofens 3 verbunden. Durch eine nur schematisch dargestellte Unterdruck- oder Vakuumerzeugungsvorrichtung 6 ist im Vakuumbehälter 9 eine Unterdruck oder eine Vakuum erzeugbar ist. Im Vakuumbehälter 9 ist eine Luftatmosphäre L vorhanden. Zwei Dentalkonstruktionen 1 sind an einer im Vakuumbehälter 9 angeordneten Haltevorrichtung 5 aufgehängt. In den seitlich neben den Dentalkonstruktionen 1 angeordneten Behältern 4 liegen sauerstoffaffine Sauerstoffbindeelemente 2. Wenn die Sinterung bei im Vakuumbehälter 9 angeordneter Dentalkonstruktion 1 erfolgt, kann jener Bereich des Vakuumbehälters 9, welcher aus dem Ofenraum R hinausragt, im Inneren mit einer strichliert dargestellt Trennvorrichtung 10 abgetrennt sein, damit nicht zu viel Wärme im linksseitigen, ungenutzten Raum verloren geht. Alternativ zur dargestellten Variante kann auch vorgesehen sein, dass der Vakuumbehälter 9 im Ofenraum R verbleibt und lediglich eine Verschlussvorrichtung des Vakuumbehälters 9 geöffnet werden muss, um die Dentalkonstruktion 1 hineinzugeben und zu entnehmen. Fig. 1 shows a sintering furnace 3 in a cross section. This sintering furnace 3 has a furnace space R which can be closed by the door 7 and a housing 8. A preferably tubular vacuum container 9 projects into the furnace chamber R. By heating the furnace chamber R, the one formed in the vacuum container 9 is also formed Boiler room H heated. The vacuum container 9 is connected to the door 7 of the sintering furnace 3. By means of a vacuum or vacuum generating device 6, which is only shown schematically, a vacuum or a vacuum can be generated in the vacuum container 9. An air atmosphere L is present in the vacuum container 9. Two dental constructions 1 are suspended from a holding device 5 arranged in the vacuum container 9. In the containers 4 arranged laterally next to the dental constructions 1 there are oxygen-affine oxygen binding elements 2. If the sintering takes place with the dental construction 1 arranged in the vacuum container 9, that area of the vacuum container 9 which protrudes from the furnace space R can be separated from the inside with a separating device 10 shown in broken lines so that not too much heat is lost in the left-sided, unused space. As an alternative to the variant shown, it can also be provided that the vacuum container 9 remains in the furnace chamber R and only one closure device of the vacuum container 9 has to be opened in order to insert and remove the dental construction 1.

Demgegenüber sind gemäß Fig. 2 die Dentalkonstruktionen 1 direkt im mit einer Luftatmosphäre L gefüllten Ofenraum R, welcher gleichzeitig den Heizraum H bildet, angeordnet. Die Beheizung des Ofenraums R bzw. des Heizraums H erfolgt über eine nicht näher dargestellte Heizvorrichtung.In contrast, according to Fig. 2 the dental constructions 1 are arranged directly in the furnace space R filled with an air atmosphere L, which at the same time forms the heating space H. The furnace space R or the heating space H is heated by means of a heating device (not shown in more detail).

Die Fig. 3a zeigt die Haltevorrichtung 5 samt aufgehängten Dentalkonstruktionen 1 in einem Längsschnitt, die Fig. 3b in einem Querschnitt und die Fig. 3c in einer perspektivischen Ansicht. Die Behälter 4 sind über, als Vertiefungen ausgeführte Führungen 11 an den seitlichen Trägern 12 der Haltevorrichtung 5 gehalten. Die in die Behälter 4 gelegten Sauerstoffbindeelemente 2 sind hier nicht dargestellt. Zwischen den beiden seitlichen Trägern 12 ist eine Basisplatte 13 mit einer wannenförmigen Vertiefung angeordnet. Im oberen Bereich sind die seitlichen Träger 12 über eine Haltekonsole 14 verbunden. In den Vertiefungen 15 dieser Haltekonsole 14 sind über Stifte 16 Aufhängelemente 17 gehalten. An diesen Aufhängelementen 17 wiederum sind die Dentalkonstruktionen 1 gehalten. Die rechtsseitig dargestellte Dentalkonstruktion 1 ist als zirkulär geformte Brückenkonstruktion ausgebildet, während die linksseitig dargestellte Dentalkonstruktion 1 als kleineres Brückenelement ausgebildet ist, durch welches fünf Zähne (siehe Fig. 3b) nachgebildet sind.The Fig. 3a shows the holding device 5 together with the suspended dental structures 1 in a longitudinal section, the Fig. 3b in a cross section and the Fig. 3c in a perspective view. The containers 4 are held on the side supports 12 of the holding device 5 via guides 11 designed as recesses. The oxygen binding elements 2 placed in the container 4 are not shown here. A base plate 13 with a trough-shaped depression is arranged between the two side supports 12. In the upper area, the side supports 12 are connected via a holding bracket 14. In the recesses 15 of this holding bracket 14 16 suspension elements 17 are held by pins. On this The dental constructions 1 are in turn held on suspension elements 17. The dental construction 1 shown on the right-hand side is designed as a circular bridge construction, while the dental construction 1 shown on the left-hand side is designed as a smaller bridge element through which five teeth (see Fig. 3b ) are reproduced.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
DentalkonstruktionDental design
22
SauerstoffbindeelementOxygen binding element
33
Sinterofensintering furnace
44
Behältercontainer
55
Haltevorrichtungholder
66
Unterdruck- oder VakuumerzeugungsvorrichtungVacuum or vacuum generating device
77
Türdoor
88th
Gehäusecasing
99
Vakuumbehältervacuum vessel
1010
Trennvorrichtungseparating device
1111
Führungenguides
1212
seitliche Trägerside straps
1313
Basisplattebaseplate
1414
Haltekonsoleretaining bracket
1515
Vertiefungdeepening
1616
Stiftepencils
1717
Aufhängelementesuspension elements
LL
Luftatmosphäreair atmosphere
HH
Heizraumboiler room

Claims (13)

  1. A method for sintering a dental construction (1) using an oxygen-affine oxygen binding element (2), wherein the sintering of the dental construction is carried out at least at times in an air atmosphere (L), wherein the oxygen binding element (2) substantially consists of a metal containing titanium or of a metal alloy containing titanium, wherein the proportion of titanium in the oxygen binding element (2) is at least 80 percent by weight, wherein the dental construction (1) consists of an alloy which contains cobalt, chromium and molybdenum, characterized in that the alloy consists of at least 80 percent by weight of cobalt and chromium and that the alloy comprises a proportion of at least 3 percent by weight of molybdenum.
  2. The method according to claim 1, wherein the air atmosphere (L) comprises a volume proportion of oxygen in a range from 20 % to 22 % and a volume proportion of nitrogen in a range from 77 % to 79 %.
  3. The method according to claim 1 or 2, wherein the sintering of the dental construction (1) in the air atmosphere begins with an air pressure of at least 1.030 hPa.
  4. The method according to at least one of the claims 1 to 3, wherein in a heating phase when reaching at least 80 %, preferably at least 90 %, of the sintering temperature, the air atmosphere still comprises a volume proportion of oxygen in a range from 20 % to 22 %, a volume proportion of nitrogen in a range from 77 % to 79 % and an air pressure of at least 1.030 hPa.
  5. The method according to at least one of the claims 1 to 4, wherein the sintering is carried out in a closable heating room (H) of a sintering furnace (3).
  6. The method according to claim 5, wherein in the heating room (H) during the sintering there is either standard pressure or a low pressure of more than 300 hPa or a vacuum, preferably of a medium vacuum between 300 and 1 hPa or a high vacuum between 1 and 0.001 hPa, is generated, wherein the sintering is carried out under low pressure or in a vacuum.
  7. The method according to at least one of the claims 1 to 6, wherein the proportion of titanium in the oxygen binding element (2) is at least 95 %.
  8. The method according to at least one of the claims 1 to 7, wherein the cobalt-chromium-alloy comprises cobalt in a proportion of 54 to 70 percent by weight and chromium in a proportion of 20 to 31 percent by weight.
  9. The method according to at least one of the claims 1 to 8, wherein the cobalt-chromium-alloy consists of cobalt and chromium by at least 90 percent by weight.
  10. An arrangement for sintering a dental construction (1), in particular for carrying out a method according to at least one of the claims 1 to 9, comprising
    - a sintering furnace (3) in which a closable heating room (H) is formed, wherein the heating room (H) during sintering is at least temporarily filled with an air atmosphere (L),
    - at least one dental construction (1) arranged in the heating room (H) during sintering, wherein the dental construction (1) consists of an alloy which contains cobalt, chromium and molybdenum, wherein the alloy consists of at least 80 percent by weight of cobalt and chromium and wherein the alloy comprises a proportion of at least 3 percent by weight of molybdenum, and
    - at least one oxygen-affine oxygen binding element (2) arranged in the heating room (H) during sintering, wherein the oxygen binding element (2) substantially consists of a metal containing titanium or of a metal alloy containing titanium, wherein the proportion of titanium in the oxygen binding element (2) is at least 80 percent by weight.
  11. The arrangement according to claim 10, wherein the at least one oxygen binding element (2) is stored in a container (4), preferably arranged in a lateral area of the heating room (H).
  12. The arrangement according to claim 10 or 11, comprising at least one holding device (5) for holding the dental construction (1), the holding device (5) being arranged in the heating room (H).
  13. The arrangement according to at least one of the claims 10 to 12, comprising a device (6) for generating a low pressure or a vacuum, wherein with this device (6) the low pressure or the vacuum, preferably a medium vacuum or a high vacuum, can be generated in the heating room (H).
EP17192129.9A 2016-09-28 2017-09-20 Method for sintering a dental structure and arrangement for sintering a dental structure Active EP3300818B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT508702016 2016-09-28

Publications (2)

Publication Number Publication Date
EP3300818A1 EP3300818A1 (en) 2018-04-04
EP3300818B1 true EP3300818B1 (en) 2020-01-08

Family

ID=59923325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17192129.9A Active EP3300818B1 (en) 2016-09-28 2017-09-20 Method for sintering a dental structure and arrangement for sintering a dental structure

Country Status (3)

Country Link
EP (1) EP3300818B1 (en)
AT (1) AT15966U1 (en)
ES (1) ES2782223T3 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012019159A1 (en) * 2012-09-27 2014-03-27 Amann Girrbach Ag Method for sintering a workpiece
EP2974689A1 (en) * 2014-07-18 2016-01-20 STEGER, Heinrich Assembly for sintering a dental work piece

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330105A (en) * 1993-05-18 1994-11-29 Kawasaki Steel Corp Production of ti or ti alloy sintered compact
US5911102A (en) * 1996-06-25 1999-06-08 Injex Corporation Method of manufacturing sintered compact
CA2438801A1 (en) * 2001-02-19 2002-08-29 Isotis N.V. Porous metals and metal coatings for implants
AT13400U1 (en) * 2012-04-13 2013-12-15 Steger Heinrich Heating device for a microwave oven
EP2792332B1 (en) * 2013-04-18 2015-03-11 Amann Girrbach AG Assembly comprising at least one workpiece to be sintered

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012019159A1 (en) * 2012-09-27 2014-03-27 Amann Girrbach Ag Method for sintering a workpiece
EP2974689A1 (en) * 2014-07-18 2016-01-20 STEGER, Heinrich Assembly for sintering a dental work piece

Also Published As

Publication number Publication date
ES2782223T3 (en) 2020-09-11
EP3300818A1 (en) 2018-04-04
AT15966U1 (en) 2018-10-15

Similar Documents

Publication Publication Date Title
DE69909494T2 (en) METHOD FOR PARTIAL REDUCTION OF A NIOBOXIDE AND NIOBOXIDE WITH A REDUCED OXYGEN PART
DE2845792C2 (en)
EP2010687B1 (en) Hard metal body and method for producing the same
EP2527480B1 (en) NiFe binder with universal application
DE69227503T2 (en) HARD ALLOY AND THEIR PRODUCTION
DE2125562C3 (en) Process for the powder-metallurgical production of dense bodies from nickel superalloys
DE69208947T2 (en) Titanium-based carbonitride alloy with wear-resistant surface layer
DE19907749A1 (en) Sintered hard metal body useful as cutter insert or throwaway cutter tip has concentration gradient of stress-induced phase transformation-free face-centered cubic cobalt-nickel-iron binder
DE2625214A1 (en) Process for the production of sintered molded bodies
EP2436793A1 (en) Metal powder
EP2185738B1 (en) Production of alloys based on titanium aluminides
DE10356470A1 (en) Zirconium and niobium-containing cemented carbide bodies and process for its preparation
DE102007004937A1 (en) metal formulations
DE4219469A1 (en) Component subject to high temperatures, in particular turbine blade, and method for producing this component
WO2014169303A1 (en) Sintering apparatus
EP2990141A1 (en) Method for producing TiAl components
EP2792332A1 (en) Assembly comprising at least one workpiece to be sintered
DE602004008166T2 (en) Process for producing a fine-grained cemented carbide
EP2900405B1 (en) Method for sintering a workpiece
EP3300818B1 (en) Method for sintering a dental structure and arrangement for sintering a dental structure
DE69710461T2 (en) SINTER PROCESS
DE2125534B2 (en) Use of sintered iron alloys as a material for valve seats in internal combustion engine construction
DE1182016B (en) Surface hardening of a metal body, which consists of titanium or zirconium or contains such metals
DE19607355C2 (en) Process for producing tungsten wire, tungsten wire and incandescent lamp with such a tungsten wire
EP1472747B1 (en) Ceramic multilayer component, method for the production thereof and retaining device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180608

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003429

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1222075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2782223

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003429

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 7

Ref country code: DE

Payment date: 20230911

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231013

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 7